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Estimating and improving the signal-to-noise ratio of time series by symbolic dynamics
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We investigate the effect of symbolic encoding applied to times series consisting of some deterministic
signal and additive noise, as well as time series given by a deterministic signal with randomly distributed initial
conditions as a model of event-related brain potentials. We introduce an estimator of the signal-to-noise ratio
(SNR) of the system by means of time averages of running complexity measures such as Shannamyand Re
entropies, and prove its asymptotical equivalence with the linear SNR in the case of Shannon entropies of
symbol distributions. A SNR improvement factor is defined, exhibiting a maximum for intermediate values of
noise amplitude in analogy to stochastic resonance phenomena. We demonstrate that the maximum of the SNR
improvement factor can be shifted toward smaller noise amplitudes by using higher origreR&opies
instead of the Shannon entropy. For a further improvement of the SNR, a half wave encoding of noisy time
series is introduced. Finally, we discuss the effect of noisy phases on the linear SNR as well as on the SNR
defined by symbolic dynamics. It is shown that longer symbol sequences yield an improvement of the latter.
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I. INTRODUCTION and
In signal analysis one often assumes that a measured time Pn=D2(£,(t))=0?, 4
seriesx(t) consists of a deterministic signa{t) and some
additive noiset,,(t) with varianceo?: whereT denotes the duration of the time series. There have
been several suggestions of how to estimate the SNR of
X(t)=s(t)+&,(1). (1) event-related brain potentials, e.g., by computing correlation

coefficientd 7] or coherence measurgs, or by dividing the
This assumption is also maintained in analyzing eventamplitude of averaged ERP wave forms by the standard de-
related brain potentialiERP’S, wheres(t) is regarded to be viation of the prestimulus intervdb,10]. Mocks et al. [11]
an invariant response of the brain to certain stimuli that issuggested an ansatz that is mostly related to E)and(4)
obscured by the brain’s spontaneous activity and observa-
tional noise, both described by an additive noise téptt) A 1T 1.
[1-4]. In order to regain the invariant ERP sigrs§t) from PS:?J’O x4(t)dt— NPN’ )
an ensemble of measured EEG epoxlis), wherei denotes
an ensemble index ranging across all measured tNals
<i=<N, the noise is requested to be stationary as well as S(1))2
ergodic[5]. Then the signal can be estimated by the en- Pn= N-1; Z (X(t —X()% ©
semble average
where we denoted statistical estimates by a hat. When the
noise is neither correlated with the signal nor with itself
x()=5 24 Xi(1). across trials, averaging yields an improvement of the SNR
by VN [3]. _ _
A well known characteristic of the quality of a measure- It IS commonly accepted in the literature that none of the
ment is the signal-to-noise rati&NR), given by the ratio of assumptions given above are really met in EEG data. The

N

the signal power over the power of noiks, background EEG cannot be regarded as stationary and er-
godic noiseg[12,11], but that it is somehow correlated with
Ps the brain’s responses to certain stimuli; these responses are
Q= Py (2)  notinvariant in time because they change in amplitude, scalp

distribution, and morphology as well as in latency tifhe.,

the signal onset time e.g., caused by habituation, learning

or by changes in attentidi7,11-14. Finally, the ansatfEq.
1T (1)] states that there is no impact of the noise on the dynam-
Psz—j s2(t)dt 3) ics_ of the EEG. It is assumed to be purely observational
0 noise.

In measured ERP data there is also an additional source of
noise, called latency jitter. This means that the ERP signal
*Email address: peter@ling.uni-potsdam.de; also at Inst. of Physs(t) is randomly shifted in time by some random variable

ics, Nonlinear Dynamics Group. [5,9], obeying

with
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X(t)=s(t+7). 7) symbolic dynamics of the latency jittdEg. (7)]. In Sec.
IV A we compute the damping of signals in the presence of
Improving the SNR of measured time series is also a Cc,ml_at(.ancy noise analyticall)_/. Sectioq v B_is devoted to theo.—
mon job of data analysis. This is traditionally achieved byretlcal as well as numerical conS|derat|_ons of the symbolic
using linear filters suppressing energy of certain frequenc{lynamics. Here we demonstrate that higher word order sta-
bands of the noise spectruff]. In the last years the phe- istics a_md the_lr related measures of complexny are appropri-
nomenon of stochastic resonan@R) has drawn consider- ate fo_r improving .the SNR of systems with randomly distrib-
able attention[17—19. A similar phenomenon, noise in- Uted initial conditions.
duced threshold crossingf20—22 occur in nonlinear
threshold devices which are fed by noisy periodic or broad- Il. SYMBOLIC DYNAMICS
band signals. In the latter case one speakapafriodic sto-
chastic resonancg23-25. Experimentally, SR becomes ,
manifest as a maximum of the SNR depending on the nois&i(t) obtained by a measurement of some natural system,
amplitude. Gong and co-workers therefore proposed usinyheréi (1=<i=N) is the ensemble index artds the (dis-
electronic stochastic resonance devices such as Schmitt triférgete time index ranging from 1 t&. N is the cardinality of
gers[26] for enhancing the SNR of measured di2@—29. e ensemble.. Su.bsequently, we shall refe(i_(o) astrials,
Recently, we developed a data analysis technique th&pochs or rgahzatlonso_f a stochgstlc dynamical system. In
overcomes the strong requirements of traditional ERP analye'der to gain a symbolic dynamics of the ensemble, one has
sis, resting on symbolic dynamics and measures of complex© partitionate the state space of the underlying system into a
ity [5]. We suggested considering event-related brain poterf-'”'t_e number of pairwise (_j|SJunct subsets; these subsets are
tials in terms of dynamical system theory, and presented &SSigned to letters of a finite set, calledaphabet Though
theoretical framework for dealing with nonstationary sto-for experimental data the state space is generally unknown
chastic dynamical systems. Symbolic dynamics belongs t§"d has to be reconstructed from measured time series by
the mathematical theory of dynamical systems, describing€lay embedding techniqups6]. In Ref.[5] we showed that
states and trajectories by symbolic sequences obtained froRYeY partition of the set of measurement values yields a
a partition of the system’s state spak®0,31. However, partition of 'ghe state space autom_atpally. The S|mple§t way
symbolic dynamics has also been successfully applied t8f constructing a symbolic dynamics is to use a certain bin-
analyze natural data during the last deci8®-47. It has  Ning of the range ok(t) into two or more nonoverlapping
often been claimed in the literature that symbolic dynamicdntérvals. This procedure is callstiatic encodingf the time
leaves “robust” properties of dynamical systems invariantSeries(47]. A binary stat!c encoding partmonat_es the range
[31,35,43 by “ignoring information about the details of the of measurement values_mto two subsets by using a threshold
trajectory in phase spacd33]. When the “details” are con- ¢ [32,35,43. The encoding rule
tributed by noise, symbolic dynamics can be regarded as

Let us consider an ensemble of real valued time series

some filtering technique. The impact of noise on symbolic )0 x(D)<6 g
dynamics of nonlinear systems was studied in REs12— Siit™ 11 x(H)=6, ®
45).

In this paper we demonstrate that symbolic dynamics is Fnaps each valug(t) of theith time series at timeto “0”
powerful approach of data analysis even under the assUmi-x.(t) is below the threshold, , and to “1” otherwise. The
tions of traditional ERP research. We consider noisy data ofnreshold should depend on the ensemble indéecause
the type of Eq.(1), wheres(t) might be any periodic or gome statistic properties of(t) might differ from trial to
aperiodic ERP-like signal, in connection with a thresholdyg For experimental datag; can be chosen as a time av-
device as an unique physical systémanalogy to the mea- grage of the realizatior;(t) [43] or, as we did, as the me-
surement process in quantum mechanicorder to obtain a dian of x;(t) [5].
symbolic dynamics of the joined process. We show that no By using the encoding rulEEq. (8)] we obtain a matrix
additional electronic devices are needed for enhancing th )i—n.1<L Of symbols “0” and “1.” The rows of this
signal component of the data. The organization of the papeEétri; are images of the epochs(t) under the symbolic

is as follows. In Sec. Il we introduce the basic concepts o ncoding. Thus the matris{,); —n... can be considered as
symbolic dynamics applied to time series analysis, mainlya set of rbws visNit=t

the notion of cylinder sets and measures of complexity. In
Sec. lll we shall discuss the symbolic dynamics of EL. Cfela Loq—:
leading to a formula for estimating the SNRq. (2)] of the E={slsi={0.14" 1<i<Nj}, ©

system by the time average of running cylinder emmp'es\'/vhere{o,l}'- denotes the th Cartesian power of the alpha-

We compare analytical results with results from numerical - !
P y bet{0,1}. Now, we introduce the most important concept of

simulations. We show that Regi entropies are able to im- ur approach. A subse of the ensemblé is called anm-
prove the SNR of the system considerably in contrast to thQur approach. A s
@ylinder at timet, if there aren lettersa; , ... a; {0,1},

Shannon entropy. Then, we introduce an alternative metho ) i :
of symbolic encoding, detecting half waves of the noisy sig-2nd a time pointt such that all sequences in the subet
nal Eq.(1). Using this encoding technique, we obtain a fur-match in the subsequeneg , ... a; €{0,1} beginning at
ther improvement of the SNR. In Sec. IV we discuss thetimet. Or, formally,
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C:[akl: . ,akn]t:{si e E|Si;t+l—1:ak|a I=1,...n} values. The limit of the Reyi entropy forq— 1 is given by
(10) the Shannon entropy due to the rule of L’Ho§pital. We there-
fore refer to the Shannon entropy as tive 1-Reyi entropy.
The symbol sequence=(a; , ... .a; ) €{0,1}" is called an

n-word, where {0,1}" denotes the sef0,1}"~1x{0,1} of ll. SIGNALS WITH ADDITIVE NOISE

n-tuples of symbols. This definition was introduced by Mc- ) . . . .
Millan [48]. For an instructive example Sg8]. In this section we are dealing with stochastic processes of

Now let us introduce a measure of cylinder sets. For finitd"€ form of Eq.(1). In order to prove the equivalence of
sets a measure is provided by the set theoretic cardinaligymPolic dynamics and spectral approacfiegs. 2—4, we
function ‘#(-)". A probability measure for cylinder sets can 2SSume that the deterministic sigret) is provided by a

be defined by

#([akl, ..
N

. 1akn]t)

p(a,, - - - ,akn|t)= (11

Considering all cylinders of given length at given timet
together, we call the corresponding distribution
{(lak, - - ac o plag, - ,akn|t))|t,n fixed} word statis-

linear harmonic oscillator, while the noigg should be re-
garded as Gaussian white noise with zero mean, variahce
and probability density functiop,(x) [57]. Under these as-
sumptions Eq(1) receives the form

X(t)=Asin(wt) +&,(1), (15
whereA is the amplitude of the harmonic oscillation and the
phase offset has been set to zero.

tics of ordern. The word statistics can be characterized by By computing the SNR according to E®), we obtain

measures of complexity, such as Shannon anagyRentropy

[49,50 or, e.g., machine complexity and renormalized en-

tropy [47,51].
The Shannon entropid€l9] of ordern at timet of the
ensembleE are given by

Ho== 2 pay, ... at)
(akl ..... akn)
xlogp(ay,, - . . ,akn|t). (12
The quantities
Hn(t)
- — (13

measure the information per letter and are callelative
entropies The quantities

In;q(t): 1—q

Iog( ) p(ay, - a DT (14)

akl """ akn

are calledn-order Renyi entropiesdepending on the param-

eterq [50]. The base of the logarithm in the formulas above,,,

is arbitrary. But it is recommended to use the,logherel is

A

-

This quantity assumes values between zeke=0: there is
no signal at ajl and plus infinity ¢=0: there is no additive
noise.

Q (16)

A. Static encoding

Now we are going to apply the theoretical concepts men-
tioned above to the process of EL5), x(t)=A sin(wt)
+£&,(1). A static encoding can be obtained straightforwardly
by choosingd=0 for all trials. ForQ=0 (pure white Gauss-
ian noisg¢ #=0 agrees with the median of the distribution
leading to maximal entrop}5,41]. This choice corresponds
to the generating partition of a chaotic dynamical system
[45,52. Figure 1 visualizes the symbol matrix E®), [re-
spectively the ensemble E(P)] of a statically encoded en-
semble ofN =100 epochs of the stochastic procgsg. (15)]
with a SNRQ=0.5. In this plot a black pixel denotes the
letter “0” while a white pixel denotes the symbol “1.”

The symbolic dynamics of the process E@5) can be
ated analytically. The probability of observing the symbol
“0” at time t, i.e., the measure of the cylindgd],, is sim-

the cardinality of the letter alphabet, because relative entrop|y given by

pies will always be normalized to the rang@1]. In case of
a binary encodingl(=2) information is measured in binary
digits (bits) by using thelogarithmus dualisld=log,. En-

tropy is a measure of uncertainty of a given probability dis-

tribution. It reaches its maximum valu¢1 for uniformly

distributed events. It takes its minimum O if there is only one

certain event with probability 1. For uniform distributions all
g-Renyi entropies have the same valael. But for nonuni-
form distributions theg-Renyi entropies differ significantly.

For g>1 high word probabilities are enhanced, whereas

0
o =pO0= [ petx—Asinot)dx ()

After a substitution, this probability can be expressed by the
distribution functionF .(x) =fx,oop§(y) dy as

1
Po(t) =F«—Asin(wt))= Eerfc(Q sin(wt)), (18

small probabilities are suppressed. Hence nonuniform distri-
butions can be deformed toward a distribution where onlywhere erfc is the complementary error functi&@$] defined

few events are considerably probable by choosing large

by
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1 (T
Jn;q=fjo lq(D)dt. (20

From these averages we compute the quantity
1
S=G(J1), (21

whereG is some positive constant to be determined later on.
The indicesn andq will be omitted subsequently for the sake
of convenience. The quantifycan be regarded being a func-
tion of the SNRQ of the process of Eq.15). It is easy to
verify that S(Q) =0 for Q—0, while S(Q)—« for Q—oo,
sinceJ is restricted to the unit interval€9J<1. However,

we shall prove a stronger claim. That &,Q) is asymptoti-
cally equivalent to the SNR for n=1 andq=1, i.e.,S(Q)
obtained by the one-word Shannon entropy is a good estima-
tor of the SNRQ. For a proof, see Appendix A.

The following figures show the agreement $fQ) ob-
tained from an analytical calculation compared to that ob-
tained with numerical results. Additionally, we consider the

FIG. 1. Symbolic dynamics of a simply statically encoded en-derivatived §¥dQ as animprovement factorGiven a process
semble ofN=100 realizations of the stochastic proc¢gs. (15] [Eg.(15)] with a SNRQ, we look at the change &(Q) by
with a SNRQ=0.5, w=2. Black areas denote “0,” and white slightly alteringQ to Q-+ AQ. Then the change @&is given
‘LT by AS=(dSdQ)AQ. ForQ values withd S(Q)/dQ>1, the

SNR of the symbolic dynamics can be improved by increas-
A ing Q moderately. Figure (8 shows the estimat&(Q) de-
erfex= \/7J’ e dy. (19 pending onQ of the one-word Shannon entropy, while Fig.
X 3(b) presents the improvement factor. An improvement in

Figure 2 shows the one-word Ry entropy|y.4(t) [Eq. the SNR is achieved fa@=1.6. This maximum of the SNR
(14)] for different q values. Note that the entropy becomesiMprovement factor can be seen as a stochastic resonance
smaller wherg>1 for smallpy(t). phenomenon, as we discussed in Sec. I.

Now we come to the main issue of this section. We sug- Next we show that using the Rgi entropies forq>1
gest an estimator of the signal-to-noise ratio by means dj¢ads to a further improvement of SNR by symbolic dynam-
symbolic dynamics. In order to achieve this, we first intro-iCS, because, as we had mentioned above, lgrg@lues

duce the time averages of the entropies: entail lower entropy valuegsee Fig. 2. Thus the SNR esti-
mator S(Q,), obtained by ag>1-Renyi entropy from Eq.
12 . ; . . . . (15 with SNR Q4, agrees with the SNR estimat&(Q,)

given by the Shannon entropg€ 1) from a process with
SNR Q,, where Q,>Q. Figure 4a) presents analytical
(dotted ling as well as numerical resultsolid line) of S(Q)

for a parameter setting= 8. Figure 4b) demonstrates that
the SNR improvement factor is greater than oneQoex0.6.

Finally, we compare the effects of changing the

g-parameter with those of changing the word lengthrig-

ure 5a) presents the numerical estimatesS§f)) for g=1
(solid line), g=2 (dashed ling and q=8 (dotted ling. In

Fig. 5(b) we demonstrate that changing the order of the word
statistics does not provide a considerable improvement of the
SNR. Here we plotted the results of the numerical estimates
of S(Q) for n=1 (solid line), n=2 (dashed ling andn

=8 (dotted ling. All functions have been determined fqr

o5 4 S : . L . =1, i.e., for Shannon entropies.
t
. . B. Half wave encoding
FIG. 2. Running one-word Rgi entropyl,.q(t) [Eq. (14)] of _ )
the stochastic proce$gq. (15)] with different q values for an en- In Sec. Il A we demonstrated that symbolic dynamics
semble of N=500 simulated realizations with a SNR=1, provides a good estimator of the SNR of a noisy time series.
=1. Solid line:g=1 (Shannon entropy Dashed lineg=4. This estimator depends on two parameters: the word lamgth
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FIG. 3. Estimates of the SNR from symbolic dynami@sle-
pending on the SNR) of the stochastic proce$kqg. (15)] given by
the time averaged Shannon entrdfgg. (21)]. (a) S(Q) from nu-
merical simulations oN=100 realizationgsolid line) against the
analytical resul{dashed ling (b) Derivationd§/dQ of the analyti-
cal result.

FIG. 4. Estimates of the SNR from symbolic dynami&sle-
pending on the SNR) of the stochastic proce$kq. (15)] given by
the time averaged|=8-Renyi entropy[Eq. (21)]. (a) S(Q) from
numerical simulations oN=100 realizationgsolid line) against
the analytical resul{dashed ling (b) Derivation dSdQ of the
analytical result.

and the Rayi parameteq. We also showed that by tunire

we are able to improve the SNR significantly. This subsecare points of extremal slope. The conventional way of look-
tion is devoted to a new symbolic encoding technique foring for inflection points is therefore determining the zeros of
further improving the SNR. We employ a method, caltedf ~ the second derivative of the function. But in the case of
wave encodingthat is equivalent to the simple static encod-analyzing noisy time series this approach must fail, because
ing [Eq. (8)] for a noise-free time serig€q. (15)] with o computing derivatives of noisy signals numerically enhances
=0. This approach rests on the idea of detecting half wavege noise. In order to counter this difficulty, we decided to
of the signalx(t). A half wave of a sine function is given by calculate averaged slopes of secam¢s) divided by their

an interval between succeeding inflection points. A positiveyariancesv (t) within a sliding window of widthT, (T,

half wave lasts from an inflection point of positive slope toeven sampling points. We define secant slope function
an inflection point of negative slope, while a negative halfw(t) by

wave lasts from an inflection point of negative slope to an

inflection point of positive slope. Thus, encoding half waves 1 T x(t+K) = x(t—k)
comes out to be equivalent to detecting inflection points. It is u(t)= — 2 , (22)
well known that inflection points of an analytical function Ty k
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(b)

FIG. 5. Estimates of the SNR from symbolic dynamigas a
function of the SNRQ of the stochastic proce$gq. (15)] given by
the time averaged entropig&q. (21)] obtained by numerical simu-
lations of an ensemble dfi=100 statically encoded realizations.
(@) S(Q) depending on different Rgi-parameters). Solid line: g
=1 (Shannon entropy Dashed lineg=2. Dotted line:q=8. (b)
S(Q) depending on different word lengthsSolid line:n=1 (sym-

bol statistics. Dashed linen=2. Dotted line:n=8.

1 P rx) —x(t—k 2
v(t):_l_l_l kgl X(t) );( )—U(t)}
_ 2
. x(t+Kk) X(t)—u(t)} |
k
t
W(t)=5£t;.
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(b)

FIG. 6. lllustration of the half wave encoding algorithm applied
on a pure sine wave and on one realization of the stochastic process

[Eqg. (15)] with a SNRQ=0.5, w=27. (a) Solid line: ratio of
averaged secant slopes by their variancesséwant slope function
[Eg. (24)], normalized to the maximum of this ratio computed
within a running window. The width of the windoW, is the period
T of the sine wavédashed ling The maxima of the computed ratio

correspond to the inflection points of the sine wave having positive
slopes. The minima of the ratio correspond to the inflection points
of the sine wave with negative slopes. Intervals between the
maxima and minima of the ratio correspond to half waves of the
original sine wave(b) One realization of the stochastic procgss.

(15)] with a SNRQ=0.5. Inset: This realization symbolically en-
coded by the half wave encoding algorithm using a slope averaging
window with T;=50=T, a smoothing window witiT,=25, and a
look ahead for the dynamic encoding of the secant slope function of
|=4. Black areas denote “0,” and white “1.”

minimal. In contrastyv(t) is minimal at the extrema of(t),
becausau(t) is almost zero due to the symmetry of the av-

The functionw(t) is extremal at the inflection points &{t),  eraging window where(t+Kk)=x(t—k) for the pure sine
where u(t) also reaches its extrema, whilgt) becomes wave, whilev(t) is maximal. Figure @) illustrates the al-
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FIG. 8. Estimates of the SNR from symbolic dynam@&as a
0 1 T 3 4 5 6 function of the SNRQ of the stochastic proce$Eq. (15)] given by
t the time averaged entropig&q. (21)] obtained by numerical simu-
lations of an ensemble dfi=100 realizations that have been en-
FIG. 7. Symbolic dynamics of the half wave encoded data segoded using the half wave techniquQ) depending on different

from Fig. 1 with parameter§,=74~T, T,=21, andl=4. The  R@yi parameters;. Solid line: q=1 (Shannon entropy Dashed
horizontal stripes at the beginning and end of the sequences afge: q=2. Dotted line:q=8.

artifacts of the sliding window. Black areas denote “0,” and white
“q.n techniques such as band pass filters. It can be applied to very
short time series of at least one and a half periods of the

gorithm for a sine wave(t) = sint and its secant slope func- prominent oscillation, while filtering theoretically requires

tion w(t). Because of the presence of noise, it is recom-S'gnals haymg |nf|n|te_ durs_lt_lons in time. _The encod_mg is
) robust against nonstationarities such as drifts of the signal. It
mended to smooth the secant slope functie(t) by a

. . . . . . resembles a Poincamapping of the system’s trajectory but
running averaging algorithm within a window of wid, \ithout destroying its time structure, since the detection of
(T2 odd. This yields a function inflection points defines a Poincasection of the state space
of the system. Time intervals between the inflection points

are not neglected but filled with symbols of one kind, not
T, k:_(TEZ_l)/Z w(t+k). (29 respecting the noisy dynamics between them. By appropri-
ately choosing the parametefg, T,, andl, one is able to
- . . extract certain time scales of the signal.

For obtaining a symbolic encoding of(t) one has to In Fig. 8 we show the estimates of the SNR by E2fl)
determine the monotonic brancheswft). Wherew(t) is  for the Shannon and for thg=2 andq=28 Renyi entropies
monotonically decreasing from a maximum down to a mini-of the numerical calculation. As above, the higher order Re
mum, we find the positive half waves &ft). Correspond- nyi entropies entail better SNR estimates than the Shannon
ingly, wherew(t) is monotonically increasing from a mini- entropy. On the other hand, a comparison with Fi¢a) 5
mum up to a maximum we find the negative half waves ofmanifests that the half wave encoding provides better esti-
x(t). Monotonicity can be tested by looking a few samplingmates even for the Shannon entropy. Estimating the global
points | ahead. Whenw(t+1)>w(t), the function can be Slopes of theS(Q) function yields AS/AQ~4/5 for the
considered to be monotonically decreasing. We assign gtatic encoding and S/AQ~8/5 for the half wave encod-
symbol “1” to the time pointt when this holds. Otherwise, Ng. i-e., & doubling of the SNR.
we assign the symbol “0” ifw(t+1)<w(t), i.e., whenw(t)
is monotonically increasing. This kind of symbolic encoding
is a type of dynamic encoding[47]. By encoding the In this section we are going to describe the problem of
smoothed secant slope functior(t) of the time seriex(t) ~ fandomly distributed phase values, or, in the terminology of
dynamically, we obtain a half wave encodinggt). Thisis ~ ERP research, the problem of latency jitt&q. (7)]. Let us
shown in Fig. 6. Figure ®) presents a realization of the SPecify Eq.(7) by the model
process of Eq(15), and the half wave encoding of this real- X(t)=Asin(wt + 7) (26)
ization. '

In Fig. 7 we present the half wave encoding of the samevhere = should be assumed to be an uniformly distributed
ensemble that has been encoded statically in Fig. 1. The halindom variable with zero mean and varianeé=a?/3,
wave encoding has several advantages over other filtering>0 with a probability density functiop . obeying

(To-1)12
w(t)=

IV. SIGNALS WITH LATENCY NOISE
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1 three different cases for the noise levig):a< /2, (ii) 7/2

D re[—a,a] ) <a<, and(iii ) the latency jitter is so large thaft) ranges
pAT)= @7 between—1 and+1 for all timest. That is,a= .

0: re¢[—aa] The power of the jittering signad(t) [Eq. (26)] is smaller

than the rms of the pure sine wave &if/\2. We therefore
introduce a quantity measuring the effect of latency noise,
called adamping factoy by defining

for the sake of simplicity.

A. Determining the damping

It is clear that latency noise smears out the ensemble av- D= \/Z_PX (29
erages of Eq(26), thus leading to a deterioration of the
SNR. For a qualitative assessment, see R&f.In order to  This quantity is the analogue to the SNRlefined in Eq(2)
supply an exact calculation for the latency jitter we first havefor latency noise. For a process mixing Egs. 15 and 26 the
to transform the distribution of latency times into a dis-  SNR is given byQ:(AD)/(a\/E). The powerP, is given
tribution of signal valuesp,. This can be done using a py
Frobenius-Perron equatigb4]

T
- [ 2
Px(x):f_wdTPT(T)5(X—Simt+T)) (29 Py= f x“(t)dt (30)

by restricting ourselves to the case whétel andw=1 due to Eq.(3) Where;(t) is the ensemble average xft).
without loss of generality. Here we have to discriminate For the three cases of different noise levels we obtain

( \/(772+4 a(m—a))(cog4a)—1)(4a(m’~4a%)(Si(4a)—Si(2 m)—Si(4a—2m)+Si(4a+2m)) 0
2(am—4a%m) ' 2
D=4 \/sinza—Si(Z a)+Si(2 ) 71' :
: —=a<T
ma
(31
|
Here Si refers to the sine integral: - o
po(t)=f7 Po(t—t")p,(t")dt’. (34)
. x sint
Six=| ——dt. (32 ) . .
o t Inserting Eq.(27) into Eq. (34) yields
A graph of the dependence @ on the noise intensita ~ _i t+a
=3 is shown in Fig. 9. For a derivation of E(B1), see Po(V) =254 ta Po(u)du. (35)

Appendix B.
As above, we have to consider three different caggsa
B. Static encoding <2, (ii) wl2=<a<, and(iii) a=. In case(iii) we sim-

We come now to the symbolic dynamics of the latencyPly obtain the constant f,“,”Ctin”b(t,)zllz; For case§) and
jitter (Fig. 10. It is rather obvious that the probability of the (i) the symbol probabilities are piecewise linear functions
symbol “0” of a pure sine waveA sint is given by a step

p
. —t
function a’t : —ast<a
2a
0: Ost<w 33 0- asie a
)= - : <t<m—
Po(t) 1. 7<t<2w 33 po(t)= (36)
att—=w
5 - oTast<atw
modulo 2. In order to obtain the probabilitpy(t) in the a
case of latency noise one has to compute the convolution of | 1 atrs<t<2m—a
po(t) with the probability density functiop . of the jitter =
[5]: for a<w/2, and
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0.5 1 1.5 2 2.5 3

FIG. 9. DampingD [Eq. (31)] of the stochastic proce$Eq. (7)]
as a function of latency jittea.

((a—t
o —mt+ast<w—a
2a
ar
1— —: T—ast<a
~ < 2a 3
t =
Po)=1 .\ (37)
———: ast<2w7—a
2a
o
— 2r—ast<w+a
\ 2a

for ml2<a<m.
Our remaining job is to apply our theory of the SNR to
this model. To this end we supply the word probabilities

Po(t) and 1-py(t) into Egs. 12 and 14 in order to compute
Shannon and Rei entropies and finally the SNR estimae

epoch

t
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(b)

FIG. 11. Estimates of the SNR from symbolic dynam&de-
pending on the dampin of the stochastic proce$Eq. (26)] given
by the time averaged Shannon entrdigg. (21)]. (@) S(D) from
numerical simulations ofN=100 realizationgsolid line) against
the analytical resuli{dashed ling (b) Derivation dSdD of the
analytical result.

by Eg.(21), now depending on the dampifyinstead of the
SNRQ. The next figures present the results of analytical and
numerical calculations. Above we show the functi@{®)
of the analytical issuddotted ling and for the numerical
simulations(solid line). Below, we present the derivatives
dS/dD as the SNR improvement factor. Figure 11 provides
S(D) anddSdD computed from the Shannon entropy of the
symbol distribution. The improvement factor reaches 1 for
D=0.51.

By increasing theg-parameter of the Rwi entropy we
are able to boost the SNR improvement factor. Figure 12
shows the function§(D) anddSdD for gq=8. Improve-

FIG. 10. Symbolic dynamics of a statically encoded ensemble oment of the SNR is obtained &=0.02.

N= 100 realizations of the stochastic procgss. (26)] (w=1) for
latency jittera= 7/2. Black areas denote “0,” and white “1.”

Finally, we present results from the numerical computa-
tion of higher order word statistics. Figure (hBrepeats the

051104-9
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FIG. 12. Estimates of the SNR from symbolic dynamsde- FIG. 13. Estimates of the SNR from symbolic dynamas a

pending on the damping of the stochastic proce$&q. (26)] given  fynction of the dampind of the stochastic proce§gq. (26)] given
by the time averaged=8-Renyi entropy[Eq. (21)]. (a) S(D) from  py the time averaged entropi€Eq. (21)] obtained by numerical
numerical simulations oN=100 realizationgsolid line) against  gjmulations of an ensemble f= 100 statically encoded realiza-
the analytical resul(dashed ling (b) Derivation dSdD of the  tijons.S(D) depending on different Rei parameters. Solid line:
analytical result. g=1 (Shannon entropy Dashed lineg=2. Dotted line:q=8. (b)

S(D) depending on different word lengthsSolid line:n=1 (sym-
S(D) curves for differentg-parameters, while Fig. 1B) bol statistics. Dashed linen=2. Dotted line:n=8.
shows the effect of using longer words. It is easy to recog-
nize that going from symbol statistigsolid line) to word  tude, all starting with the same initial conditions yielding the
lengthsn=2 (dashed ling and n=8 (dotted ling entails same phase offset of zero. These deterministic signals are
better SNR estimates. Thus symbolic dynamics of higher orsubsequently corrupted by white Gaussian noise of a given
der word statistics is able to capture and diminish latencydispersion. In the second model, an ensemble of harmonic
noise. oscillators provides sine waves of a certain amplitude as be-
fore but starting at different, randomly distributed, initial
conditions obeying an uniform distribution of a given vari-
ance. This yields an ensemble of sine waves with randomly

In this paper we studied the requirements of traditionaldistributed phase offsets. The SNR of the first model is sim-

ERP analysis by means of symbolic dynamics. We discusseply given by Eq.(2). We introduced the symbolic dynamics
two kinds of model systems. In the first one, an ensemble obf this model by a binary static encoding corresponding to a
harmonic oscillators provides sine waves of a certain amplipartition of the system’s state space into two cells. From the

V. DISCUSSION

051104-10
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distributions of the symbols we obtain time dependent meaHence we first have to prove that the ra80Q)/Q con-
sures of complexity such as Shannon and higher ordeyiRe verges forQ— o, and then we have to demonstrate that the
entropies. The time average of the Shannon entropy of ongimit is equal to 1. In order to achieve the first part of the
word cylinders yields a good estimator of the SNR. We deproof, we show thasS(Q)/Q is both monotonically increas-

fined a SNR improvement factor by the derivative of theing and bounded from above. Monotonicity can be demon-
estimator with respect to the linear SNR, and found that thergtrated by considering the first derivative of the function

is a maximum of the improvement factor at intermediateg )0, By Eq. (21) we obtain
noise levels. This maximum might be related to the phenom- (Q/Q. By Eq. (21

enon of stochastic resonance known from threshold devices. SQ)\’ 1 L
We shall address this issue more thoroughly in a forthcoming 24 _Z_0_

G|1 Q—|. (A2)
paper. Q J T2

We have shown that by using higher ordemiRieentro-
pies we are able to shift the maximum of the SNR improve-The derivative ofJ(Q) is given by
ment factor toward lower noise amplitudes, and hence im-

prove the SNR by symbolic dynamics. A further 1 (2=

improvement of SNR is obtained by an encoding strategy J=- 3/4 sint exp( — Q?sirft)

called half wave encoding. This encoding scheme is equiva- 2me)o

lent to simple static encoding for pure sine waves. For sto- erf— Q sint)

chastic processes mixed of sine waves and additive noise the ld| ———|dt, (A3)
half wave encoding detects the inflection points of the deter- erfQ sint)

ministic signal, and fills the time intervals between them up ) ) )

with symbols of one kind, e.g., with 0’s for negative half Where we integrate over one period of the sigxet). For

waves of the underlying sine function and with 1's for thethe sake of convenience we let the frequeacy 1. It fol-

positive half waves. Detecting inflection points is a kind of lows from the symmetry and monotonicity of the comple-

Poincaremapping. It can be used for determining a time mentary error functiori53] and from the properties of the

series consisting of time interval$5]. But this procedure sine function that the integrand is non-negative over the

spoils information about the absolute timing. Our half wavewhole interval[0,27]. Therefore,J’ is negative for allQ

encoding technique keeps this information by generating sgrecall, thatQ=0). We conclude that

guences of only 1's and 0’s, and neglecting the noisy behav-

ior between the inflection points, thus increasing the SNR. S(Q)\’ 1 3

The half wave encoding is furthermore insensitive against (—) =G| 1-7-Q-/[>0.

linear or slowly nonlinear drifts of the time series because it Q J J

is founded on computing approximated first derivatives of ) ) ) )

the signals. It can also be applied to ensembles of short tim&husS(Q)/Q is strongly monotonically increasing. .

series, whereas linear filter techniques theoretically demand Proving boundedness is a bit more complicated. For this

signals of infinite duration. aim we shall first approximate the probabiljiy(t) by a step
With the second model of deterministic signals with noisyfunction. Since the one-word entropfq. (12)] is = peri-

phases we studied the impact of the phase distribution on thedic, it will be enough defining this function only at the

SNR by defining a damping factor. The SNR estimator giverinterval[0,7]:

by the symbolic dynamics comes out to be a monotonically

(Ad)

increasing function of the damping. We obtain an improve- 1 N

ment of SNR by symbolic dynamics by considering higher E O=t<t

words statistics. Thus we have demonstrated that even if the . s N

prerequisites of the traditional approach of ERP analysis po()=4 &1 U st<m—t (A5)
were fulfilled symbolic dynamics would yield better results 1 .

with respect to the signal-to-noise ratio. E Tt st<m.
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b: O=t<t*
APPENDIX A: PROOF OF THE ASYMPTOTIC R (1 o) % _t*
EQUIVALENCE OF SAND O H* ()= elde—(1—¢)ld(1l—g): tr<t<w—t
. b: T—tr<t<mr,
The assertion states that (AB)
lim Q) =1. (A1)  Wwhere we seb=2—(31d3)/4. Thetime average integral of
o= Q H* (t) is given by
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1 (= where we abbreviated= arcsinx. By using the periodicity
J* :;L H*(t)dt and symmetry of the cosine function, we obtain
_2b [a 1 a 1 o
T A T 7% Six—sin(t+7)=(ooor 3 87— Tica) + 87— Tica),
erfo(Q) , . . .
X ¢ 2[ld(erfa( —Q))—1]+erfcQ Id efo—q)||" and finally, by expanding=arcsinx, we obtain
(A7) 1 *©
—sint+171)= —— — Teq) + (7= 7).
Now we can compute the quantiti€® (Q)=G(1/J* —1) Sx—sin(t+ ) J1—x2 k:z_oc o= Ti1) ¥ 8(7= 7ic2)
and S*(Q)/Q=G(1-J*)/(QJ*). Becausepg(t)=<po(t) (B4)

for all te[0,7], it holds thatH*(t)<H(t) and therefore ) _ _
S*(Q)/Q>S(Q)/Q, thus providing an upper boundary of Inserting Eq. (B4) and the density[Eq. (27)] into the
S(Q)/Q. By expanding the logarithm and the complemen-Frobenius-Perron equatid@g) entails

tary error function into power serie$56], we obtain
limg_..J*=0 and limy_,..QJ* =2ab/#, and therefore

1 Ja -
X)= ———=| dr O(1— 1)+ (T T0).
. Px( ) ZaW a k:E_OO ( k;1 ( k,2)
1-JQ) _ 7 A8) (B5)
= QJ*(Q) 2ab’ . . o
Q- Then we condense the integral into a normalization constant

Consequently, we have proven tHatQ)/Q has an upper

bound, namelyg/(2ab) whenQ is large enough so that a -

<1/4. SinceS(Q)/Q is strongly monotonically increasing as N= f_adi;_w O(7— 7)) T 6(7— 7i2).
well as bounded from above, it is also convergent. By appro-

priately choosing the constanG we force the limit  This provides the result

limg_...S(Q)/Q to be 1. Then we have shown tre¢Q)/Q

is asymptotically equivalent to the SNR For practical pur-

pose we estimate the limit numerically asGH limg_ (1 (X)= N (B6)
—=J(Q))/(QJI(Q))~(1-JI(200))/(2001(200))=1.69981. Px 2a1—x2

APPENDIX B: DERIVATION OF THE DAMPING FACTOR Next we must consider cas@$—(iii ) of the noise leveh. Let

) S . us first look at caseiii). The constaniN; must obey the
The Dirac distribution in the integrand of E@®8) can be  normalization

evaluated by the theorem

[t
— = _dx=1. (B7)

—12a\1—x?

The integral can be performed by elementary calculus yield-

wherey; are simple zeros of the functian The zeros of the INg N3/(2a)=1/m. Hence the density, is given by
function ¢(7) =x—sin{t+7) are given by

o(e(y))= S(y—Yi), (B1)

e(y)=0 [' (y))]

1

px(X) = ——. (B8)
T.1=2mwk+arcsinx—t, (B2) § m1-X?

) Note that this is exactly the invariant density of the fully
T2= 27K+ m—arcsink—t, (B3)  chaotic logistic map,;1=1—2x2 [30].
For both the other casdép and (ii), the range of disper-
sion of X(t) depends on the actual tinie The factorN is
determined by the constraint

while the derivative isp’(7)= —cosf+7). The variableg
andx are regarded to be parametekss an integer ranging
from — to . Thus Eq.(B1) leads to

max([sint—a),sin(t+a)] N(t)
o _ ———=dx=1 (B9)
. (17— 7y;1) fmin[sin(ta) sint+a)] 2a\/1—x2 '
— + = - ,
S(x=sin(t+ 1)) k;w [cog 27k +2)]
and now depends on time.
N O(7—7y.2) For case(i) we have to distinguish six branches of the
|cog2mk+7—2)|’ function N4 (t):
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B

2a
a—t+—
2a

att— =

2a

2a

Also six branches must be discriminated for cége

2

m

2a

No(t)=

From the distribution densitigs, obtained by the normal-
ization functionsN;.,.5(t) we compute the expectation val-
ues

N(t) max[sint—a),sint+a)] X
2a Jminsin¢t-a),sint+a)] 1— X2

X(t)= dx,

— N(t) o
X(t)= - [V d sniea) - (B12)

37’
a—t+ —

+1 S
Sy

PHYSICAL REVIEW E 64 051104

(B10)

3’7T<t< +37T
2 = a 5

v t< w
~—ast<a— =
2 2

(B11)

Here we report the result fod;. In this case, the expectation
value is just zero for all time, meaning that a latency jitter
of 7 or larger smears out any signal at all. The other
expectation values are functions of time again. These are
supplied to the computation of the signal powé&d. (3)]
employing Eg.(30). This integration has to be performed
over the six branches df;(t) andN,(t), respectively; but
we shall omit these tedious calculations. Finally, we insert
Eqg. (30) into the definition of the damping factpEq. (29)].

This yields Eq.(31).
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