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Estimating and improving the signal-to-noise ratio of time series by symbolic dynamics
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We investigate the effect of symbolic encoding applied to times series consisting of some deterministic
signal and additive noise, as well as time series given by a deterministic signal with randomly distributed initial
conditions as a model of event-related brain potentials. We introduce an estimator of the signal-to-noise ratio
~SNR! of the system by means of time averages of running complexity measures such as Shannon and Re´nyi
entropies, and prove its asymptotical equivalence with the linear SNR in the case of Shannon entropies of
symbol distributions. A SNR improvement factor is defined, exhibiting a maximum for intermediate values of
noise amplitude in analogy to stochastic resonance phenomena. We demonstrate that the maximum of the SNR
improvement factor can be shifted toward smaller noise amplitudes by using higher order Re´nyi entropies
instead of the Shannon entropy. For a further improvement of the SNR, a half wave encoding of noisy time
series is introduced. Finally, we discuss the effect of noisy phases on the linear SNR as well as on the SNR
defined by symbolic dynamics. It is shown that longer symbol sequences yield an improvement of the latter.
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I. INTRODUCTION

In signal analysis one often assumes that a measured
seriesx(t) consists of a deterministic signals(t) and some
additive noisejs(t) with variances2:

x~ t !5s~ t !1js~ t !. ~1!

This assumption is also maintained in analyzing eve
related brain potentials~ERP’s!, wheres(t) is regarded to be
an invariant response of the brain to certain stimuli tha
obscured by the brain’s spontaneous activity and obse
tional noise, both described by an additive noise termjs(t)
@1–4#. In order to regain the invariant ERP signals(t) from
an ensemble of measured EEG epochsxi(t), wherei denotes
an ensemble index ranging across all measured trialsN, 1
< i<N, the noise is requested to be stationary as well
ergodic @5#. Then the signal can be estimated by the e
semble average

x̄~ t !5
1

N (
i 51

N

xi~ t !.

A well known characteristic of the quality of a measur
ment is the signal-to-noise ratio~SNR!, given by the ratio of
the signal power over the power of noise@6#,

Q5APS

PN
, ~2!

with

PS5
1

TE0

T

s2~ t !dt ~3!

*Email address: peter@ling.uni-potsdam.de; also at Inst. of P
ics, Nonlinear Dynamics Group.
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PN5D2
„js~ t !…5s2 , ~4!

whereT denotes the duration of the time series. There h
been several suggestions of how to estimate the SNR
event-related brain potentials, e.g., by computing correla
coefficients@7# or coherence measures@8#, or by dividing the
amplitude of averaged ERP wave forms by the standard
viation of the prestimulus interval@9,10#. Möcks et al. @11#
suggested an ansatz that is mostly related to Eqs.~3! and~4!

P̂S5
1

TE0

T

x̄2~ t !dt2
1

N
P̂N , ~5!

P̂N5
1

N21 (
i 51

N
1

TE0

T

„xi~ t !2 x̄~ t !…2, ~6!

where we denoted statistical estimates by a hat. When
noise is neither correlated with the signal nor with its
across trials, averaging yields an improvement of the S
by AN @3#.

It is commonly accepted in the literature that none of t
assumptions given above are really met in EEG data.
background EEG cannot be regarded as stationary and
godic noise@12,11#, but that it is somehow correlated wit
the brain’s responses to certain stimuli; these responses
not invariant in time because they change in amplitude, sc
distribution, and morphology as well as in latency time~i.e.,
the signal onset time!, e.g., caused by habituation, learnin
or by changes in attention@7,11–16#. Finally, the ansatz@Eq.
~1!# states that there is no impact of the noise on the dyn
ics of the EEG. It is assumed to be purely observatio
noise.

In measured ERP data there is also an additional sourc
noise, called latency jitter. This means that the ERP sig
s(t) is randomly shifted in time by some random variablet
@5,9#, obeying

s-
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x~ t !5s~ t1t!. ~7!

Improving the SNR of measured time series is also a co
mon job of data analysis. This is traditionally achieved
using linear filters suppressing energy of certain freque
bands of the noise spectrum@6#. In the last years the phe
nomenon of stochastic resonance~SR! has drawn consider
able attention@17–19#. A similar phenomenon, noise in
duced threshold crossings@20–22# occur in nonlinear
threshold devices which are fed by noisy periodic or bro
band signals. In the latter case one speaks ofaperiodic sto-
chastic resonance@23–25#. Experimentally, SR become
manifest as a maximum of the SNR depending on the n
amplitude. Gong and co-workers therefore proposed us
electronic stochastic resonance devices such as Schmitt
gers@26# for enhancing the SNR of measured data@27–29#.

Recently, we developed a data analysis technique
overcomes the strong requirements of traditional ERP an
sis, resting on symbolic dynamics and measures of comp
ity @5#. We suggested considering event-related brain po
tials in terms of dynamical system theory, and presente
theoretical framework for dealing with nonstationary s
chastic dynamical systems. Symbolic dynamics belongs
the mathematical theory of dynamical systems, describ
states and trajectories by symbolic sequences obtained
a partition of the system’s state space@30,31#. However,
symbolic dynamics has also been successfully applied
analyze natural data during the last decade@32–42#. It has
often been claimed in the literature that symbolic dynam
leaves ‘‘robust’’ properties of dynamical systems invaria
@31,35,43# by ‘‘ignoring information about the details of th
trajectory in phase space’’@33#. When the ‘‘details’’ are con-
tributed by noise, symbolic dynamics can be regarded
some filtering technique. The impact of noise on symbo
dynamics of nonlinear systems was studied in Refs.@5,42–
45#.

In this paper we demonstrate that symbolic dynamics
powerful approach of data analysis even under the assu
tions of traditional ERP research. We consider noisy data
the type of Eq.~1!, where s(t) might be any periodic or
aperiodic ERP-like signal, in connection with a thresho
device as an unique physical system~in analogy to the mea
surement process in quantum mechanics! in order to obtain a
symbolic dynamics of the joined process. We show that
additional electronic devices are needed for enhancing
signal component of the data. The organization of the pa
is as follows. In Sec. II we introduce the basic concepts
symbolic dynamics applied to time series analysis, mai
the notion of cylinder sets and measures of complexity.
Sec. III we shall discuss the symbolic dynamics of Eq.~1!
leading to a formula for estimating the SNR@Eq. ~2!# of the
system by the time average of running cylinder entrop
We compare analytical results with results from numeri
simulations. We show that Re´nyi entropies are able to im
prove the SNR of the system considerably in contrast to
Shannon entropy. Then, we introduce an alternative met
of symbolic encoding, detecting half waves of the noisy s
nal Eq.~1!. Using this encoding technique, we obtain a fu
ther improvement of the SNR. In Sec. IV we discuss
05110
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symbolic dynamics of the latency jitter@Eq. ~7!#. In Sec.
IV A we compute the damping of signals in the presence
latency noise analytically. Section IV B is devoted to the
retical as well as numerical considerations of the symbo
dynamics. Here we demonstrate that higher word order
tistics and their related measures of complexity are appro
ate for improving the SNR of systems with randomly distri
uted initial conditions.

II. SYMBOLIC DYNAMICS

Let us consider an ensemble of real valued time se
xi(t) obtained by a measurement of some natural syst
where i (1< i<N) is the ensemble index andt is the ~dis-
crete! time index ranging from 1 toL. N is the cardinality of
the ensemble. Subsequently, we shall refer toxi(t) as trials,
epochs, or realizationsof a stochastic dynamical system. I
order to gain a symbolic dynamics of the ensemble, one
to partitionate the state space of the underlying system in
finite number of pairwise disjunct subsets; these subsets
assigned to letters of a finite set, called analphabet. Though
for experimental data the state space is generally unkn
and has to be reconstructed from measured time serie
delay embedding techniques@46#. In Ref.@5# we showed that
every partition of the set of measurement values yield
partition of the state space automatically. The simplest w
of constructing a symbolic dynamics is to use a certain b
ning of the range ofxi(t) into two or more nonoverlapping
intervals. This procedure is calledstatic encodingof the time
series@47#. A binary static encoding partitionates the ran
of measurement values into two subsets by using a thres
u @32,35,43#. The encoding rule

si ;t5H 0: xi~ t !,u i

1: xi~ t !>u i
~8!

maps each valuexi(t) of the i th time series at timet to ‘‘0’’
if xi(t) is below the thresholdu i , and to ‘‘1’’ otherwise. The
threshold should depend on the ensemble indexi because
some statistic properties ofxi(t) might differ from trial to
trial. For experimental data,u i can be chosen as a time a
erage of the realizationxi(t) @43# or, as we did, as the me
dian of xi(t) @5#.

By using the encoding rule@Eq. ~8!# we obtain a matrix
(si ;t) i<N;t<L of symbols ‘‘0’’ and ‘‘1.’’ The rows of this
matrix are images of the epochsxi(t) under the symbolic
encoding. Thus the matrix (si ;t) i<N;t<L can be considered a
a set of rows

E5$si usiP$0,1%L,1< i<N%, ~9!

where$0,1%L denotes theLth Cartesian power of the alpha
bet $0,1%. Now, we introduce the most important concept
our approach. A subsetC of the ensembleE is called ann-
cylinder at time t, if there aren lettersai 1

, . . . ,ai n
P$0,1%,

and a time pointt such that all sequences in the subsetC
match in the subsequenceai 1

, . . . ,ai n
P$0,1% beginning at

time t. Or, formally,
4-2
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C5@ak1
, . . . ,akn

# t5$siPEusi ;t1 l 215akl
, l 51, . . . ,n%.

~10!

The symbol sequencew5(ai 1
, . . . ,ai n

)P$0,1%n is called an

n-word, where $0,1%n denotes the set$0,1%n213$0,1% of
n-tuples of symbols. This definition was introduced by M
Millan @48#. For an instructive example see@5#.

Now let us introduce a measure of cylinder sets. For fin
sets a measure is provided by the set theoretic cardin
function ‘#(•)’. A probability measure for cylinder sets ca
be defined by

p~ak1
, . . . ,akn

ut !5
#~@ak1

, . . . ,akn
# t!

N
. ~11!

Considering all cylinders of given lengthn at given timet
together, we call the corresponding distributio
$(@ak1

, . . . ,akn
# t ,p(ak1

, . . . ,akn
ut))ut,n fixed% word statis-

tics of order n. The word statistics can be characterized
measures of complexity, such as Shannon and Re´nyi entropy
@49,50# or, e.g., machine complexity and renormalized e
tropy @47,51#.

The Shannon entropies@49# of order n at time t of the
ensembleE are given by

Hn~ t !52 (
(ak1

, . . . ,akn
)

p~ak1
, . . . ,akn

ut !

3 log p~ak1
, . . . ,akn

ut !. ~12!

The quantities

H~ t !5
Hn~ t !

n
~13!

measure the information per letter and are calledrelative
entropies. The quantities

I n;q~ t !5
1

12q
log (

(ak1
, . . . ,akn

)
p~ak1

, . . . ,akn
ut !q ~14!

are calledn-orderRényi entropiesdepending on the param
eterq @50#. The base of the logarithm in the formulas abo
is arbitrary. But it is recommended to use the logI , whereI is
the cardinality of the letter alphabet, because relative en
pies will always be normalized to the range@0,1#. In case of
a binary encoding (I 52) information is measured in binar
digits ~bits! by using thelogarithmus dualisld[ log2. En-
tropy is a measure of uncertainty of a given probability d
tribution. It reaches its maximum value11 for uniformly
distributed events. It takes its minimum 0 if there is only o
certain event with probability 1. For uniform distributions a
q-Rényi entropies have the same value11. But for nonuni-
form distributions theq-Rényi entropies differ significantly.
For q.1 high word probabilities are enhanced, where
small probabilities are suppressed. Hence nonuniform di
butions can be deformed toward a distribution where o
few events are considerably probable by choosing largq
05110
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values. The limit of the Re´nyi entropy forq→1 is given by
the Shannon entropy due to the rule of L’Hospital. We the
fore refer to the Shannon entropy as theq51-Rényi entropy.

III. SIGNALS WITH ADDITIVE NOISE

In this section we are dealing with stochastic processe
the form of Eq.~1!. In order to prove the equivalence o
symbolic dynamics and spectral approaches@Eqs. 2–4#, we
assume that the deterministic signals(t) is provided by a
linear harmonic oscillator, while the noisejs should be re-
garded as Gaussian white noise with zero mean, variances2,
and probability density functionrj(x) @57#. Under these as-
sumptions Eq.~1! receives the form

x~ t !5A sin~vt !1js~ t !, ~15!

whereA is the amplitude of the harmonic oscillation and t
phase offset has been set to zero.

By computing the SNR according to Eq.~2!, we obtain

Q5
A

sA2
. ~16!

This quantity assumes values between zero (A50: there is
no signal at all! and plus infinity (s50: there is no additive
noise!.

A. Static encoding

Now we are going to apply the theoretical concepts m
tioned above to the process of Eq.~15!, x(t)5A sin(vt)
1js(t). A static encoding can be obtained straightforward
by choosingu50 for all trials. ForQ50 ~pure white Gauss-
ian noise! u50 agrees with the median of the distributio
leading to maximal entropy@5,41#. This choice correspond
to the generating partition of a chaotic dynamical syst
@45,52#. Figure 1 visualizes the symbol matrix Eq.~8!, @re-
spectively the ensemble Eq.~9!# of a statically encoded en
semble ofN5100 epochs of the stochastic process@Eq. ~15!#
with a SNRQ50.5. In this plot a black pixel denotes th
letter ‘‘0’’ while a white pixel denotes the symbol ‘‘1.’’

The symbolic dynamics of the process Eq.~15! can be
treated analytically. The probability of observing the symb
‘‘0’’ at time t, i.e., the measure of the cylinder@0# t , is sim-
ply given by

p0~ t !5p~0ut !5E
2`

0

rj„x2A sin~vt !…dx. ~17!

After a substitution, this probability can be expressed by
distribution functionFj(x)5*2`

x rj(y) dy as

p0~ t !5Fj~2A sin~vt !!5
1

2
erfc„Q sin~vt !…, ~18!

where erfc is the complementary error function@53# defined
by
4-3



es

ug

o

on.
e
-

ma-

b-
he

as-

g.
in

ance

m-

l

t

e

ord
the
tes

cs
ies.
th

n

PETER BEIM GRABEN PHYSICAL REVIEW E64 051104
erfcx5
2

Ap
E

x

`

e2y2
dy. ~19!

Figure 2 shows the one-word Re´nyi entropy I 1;q(t) @Eq.
~14!# for different q values. Note that the entropy becom
smaller whenq.1 for smallp0(t).

Now we come to the main issue of this section. We s
gest an estimator of the signal-to-noise ratio by means
symbolic dynamics. In order to achieve this, we first intr
duce the time averages of the entropies:

FIG. 1. Symbolic dynamics of a simply statically encoded e
semble ofN5100 realizations of the stochastic process@Eq. ~15!#
with a SNRQ50.5, v52p. Black areas denote ‘‘0,’’ and white
‘‘1.’’

FIG. 2. Running one-word Re´nyi entropy I 1;q(t) @Eq. ~14!# of
the stochastic process@Eq. ~15!# with different q values for an en-
semble ofN5500 simulated realizations with a SNRQ51, v
51. Solid line:q51 ~Shannon entropy!. Dashed line:q54.
05110
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Jn;q5
1

TE0

T

I n;q~ t !dt. ~20!

From these averages we compute the quantity

S5GS 1

J
21D , ~21!

whereG is some positive constant to be determined later
The indicesn andq will be omitted subsequently for the sak
of convenience. The quantityScan be regarded being a func
tion of the SNRQ of the process of Eq.~15!. It is easy to
verify that S(Q)50 for Q→0, while S(Q)→` for Q→`,
sinceJ is restricted to the unit interval 0<J<1. However,
we shall prove a stronger claim. That is,S(Q) is asymptoti-
cally equivalent to the SNRQ for n51 andq51, i.e.,S(Q)
obtained by the one-word Shannon entropy is a good esti
tor of the SNRQ. For a proof, see Appendix A.

The following figures show the agreement ofS(Q) ob-
tained from an analytical calculation compared to that o
tained with numerical results. Additionally, we consider t
derivativedS/dQ as animprovement factor. Given a process
@Eq. ~15!# with a SNRQ, we look at the change ofS(Q) by
slightly alteringQ to Q1DQ. Then the change ofS is given
by DS5(dS/dQ)DQ. ForQ values withdS(Q)/dQ.1, the
SNR of the symbolic dynamics can be improved by incre
ing Q moderately. Figure 3~a! shows the estimateS(Q) de-
pending onQ of the one-word Shannon entropy, while Fi
3~b! presents the improvement factor. An improvement
the SNR is achieved forQ>1.6. This maximum of the SNR
improvement factor can be seen as a stochastic reson
phenomenon, as we discussed in Sec. I.

Next we show that using the Re´nyi entropies forq.1
leads to a further improvement of SNR by symbolic dyna
ics, because, as we had mentioned above, largeq values
entail lower entropy values~see Fig. 2!. Thus the SNR esti-
mator S(Q1), obtained by aq.1-Rényi entropy from Eq.
~15! with SNR Q1, agrees with the SNR estimatorS(Q2)
given by the Shannon entropy (q51) from a process with
SNR Q2, where Q2.Q1. Figure 4~a! presents analytica
~dotted line! as well as numerical results~solid line! of S(Q)
for a parameter settingq58. Figure 4~b! demonstrates tha
the SNR improvement factor is greater than one forQ>0.6.

Finally, we compare the effects of changing th
q-parameter with those of changing the word lengthn. Fig-
ure 5~a! presents the numerical estimates ofS(Q) for q51
~solid line!, q52 ~dashed line!, and q58 ~dotted line!. In
Fig. 5~b! we demonstrate that changing the order of the w
statistics does not provide a considerable improvement of
SNR. Here we plotted the results of the numerical estima
of S(Q) for n51 ~solid line!, n52 ~dashed line!, and n
58 ~dotted line!. All functions have been determined forq
51, i.e., for Shannon entropies.

B. Half wave encoding

In Sec. III A we demonstrated that symbolic dynami
provides a good estimator of the SNR of a noisy time ser
This estimator depends on two parameters: the word lengn

-

4-4
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and the Re´nyi parameterq. We also showed that by tuningq
we are able to improve the SNR significantly. This subs
tion is devoted to a new symbolic encoding technique
further improving the SNR. We employ a method, calledhalf
wave encoding, that is equivalent to the simple static enco
ing @Eq. ~8!# for a noise-free time series@Eq. ~15!# with s
50. This approach rests on the idea of detecting half wa
of the signalx(t). A half wave of a sine function is given b
an interval between succeeding inflection points. A posit
half wave lasts from an inflection point of positive slope
an inflection point of negative slope, while a negative h
wave lasts from an inflection point of negative slope to
inflection point of positive slope. Thus, encoding half wav
comes out to be equivalent to detecting inflection points. I
well known that inflection points of an analytical functio

FIG. 3. Estimates of the SNR from symbolic dynamicsS de-
pending on the SNRQ of the stochastic process@Eq. ~15!# given by
the time averaged Shannon entropy@Eq. ~21!#. ~a! S(Q) from nu-
merical simulations ofN5100 realizations~solid line! against the
analytical result~dashed line!. ~b! DerivationdS/dQ of the analyti-
cal result.
05110
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are points of extremal slope. The conventional way of loo
ing for inflection points is therefore determining the zeros
the second derivative of the function. But in the case
analyzing noisy time series this approach must fail, beca
computing derivatives of noisy signals numerically enhan
the noise. In order to counter this difficulty, we decided
calculate averaged slopes of secantsu(t) divided by their
variancesv(t) within a sliding window of widthT1 (T1
even! sampling points. We define asecant slope function
w(t) by

u~ t !5
1

T1
(
k51

T1/2
x~ t1k!2x~ t2k!

k
, ~22!

FIG. 4. Estimates of the SNR from symbolic dynamicsS de-
pending on the SNRQ of the stochastic process@Eq. ~15!# given by
the time averagedq58-Rényi entropy @Eq. ~21!#. ~a! S(Q) from
numerical simulations ofN5100 realizations~solid line! against
the analytical result~dashed line!. ~b! Derivation dS/dQ of the
analytical result.
4-5
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v~ t !5
1

T121 (
k51

T1/2 Fx~ t !2x~ t2k!

k
2u~ t !G2

1Fx~ t1k!2x~ t !

k
2u~ t !G2

, ~23!

w~ t !5
u~ t !

v~ t !
. ~24!

The functionw(t) is extremal at the inflection points ofx(t),
where u(t) also reaches its extrema, whilev(t) becomes

FIG. 5. Estimates of the SNR from symbolic dynamicsS as a
function of the SNRQ of the stochastic process@Eq. ~15!# given by
the time averaged entropies@Eq. ~21!# obtained by numerical simu
lations of an ensemble ofN5100 statically encoded realization
~a! S(Q) depending on different Re´nyi-parametersq. Solid line: q
51 ~Shannon entropy!. Dashed line:q52. Dotted line:q58. ~b!
S(Q) depending on different word lengthsn. Solid line:n51 ~sym-
bol statistics!. Dashed line:n52. Dotted line:n58.
05110
minimal. In contrast,w(t) is minimal at the extrema ofx(t),
becauseu(t) is almost zero due to the symmetry of the a
eraging window wherex(t1k)5x(t2k) for the pure sine
wave, whilev(t) is maximal. Figure 6~a! illustrates the al-

FIG. 6. Illustration of the half wave encoding algorithm applie
on a pure sine wave and on one realization of the stochastic pro
@Eq. ~15!# with a SNR Q50.5, v52p. ~a! Solid line: ratio of
averaged secant slopes by their variances, thesecant slope function
@Eq. ~24!#, normalized to the maximum of this ratio compute
within a running window. The width of the windowT1 is the period
T of the sine wave~dashed line!. The maxima of the computed rati
correspond to the inflection points of the sine wave having posi
slopes. The minima of the ratio correspond to the inflection po
of the sine wave with negative slopes. Intervals between
maxima and minima of the ratio correspond to half waves of
original sine wave.~b! One realization of the stochastic process@Eq.
~15!# with a SNRQ50.5. Inset: This realization symbolically en
coded by the half wave encoding algorithm using a slope avera
window with T15505T, a smoothing window withT2525, and a
look ahead for the dynamic encoding of the secant slope functio
l 54. Black areas denote ‘‘0,’’ and white ‘‘1.’’
4-6
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ESTIMATING AND IMPROVING THE SIGNAL-TO- . . . PHYSICAL REVIEW E 64 051104
gorithm for a sine wavex(t)5sint and its secant slope func
tion w(t). Because of the presence of noise, it is reco
mended to smooth the secant slope functionw(t) by a
running averaging algorithm within a window of widthT2
(T2 odd!. This yields a function

w̄~ t !5
1

T2
(

k52(T221)/2

(T221)/2

w~ t1k!. ~25!

For obtaining a symbolic encoding ofx(t) one has to
determine the monotonic branches ofw̄(t). Wherew̄(t) is
monotonically decreasing from a maximum down to a mi
mum, we find the positive half waves ofx(t). Correspond-
ingly, wherew̄(t) is monotonically increasing from a mini
mum up to a maximum we find the negative half waves
x(t). Monotonicity can be tested by looking a few sampli
points l ahead. Whenw̄(t1 l ).w̄(t), the function can be
considered to be monotonically decreasing. We assig
symbol ‘‘1’’ to the time pointt when this holds. Otherwise
we assign the symbol ‘‘0’’ ifw̄(t1 l ),w̄(t), i.e., whenw̄(t)
is monotonically increasing. This kind of symbolic encodi
is a type of dynamic encoding@47#. By encoding the
smoothed secant slope functionw̄(t) of the time seriesx(t)
dynamically, we obtain a half wave encoding ofx(t). This is
shown in Fig. 6. Figure 6~b! presents a realization of th
process of Eq.~15!, and the half wave encoding of this rea
ization.

In Fig. 7 we present the half wave encoding of the sa
ensemble that has been encoded statically in Fig. 1. The
wave encoding has several advantages over other filte

FIG. 7. Symbolic dynamics of the half wave encoded data
from Fig. 1 with parametersT1574'T, T2521, and l 54. The
horizontal stripes at the beginning and end of the sequences
artifacts of the sliding window. Black areas denote ‘‘0,’’ and wh
‘‘1.’’
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techniques such as band pass filters. It can be applied to
short time series of at least one and a half periods of
prominent oscillation, while filtering theoretically require
signals having infinite durations in time. The encoding
robust against nonstationarities such as drifts of the signa
resembles a Poincare´ mapping of the system’s trajectory bu
without destroying its time structure, since the detection
inflection points defines a Poincare´ section of the state spac
of the system. Time intervals between the inflection poi
are not neglected but filled with symbols of one kind, n
respecting the noisy dynamics between them. By appro
ately choosing the parametersT1 , T2, and l, one is able to
extract certain time scales of the signal.

In Fig. 8 we show the estimates of the SNR by Eq.~21!
for the Shannon and for theq52 andq58 Rényi entropies
of the numerical calculation. As above, the higher order R´-
nyi entropies entail better SNR estimates than the Shan
entropy. On the other hand, a comparison with Fig. 5~a!
manifests that the half wave encoding provides better e
mates even for the Shannon entropy. Estimating the glo
slopes of theS(Q) function yields DS/DQ'4/5 for the
static encoding andDS/DQ'8/5 for the half wave encod
ing, i.e., a doubling of the SNR.

IV. SIGNALS WITH LATENCY NOISE

In this section we are going to describe the problem
randomly distributed phase values, or, in the terminology
ERP research, the problem of latency jitter@Eq. ~7!#. Let us
specify Eq.~7! by the model

x~ t !5A sin~vt1t!, ~26!

wheret should be assumed to be an uniformly distribut
random variable with zero mean and variances25a2/3,
a.0 with a probability density functionrt obeying

t

re

FIG. 8. Estimates of the SNR from symbolic dynamicsS as a
function of the SNRQ of the stochastic process@Eq. ~15!# given by
the time averaged entropies@Eq. ~21!# obtained by numerical simu
lations of an ensemble ofN5100 realizations that have been e
coded using the half wave technique.S(Q) depending on different
Rényi parametersq. Solid line: q51 ~Shannon entropy!. Dashed
line: q52. Dotted line:q58.
4-7
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rt~t!5H 1

2a
: tP@2a,a#

0: t¹@2a,a#

~27!

for the sake of simplicity.

A. Determining the damping

It is clear that latency noise smears out the ensemble
erages of Eq.~26!, thus leading to a deterioration of th
SNR. For a qualitative assessment, see Ref.@5#. In order to
supply an exact calculation for the latency jitter we first ha
to transform the distribution of latency timesrt into a dis-
tribution of signal valuesrx . This can be done using
Frobenius-Perron equation@54#

rx~x!5E
2`

`

dt rt~t!d„x2sin~ t1t!… ~28!

by restricting ourselves to the case whereA51 andv51
without loss of generality. Here we have to discrimina
cy
e

n

05110
v-

e

three different cases for the noise level:~i! a,p/2, ~ii ! p/2
<a,p, and~iii ! the latency jitter is so large thatx(t) ranges
between21 and11 for all timest. That is,a>p.

The power of the jittering signalx(t) @Eq. ~26!# is smaller
than the rms of the pure sine wave sint, 1/A2. We therefore
introduce a quantity measuring the effect of latency noi
called adamping factor, by defining

D5A2Px . ~29!

This quantity is the analogue to the SNRQ defined in Eq.~2!
for latency noise. For a process mixing Eqs. 15 and 26
SNR is given byQ5(AD)/(sA2). The powerPx is given
by

Px5
1

TE0

T

x̄2~ t !dt ~30!

due to Eq.~3! wherex̄(t) is the ensemble average ofx(t).
For the three cases of different noise levels we obtain
D55A
„p214 a~p2a!…„cos~4 a!21…„4 a~p224 a2!…„Si~4 a!2Si~2 p!2Si~4 a22 p!1Si~4 a12 p!…

2~a p324 a3 p!
: a,

p

2

Asin2a2Si~2 a!1Si~2 p!

pa
:

p

2
<a,p

0: a>p

.

~31!
s

Here Si refers to the sine integral:

Six5E
0

x sint

t
dt. ~32!

A graph of the dependence ofD on the noise intensitya
5sA3 is shown in Fig. 9. For a derivation of Eq.~31!, see
Appendix B.

B. Static encoding

We come now to the symbolic dynamics of the laten
jitter ~Fig. 10!. It is rather obvious that the probability of th
symbol ‘‘0’’ of a pure sine waveA sint is given by a step
function

p0~ t !5H 0: 0<t,p

1: p<t,2p
~33!

modulo 2p. In order to obtain the probabilityp̃0(t) in the
case of latency noise one has to compute the convolutio
p0(t) with the probability density functionrt of the jitter t
@5#:
of

p̃0~ t !5E
2`

`

p0~ t2t8!rt~ t8!dt8. ~34!

Inserting Eq.~27! into Eq. ~34! yields

p̃0~ t !5
1

2aEt2a

t1a

p0~u!du. ~35!

As above, we have to consider three different cases:~i! a
,p/2, ~ii ! p/2<a,p, and~iii ! a>p. In case~iii ! we sim-
ply obtain the constant functionp̃0(t)51/2. For cases~i! and
~ii ! the symbol probabilities are piecewise linear function

p̃0~ t !55
a2t

2a
: 2a<t,a

0: a<t,p2a

a1t2p

2a
: p2a<t,a1p

1: a1p<t,2p2a

~36!

for a,p/2, and
4-8
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p̃0~ t !55
a2t

2a
: 2p1a<t,p2a

12
p

2a
: p2a<t,a

a1t2p

2a
: a<t,2p2a

p

2a
: 2p2a<t,p1a

~37!

for p/2<a,p.
Our remaining job is to apply our theory of the SNR

this model. To this end we supply the word probabiliti
p̃0(t) and 12 p̃0(t) into Eqs. 12 and 14 in order to compu
Shannon and Re´nyi entropies and finally the SNR estimateS

FIG. 9. DampingD @Eq. ~31!# of the stochastic process@Eq. ~7!#
as a function of latency jittera.

FIG. 10. Symbolic dynamics of a statically encoded ensembl
N5100 realizations of the stochastic process@Eq. ~26!# (v51) for
latency jittera5p/2. Black areas denote ‘‘0,’’ and white ‘‘1.’’
05110
by Eq.~21!, now depending on the dampingD instead of the
SNRQ. The next figures present the results of analytical a
numerical calculations. Above we show the functionsS(D)
of the analytical issue~dotted line! and for the numerical
simulations~solid line!. Below, we present the derivative
dS/dD as the SNR improvement factor. Figure 11 provid
S(D) anddS/dD computed from the Shannon entropy of th
symbol distribution. The improvement factor reaches 1
D>0.51.

By increasing theq-parameter of the Re´nyi entropy we
are able to boost the SNR improvement factor. Figure
shows the functionsS(D) and dS/dD for q58. Improve-
ment of the SNR is obtained atD>0.02.

Finally, we present results from the numerical compu
tion of higher order word statistics. Figure 13~a! repeats the

f

FIG. 11. Estimates of the SNR from symbolic dynamicsS de-
pending on the dampingD of the stochastic process@Eq. ~26!# given
by the time averaged Shannon entropy@Eq. ~21!#. ~a! S(D) from
numerical simulations ofN5100 realizations~solid line! against
the analytical result~dashed line!. ~b! Derivation dS/dD of the
analytical result.
4-9
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S(D) curves for differentq-parameters, while Fig. 13~b!
shows the effect of using longer words. It is easy to rec
nize that going from symbol statistics~solid line! to word
lengthsn52 ~dashed line!, and n58 ~dotted line! entails
better SNR estimates. Thus symbolic dynamics of higher
der word statistics is able to capture and diminish late
noise.

V. DISCUSSION

In this paper we studied the requirements of traditio
ERP analysis by means of symbolic dynamics. We discus
two kinds of model systems. In the first one, an ensemble
harmonic oscillators provides sine waves of a certain am

FIG. 12. Estimates of the SNR from symbolic dynamicsS de-
pending on the dampingD of the stochastic process@Eq. ~26!# given
by the time averagedq58-Rényi entropy@Eq. ~21!#. ~a! S(D) from
numerical simulations ofN5100 realizations~solid line! against
the analytical result~dashed line!. ~b! Derivation dS/dD of the
analytical result.
05110
-

r-
y

l
ed
of
i-

tude, all starting with the same initial conditions yielding th
same phase offset of zero. These deterministic signals
subsequently corrupted by white Gaussian noise of a gi
dispersion. In the second model, an ensemble of harm
oscillators provides sine waves of a certain amplitude as
fore but starting at different, randomly distributed, initi
conditions obeying an uniform distribution of a given va
ance. This yields an ensemble of sine waves with rando
distributed phase offsets. The SNR of the first model is s
ply given by Eq.~2!. We introduced the symbolic dynamic
of this model by a binary static encoding corresponding t
partition of the system’s state space into two cells. From

FIG. 13. Estimates of the SNR from symbolic dynamicsS as a
function of the dampingD of the stochastic process@Eq. ~26!# given
by the time averaged entropies@Eq. ~21!# obtained by numerical
simulations of an ensemble ofN5100 statically encoded realiza
tions.S(D) depending on different Re´nyi parametersq. Solid line:
q51 ~Shannon entropy!. Dashed line:q52. Dotted line:q58. ~b!
S(D) depending on different word lengthsn. Solid line:n51 ~sym-
bol statistics!. Dashed line:n52. Dotted line:n58.
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ESTIMATING AND IMPROVING THE SIGNAL-TO- . . . PHYSICAL REVIEW E 64 051104
distributions of the symbols we obtain time dependent m
sures of complexity such as Shannon and higher order R´nyi
entropies. The time average of the Shannon entropy of o
word cylinders yields a good estimator of the SNR. We d
fined a SNR improvement factor by the derivative of t
estimator with respect to the linear SNR, and found that th
is a maximum of the improvement factor at intermedia
noise levels. This maximum might be related to the pheno
enon of stochastic resonance known from threshold devi
We shall address this issue more thoroughly in a forthcom
paper.

We have shown that by using higher order Re´nyi entro-
pies we are able to shift the maximum of the SNR impro
ment factor toward lower noise amplitudes, and hence
prove the SNR by symbolic dynamics. A furthe
improvement of SNR is obtained by an encoding strate
called half wave encoding. This encoding scheme is equ
lent to simple static encoding for pure sine waves. For s
chastic processes mixed of sine waves and additive noise
half wave encoding detects the inflection points of the de
ministic signal, and fills the time intervals between them
with symbols of one kind, e.g., with 0’s for negative ha
waves of the underlying sine function and with 1’s for t
positive half waves. Detecting inflection points is a kind
Poincare´ mapping. It can be used for determining a tim
series consisting of time intervals@55#. But this procedure
spoils information about the absolute timing. Our half wa
encoding technique keeps this information by generating
quences of only 1’s and 0’s, and neglecting the noisy beh
ior between the inflection points, thus increasing the SN
The half wave encoding is furthermore insensitive aga
linear or slowly nonlinear drifts of the time series becaus
is founded on computing approximated first derivatives
the signals. It can also be applied to ensembles of short
series, whereas linear filter techniques theoretically dem
signals of infinite duration.

With the second model of deterministic signals with no
phases we studied the impact of the phase distribution on
SNR by defining a damping factor. The SNR estimator giv
by the symbolic dynamics comes out to be a monotonic
increasing function of the damping. We obtain an improv
ment of SNR by symbolic dynamics by considering high
words statistics. Thus we have demonstrated that even i
prerequisites of the traditional approach of ERP analy
were fulfilled symbolic dynamics would yield better resu
with respect to the signal-to-noise ratio.
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APPENDIX A: PROOF OF THE ASYMPTOTIC
EQUIVALENCE OF S AND Q

The assertion states that

lim
Q→`

S~Q!

Q
51. ~A1!
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Hence we first have to prove that the ratioS(Q)/Q con-
verges forQ→`, and then we have to demonstrate that t
limit is equal to 1. In order to achieve the first part of th
proof, we show thatS(Q)/Q is both monotonically increas
ing and bounded from above. Monotonicity can be dem
strated by considering the first derivative of the functi
S(Q)/Q. By Eq. ~21! we obtain

S S~Q!

Q D 8
5GS 12

1

J
2Q

J8

J2D . ~A2!

The derivative ofJ(Q) is given by

J852
1

2p3/2E0

2p

sint exp~2Q2sin2t !

3 ldFerfc~2Q sint !

erfc~Q sint ! Gdt, ~A3!

where we integrate over one period of the signalx(t). For
the sake of convenience we let the frequencyv51. It fol-
lows from the symmetry and monotonicity of the compl
mentary error function@53# and from the properties of the
sine function that the integrand is non-negative over
whole interval@0,2p#. Therefore,J8 is negative for allQ
~recall, thatQ>0). We conclude that

S S~Q!

Q D 8
5GS 12

1

J
2Q

J8

J2D .0. ~A4!

ThusS(Q)/Q is strongly monotonically increasing.
Proving boundedness is a bit more complicated. For

aim we shall first approximate the probabilityp0(t) by a step
function. Since the one-word entropy@Eq. ~12!# is p peri-
odic, it will be enough defining this function only at th
interval @0,p#:

p0* ~ t !55
1

4
: 0<t,t*

«: t* <t,p2t*

1

4
: p2t* <t,p.

~A5!

For Q large enough,«,1/4 is given by«5erfc(2Q)/2,
while t* is determined by p0* (t* )51/4, yielding t*
5arcsin(a/Q), with a5erfc21(1/2) and erfc21 as the inverse
complementary error function. Fromp0* (t) we compute the
Shannon entropy@Eq. ~12!#

H* ~ t !5H b: 0<t,t*

2« ld «2~12«!ld~12«!: t* <t,p2t*

b: p2t* <t,p,
~A6!

where we setb522(3 ld 3)/4. Thetime average integral o
H* (t) is given by
4-11
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J* 5
1

pE0

p

H* ~ t !dt

5
2b

p
arcsinS a

QD2
1

p
arccosS a

QD
3H 2@ ld„erfc~2Q!…21#1erfcQ ldF erfc~Q!

erfc~2Q!G J .

~A7!

Now we can compute the quantitiesS* (Q)5G(1/J* 21)
and S* (Q)/Q5G(12J* )/(QJ* ). Becausep0* (t)<p0(t)
for all tP@0,p#, it holds thatH* (t)<H(t) and therefore
S* (Q)/Q.S(Q)/Q, thus providing an upper boundary o
S(Q)/Q. By expanding the logarithm and the compleme
tary error function into power series@56#, we obtain
limQ→`J* 50 and limQ→`QJ* 52ab/p, and therefore

lim
Q→`

12J* ~Q!

QJ* ~Q!
5

p

2ab
. ~A8!

Consequently, we have proven thatS(Q)/Q has an upper
bound, namely,p/(2ab) when Q is large enough so that«
,1/4. SinceS(Q)/Q is strongly monotonically increasing a
well as bounded from above, it is also convergent. By app
priately choosing the constantG we force the limit
limQ→`S(Q)/Q to be 1. Then we have shown thatS(Q)/Q
is asymptotically equivalent to the SNRQ. For practical pur-
pose we estimate the limit numerically as 1/G5 limQ→`„1
2J(Q)…/„QJ(Q)…'„12J(200)…/„200J(200)…51.69981.

APPENDIX B: DERIVATION OF THE DAMPING FACTOR

The Dirac distribution in the integrand of Eq.~28! can be
evaluated by the theorem

d~w~y!!5 (
i :w(yi )50

1

uw8~yi !u
d~y2yi !, ~B1!

whereyi are simple zeros of the functionw. The zeros of the
function w(t)5x2sin(t1t) are given by

tk;152pk1arcsinx2t, ~B2!

tk;252pk1p2arcsinx2t, ~B3!

while the derivative isw8(t)52cos(t1t). The variablest
andx are regarded to be parameters,k is an integer ranging
from 2` to `. Thus Eq.~B1! leads to

d„x2sin~ t1t!…5 (
k52`

`
d~t2tk;1!

ucos~2pk1z!u

1
d~t2tk;2!

ucos~2pk1p2z!u
,

05110
-

-

where we abbreviatedz5arcsinx. By using the periodicity
and symmetry of the cosine function, we obtain

d„x2sin~ t1t!…5
1

ucoszu (
k52`

`

d~t2tk;1!1d~t2tk;2!,

and finally, by expandingz5arcsinx, we obtain

d„x2sin~ t1t!…5
1

A12x2 (
k52`

`

d~t2tk;1!1d~t2tk;2!.

~B4!

Inserting Eq. ~B4! and the density@Eq. ~27!# into the
Frobenius-Perron equation~28! entails

rx~x!5
1

2aA12x2E2a

a

dt (
k52`

`

d~t2tk;1!1d~t2tk;2!.

~B5!

Then we condense the integral into a normalization cons

N5E
2a

a

dt (
k52`

`

d~t2tk;1!1d~t2tk;2!.

This provides the result

rx~x!5
N

2aA12x2
. ~B6!

Next we must consider cases~i!–~iii ! of the noise levela. Let
us first look at case~iii !. The constantN3 must obey the
normalization

E
21

1 N3

2aA12x2
dx51. ~B7!

The integral can be performed by elementary calculus yie
ing N3 /(2a)51/p. Hence the densityrx is given by

rx~x!5
1

pA12x2
. ~B8!

Note that this is exactly the invariant density of the ful
chaotic logistic mapxn115122xn

2 @30#.
For both the other cases~i! and ~ii !, the range of disper-

sion of x(t) depends on the actual timet. The factorN is
determined by the constraint

E
min[sin(t2a),sin(t1a)]

max[sin(t2a),sin(t1a)] N~ t !

2aA12x2
dx51, ~B9!

and now depends on time.
For case~i! we have to distinguish six branches of th

function N1(t):
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N1~ t !5

¦

1: a2
p

2
<t,

p

2
2a

2a

a2t1
p

2

: p

2
2a<t,

p

2

2a

a1t2
p

2

: p

2
<t,a1

p

2

1: a1
p

2
<t,

3p

2
2a

2a

a2t1
3p

2

: 3p

2
2a<t,

3p

2

2a

a1t2
3p

2

: 3p

2
<t,a1

3p

2
.

~B10!

Also six branches must be discriminated for case~ii !:

N2~ t !5

¦

2a

p
:

p

2
2a<t,a2

p

2

2a

a2t1
p

2

:
a2

p

2
<t,

p

2

2a

a1t2
p

2

: p

2
<t,

3p

2
2a

2a

p
:

3p

2
2a<t,a1

p

2

2a

a2t1
3p

2

:
a1

p

2
<t,

3p

2

2a

a1t2
3p

2

: 3p

2
<t,

5p

2
2a.

~B11!
-
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From the distribution densitiesrx obtained by the normal
ization functionsN1;2;3(t) we compute the expectation va
ues

x̄~ t !5
N~ t !

2a E
min[sin(t2a),sin(t1a)]

max[sin(t2a),sin(t1a)] x

A12x2
dx,

x̄~ t !5
N~ t !

2a
@A12x2#min[sin(t2a),sin(t1a)]

max[sin(t2a),sin(t1a)] . ~B12!
05110
Here we report the result forN3. In this case, the expectatio
value is just zero for all time, meaning that a latency jitt
of p or larger smears out any signal at all. The oth
expectation values are functions of time again. These
supplied to the computation of the signal power@Eq. ~3!#
employing Eq.~30!. This integration has to be performe
over the six branches ofN1(t) and N2(t), respectively; but
we shall omit these tedious calculations. Finally, we ins
Eq. ~30! into the definition of the damping factor@Eq. ~29!#.
This yields Eq.~31!.
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@50# A. Rényi, Probability Theory ~North-Holland, Amsterdam,
1970!.

@51# P.I. Saparin, A. Witt, J. Kurths, and V. Anishchenko, Cha
Solitons Fractals4, 1907~1994!.

@52# E.M. Bollt, T. Stanford, Y.-C. Lai, and K. Z˙yczkowski, Phys.
Rev. Lett.85, 3524~2000!.

@53# W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Fla
nery,Numerical Recipies in C, 2nd ed.~Cambridge University
Press, New York, 1996!, reprinted 1996.

@54# C. Beck and F. Schlo¨gl, Thermodynamics of Chaotic System
4-14



4

old

ESTIMATING AND IMPROVING THE SIGNAL-TO- . . . PHYSICAL REVIEW E 64 051104
An Introduction, Cambridge Nonlinear Science Series Vol.
~Cambridge University Press, Cambridge, England, 1993!, re-
printed 1997.

@55# X. Pei and F. Moss, Nature~London! 379, 618 ~1996!.
05110
@56# Mathematik Handbuch fu¨r Technik und Naturwissenschaft, ed-
ited by J. Dreszner~Harry Deutsch Verlag, Thun, 1975!.

@57# For a general discussion of aperiodic signals fed into thresh
devices, see Refs.@23–25,55#.
4-15


