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We develop a method, the exact multilocal renormalization g@&MRG) which applies to a broad set of
theories. It is based on the systematic multilocal expansion of the Polchinski-Wilson exact renormalization
group (ERG) equation together with a scheme to compute correlation functions. Integrating out explicitly the
nonlocal interactions, we reduce the ERG equation obeyed by the full interaction functional to a flow equation
for a function, its local part. This is done perturbatively around fixed points, but exactly to any given order in
the local part. It is thus controlled, at variance with projection methods, e.g., derivative expansions or local
potential approximations. Our EMRG method is well-suited to problems such as the pinning of disordered
elastic systems, previously described via functional renormalization giféR®) approach based on a hard
cutoff scheme. Since it involves arbitrary cutoff functions, we explicitly verify universalit)(e=4—D),
both of theT=0 FRG equation and of correlations. Extension to finite temperdtyields the finite sizeL)
susceptibility fluctuations characterizing mesoscopic behdwian?~L% T, whered is the energy exponent.
Finally, we obtain the universal scaling function®{e'®) which describes the ground state of a domain wall
in a random field confined by a field gradient, compare with exact results and variational method. Explicit two
loop exact RG equations are derived and the application to the FRG problem is sketched.
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[. INTRODUCTION on higher gradients of the fie[d1]. Although very interest-
ing, these projection methods are often uncontrolled. More
The idea of writing an exact equation for the scale depenaccurate results are expected if more couplings are kept,
dence of the full action functional already appears in thewhich is possible with heavy numerical integrations of flow
review of Wilson and Kogufl]. Since it is an equation for a equations. In this respect, exact RG as a tool is now used
full functional of the fields, its detailed analysis is hinderedboth in particle and condensed-matter physics. For instance,
by technical complications. The much simpler Wilson mo-outstanding problems in strongly correlated electrons such as
mentum shel[1] integration method is commonly used for the Hubbard model ifD =2, have been recently studied by
one-loop calculations. Since it does not follow the full func- numerically integrating the flow of a large number of verti-
tional, subsequent efforts were made to embed it into a bettq{es[lz]’ using a fermionic version of the Polchinski equa-
controlled sharp cutoff exact renormalization gro(RG) tion [4].

[2,3]. For practical perturbative calculations beyond one By contrast, comparatively few works use exact RG

loop, field _theoretlcal renormalization methods are more Ofmethod to developerturbativecalculations. One example is
ten used since they have proved vastly more efficient. How;

' the computation of the beta function gf in 4— e dimen-
ever, the exact RG equations offer the hope to develop sions to one loog13], where universality is made particu-

initio calculation relying on no assumption, possibly nonper- . . )
ying P b y P larly explicit through the use of an arbitrary cutoff function.

turbative, from any bare model. In principle, it should be thouah obvious! ful method lable i
useful to obtain precise results when applied to bare theorigg'''0Ugh ObVIOuSly more poweriul methods areé available in
that case, there are some problems in condensed-matter

for which we have little insight on possible underlying field . N A )
theoretical description. physics that appear within reach of perturbative calculations,

In the work of Polchinsk[4], the exact RG equation was but for which no coherent field theoretical formulation is
put on a more precise and aesthetic framework, and used fyailable at present. This is the case for the pinning of an
prove the renorma”zabi"ty of the)4 theory in four dimen- elastic system in a random potential, for which a momentum
sions. The exact renormalization group equations indeed prghell RG method has been develogéd]. In this problem,
vide formal results or general proofs about symmetfigds  an infinite number of coupling constants becomes relevant
For practical calculations however, one needs to truncate ifor D<D.=4, and one must write a RG equation for a full
some way these highly complicated functional equations. Tdunction R(u) (the second cumulant of the disorijehence
do so, different procedures have been propd€ed], and the name “functional” renormalization groupFRG). As
have been mainly applied to the study of nonperturbativesuch, it differs from standard field theoretical RG. Thus, to
problemg8]. For example the exponents of t€n) model  better understand this problem, i.e., to show explicitly uni-
in three dimensions were estimatg®] using a choice of versality to one loop and beyond, there is a need for a per-
truncation. One commonly used projection method is the soturbatively controlled exact RG method, able to admit a full
called local potential approximatidd 0], obtained by a con- function, the local parR(u) as a small parameter. Indeed,
stant background field method neglecting the momentum dethe field theoretical formulation is frought with difficulties,
pendence. Further extensions include additional projections particular because the functié{u) develops nonanalytic
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behavior at finite scale. These issues are discussed in a re- The method presented in this paper also allows us to in-
lated work[15]. vestigate the theory of disordered elastic systems beyond the

In this paper, we develop a novel method to solve thdowest order ine (one loop. A recent two-loop calculation
Polchinski exact renormalization group equation and use iwas presented ifil9]. However, since it was performed at
for explicit calculations. We call this method the exact mul- T=0, and for analyticR(u), it fails beyond a finite length
tilocal renormalization groufEMRG). Writing the action as ~ (Larkin length and cannot describe universal properties. The
a sum of multilocal interactions, we note that the Polchinski@Pplication of exact FRG to next order is described1ifi].
equation naturally reduces to a hierarchy of equationdVe sketch here, however, some preliminary results.
obeyed by simple functions. This hierarchy can be solved in The paper is organized as follows. In Sec. Il A, we for-
an expansion in powers of the local part. Indeed, we find tha@U|ate in a concise though pedagogical way the conven-
exact integration of the multilocal parts yields a single RGtional exact RG method. Appendix A and Appendix B pro-
equation for the local part. The method is thus controlledvide complements, respectively, about general invariance
around fixed points where the local part is proportional to aProperties of the co_rrelations and about examples of solvable
well-defined small parametde.g., e=4—D). The EMRG  cases of the Polchlns}(i equation. In Sec. Il B, we i.ntroduce
does not require any arbitrary projection procedure or negledhe multilocal expansion in the local pad, up to bilocal
of operators, as is usually done in derivative expansions die'ms. The ensuing EMRG equations to ortérare derived
local potentia' approximations_ In addition’ we obtain ex_|n Sec. Il C. The multilocal eXpanSion to arbitrary order and
plicit formulas for any correlation functions that allow for the RG equation to ordéy® are derived in Appendix C. The
practical calculations. Since this is done for arbitrary cutoffmultilocal expansion of the Wick ordered functional up to
functions, it allows an explicit check of universality order by second order, and the resulting one-loop RG equation is ob-
order in the expansion. tained in Sec. Il A. The general multilocal expansigkp-

The aim of this paper is twofold. On the one hand, wePendix C1 and the resulting form to third order is derived in
present the general EMRG method to all orders, valid for gAPpendix C2. The explicit two-loop RG equation is obtained
large class of theories. We derive the explicit form of thein Sec. llI 3. As a check of the EMRG method application to
exact RG equation for the local interaction up to third orderthe O(n) model to one loop is presented in Sec. Ill B. We
On the other hand, we apply this method to several probthen turn to applications to disordered elastic systems in Sec.
lems, first as a check, to tf@(n) model, and second to the [V (one loop and Sec. V(two loops. First we recall and
FRG for disordered elastic systems. Explicit calculations and/eneralize in Appendix D the dimensional reduction phe-
applications in this paper are restricted mainly to one loopnhomenon. Then th&=0 FRG equations are established in
Although briefly mentioned here, applications to two loopsSec. IV A and finite-temperature extension are given in Sec.
will be detailed in a Companion papE]:G] IV B. Fina”y, the calculations of the Scaling function in the

Two variants of the method are presented. The most dired@ndom field Ising model is performed in Sec. IV C. We
one consists in a straight expansion of the action in multiloSketch in Appendix E the variational calculation to be com-
cal terms. The second one consists instead of first absorbiRfred with the FRG results of Sec. IV C and sketch some
tadpoles into the interactiofso-called Wick ordering then ~ Preliminary steps of a two-loop FRG in Appendix F.
expanding. Being inequivalent, they provide independent

checks of the universal results. The first method yields more Il. METHOD
complicated equations but can be better suited to some prob-
lems, such as th&>0 FRG. A. Exact RG procedure

As mentioned above, the method is indeed well suited to  consjder a system whose state is described by a bosonic
the FRG for disordered elastic systems of internal dimensiogg|q b= #:(x), wherex denotes position in space, anis a
X 1 ]

D since there the full local part is controlled ley=4—D. It gonera| |abel denoting, e.g., fields indices, spin, replica indi-
allows us to show that the one-loop FRG equation, as well ago5 a4ditional coordinatée.g., time, etc., (or more gener-

correlation functions, are independent of the cutoff function.a”y any quantity that will not undergo the coarse graifing
In addition, we obtain higher cumulants of the renormalizedThe' system, in the presence of extersalirces J, is de-
disorder, which as the second cumulant, are nonanalytigcribed by tr,1e partition function: ’

functions. This is necessary to escape the so-called dimen-
sional reductiorf18], i.e., the property of the present theory
by that all perturbative calculations @t=0 are identical to Z(J)Zf glé=S(4) (1)
the same calculation in a trivial Gaussian thefty] (see ¢

Appendix D). This nonanalytic behavior is rounded at finite-

temperaturél and we obtain the scaling form of the round- obtained by the integration over the fietd where theaction
ing region. This allows us to compute, for the first time usingS(¢) is a functional of the field, andJ: ¢ denotes here and
the FRG method, the susceptibility fluctuations that characin the following the full scalar produde.g.,[,=;J{¢,, with
terize the glassy behavior of finite-size systems. Finally, we/ x=/dPx). In a problem of equilibrium statistical mechan-
obtain the universal?(e*®) correlation function that de- ics, S(¢)="H($)/T, whereH(¢) is the Hamiltonian and
scribes the ground state of a domain wall in a random fieldhe thermodynamic temperature, the free energy bE&irg
confined by a field gradient, compare with exact results and-T In Z(0). Averages of anybservableA(¢) (i.e., func-
variational method. tional of ¢) are defined by
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c(s) \ G(q) To this aim, a set of actions,

1
S(¢)=5¢:G 1+ () ®)

is introduced, where the Gaussian part is an arbitrary func-
\ s g tion G, of | (e.g., corresponding to a cutoff,=Aqe"'). The

1 AN A Ao initial propagator, corresponding to a cutoff, is denoted
G|-o=G and the bare interaction,_,=V. The correlation
FIG. 1. Cutoff function. functions in & derive from W(J)= In[e"* (¥)]g
=InZ)—(1/2)TrInG,.
A(p)e=5(9) For any givenA’, one defines aX'—)slow observable to
¢ be a functional of¢» depending only on the)%= ¢(q) with
(A(¢>)>s——7s(¢) : @ g<A'=A,e”"". We want to choose thedependent nonlin-
f ¢e ear part)|(¢) so that the averages of slow observables re-
main unchanged. Through differentiation, it is equivalent to
The usual way to compute correlation functions and averensure that
ages is to perform a perturbation expansion, writing the ac-
tion as a sum of a quadratic part and a nonlinear pédt)

dW,(J) independent od (7)

for any sourceJ with J9=0 for g>A’. Using the general

S(¢)=%¢:G*1:¢+V(¢), (3)  identity
2
where)(¢) a functional oqu andGj’= G is a symmetric [ A(P)]e,= 1Tr Gy: {5 5 —A(P) )+[(9|A|(¢)]GI,
invertible matrix, ¢:G ™ ¢p= E,foyqu(G 1) ¢>J In the ¢ 5 G

following, we denote the Gaussian average of any observable (8)
by [.A =(A with respect to the quadratic theor
yLA(S) o= (¢)>SG P 5 y valid for Gaussian averages of alwlependent observable

Se=(1/2):G~1: . We introduce the generating function S s -
ofGaII(cong)Iation ;ﬁnctions ’ ’ A\(#) and applying it tad,(¢) =e”*" (%), one finds

W)= |n[e\]i¢*V(¢)]G_ @ (9|[e']'¢ V|(¢)]GI
Note that it differs from the usual definition by a :Hl( V|(¢)) :0,Gy: ( V|(¢))
J-independent quantity BJ)=WJ)+(1/2)TrinG. The 2 o o¢
ultra-violet cutoff, present in physical models, is necessary to 52
yield finite results in the perturbative calculation with respect — V() — Tr P TR — y 7 eJ:¢V|(¢>)]
to V. A broad class of soft cutoffs can be implemented on the op 6¢ S

Gaussian part, giving a vanishing weight to fast fields. For

example, a scalar massive theory, rotationally invariant, isvhere here and in Eq8), TrA:B=3;;[,A/’B}*. Hence, if
regularized in the UV by the following general cutoff func- 1) (¢) satisfies the Polchinski functional equation

tion

1 2
C(q_z) ‘9|V|(¢) Tr( a|C;| 5¢ 5¢V|(¢))
2A?
= 19 1)

CO= e ® O TG
wherec(0)=1 andc(s) decreases rapidly to zero f8>1  then the above conservation conditi¢h is satisfied. We
as in Fig. 1. o _ have used explicitly the condition

The exact RG methofl,4] consists in varying the cutoff
A and writing an equation for the functioli(¢$) so as to J:0,G,=0, (10

conserve exactly the averages of all observables involving

only “slow” modes of the field. More precisely, the average which imposes that the cutoff function verifiégG{'=0 for

of an observabled(¢) depending only on modes<A'’ of <A’ and|>|’. Hence, for the examplé€5), one has to
the field¢ can be computed within any of the theories linked choose[20] cutoff functionsc(s) such thatc(s)=1 for O

by the equation presented by Polchinski corresponding to & s<s;, with some(arbitrary) s;.

cutoff A>A’. As in any RG procedure, the strategy will be  The above framework is in fact too restrictive. We can
to compute averages of slow observables using the coarseasily lift the restriction on slow modgand on the form of
grained theory of cutof\’<A,. the cutoff functionc(s)]. The applications of the Polchinski
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equation can be generalized to the computatiomrof ob- Although, in general, the Polchinski equation is far too
servable(not restricted to be “slow). As shown in Appen- complicated to be solved, in some simple cases, one can find
dix A 1, one can indeed expre¥$(J) in terms of any of the exact solutions, e.g., Gaussian models, zero dimensional toy
I-dependent actions;(¢): model. Most interestingly, there exist a large class of exact
solutions that appear as superpositions of Gaussians. In all
1 these cases, one can explicitly verify an interesting property
W(J)=EJ:(G—G:Gfl:G):J+W|(J:G:G[1). (11  of the Polchinski equation to generate cusp singularities.
This is further discussed in Appendix B and in a forthcoming
publication[21].
In fact we show in Appendix A2 an even more general
method that allows for arbitrary field rescalings.

Differentiating W(J) once yields(¢>$=G:G,_1<¢>>$l, B. Multilocal expansion
and once again yields the two-point connected correlation The Polchinski equation, in addition to being elegant, is
function conceptually more satisfactory than other RG methods, e.g.,

Wilson’s shell renormalization, because it is exact and better
c_ .~-1. c_~y.~-1. controlled since, being valid for arbitrary cutoff procedures,
($4)s5=CHCIG :($e)5~C):G =G (12 it does not suffer from the problems associated with the
sharp cutoff 3]. However, this functional equation generates
and so on for higher correlations. When performing a perturnonlocal operators, which until now, has limited its practical
bative calculation, the factoré;:G(l restore the original applications. This generation can be seen in terms of Feyn-
propagator for the external lines, whereas internal lines of thenan diagrams and compared to Wilson’s shell renormaliza-
graph involve G,. Accordingly, with this procedure the tion, sinceG—G,, which contains a range of wave vectors
functionc(s) can be arbitraryit is however convenient—see centered around ,e', plays the role of the on-shell propa-
below—to usec’(0)=0]. _ gator. The term)” with a second derivative in Eq9) rep-
Note that ifG:J=G,:J, one recovers Eq7), i.e., W(J)  resents tadpoles, while the terw{)’ represents diagrams
=W, (J) for these slowd’s as a special case of E(F). N \yith only one contractiotfone particle reducible These last
that case, fog<A', Eq.(12) reduces tq¢)s=($b)5 @S terms are nonlocal operators. For instancegfhtheory, it
it should. generates the operataf(x)39G* Y (y)3, which is bilocal
To compute correlation functions, it is useful to expresssince it corresponds to a graph where external momenta must
W(J) in a perturbation expansion in powers}g{ ), which  pe greater tham\,. The way Polchinski's equation repro-
reads to lowest order duces the loop diagram&e., local termgis that after inte-
gration over a slicall, a bilocal interaction generated by the
second term of Eq(9) is fed into tadpole diagrams. A fast

1 colean jeal
W(J)ZEJ:G:J—e* (1/2)J:G:G 1-G-J[eJ-G-Gl l-‘f’v|(¢)]GI momentum goes around the corresponding loop, and slow
external momenta are allowed. Thus, one needs to integrate
+0). (13)  the flow and study the feedback of the generated nonlocal

operators into local ones.

We now present a method which allows us to perform this
program in a controlled way. The following expansion in the
number of pointglocal, bilocal, etg:

The Polchinski Eq(9) can equivalently be written as a
functional “diffusion” equation

ETI‘L;'G' & e7V|(</>) (14) -
25 8¢ ’ V(¢)—fXU(¢x)+LyV(¢X,¢y,x—y)+... (16)

3|e*V|(</>): _

or in its integrated form

is valid a priori for any translationally invariant functional

e V(A =g Vol¢+ ¢’)]G_GI, (15  W(¢) interactions. We discuss here only the first two terms,

the general systematics being given in Appendix C. Here,
) ) o ~ U(¢) is a function of the vectog; and involves the value of

where the average is ovet’, which makes explicit the defi-  {he field at one point in space. The bilocal part is a function
nition of 1,(¢) as a coarse-grained interaction, i.e., |nte—V(¢,¢,Z) of two vectorse, ¢ and a space coordinate differ-

grated over the “fast part’s’ of the field. In fact, the de-  encez. In order that the expansion be well defined, one needs
composition into slow and fast modes and the definition ofihe pilocal interactions to haveo projection on the local

coarse-grained observables relies on the profed)lc  ones. A natural way to define such a projection, inspired
={[A(¢+¢')]c-g,}c, Of Gaussian averagésee Appendix  from the conventional short-distance expansion, is the exact
Al). equality
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where we have written the subdominant terms that will be
J F(dx, by, x—y) neglected in the following.
i A simplification occurs if we choose, as done in this sec-

tion, (4,Gy)i;(q=0)=0. Indeed, the terrﬁlu’u’ vanishes
:fxyF((l’x,@(aY)'*'fxy[F(¢x+yIZa¢xyIZ'Y) since

—F(éx.dx.Y)] fx(aler)ijaiuw)ajuw)=o. (21)

= L(ElF)(QﬁxH Ly[(l— POFI(éx, by, x—Y),

Let us write now Eqgs(19) and(20) in an explicit form:

where we have introduced the projections 1 -
U (¢p)=— E&Gixfoﬂiajm((ﬁ)

(51F><¢>=f F(¢,¢.Y), 17
’ - fxﬁGﬁ»ﬁ%afv|<¢,¢,x>a|v|<¢,w,x>

’ =596 3Ui($)3Ui(9)
on the subspaces of local and bilocal interactions respec-

tively. Indeed,[P1(1—P1)F](¢)=/x[(1—P1)F](¢,¢.x)
=0, i.e., (1-P,)F has zero local part and is thus properly
bilocal. Interestingly, this definition implies that the function
V(¢,,z) appearing in the proper bilocal operator of Eq.
(16) also satisfy the stronger properfy,V(¢,#,z)=0 for
any ¢,¢. Note that with no loss of generalitW/(¢,¥,2)
=V(i¢,¢,—2). Here, in addition, we will consider parity in- _ 5(X)f ﬂG?}V,(d),z,/f,y)),
y

1
=S9GN (Gt + V(b )

—a}af(aeixjvl(¢,¢,x)

variant theorie$V(¢, ,z) =V(¢, ¥, — z) toQ].

For theories where the initial interactidhis local and is
formally treated as a “small” quantity) (e.g., the¢* theory ~ where 4G stands forg,G, and *A(¢,¢) [9°A(, )] for
in D=4—¢€ whereU~¢), it is natural to consider that the g/9¢p;A(d, ) [dldyA(D,)].
bilocal term will be of higher ordex(U?). In fact, this
property results from the Polchinski equation since the term
that creates bilocal interactions from local onescigU?) ) )
(the first part)”” does not increase the degree of nonlocality . 10 Solve Eqs(19) and(20), one switches to Fourier space
of V). This property that solutions of the Polchinski equation(in the field:
can be organized in powers bf depending on their locality
holds to arbitrary ordergp-local operators ar&®(UP)] as is UK=J do e K-2U(¢) (22
discussed below and shown in Appendix C. Thus, to lowest
nontrivial orderO(U?), the flow equations involve local and
bilocal parts. Their schematic structure is VKPx:j dep dyp e K-6=1P-on (g s x), (23)

C. Solution to the lowest-order RG equations

AU=U"+P,(V"+U'U" )+ O(UV)+0O(V?), (19 _
whereK- ¢=3;K;¢'. It turns out that the equation fdr,
V=(1-P)(V'+U'U")+OUV)+O(V?), (20 can be integrated explicitly as a retarded functiorUef

1
VFPX=§( o0 |

FFPV), (24)
| _ — _ -
Fi=— f dI’ (K- 4G}, - )UK UP, e@aK- (61 =Gl ) ke (2P (6] 0= 6] )Pk (6] 6]) P (25
0
KPx__

since we have choseéw-j=0. One can then reinject this result in E§9) and obtain a closed RG equation 10r( ¢):
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g0 1 i(K+P
U\(h) == 5G] aaUi(d)— 5 erl( )6

| _ X= = X= X
XJK'((?GT_M-;T:O)'PJ dI’K-r?Gf(, . pell2K (6] =g, %).K+(112)P- (G cH 0)-P+K-(G|X—G|,)-PU:<,U|P,_
X 0

(26)

This is theexactrenormalization equation for an arbitrary to compute the observables. To lowest ordeUinit is suf-
local interactionU (¢) to @(U?). Note that the second-order ficient to keep only the local part in E¢L3) which yields to
term is retarded iih, since as discussed above, local terms areéd(U,)
generated only after integration.

More generally, this procedure can be carried out to any
order inU using the hierarchical structure of the flow equa-
tions for p-local interactions(see Appendix € It is found

that the general structure for the flow of the local partis  Thus, one has for the two-point funCtid%L%/}g: 5(q

W(J):%J:G:J—ffU:(e*(l/Z)K-GX;O.KeiK_(G:J)x'
xJK

"NEd i
AUN($)=BLU) 1(81)]1($) +q)CY with
9 F »
- j R Cl=G+ | (K-GT;(K-G%;0f,
= j'1<|2<"'<|n<|]C|'|1m|”1[‘9‘1’1’ o ’&gbn} . J fK( il )iV
XU (¢1):--U (¢n)lg =0 (27) OK = UKe- (42K 6/ °:k

and in(26) we achieved the calculation of th@function to  and more generally the-point function (1 2):
second order itJ. Once the solution of Eq27) is known up

to O(UP), all thep’-local flowing interactions fop’ <p are iy imve a N

also known by injecting the solution fdd,. For example, (¢g, -+ Pqs= ~ 05 H Gk % |Ui(0), (29
for p=2, the bilocal part is obtained from Eq24) and(25)

injecting the solution to Eq(26). with §,=(27)°5(q). To compute, e.g., the two-point corre-

_ To a given or'der ird one can a]so perform a loop expan- |ation function at wave-vectog, one carries perturbation
sion by expanding the exponentials of propagators that ajneory inU,, at a large scalt’ and it is convenient to choose
pear in Eq.(26) [see Appendix C4 for thé&(U%) equation. "= In A/g. To first order inU,.(¢), one has
To orderU? and one loop it reads

ci=g4 K-GY,(K-G% UK _
A8 =030+ [ V303,061, U1, e KT e

-0

(28) X ef(llz)K'Glxe in Arq K, (30

30— _ }f et Of course, sinc&V(J) is by construction independent lothe

! 2Jq ' result should not depend on the choicel bf Using the RG

flow equation, it can be checked order by order in perturba-
5 tion in powers ofU, that this is the case.
J,=- Ef IGlIG, In the above computation of the two-point function, the
a natural vertex that appear is not(¢) but U(¢)
where here and in the following; = d4id,i. =fKeiK'¢U:<; it is thus interesting to study directly its flow

In order to compute the correlation functions for small equation.
wave-vectorgy, the strategy of the RG consists in perform-
ing a perturbative calculation in the theory renormalized up Ill. REMOVING OF TADPOLES
to I’=In(Ag/q). In the favorable cases, the interactidn AND APPLICATION TO ¢*
flows, from a small initial-initial interaction/,, to “fixed
points” in functional spacgup to appropriate rescalings
controlled by a small parameté&uch as the offset from the It is useful for some applications, and in particular to
critical dimensiof. Once the asymptotic lardebehavior of  simplify higher-order calculations, to get rid of the linear
U,(¢) is known, one uses the invariance propertyefJ) term in the Polchinski equation. This can be achieved exactly
[see Eq(11) and Appendix C5 where this is done in detail by introducing the following functional:

A. Modified Polchinski equation
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universal fixed point quantities. This property will be tested
gl _ l and used in the rest of the paper.
® = We also give the expression of the bilocal term, as one
dl 2

must check that it effectively reaches a fixed point for con-
FIG. 2. Graphical representation of the modified Polchinskisistency. It reads as a function of the local term:
equation. The point represents any vertex, the broken line is a
propagator on shelG, and the full line is &G, . \7|(¢1,¢2,q)=%f (€% 1) fldl’eﬁlelx’ﬁzé’l&er/ P2
x 0
f}l((ﬁ) — e(l/2)(§/5¢):G|:(5/5¢)V|(¢)_ (31) . ~
XUy (U (¢2).
Inserted in Eq(9) one finds that it satisfies
B. Modified RG equation to one loop and application
4 . . é to O(n) model
50 190G, 50
! 2 Expanding the exponential of the propagator in E3#)
X1>|(¢1)|¢1=¢9|(¢2)|¢2=¢- (32) yields a Ioop expansion of the beta function to ordér To
one loop this gives

- 1 o
IVi(P)= Ee(‘s/&‘/’l)-q (818¢9)

The graphical representation of this equation is drawn in Fig.

N b. -~ N
2. Since this equation does not contain a linear term, its AUI(P)=1705Ui() 9 Ui( ), (37)
solution does not contain tadpolelike diagrams. This func- 1

tional has thus several advantages: first it enters directly the ||D:_f IGIGY. (39)
computation of any observable, second its flow is simpler 2)q

than the one of the bare vertices. Finally, in the context of .

quantum field theory it has the direct meaning of being the AS @ check of our EMRG method, let us apply it to the

normally ordered vertices. O(n) model inD =4- ¢ with the polynomial interaction:
We now perform a multilocal expansion, similar to the 1 1 1

one introduced in the previous section, but on the functional Ui(p)= 592,|¢2+ 594,I(¢2)2+ gga,l(d’z)s“‘ e

V() as: : 39

]A/|(¢):fXU|(¢x)+Ly\7|(¢x,¢y,x—y)+--- . (33 the dimensionless variables beigg, =g, A; °*"(P~2/2,

The RG can be performed either usidg(¢) as in the pre-

vious section, or in terms df, (). Let us follow the second

Th ified Polchinski Eq(32 I
e modified Polchinski Eq(32) can be solved order by method for completeness. One has

order inU,(¢). The general analysis is performed in Appen-

dix C1. Here, we give only the result to orde¥?, which . x=0g2 1 1
reads Ui(¢)=eM% VU ()= 52 P>+ Eaz;,|(¢2)2
% 1 PGP 41 X 520 " 1 2,3
ai(¢)=7 &7 anGd Ui(d1)lg,=gUi(#2)] g, +grae (@), (40)
(34)

and, similarly[22] a,,=a,,A; °*"P~22 thus
where al=&¢l. An interesting property of this equation is

that it is now local inl. ay=ag A 2, (41)

Expansion in the number of loogs restricted to order
U2, is thus straightforward: ag=agA| c, (42)
. 131 R . ag =ag AZ%. (43)

709 =5 Z i, 0D, 08, 1= 8a
(39 From iU 1(p) =ap; 5+ (a4)/31) (5 p°+ 2 i &)
+(ag)/5")[ 8j(p?)*+4¢;p;¢*]+ . .., oneobtains the RG
1 equations:
= [ @irisi-gga | @t e S
x k+1""Jx

~ ~ 2 -~ ~ ~
. . " (9a2J:2azy|+ID§(ﬂ+2)a4'|a21|+0(a421‘|), (44)
Note that the multilocal expansion faf and V are not
identical, i.e., they do not produce order-by-order equations 5
that can be transformed back into each other. However, they =~ _ = D =2 ~3
: o day = +1°=(n+8 +0O , 45
should yield the same result at the end when calculating a1 =€y 175 (n+8)ay +O(ay,) (45
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Jag 1= (—2+426)as + 033, 46 bujc this goes beyon.d. the present paper. Such a calculat!on,
61 ( €)3s, (@) (46 using a slightly modified version of the present method, will
- : : ; - be presented if23].
:2 thj-Of the single integr&P, which has a universal value Having checked the method on a well-known example,
' we turn to far-less chartered territory.

2 2
C,( q ) C( q ) IV. APPLICATION TO DISORDERED ELASTIC SYSTEMS
D= A€D= el 24, 2A, (47) A. FRG equations and universality to one loop
Y 2], A2 "

1. The model

1 S, Let us consider an elastic system of internal dimeng&on
=§SDJ (25)‘6’2c’(s)c(s)=—Z+O(e), embedded in a disordered medium. It is described by a
s=>0 single-component displacement field (x is the internal

(48) variable, which is either the height function for an interface

. . . . problem, or the continuous deformation field for periodic
with S,=1/(87%) and here, and in the followingsy, is the gy stems. Applications of such models to physical systems
unit sphere area divided by (°. Thus,a,, flows to the have been discussed in recent reviews to which we refer the

fixed value: readel35,34]. The aim of this section is to apply our EMRG

method to this class of problems and show how one com-

~ ) putes correlation functions and prove universality. The
&=t 8)1677 €, (49 model usually studied is defined by the energy where it reads

2
c m

which is universal to this order. We have indicated terms in H(u):f (—|Vux|2—W(x,uX)+ —|u¥?],  (56)
the above RG equations that arise at two loops and yield x| 2 2

fixed point fora,; andag, with where a short-distance cutafé.g., in momentum spagés
_ _ implicit. The elastic constant is set =1 here, and the
as=0(e%), at=0(ée, (500 mass tom=0, its effect will be studied in Sec. IV C. The
disordered potential- W(x,u) is a random variable that has
and more generallyg,= O(e") for n=3. The derivation of the following properties(i) W(x,u) =0; (ii) the potential at
this is simple but goes beyond this pajés]. This fixed differentx are uncorrelatedgii) the distribution ofW(x,u)
o . L~ . is translationally invariant iru space. Its cumulants read
point is unstable in the directioa, and stable in all other

directions. The stability eigenvalues ¢ ¢) read W(Xq,Ug), ... W(Xy,Up)C
n+2 =8(X1—X), .. ., 00X —x)SNM(uy, ... uy), (57
Apy=2— €, (52 ] . ]
n+8 where  the  symmetric  functions SN satisfy
SNy, ... u)=SN(us+u, ... ,uy+u) for any u. In
A= ¢, (52 particular, the second cumulant is denoted Rfu—u’)
=S@)(u,u"). Two cases are usually considered when study-
Non=—2(n—2)+e(n—1) for n=3. (53 ing a domain-wall interface in disordered spin models:

random-field disorder that yields long-range correlations
The critical manifold of theD(n) model corresponds to R(u)~|u| at largeu (see[24] and Sec. IV C belowand
a,=aj} . This corresponds indeed to the massless case, Sing@ndom-bond disorder yielding short-range correlations
(u)—0 at largeu. When studying a charge-density wave or
the self-energy ; ! ) A
a vortex lattice, one is led to consider a periodic disorder
[27,28. In that case the cumulants have the periodicity of the

_ 12\ A 25
29=U"(0)+O(U%) = Afay, (54) system considereta wavelength for a density wave and a
. . . i lattice constant for a vortex lattizeWe assume parity sym-
vanishes to lowest order on the critical manifold. The instametry SN (—uy, ... ,—uy)=SM(u;, ... uy). This prob-
bility eigenvalue at the fixed point gives the critical exponentiem s ysually studied by introducing replicas ¢y, @
Y =1,...n, of u* and by averaging over the disorder. It
yields the action
2 1+ (n+2) +O(€?) (55)
y=—= 5o € €°), 1
N, 2(n+8) _ f * a2
S@)= | |57 2 IV

thus recovering the standard result. One also gets— e

and 7= 0(€?). 1
Note that to first order ir there is nog dependence a4 -

and no wave-function renormalization. This, and the calcu-

lation of » can be incorporated in the method to two loops, (58
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Thus the bareS has the general forr(8) with ~R|(U):A|D74R|(U),

q q? é(ul, o Uun) = APNTENTRSN ).
Gl =—c| — | ap» o
S PV The general RG Eq(27) for U,(¢) implies a set of
flow equations for the rescaled cumulant®(u),

V()= f U(dy) SN (uy, ... uy) (since the former is in fact aetof equa-
x * tions for functions of an-dimensional vectok for anyn).
The rescalings above have been chosen such that these re-

“ 1 S RGP 1 S 5940 4,4 scaled functions flow to fixed functions denot&f (u),
T o2 a - ] ’ ’ 'S * 13+« UN .
U o2 42 3173 5% StN* (u uy) independent off
' An important property of the theorfb8) is that it admits
+eee a well-definedT=0 limit, at least at the perturbative level.

This can be seen either by examination of the diagrammatics

We will consider any cutoff functiore(s) such thatc(0)  (all negative powers of in the perturbative calculation of
=1 with no loss of generality and witt' (0)=0 for conve-  observables are in factor of a positive powernpfsee Ap-
nience(see below. pendix D, or in the T=0 dynamics[15]. Similarly, there

Direct perturbation theory can be performed on this modekxists a well-defined=0 limit of the set of flow equations
[18,24). One can show that it has a well-defin€e- 0 limit  for the cumulants. For smad=4—D, this complicated set
(see Appendix D Furthermore, aff=0 this perturbation of coupled equations can be organized in powers.d@pe-
theory—at least at the naive level—is in fact trivial, i.e., thecifically, one finds thalRR* = O(e) while SN* = (V) for

disorder average of any observable is identical to its value i~ 3 “This can be seen on the schematic structardered

linear random force model, as shown in the Appendix D.. . ~
Within the exact RG one can in fact escape this well-known" U andT) of the flow equations abeyed by the rescaligd

dimensional reduction phenomenon, since, as we will se§ . Which can be read off from Appendix C4:
below, the flowing disorder becomes nonanalytic. As shown JU=TU+T2U2%T+T3U3% T+ ... (60)
below, it yields nontrivial results for correlations.
The two first terms reproduce E{R6) since dG=T, while
2. RG analysis the third term mimics th€(U?) in the 8 function. Its three
We now, use the exact RG method introduced above. Fd¢ Vertices must be linked by at least three propagators be-
now, we use the RG equations based on the multilocal excause of the constraint of locality. Substituting symbolically
pansion of) while the other method in terms df(explained U=R/T?+S/T%, where we restrict to the two lowest cumu-
in Sec. Il A and Appendix C)lwill be used in Sec. Iv C. lants, one finds
The method with) turns out to be more convenient to ana-
lyze finite T effects. Thd dependence of the Gaussian part is
implemented by the choice

IR=eR+9|,+R?,+RSe"/T|,+R3%"/T|,,

3S=(6—2D)S+RS|3+ R%|3+S%e"/T|;+ R%Se"/T|5,
2

q

(59) where we have denoted projections on two and three replica
2A7

parts. All terms containing I/vanish after these projections
since a well-definedr =0 limit exists. We have discarded
whereA,=Ae". This choice is particularly convenient here terms, such aggl”s:TTq2|3, which (formally) vanish atT
since there is no correction to any order to the connected-Q,

quadratic part(statistical tilt symmetry{25]). The flowing One sees immediately on these equations that the fixed
interaction functional(#) remains translationally and par- &= =0(e) while 3 =0(€%. This can be generalized by
ity invariant in x space. Since translation invariance in the noting that the lowest-ordéin €) correction oSV is of the

space is conserved, its local p&t(¢) remains of the form =N Z(N)* _ N 2 B
of the barelU,,. In order to obtain fixed points it is convenient form Ry, thus,S™* =0O(e"). To O(€%) at T=0 we thus

— T
(GNp=T(G)a,= @C Oab

~ eed
to define a rescaled dimensionless temperaiyreTAP 2
and rescaled functions IR=€eR+R?|,+9|,+R%"/T|,, (62)
Ui(¢)=A7PUi(4) 5= (6-2D)S+R5. (62

- In this paper, we simply perform thé(e) calculation to
=—— 2 Ri(¢*~¢" which we now turn, for which consideration of two replica
2Tp b terms is sufficient.
We perform the analysis in th€=0 limit as explained
2 SEN(p2, 0, p%) + - -, above. The propagator can be expressed in terms of dimen-

= a A
3!ITy abc sionless quantities &8;'=T, [ 4[c(q?/2)/g?]e'% X, At finite

1
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T, the exponentials of propagators in E86) would reduce - +oo 1. ~ -

to one asymptotically at large This is also true in thad  0=€R*(u)+ J dI’K|,) <§R*"(U)2—R*"(O)R*"(U) :
=0 limit for any . It is thusa priori unnecessary to include 0 67)
higher number of loops within ordey?.

Denoting byM,(¢) the two-replica term contained in the It is now easy to see that the factée [ dI K, in Eq. (67),

local operatoty which a priori depends on the dimension of space and of the
whole arbitrary cutoff functiorc(s), becomes universal in

~ 1 ~ _
Mid)==5 3 Ri(s*- "), (63 D=4 Indeed,
o s
the flow equation to one-loop E(8) (using the change of KZZSDTE/ZL dss “c'(s) fodt tc’(t) (68)
variables!’—|—1" yields
M |(¢)=(4-D)M(¢) =2s4f ds ¢/(s)(c(s)—1)+0O(e)=S,+0(e),
0

1! - 69
_EJ‘OdllKI’% [&abMI—I’(¢)]2|2—rep1 ( )

(64)

where we used the new variables-q?%/2, thent=se 2,

kept only the lowest order i, and usecc(0)=1. We de-
note by Sy the surface of the unit sphere I dimensions
fivided by (27)P. Thus, to lowest order i, the FRG equa-
tion does not depend on the cutoff procedultecoincides
with the fixed-point equation obtain¢#l4,26 from Wilson’s

momentum shell renormalization.

where the kernel responsible for the retarded nature of th
flow is

D 2e —€
Ki=4dp p AiZ A

q q° In Appendix C 3, we also mention the result of a two-loop
=2€f(6fD)l’f C,(_ c’ _eZI’) (65) calculation of the beta function in our exact renormalization
q 2 2 framework.

The solution to Eq(67) is known to be the one-periodic
Sincec’(u) is typically peaked around~1 and decreases function defined by
fast at infinity, one sees in Ed65) that the range of the
kernelK, is also of order one and can be made as small as 5
desired by choosing narrow enough cutoff functions. The R*(u)=

1
——u2(1—u)2) (70)
above RG Eq(64) involves computing the contraction

€
725,136

_ for O<u<1. This fixed point function is nonanalytic, which
> [920M ()12 is an important and unusual feature. It was arguedllifi
ab that this nonanalyticity appears at a finite scale. This scale
R.=€'c/A can be identified with the Larkin length at which

=D [R'(¢?— ¢?)2—2R"(0)R"(p2— ¢°)] metastability and glassiness appears. Taking the fourth de-
ab rivative atu=0 of Eq.(66) yields a closed retarded equation
for R[“(0)

+ 2 RI(47= R (4°= o),
abc |
- N al'ﬁei“(O):eFe:v(oHsf di’ KR, (0)2. (71
where we have usedd,d,M(¢)=35,p>R"(Pp2— p°) 0
—R"(¢2— ¢P). The last sum being a three replica term, it
does not enter the equation f& (it is a correction toS In the limit of narrow cutoffs, the equation becomes local
proportional toT), which reads andﬁ]”(O) diverges at a finite scale. One can show that this
feature persists in the nonlocal equation.
~ ~ I ~ ) The case of an interfacg.e., a directed polymer foD
IR |(u)=€eR(u) + deVKV SR (W) =1) corresponds to another fixed point where one must re-
scale the functiork,(u) as follows:

—~Rf’|/(0)§r|'(u))' (66) Ri(u)=e*'r,(ue” 9, (72)

Let us first study the case of periodic elastic systems, witthnd we must now determing= O(¢) such thatr,(v) con-
R(¢) periodic of period one. Taking the larémit we find  verges to a fixed point* (v). Inserting Eq(72) into Eq.(66)
the fixed-point equation: yields
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ar(v)=(e—40r(v)+vr| (v) to lowest ordef14,15 as well as a nonuniversal amplitude
[since the FRG fixed-point Eq(74) is invariant under
' (1 , r*(v)—\*r*(v/\) and, contrarily to the periodic case
/ —4q'| Z AV ' '
+ fodl Ke (2rll’(ve ) nothing here fixed the scdle

We can now investigate in more detail the structure of the
asymptotic flow of the various higher-order interactions
(three replica terms and higher, as well as bilocal interaction
and moré. Although this is beyond the scope of this paper,
Although the kernel has been modified, this does not affecsuch an analysis is in principle necessary for consistency,
the results for the fixed point to lowest orderdnThe fixed i.e., to ensure the existence of a global fixed pdfot all

—r;’_l,(O)rl”_l,(vef")). (73

point equation reads interactiong and the validity of the result taJ(e). We
sketch it here for the periodic cage-0, generalizations to
0=(e—4r*(v)+fvr*'(v) interfaces being simple.
We start with estimating the higher cumulants of the
+S, lr*n(v)z_ r*”(O)r*”(v)), (74) renormali_zed disprder, i.e., the higher rgplica compon_ents of
2 the local interactioJ, . To lowest order irR, the correction

_ ) ) _ to S™ is proportional toR' and takes the schematic form
and is thus universal, independentcg§). This shows that,

which, as shown below, is the roughness exponent, is uni-
versal to one loop. It will be studied below for the random-
field case and in the case of short-range disorder it is thu
equal toO(e€) to the values given ifl4].

dSN = —(2N+D-DN)SN+R"N, (79

&raphically, the diagram is made of one loop. We dropped
the numerous higher-order termsédrcoming from contrac-
tions of various other cumulants th& One finds that the

_ _ _ fixed pointSN)* takes the following form to lowest order in
Let us now compute the two-point correlation function at .

T=0 using Eq.(12). To lowest order irg, it is sufficient to
use the first-order formulé30). The bare Gaussian pa@&"

3. Correlation function

vanishes aff =0. We thus get Y SNE(gA, L)
ap, ..., ay
T2 9 2
q — _ _ — Ny _ %" Sk
Cab q4C( 2A2> aaﬂbU|(¢)|¢Eo CN,D TF(W ) o0 ”Z'aN‘b bay» * * * "bay |
_ R0 where W,p(¢) = 8,p= R —REY, RE denotesR*"(¢,
q* —¢p), andcy p is some number depending on the cutoff

_ procedure. The last term in the trace has been subtracted
R*"(0) € 1 b since the product of th&l &'s is aN+1 replica term. For

= o© ~5,360 (79 instance, the third cumulant is of ordéX€%) and reads

_ ~ (3)*
where we used tha®, converges to the fixed poil* and S (ug,Uz,U3)

smallq such that(g?/2A2)=1. In real space, it yields loga-

> : : > - =CanS ﬁ* " _ ﬁ* " _
rithmic growth of the displacements with a universal prefac- 3D ynhl'UZ’US[ (Uz~ Ug) R*(Us iy

tor XR*"(Uy—Uy) —3R*"(uy;—u,)
——— € D*x 2 D% D*x
<(Ux_Uo)2>:1_8|n|AX|- (76) X R* (Ul_U3) +3R* (O)R* (UZ_Ul)
XR*"(uz—uy)], (80)
In the case of short-range disorderg., random bond for
Ising interface one gets instead wherecg 4 is computed i 16] and reads
- (0) r*"(0) 1 S, (= [1—-c(9)]®
co = N=m@n®) o, SO _ Cosmm| ds——. (81)
ab o e A, qP QP2 34712/, s2
(77)

Now we check that the bilocal part has a well-defined
This yields ((uy—Uug)?)~|x|?¢ with a universal roughness fixed point. Its expression is given by E@4), where atT
exponent: =0, the exponentials should be expanded at most to first
order. The zeroth-order term yields three replica terms, while
{=0.208 298 04 (78  the first-order term yields two replica ternfas well as a
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correction proportional tar to three replica terms that we (efined functions ofj=q/A, implies that thee expansion of

can discard af =0). Thus we get CJ, at fixedg<A should be of the form
Al S22 Y 1 ~
Vilr o)== 2 Y )(E Cgb=¥Af2(q), (86)
AZE—Z q ~
_ E T/|(2,3)(_), where the dimensionless self-enerf{q) depends only on
6T3 abc AI

q and e. SinceCY, is | independent, it implies, taking the

where we have explicitly separated two and three replic&lerivative, thats (q)=C.q¢ and thus
terms, respectively,

Cgbzceq_D! (87)

V@A) =f(a) 2 Riy'Ra?, (82 212
ab C.=—c¢, (89

9
- ~ c(0?2) -1 « ~. . . _
V@3 =—3—— > RY/IRY/2 (83)  tolowestorderirg, as in[27]. The form(87) should be valid
(q ~9 ab "‘ac . . . X R
abc to all orders ine if the hypothesis about the fixed point

formulated above Eq85) are satisfied.

_ B. FRG at finite temperature
(k+)?
2

- 1} 1. Renormalization equations

where we have defined
=3 w2
== ——=—=|C| = | — C
Y7 2)lenrgelt2 . . . .
Since in Eq.(26) the terms in the exponentials containing
_ the temperature go to zero &5 2 one can first study the
—idemq=0¢, (84)  effect of temperature, compared T6=0 by looking at the
linear term. Up to ordeT R andR? (i.e., to one loopthe RG
~ 1 ~ b ) equation thus reads
whereR];, stands folR’ (45— ¢7), etc. We have discarded a
term proportional to R*"(0)= ,p(RX1+R%/?) since it
yields vanishing contribution to the action. The bilocal term
thus has a scale invariant fixed form of order and is a
well-defined function ofj=gq/A, with no divergences. This = =
. - -R_,,(OR_,, ,
shows consistency of our procedure to this order. - (OR, (W) (89)
More generally, we conjecture, and verify here to lowest |
order, that there is a fixed asymptotic form for all multilocal with
interactionsV(P) that can be explicitly written as a sum of

= = s ! 1"‘//
AR(u)=€eR(u)+ TR (u) + fodl’ Kw<§R|-|r(U)2

roperly rescaled multireplica terms as A _ 2
Properly P T,=—aG|X*°:—Tf Arzc'(—qu)
q
VIP(by, .o by Xe, - Xp) I
¢(2-D) =2TS AZJ c(s)+O(e).
—APPY Al uA ) (s)+0O(e)

c=2 cIT®
In the case of the sharp cutoff, this equation has been studied
X vfp’c)({¢2i}ff11’”'c'p./\|X1, oA, in [29,30. It was found that at fixedi, R (u) converges to
ag ac

""" R*(u) but that temperature rounds the cusp of fhe0

(85  solution in a boundary layer of size~T,. As in [30] we

) _ look for a solution of the form
where the number of replicas corresponds graphically to

the number of connected components. The consistency of the u2 -‘|—|3 Uex
method demands that th¥, flow to well-defined fixed R.(O)—R|(u)=—R{’(O)?—Kﬂm(A—). (90)
points, perturbative ire. It is indeed natural to conjecture €K T

that in this theory there is no wave-function renormalization. -

We can now come back to the calculation of the correlaHere, « (of order %) is defined byex=R*"(0") and thus
tion function. Although for convenience we have computedH*"(0)=—1. One has alsdH,(0)=H{(0)=0. Injecting
Cd, from the theory witH = In(g/A), this is unnecessary. As Eq. (90) into Eg. (89) and identifying the leading order in
discussed above, the existence of a fixed point with wellT,, one gets
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2

X 1 where X denote disorder averages aa ,c,d take values
— = H*”(X)_I_EJ K|e4IH*"(Xe_2l)2, (91) g ey
>0

all distinct from each other. Note the well-known property
[25] that the average susceptibility is identical to the suscep-
with [,-oK,=1. This equation can be solved iterativelyrin tibility of the pure system. We now compu@&,4 to lowest

for H* (X) == ,-0a,x>"/(2n)!. One hasa; =1, a,= — 3 but order ine. Only zero and one loop graphs involving, respec-
highera,’s are nonuniversal. The largebehavior ofH* is  tively, R/(0) andR/"’(0) contribute. Interestingly, due to
universal and given byH* (x)~x. In the case of the sharp the quadratic nature of the term proportionalRj(0) the

2

cutoff one recover$30] zero loop graphs cancel ig?, as can be easily seen since
Capeq=C2,+23 ,5(C2P)?2 for any Gaussian theoryper-
" _ 5 abcd ab apB\~ab
H*"(x)=Vv1+x°~1. 92 forming the Wick contractions One is left with

This result should be further examined by consideration
. : : Cabea= (NSapca— (Spedt Scdat Sqapt O
of consistency within higher-loop corrections, which goes abed= (Nabed™ (Gocat Scdat SuavT dabo)
beyond this paper. +(5ab5cd+ 5a05bd+ 5ad5bc))AR|"”(o)u
The most important result of the section is that the fol-
lowing relation between the finite-temperature solution anthereA=L‘Zwa(fxyVGX‘W.VGV‘W)z, and thus
the T=0 solution:
jim TRY(0) = CRE(0°)? @3 (Ax)?=x*~ x*=AR'(0)~R"(0)CL*®  (99)
| -+

for a system of finite-sizé [see alsq34] for a similar result

whereC=S, holds irrespective of the cutoff function, and in straight perturbation theotyNote that one can equiva-
thus is determined by th&=0 fixed point. This property lently study the perturbation of an infinite systefe., L

will be used below. — oo first) by a periodic external field of wave-vectgg,. In
that caseA=q>,*. Thanks to the exact RG equations at
2. Calculation of universal susceptiblity fluctuations finite T and substitutind = InL, we obtain the mesoscopic
It was noted recently that a signature of glassy behavior iﬁusceptlblllty fluctuations at low temperature as
a disordered system was the large sample-to-sample fluctua- Lo
tions of the response to external perturbati¢p8%,33,34. —(AX)chrT, (100

These are described by the following suceptibility:

11 where§=D —2+2¢ is the energy fluctuation exponent and
X=7 L_Df ((FaUxdaUy) = (U (d,Uy)) (94  C'=0(e?) for a periodic system {=0) and C’
i =O(e*®) 0?? for an interface in random-field disordésee
Sec. IV Q.

This result, derived here through exact FRG calculation,
is consistent with the droplet pictuf87]. Indeed, the second

denotes the thermal averages in a given sample. These hajoment C.)f the .susceptit.)ility fluctuations _is dominated.by the
been studied in connection with mesoscopic behavior of dist'® configurations of disordéof probability pgeg<1) with

ordered system$36]. Here we have considered only the tvtvot almosft lcliegepera[ee., within O(T) in energy ground
trace of the response tens@extension being straightfor- states as foflows:

ward). To perform the calculation in the replicated theory we — )
define (Ax) dieg( 5Xtyp) ) (101

in a finite system of siz&, which measures the response in a
given sample to a field coupling u (e.g., the tilt or com-
pression a flux lattice, or the compression resppridee ( X)

11 where pdeg~T/L" and the typical fluctuation iséxyy,
Cgl’?:f —Df (%Uiﬁﬁug% (95  ~T L PL2P~2%2¢ from Eq. (94). One thus recovers the
L= Jxy above result sincd=D—2+2¢.

11 ; ; -
abcd:; ELW(V”?' Vu}'?Vu‘Z:- Vuf'). (96) C. .Interfa<-:e in a biased random field e-md toy model

In this section we study the modg6) in the presence of
mass ternm>0, which confines the fluctuations of the
isplacementu,. We consider two case§) random-field
isorder (i) periodic disorder. A physical realization 6f)
consists in a domain wall separating tlrephases in a fer-
romagnet, submitted to a random-magnetic field, as modeled,

We now compute, respectively, the first and second momerﬁ
of the sample-to-sample fluctuations of the susceptibility.d
They read

X=Caa= Cap=1, (97 e.g., by the random-field Ising model. The magnetic energy
of the interface, assumed without overhangs and represented
X2:Caabb+ Cabcd= 2Caanc; (99) in Fig. 3, is
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X 1
f?|R|(U)=J|(§R|"(U)2—Ri’(O)R{’(U)>, (104

J=- 2f IGIGY. (105
q

Using the actionS,, the T=0 correlation function reads
to lowest order iR

2

c(g2/2A2?)

106
cg?+m? (10§

| Ugl_q=—R/(0)

It is easy to transform Eq104) into the RG equation in
the absence of a mass. Using the change of variable
Ri(u)=c2A {5, Ry (UA ), (107
one finds thaR, satisfies then=0 flow equation
IR0 = (e~ 4DR(X) + IXR (%)
Ux

1. ~ ~
+Sp| SRIOZ-RIORI(x) |,

FIG. 3. Interface between two domains with opposite magneti-provided thatt(1) satisfies
zation in a ferromagnet.

_dt o c?
Uy Miygr=dso (108
5(u)=2f deJ du’ h(u’,x). (102 P
0 which is integrated into
Thus, the effect of the mass term corresponds to applying an eti—1 (= o . - c(g’/2)*~c(q*?/2)
additional field gradienh(u,x)— h(u,x) +m?u/2. Note that e J; d (P+ @)? . (109

this field gradient can either stabilizen>0) or destabilize
(m?<0) the domain wall. We will study the approach to the ith a=(m2/cA?). The functiont(l) is increasing and
critical value m*—0*. The case(ii) is of interest when pounded. Its limitt(+ ) =t.. for D<4 is given by
studying the competition between disorder and, e.g., a peri-

odic potential. In the phase where the periodic potential is e=—1 (= _  c(g?/2)?
relevant, it is natural to approximate it by replacing it by an —f D-1 — (110
harmonic well(see, e.g.[38]). € 0 (q°+a)
Here we examine only ground-state propertesro tem- o
peraturg. We show that the disorder-induced fluctuations ofand it diverges fom—0 as
the displacement, is described, asn—0 by a universal . 1 e\ (eml2)
scaling function of the form eftw~ef q°~1d _Na—fxz( _ _)__.
0 (9%+a)? 2/ sin(ew/2)
UqUu_q=m"*F[cg?/m?], (103 (119
In D=4 it diverges as
which we determine to lowest order &4 —D. Note thatc 1
can be measured from the thermal connected correlation, t.~—=Inl— (112
which is unchanged by disorder for models like EE6) 2

which possess the statistical tilt symmetry. We now distinguish the two cases

1. RG equations in the presence of a mass 2. Random field

In this section, it is more convenient to use the RG equa- | that case, the correlations of the potential are
tion resulting from the multilocal expansion ah which is  [w(r,u)—W(r’,u’)]?= —28°(r—r')R(u—u’) with [from
Ipcal in| to this order. Since we are studyifig=0, we set  Eq.(102)], R(u)~ — o|u] at largeu. In the massless case, it
R,=R, in the following. The RG equation reads is known that the FRG to one loop reproduces the purely
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dimensional resulugu,~ o3¢

~4%2(4=D)3 with a rough-

( 1)—1/3( 4772)1/3 23213
A

ness exponenf=(4—D)/3. From this we expect, in the Ugu_q=|In— | Tz
massive case, the small behavior: m 3y ol 14
m2
U~ o L3m—€/3c—D/6.

The values we find forCp, which vanishes a<Cp

It is known [14] that one must fix = €/3 to obtain a reason- ~3.5246&%3 as D—4~ are as followsC3~2.40653, C,
able fixed point. From the above equation, treduced cor- ~ ~1.91006,C,~1.304 16,C,~0.821 57, remarkably close
relator of the forced(x) = _ﬁ{/(x) S, then satisfies to the exact result i =0 [28] Cy=1.054 238 565 19.

It is also useful to compare these results with the Gaussian
6 1 variational method with replica symmetry breaking. Extend-
A (X)= = [XA(X)] — z[A(X)—A(0)]?", ing the calculation of31] to the nonzero mass case, which is
3 2 done in Appendix E, we find the same form as Efl3
with

and flows fort— oo, to a fixed pointA.(x) given in terms of

a functiony(x) [14] implicitly defined ag30]

with y=[5dy\y—1—Iny=0.5482228893. Note that

E e 1 0(2—0) (+= dy y—1
olx]=Cop (1+x)2+4(1+X) 1 ytroRzy+x|’

,
Am(x)zAm(O)y<X\/3A:(o)), (115

. W3, . 2/3 C./Ch= 1—2 2 l/3—104708 (119
A.(0)= dxAg0)| el
24y* -

X2 and 0= (6—¢€)/3 and{=€/3. Since as—0 for fixed x the
E=y(x)—1— Iny(x), second integral is subdominant, the leading ordek iare

\ identical, and the amplitude of the RSB solution compared to

the FRG solution iC,,/Cp ase—0.

JTZdxA(x) is t independent and thus equal to 3. Periodic case

JE2dxAg(X)=—(Sp/c?) [Ry=20(Sp /c?).
Putting this together with Eq$106),(111) yields the re-

In the case of a periodic system with periadone gets a
fixed-point function with=0 which reads

sult
ela’
uquiq:0_2/3m7D72§CD/6FD[Cq2/m2]1 Ax(u)=6 E—u(a—u) . (117
It yields
(14+x)? 2.D/2 —D(47T)D/2
Ugu_q=a°c~"“m c ooz (118
477)PP2 13 SGF[—} 14+ —
S G 2 |1+ 5
Sl2
6F<2)y W £ 21| 2 119
u, 3—63. n E , ( )
with {=€/3. Note that the universal scaling function must
behave at large asFp[x]~x¢~ P2, and is determined here and inD=4,
only to order O ine.
From this, one also finds the local fluctuation 2m? a’c? 1
Uqu_qu 1 o\ 2- (120)
e\ 23 m*In— 1+C_
6F(§) m m2
(Uy)2= e 2313 o2/3m 2603
X D/2 !
(4mm)=%y 114 V. TOWARDS THE TWO-LOOP FRG

The exact EMRG method allows to compute quantities

which is also universal. The fact that this quantity is domi-beyond the lowest order ia. It can be carried either &k
nated by large-scale fluctuations can be seen from the con- 0 for fixed system sizeT(=0 limit) or at finiteT. Solving

vergence of the integrall&0). the exact RG equation dt=0 requires us to follow nonana-
The calculation can also be performed exacthDirr4.  lytic functions. This is a difficult question, e.g., distinguish-
One finds ing the various cumulants in the local part demands a special
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procedure that we have developed. This is discussed imultilocal RG in the operational form presented here directly
[16,15. translates the ideas of Wilson and provides explicit checks of
The resulting two-loop FRG equation &t=0 derived in  universality.
[16] is given in the Appendix F. This equation differs from  |n addition to presenting the method formally to all or-
the one obtained if19] as it contains a new “anomalous” ders, we have derived thexplicit RG equation for the local
term of the form\R”(0")?R"(u). We find that the coeffi- part up to third order. Further expanding in the number of
cient of this term is universal with = 1/2. Interestingly, this loops, we have explicitly given the coefficients up to two
value is consistent with the renormalizability argumentsjoops and third order. Two distinct, although equivalent,
given in[15]. The approach of15] and the present one at methods have been presented, depending on whether one
T=0 yield consistent results and allow us to compute theconsiders the Wick ordered functional or not. Each method
roughness exponeitto orderO(e?) (see Appendix has its advantages: the Wick ordered method yields appar-
The difficulty which was faced priori was (i) possible ently simpler(less nonlocal RG equations, but it is not al-
ambiguities when distinguishing the various cumulants in th@/vays the most adequate.g., for the finiteT one-loop FRG
local part and(ii) a nonuniversah #1/2 value that would analysi3. Although the present paper contains all the mate-
imply that fixed-point solutions would exhibit the property of rijal necessary for two loop applicatiori®r the FRG we
a nonzero value oR’'(0"), referred to as a supercusp since have preferred to defer giving the detailed calculations and
it is a stronger nonanalyticity than the one-loop oneresults to a companion papgt6].
[R”(07)#0]. This feature would be unpleasant as it naively ~We have thus considered here mostly one-loop applica-
yields (by perturbative expansioradditional divergences as tions. The first one was a simple check to recover the one-
T2, a sign of possible fractional dependence ifa related  loop exponents of th©(n) model. The second application
phenomenon is discussed[@6]). In fact, as our study indi- was to the theory that describes elastic systems in random
cates, such ambiguities can be avoidéé| and the FRG potentials. It was previously analyzed through simpler Wil-
equation does not yield to a supercuspe Appendix F son momentum shell integratigd4] but the rather unusual
At finite temperature these possible problems do not aris@ature of the theory{—0 limit, nonanalyticity made it
since the singularity is smoothed within a boundary laér important to verify explicitly that the results are universal.
one loop see Sec. IV)BIn Appendix F, we have used the Also universality in disordered systems is rather less estab-
exact RG flow to third ordefgiven in Sec. lll4 and obtain  Jished than in pure systems, especially in fiie0 limit
the two-loop exact FRG equation for the second cumulanivhere it is known to fail in some cases. Thus, we first de-
R/(u) at T>0. At largel, the effective temperatur§,—0  rived theT=0 one-loop RG equation for the second cumu-
and one recovers an “effective” zero-temperature equationlant functionR(u) in arbitrary cutoff scheme and found that
The analysis of this limit, and its relation to the structure ofits coefficients are universal to this order. This yields the
the boundary layers at high orders, is complex and furtheuniversality toO(e) of the roughness exponeditof pinned
examined in16]. interfaces. In the periodic case, we also explicitly verified
that the correlation function contains a universal amplitude.
VI. CONCLUSION Similarly, we c_omputed the _scalin_g function of the ground-
state deformations of a confined interface in a random field
In this paper, we have introduced a systematic methodand found a universal result. This quantity can be experimen-
the EMRG, which turns the exact, though abstract, RG functally measured in disordered magnets in the presence of a
tional equation of Wilson-Polchinski into a tool for concrete small additional field gradient.
perturbative calculations to any number of loops using arbi- Although temperature is formally irrelevafithe dimen-
trary cutoff functions for a broad class of models. The stratsionless temperature flows to zgiio is well known to be
egy was to explicitly integrate out all nonlocal interactions, “dangerously” so. Our exact FRG at>0 shows that al-
which can be expressed in terms of the local part alone, ordehough the “boundary layer,” i.e., the detailed asymptotic
by order in the local part. In the process, we have preservefbrm of the cumulanR(u) for u~T, is nonuniversal, some
the exactness and the controlled nature of the originabf its features are universal, and in particular, we were able
Wilson-Polchinski equation. Indeed, no approximation waso extract from it the universal divergence of the mesoscopic
made, and the resulting RG equation for the local part, afluctuations of the suceptibilith y. The divergence of this
well as the expressions for the nonlocal ones and for thguantity, which is dominated by rare, almost degenerate,
correlation functions, are formally exact order by order in anlow-energy configurations, is an accepted unambiguous mea-
expansion in the local part. This expansion will be useful forsure of “glassiness” in a disordered system and is measured
theories where the local part is small, i.e., when it is con-in experiments, e.g., in microsize vortex systems.
trolled by a small parametde.g., the shift from the upper Some of the peculiar features of the theory of pinned elas-
critical dimension and when the RG equation admits a per-tic systems have been also discussed. We have found it use-
turbative fixed point in this parameter. We have consideredul to give a detailed diagrammatic proof of the triviality of
here theories with a bare local interaction and a fixed poinhaive perturbation theory, as we have not seen it explicitly in
for the local part, e.g., as in th@(n) model, but the method the literature(though more general statements about dimen-
is more general and can be extended to theories where tigonal reduction appear in a number of other work&/e
bilocal part of the interaction serves as the small parametehave discussed how the nonanalytic nature of the theory
e.g., for self-avoiding manifoldg39]. In a sense, the exact yields nontrivial results.
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Pinning of disordered media thus provided us here withfor any functional A(¢). We will also use the composition
one example of a problem where exact renormalization iproperty
needed to get insight, as no field theoretical description is yet
available. The reason for it is that one must follow in prin- {[A(D1+ d2) ], te,=[A(P) ]G, +c, (A2)
ciple a rather complicated object, the full probability distri-
butions or the disorder, or equivalently the whole series ofwhere in the left-hand sidé.h.s) the average ovet; is
cumulants. The method seems thus promising for other prokperformed using Gaussian correlatid@s.
lems with similar features, such as random sine Gordon Using successively the shiftg;— ¢,—G,:J and ¢,
models[40]. It is interesting to note that while presenting the — ¢,+ G,:J yields the fundamental relation
FRG method, Fisher pointed o(Ref. 12 in[14]) that the
momemtum-shell RG “suffers from pathologies due to the
sharp cutoff,” and that the cusp R(u) “requires a careful
analysis of the full renormalization group.” Through the use
of the exact EMRG method presented here, we provide a
simple way to integrate explicitly and exactly what is left
aside in the traditional RG and check that no damage comes
from neglected operators. We are thus able to control thwhere we denoteds,=Gy—G;. Thus, if V; is coarse-
approximations of former approaches and to perform nevgrained transformed of the interactiof) defined by
calculations. Furthermore, thanks to our general framework CVi(6a) it o)
expressed in terms any cutoff function, the universality of e wo=[e "N g, (A3)
the results is checked.

Let us close by noting that the application of the EMRGthen one has
method via the multilocal solution to the exact RG equation

[eJi¢—V(¢)]GOZ{[eJI(¢1+ b))~ W1+ ¢2)]GZ}Gl
— @~ (112)3:(Go+G2:6; 7:Gp):d

J:(1+Gp:Gr V)i a1+ o)
x{e 271 Fhfem AT b

Ch— . P .
seems promising also to study other disordered problems, or [e7 ¢~ =D (ComCoiC1 7:Co)J
even give a new perspective on simpler pure problems. For .
instance, one could apply it to wetting problems taking into X [e?Co:Cy ¢¢1e—V1<¢1)]Gl_ (A4)

account the nonlinear part, or to the roughening problems to
improve on previous analysis using uncontrolled projections We now use this property of Gaussian integrals as fol-

methodg41]. lows. One defines a family of actiod;(¢) and their asso-
The multilocal expansion allows also interesting exten-ciated generating function&Vs(J)
sions to theories with bilocal bare action, such as polymers,

mutually interacting or with disorder. Finally, it is also worth 1 _

studying more closely the set of exact solutions to the Se(P)=5¢:GC 1o+ V()
Polchinski equation presented in this pagAppendix B.

tS_ome of these extensions will be explored in future publica- W (J)= |n[eJ:¢—VG(qS)]G.
ion.

They are indexed by the matr@@ and we choose them to be
related by the coarse-graining operati@8) whereG plays

APPENDIX A: INVARIANCE PROPERTIES OF THE the role ofG,, namely:
GENERATING FUNCTIONAL AND RENORMALIZATION ) Ve ot
EQUATION e VelW=[e Ve 0T, g, (AS5)

_Inthis appendix, we give a concise derivation of the exachy equivalently in a differential form, th®)s satisfy the
invariance properties of the generating functional of correla«gg equation”

tion functions under coarse graining. These properties pro-

vide the basis for developing exact renormalization proce- S 1 &
dures of the Polchinski type. In the second part, we %e*VG(d)): -5 5659
generalize the framework to include additional field transfor-

mations, such as rescaling. obtained by differentiating Eq(A5) with respect toG. The
coarse-graining EqA6), read along a given pail->G,, is
the Polchinski equation in its “diffusive” forn(14).
It is easy to see from EqA4) that this choice of a family
We use only the two following properties of Gaussian)g implies the property
averages. The notations are the same as in the body of the

e Ve(4) (A6)

1. Invariance under coarse graining

paper. First, transformation under a change of variable Wg(J:G':G™ 1), independent o6, (A7)
— ¢+ ¢ for any field ¢ in the functional integration ovep 5
yields where we have defined the interaction pafg(J)=Wg(J)

— 1 —(1/2)J3:G:J. It allows us to relate correlations within any
[A(¢)]g=e" HWC e "C I A(p+y)]s (A1)  member of the familySg, i.e., under coarse graining.

051102-17



PASCAL CHAUVE AND PIERRE LE DOUSSAL PHYSICAL REVIEW B4 051102

2. Generalization including rescaling and change 1
in the Gaussian part —ETr( M~ 19GM _1:[ - —} ) ,  (A13)

SpSp S S¢
The previous properties can be extended to a larger set of
transformations that include simultanedi)scoarse graining, with K=—-M "19MG ™1+ (1/2)(MdG M —9G~1). which
(ii) linear transformation of the fields, afid ) redefinition of  contains additional terms. Once this equation is solved, the
the Gaussian partsuch as needed to absorb its possiblecorrelations can be related within any of the corresponding
renormalization It is based on the following properties of S, theories using the above invariance propeiy0) of
Gaussian integrals: One defines We vg (D)

8%V S8V SV

We y(3)=In[e? ¢V (]g. (A8)
APPENDIX B: GENERAL PROPERTIES AND EXACT
The first property corresponds to performing an arbitrary lin- SOLUTIONS OF THE POLCHINSKI EQUATION

ear transformation on the field ) ] )
Let us first mention a few general properties of Egs.

W v (D) =Wy-1.6:m-1pm:0)(J:M) (A9)  (9),(14). For the class of cutoff function®) used in practice,
the diffusion tensor in Eq.14) is positivec’(s)=<0 (but not
valid for anyG,V,J,M. The second property is simply the definite positive since there exists modes WiflG=0).
identity obtained when redistributing the Gaussian part  There are some exactly formally conserved quantities, such
1 as [4e7 ¥ and [e(?]g . Since (14) is a diffusion
Wey(J)=— ETrIn(1+H:G) equation, it satisfies aH-theorem of increase of the
“entropy”  S;=[,Vi(¢)e NP which flows as 4,S
=—31,(815¢)e (9):9,G,:(515¢)e M H=0 and is
compatible with the fact that RG trajectories do not have
valid for anyG,V,J,H. limit cycles. Finally, since(14) is a linear equation, if we
First, letVs(¢) satisfy the RG Eq(A6). Then from the  now a set of solution¥|*( ), then any superposition such as
previous section we know thatWG‘VG(J:G’:G‘l)
—(1/2)3:G’:G " 1:G’:J is independent of5 for any J,G’.
SettingG= G, andG’ =G, one gets the Polchinski equation
and one can compud®/(J). One now defines

TWie-14h)-1,v(g) - (112):H: ()

V(g)=—1n> ce ViIP (B1)

is also a solution.
Vom(d)=Vs(M:)+ Ed):(M G LM-G 1) 4. This can now be used to construct nontrivial exact solu-
’ 2 tions to the Polchinski equation. The simplest family of exact
solutions is of course the quadratic potential, for which one

Using the above properties, one has that finds the solutions

-1 _E -l 1 1
WG]VG’M(J.G :GTM) 2J.G G G V|(¢)=E(¢—¢)ZM|Z(¢—¢)—§Tr|nM|, (B2)

1
- ~1.~—-1.pg—1. - -
STrN(L+M 4G 1M 1G) (A10) M= (M54 Go—G)) L, (B3)
is independent 06 andM, for anyG’,J. where ¢ is an l-independent field, with (¢)s=(1
We have used the two invariances choosity +M LG 1) Ly,
=M hG hM '-G™! leading to the intermediate for- A much less trivial family ofexact solutionsof the
mula Polchinski equation is obtained by superposition of Gauss-

ians, i.e., of quadratic potentials. It reads

1
W (J)=— ETrIn(1+M’1:G’1:M’1:G)
Vi(¢)=—In E Caefl/z(qsﬂ//“):Mf‘:(¢7¢“)+(1/2)Tr |n|v||“'
W,y (M:¢)+ (112)¢:(M:6-1:M -G~ 1): (I M). @ (B4)
Defining a new family of functional indexed Hyas
with arbitrary constant coefficients* and eachM/* satisfies
Vi=Vs, ™, (A1l)  Eq.(B3). This is somewhat reminiscent of a decomposition
into “pure states” and is clearly of interest to describe low-
and symmetric matrice§,M one finds that the functionaj, temperature states in pure modéis phases with broken

now satisfies a new RG equation symmetry or in disordered models and glassesth many
Ny metastable statgslt is an interesting question to ask, quite
M-1n1-2Y . generally, whether this family of solutions can in some cases
NV $M M o¢ ¢K:¢ (A12) be anattractive manifold in a larger functional space, or
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whether one can carry perturbation around this subspacgan be recovered by settingV(?(¢1,x1)=U,(1),
These and related issues will be discussed in a future p“b'W)(d)l,d)z,xl,x2)=\7|(¢1,¢2,x1—x2), etc. Since we

catlen [eznlg.ric roperty of these solutions to the Polchinskiwam to impose that ead®”), p>1, has zero local patthis
generic property ; " : is sufficient for our purpoge we define[extending Egs.
equation is to generate cusp singularities separating thé

“pure states.” This can be seen directly above since negativél)-(18)], respectively, the projection operaté, which
curvatures tend to increase in absolute vdkee Eq(B3)]  Projects ap-local interaction on a local one, and the projec-
and is presumably a very general mechanism. It can also géon operatorPll, wh|ch_transforms p-local interaction into
seen on the simple example of the zero-dimensional tofhotherp-local interaction as

model. There, the field is a real number and

. 5 t‘f 5(t X1t ..+ Xp
Z:J dd,e—(qszlzG)—V(aﬁ), (B5) (PiA)(S.1)= Xp. . Xp p

. . . . XA(¢1 e vd)vxli R 1Xp) (CZ)
whereV is an arbitrary function. One can introduG=G

—1, andV,(¢) for this model, verifying
(P1A) (@1, - -1 bpXe, - Xp)

1
V()= E[Vf’(qﬁ)—V(((ﬁ)z], (B6) =0(X1=Xa) . .. 8(Xg—Xp)
N " . Yit ... FYp
with initial condition Vo(®)=V(¢), and one can integrate X S| Xg— ——m—
up tol =G. One hage™ VI(¥)=[e~V(¢T¥)], _ The evolution of YieYp P
Vi(¢) is that the curvaturéV; =V, (0), which would obey XA(P1, - bp, Y1 Yp) (C3)

Eq. (B3) M|=Mgy/(1+Mqyl) for a quadratic hill or well,
diverges at a finitd for maxima and decreases ad 1dr
minima ofV(¢). Thus, the landscapé (¢) develops cusps,
encoding for discontinuities in the forceV'(¢).

In the case of a periodic landscape, the natural superposi-
tion of Gaussian solutions is théillain potential (@)= fxl

— In3,ce @M@ | these sine Gordon-type potential, as
well as in the D XY model, it is a well-known property that
the renormalized potential converges towards the Villain
form at low temperature as found [#2] from the Migdal
Kadanoff RG (see also more recentl4l]). The detailed IJA(d’ bt
behavior of the RG flow can be studied in a more controlled A
way using the method presented of this pajdr.

The property

(P1A) (x,s - - ,qﬁxp,xl, e Xp)
..... Xp

= ft(Equst,t)
b (C9

ensures that one can choose YH&, p>1 in the decompo-

APPENDIX C: MULTILOCAL EXPANSION sition (C1) to have no local part, i.e.,

AND HIGHER-ORDER RG EQUATION

In this appendix we derive the systematic multilocal ex-
pansion and obtain the RG equation to higher orders. We
give a detailed presentation for the functioff,{m(ﬁ), which
is simpler, and give explicitly the corresponding RG equa-for any! by applyingP; and 1-P; act on both sides of the

tion to orderf/,3 and up to two loops. Then we simply sketch Polc.hinski equatiqn. L
the result for the same procedure applied to the functional Since the modified Polchinski E§32) concatenates two

. . . ) .
Vi(¢), which is more involved and will be presentedirg]. ~ CPerators, it is then easy to see that if Wi satisfy the
following set of equations:

P.VP=0 Pv{P=0 (C5)

1. Multilocal expansion for

o o R Xy, .. HX

The tadpole-free functional(¢), defined in Eq.(31), alv(l)(d,,t)zE > D> 5(t— ! P
can be written as a sum of multilocal interactions P=09=1 Jx1,... Xp P

. Xedl""”qu” """ pgl ..... q &G|o7q+1 ..... p

V|(¢):2 f V(p)(¢xlv ----¢x X1 "'!Xp)'

p>0 Jx1,...xp P - XV(Q)(¢><1' o ,¢Xq,x1, o Xg)
x VP~ e Dy Xty e e Xp)| g

Note that we are not even assuming here translational invari- (Px11a Py Xa1 o=
ance. The translationally invariant case discussed in Sec. Il B (C6)
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(p)
XHVP by, . .. DXt - - Xq) V(1) = EJ o x1+x2)
p—1 2 X1Xo 2
_ - 1—P e(91 ..... qG|9q+1 ..... p . 5
2 1)(421 xe” C1” 390G VD (b1, x1)] 4, - ¢
X gt A9G gttt P XVD(h3,%)] 4,= (C13
XV (b, . by Xe, ... X
(65, P @ up to terms of orde®[ V(Y]
Xv(p‘q)(¢xq+l, co by Xgr1s - Xp) forp>1 To next-_orderv(l)s, as explained above, one first com-
putes the bilocal operator as a functionwt). Its flow equa-
(€7 tion to the necessary order reads
then Eq.(32) is obeyed byl (¢). Since we prefer to work &|V|(2)(¢1¢2,x1x2)

with symmetric functions we have defined the symmetriza-
tion operator:

1
= Eeﬁlezal{?GlﬂzV(l)(q&l ;Xl)V(l)(¢2 ,X2)
SB(p)(¢1, e ’d)p’xl! P .Xp)

1 O(X1—X5) 5(x y1+y2)
— 6(X1— Xz 1=
= ol Ez BP[ 1), - - Do) Xo(1)s - - - Xo(1))s 1Yo 2
T OE2p e 2
(C9) xe” G 919G VN (¢1,y1) VI (3,Y>),

we have also defined the following shorthand notati@vith (€14

g =0dgi): up to O[ V] terms. Integrating?,, V{2416, ,X1%,) using
Eq. (C14 from O to| and substituting the result into the
equation fotv(!) one finds the RG equation of the local part

a P
gt AgGgatL - P= aG Bar9l, (C9 ) _
21 B=2q+1 A (€9 of the interaction to ordey)’:

a

and similarlydG—G. W X1+ Xs
It is easy to see that i¥") is considered formally as 91V (¢’t):§fx B L

“small” in some sensde.g., controlled by a small parameter vz

such ase) then one can integrate exactly these equations ><e"lG"’zalaG|(72V(1)(¢l,xl)V(l)(¢2,x2)

order by order inv") and check thav?=0O[V(})P]. More

precisely, to a given order one can exactly integrate the equa- Lz - X1t Xat X3
tions for higher point functions and reduce to a single equa- 2 ) xyxoxs 3
tion for V(1. This is the procedure that we now follow. The
2. . .
structure to the lowest-orde®[ V)] is simply a closed Xe"lzelﬁsalz&G,ﬁ Jld'“ (C15
equation forvV®) of the schematic form 0

VO =P [V VD oV, (C10 y

91G % 91 2y /(1)
(1)3 e w3 (?GM(? VM (¢1,X1)|¢1:¢
To next-orderO[V'*/"], one needs to solve the coupled set

_ 4 XVELl)(¢2,X2)|¢2=¢_ 3(X1=X2)
VD =P [VDx v 4 yDx @]+ o[ vV,

C11 + .
( ) X j 5( X1— % eﬁlG#dz(glaGIuﬁZ
HV@=(1—P[VOxvD)], (C12 w2
The second equation is explicitly integrated, which yields XVE})(¢)1,y1)|¢1:¢VE})(¢2,Yz)|¢2:¢
v@[vD], which is then substituted in the first equation,
producing a closed equation fo¥%). This procedure can be ><V|(1)(¢3,X3)|¢ —4) (C16)
extended to any order ivY). We now give the explicit 8
calculation. up to O[V)4] terms.
. 3
2. RG equation up to order vV 3. Translation invariant theory and loop expansion
To (lowes) orderv(l)z, the beta function is local ih as In a spatially translational invariant theory, the local in-
the modified Polchinski equation itself and reads teraction does not depend explicitly on the space varigble
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FIG. 4. Graphical representation of the expansion of the modi-
fied RG equation in powers of the local part up@V(3]. The
points represent the verticék , the broken solid lines are propa-
gators on shelbG, the full solid lines are propagato® the indices
| or . are indicated at each vertex and at each bond. While the solid
lines are necessarily present, additional dashed lines appear in an
arbitrary number when performing the loop expansion.

V(¢,t)=U,(¢). The above formulas, when expanding
the exponentials in a loop expansion, possess a representa-

PHYSICAL REVIEW E 64 051102

1
°=3 f IGIGY (c23
q
|F:E 8 IG1GR2GH (C24)
" 4)quap TR T
7= quﬁaGﬁaez, (C25

tion in terms of Feynman graphs as indicated in Fig. 4.
Interestingly, all one-particle reducible graphs vanish due

to the property 07,G|q:°=0 [c'(0)=0]. In addition,

since each graph to orded? possesses a counterpart
is the product of two
loop

with a minus sign which
(factorized graphs with independent sets of
integrations, this automatically cancels all suéhctorized
graphs.

The RG equation, at any given order [, can be

further expanded in the number of loops by expanding
the exponentials in EqC15). Let us give the specific result

for the case of a diagonal Gaussian p@ﬂij=5ijG,q, the

generalization being straightforward. To ord]éﬁ‘ and up to
two loops we obtain from Eq(C15 the RG equation for

U\(¢) as:

~ |
a|U.<¢>=IPD|<¢>+IFF|<¢>+fodu[lmww
LA B HILAL(H)], (€17

up to O(U,“) terms, where the contraction graphs are

Di(¢)=0;U1(#)3;0(), (C18
Fi(#)=ijmUi() im0 (), (C19
T1u($)=301() 90, ($)dmi0,(4),  (C20
A($) =3 01($) dinn0 () im0 (), (C2D)
AL(#)=30,($) dimn0 u(#) jmal0i($),  (C22)

and the momenta graphs read

A _ q d1~4d q
I|/,L_ f (5ql+q2+q3_ 5q2+q3)G| 10"G| lGﬂzaGlf,
d19293
(C26)

A _ 1 d1~Y92~ 3 d1
|,M—fq1q2q35ql+q2+q3(2ae, G2GaG

+ aquzGl%qulaGZl). (C27

Note that to two loops the RG flow is generically nonlocal in
I. The values of the above integrals will be computefili@.

4. RG equation for U,(¢)

The systematic expansion in multilocal interactions can
also be performed directly on the functionl¢). The pro-
cedure parallels the previous section and its details are given
in [16]. Here we give only the result for a translationally
invariant theory, for the RG flow of the functiod,(¢) in
the translationally invariant case to ordé}. We define

7’|M(X1.---.Xp,r?¢1,---,r9¢3)=r91 ----- PIGIL - P

P
= X 9GP,
ap=1 )

and similarlydG— G, as well as the operator

’CIM(Xl 1 X2, X3 ,(9¢1,(7¢2,(9¢3)

= 0'%(9G — 9G]~ 0) 9% (12776175126 52,
(C29

It reads
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X1+ Xo

1 1 |
e L I I o e
1X2

X

2

X1+ Xo+ X3

1
><a2UM(¢1)|¢1=¢U#(¢2)|¢2=¢_ZJ 3

X1X2X3
|
de,u
0

~r _ 1 12
X fo dve” V275156 32U (1), - sV 2)] 6, 9V u(B3)] - o (C30

X1t+Xo X1+Xo
2 1 2 ,X3,19¢1,(9¢2,(9¢3

i u(Xq,%2, X3 ,a¢l,a¢2,a¢3) =K

Again, the 1PR diagrams are eliminated by construction 1 ~ 1 — -

since they have one poing on which one can integrate ~ W(J)=5J:G:I=W(G:I)+ E[VF(GIJ)—WZ(G:J)]
freely, producing a?G9=°, which vanishes by construction.

The loop expansion of this formula will be detailed[it6]. +O(V|3), (C39

5. Computation of the correlation functions via RG where {pl( h) = (8/5¢1):Gy :(5/&/)2)]“)'(4)1) f)l(¢2)|¢1:¢2:¢-

The invariance of the generating function&{J) of the  On this expression, it becomes obvious H40) is indeed
(connected! correlation functions with respect tois now  independentorder by ordex, as a consequence of the RG
gs_gd as a tool for computlng. the correlqtlon functions of theequation fori (). As is clear from these formulas, all ex-
initial model S,. The expansion ofV(J) in powers of the  (orn| legs of correlation functions will carry the propagator
running interaction),(¢) reads formally to all orders G while all internal legs will carnG .

1 +oo We must now distinguish between the two methods that
W(‘]):EJ:G:J+ > ks (C31) gonsist of performing the multilocal expansion i(¢),
m=1 Vi(¢), respectively. Before doing so, we give a formula, in

Fourier representation, which is valid in both cases:
where we have defined

J:G:G g n W(J):E\]-G-J_f JKelK-(G:9)*
pa=[€"C V()]s (C32 23 G Y
Y:e—(1/2)J:G:Gf1:G:J (C33 _f eiK-(G:J)XHP-(G:J)y( \"/IKP(X_y)
! xyKP
+o0 +o n 1
—X -K-GY.pP K[ P
> k™= In[ 1+YD (=) unl.  (C34 e =DURY )
m=1 A1 Nl
Up to second order, this expansion reduces to: OK=UKe WaK-6[7° K
1 - - ~ x=0 x=0 X
W(J) = EJ:G:J_e—(llz)J:G:G, l:G:J[eJ:G:Gl 1:¢VI(¢)]G| VFP(X):VIK,P(X)e—(UZ)K.GI K= (V2P0 -P-K-G P
+Ee‘ (1/2)J:G:G(lzezJ[eJ:G;Gfl:¢V(¢)2] the way to compute the functior&| and\7| being however
2 ! G different in each case. Inserting the corresponding formula
1 . . for V, as a function ofJ, yields expressions in terms &f;
— = (e~ WRXGG TG @)GIC T b (h)] 5 )2 only, which we now give in each cagtor variety, we also
2 ! alternate between the—equivalent—field and Fourier repre-
I O(V,S). (C35) sentations

i . Method with}
The interaction functional($) defined by Eq(31) natu- a. Method withVi(¢)

rally appears in the expansion ¥#(J). Using the properties We start with the formalism using the multilocal expan-
(A1) and[ A(¢)]g=eLD9):C:(5154) 4(0), oneobtains: sion of V. One finds
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+0(U®%. (Cc40

1 “ z z
W(J)=§J:G:J—JXU|[(G:J)X] Jze—K'Gv'P+K-<Gl—Gf’>~P

N
2 xyJ1'>0

AeXTY 2 )z
% G, "d _5(X_y)fed1Gl,z92
z

Using the RG equation fdd, , it is easily checked again that
this expression id-independent order by order. From Eg.
(C37, one can compute the self energy of the theory.
One gets to ordet)?:

Sy (618 T2 1)

_0”/(?'/

- _ x=0
. . Eﬂ'foz_fKKinulKe (12)KG K+fKP[KiKJA|KP(q=0)
XU ()] g,=c:9U1(h2)| 4= (10

+K;P;B[P(q=0)], (C4Y)
(C37)
up to O(U®) terms. We denotes, = 48(1—1") and 6, 39-3970= J'KPKin[BFP(Q)—B|Kp(q=0)],
=6(l—1"). From this formula, one can compute all con-
nected correlations t®(U?). Let us give the self energy, where
defined as usual from the two-point functi@+= G+ 6C as
K, P _ _ x=0 x=0
S=C1-G!=-G"1sCcG 1+G lsCcG lsCG ! AFP(q)=ﬁ,>OU|,U|,e (2K, KPR
+0(8C3). (C39 . x
x{a,,fe'qx(emlp—l) (C42)
It reads g
. 0 X
- . . +6,_ ,f gidx— gk (6(~G))-PIK yG* Pe KG|P
370=,0;0,(0)~ f (33} +ato7) (e 7 ~1) ) Jreae,
X (C43
— 31?9 G*9?1U U —0» _ ;
iY% ] |(¢1) |(¢2)|¢i70 BIKP(q):J UK’UP,e*(l/Z)(KGrroK+PGlxyiop)
1">0 el
A—30=0= [ (gX—1)3X% C39 : x
2 2 fx( )2 ( ) % 5I_nye|qX(efKG|P+KG>6P_1)
X
EIXI = — 193'(?]2] [5” ,(ealGlX(yz_&lGx(?Z_ 1) + 6|_|rf [eiqx_ eKh(G?iGP)-P]Kaer/ |:)97I<GIX'P .
1">0 X
1~X .2~ ~
— 0y,9%9G|,3%e” 1"’ ]U|'(¢1)U|'(¢2)|¢i:o- (C44)
L . APPENDIX D: DIMENSIONAL REDUCTION
Note that it involves a term with & propagator. FROM GRAPHS
b. Method withV,(¢) 1. Perturbation theory
Inserting the multilocal expansion ®§, Eq.(C35) trans- In this appendix, we sketch diagrammatically how the
forms into an expansion in powers of the local interactionperturbation expansion iR of the average of any observable
U(¢): Alu] at T=0 is the same as the one that would be obtained
in the Gaussian theory corresponding to a simple random
1 ~ K _ force.
W(J)= EJIG!J—f JKU| et Gx Precisely, the actions
X
1 iK Gy :J+iP-G, :J ‘S‘[u]ziz f ua(E—l)XyUa—iZ fR(ua—ub)
+§ Xy er X y 2T a Xy x Y 2T2 ab X X X
(DY)
x| OFOP(e 6 "P-1) and
—f'dl’OKUPa, e K G P 5(x—y) S, [u]z;E f ud(G*G) Yy (D2)
0 1Y 0 rf _ZR,,(O) “ Xy X y
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mounting

FIG. 6. Vanishing contribution to the average A&xfthe second
graph is obtained by mounting a branch to the first graph. The only
remaining graphs are simple “flowers.”

FIG. 5. Typical graph contributing to the computation of the obtains that each graph is in factor of a non-negative power
average of an observable to third order f=3) in perturbation of T. The existence of th&=0 perturbation theory is thus
theory. Note here that=2p=6, t=1, k=3, e=4, ¢c=3, andl confirmed.
=1 The graphs that remain 8t=0 havet=0, =0, k=c,

which means the following propertie§) their subgraphC
where G*G)*=[,G*"?G? vield the same results when has no loop, each of its connected component is a tige,
computing the average of any function@]u] of the repli- there is no tadpole 0A, (iii) A is linked to each connected
cated field aff=0, e.g.,A[u]=T1,u® (see Fig. 5. component offC by one unique propagator. This result is
i easily extended to a non-Gaussian disorder, which possess
higher cumulants of the general forth7).

The second part of the argument uses the property of
translation invariance i space of the disorder distribution,
on which the first part does not rely. Since each connected

To this aim, one must first show that the perturbation
expansion within Eq(D1) is well defined aff=0. We use a
diagrammatics with propagator

<u§u$)=T5ab§XV, (D3)  component of€ is linked toA, let us callroot the point to
which it is attached. This provides a natural orientation to the
which conserves the replica index, and vertex branchesof the trees from root téeaves If any point of

possess at least a branch going to the direction of the leaves,
the graph obtained by mounting this branch to the compan-
_ i s J R(U3—ub) (D4) ion point (which belongs to the sanf® before splitting has
2129 Jx ¢ the opposite value. One can convince oneself that such
graphs can be grouped by mutually canceling pairs. Thus, the
n only graphs that survive to this mounting operation look like

associated t@ne point in space but involving a summatio )
overtwo replica indices. Thus, we choose to split the vertex/0Wers with Aat the center and petafsmade of two propa-

into two subvertices corresponding to each replica index. 9ators(see Fig. 6. N _ .
For any graph occurring in the computation of The generalization including higher cumulants is straight-

(A[U]RP), let us denote bk the number of lines connect- forward, but yields a non-Gaussian theory. The correspond-

ing A to the verticeginvolving the extraction ok legs from M9 equivalent action for computing observables is
A da . @&A[u]). Let K be the graph obtained by consid-
X1 Xk

1 _

ar~— a
ering only the splitted vertices, the propagators between S”[u]:ﬁz fxyuX(G R
them, forgetting the observable and thénes attached to it.
The graphC hasv =2p subvertices. Contrarily to the initial
graph with unsplitted vertice&; is not necessarily connected
and is made o€ connected components. To each one corre-
sponds a replica index. If one of them is not connected to th
observable, i.e., if it does not inherit from a replica index
contained inA, then the summation over this index is free,
giving a factorn. Hence, each connected component has to
be linked to the observable in order to survive the>0

N
..... SN0 ... 0 (2 u:) |

N=2 NITN X

Bven if this is not obvious on its expressidy[ u] possesses
statistical tilt symmetry as can be checked thanka-te0.

2. Corrections toR

limit, which yieldsk=c. The computation of the effective actidh (1PI) involves
Collecting the factors of in front of the initial graph [, corrections to the various cumulants of the disorder.TAt
A, the k propagators, and possibly tadpoles onA), the =0, the graphs correctingMreplica term Nth cumulant is

power of T is t+e+k—v wheree is the number of propa- made ofN connected components, so that there exists a free
gators in/C. Euler relation inC readsv +1=c+e wherel is  sum overN replica indices. The power df in front of such
the number of loops iC. But sincek=c and|=0t=0, one  a cumulant has to be-N. The graphs correctin® with p
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R’'s are made of two connected components=Q), the with jp=/(k?®+1) 2=T(2—d/2)/(47)(d/2) and the
power of T is e—v wheree is the number of propagators and equation for the breakpoint(see Ref. [27]) is: [rf2
v=2p. Euler relation yielde—v=1—-c=—2 with equality 1 2TB(y,)]32=gjy(S.+m? 2 This yields the solution:
for I=0. Hence, such graphs are made of two trees.

Furthermore, the graphs such that the two points of a [o](u)+m?=Au??=3 (u/uy)?u* <u<u,, (E2
splitted R are connected to the same connected component
and such that one of them is connected to at least two o2 - .
branches vanish. This can be seen by mounting one of these o(u)=0(0)=A g usu, (E3)
two branches on the companion point. Hence, if two points
of a R belong to the same connected component, then eacind [o](u) =2, for u>u,. Here =(6—¢€)/3 is the free
one is connected to a unigue branch. As a corrollary, the tW%nergy fluctuation exponent and=[(e/6T)g23; 51/3]2/9_
points of anR cannot be connected to each other by a branchhis solution allows us to compute the smalbehavior of
(since it would be impossible to connect tiitdo the rest of o correlation(for smallm~q) as
the diagram thanks to the argument above

This considerably reduces the form of the possible correc- (216) _ 2

. : . : du X (u/ug) m
tions toR. These corrections obey in particular UgU_q= —5—— — ,
o) q2+m2 uc(mZ/EC)H/ZUZ q2+2C(U/UC)(2m)

p—
SR=(e—4{)R+LUR' + >, o RP, (D5) 1
p=0 1 AU +a(0) ,
q2+ m2

where the last term symbolically only means that tite
order term contains 4(— 1) derivativegnot that it is a total ~ Which yields the large scale res(it16) given in the text. In
4(p—1) derivativd. We allowed for a field rescaling with D=0 one recovers the result £82]
exponent/. To orderR® the arguments above allow only for

the following corrections — 3 _a/3 23

u =
(477)1/3

(E4)

SR=(e—4{)R+{UR' +K[3R"?*~R'R"(0)]
+A[R/I_ R/I(O)]R//IZ+ C[Rn_ Rr/(o)]ZRiv APPENDIX F: FRG TO TWO LOOPS

_ ) The EMRG method allows to obtain the FRG equation to
with some constants, A, andC, and valid only for an ana- o |oops both at zero and finite temperature.

lytic R(u). In the periodic case{(=0), the fixed point equa-
tion is easily solved since there exists to any ordekia

. . . 1. Method with V
fixed point function of the form W

The exact RG equation to order® given in Appendix C4
R*(u)=a+bu(1l—u)+cfu(l—u)]? (D6) when expanded to two loops yields the following finite-
temperature RG equation f& (u) at largel for the periodic
wherea,b,c can be computed in series ef once the coef- case(the derivation is detailed if16]):
ficients of the fixed point equation are known. This is further 1
examined in Appendix F. BT D = =
xamined in Appendix HR= R TIRI+K | SRUW2-RL(OR, (u)
APPENDIX E: VARIATIONAL CALCULATION i KA[ﬁ”—ﬁ”(O)]ﬁ”Q%— KC[~R”—~R”(0)]Z§””
Here we sketch the derivation of the scaling function for

= T E DiviD” I
the confined interface using the replica variational method, +K%3155(u,u,0)+ TKE{R[R, (u) —R},(0)]
extending the explicit solution of Ref31] to a nonzero Sy =y A E =2
mass. We use all notations of RE81] and Ref.[27]. — R (ORL+TIKLRL™ (F1)

The disorder correlator for the random-field problem stud-

- 2 .
ied here corresponds to the cage 1/2 andg=o for the In this formula, all terms of ordeR” and higher are retarded,

H |
parameters of Ref31]. Applying the variational ansatz for @nd integrald qdu are understood. For i’ terms we have
omitted the retardation integral@hich involve an additional

N=1 .components y|e|('js the flﬂnCtI(fI(lX)—g X, Whlc_h integral ffdv) because near the fixed point they can be re-
describes the correlations, ag-oy/2/7. We have artifi- placed by a single number. The feedback of the three-replica
cially extended the correlator to small scales, so as to obtaifsym is through its partial derivatives. This three-replica term
a well-definedT=0 limit. The large scale results however gayisfies its own RG equation givenl[it6]. The precise val-
are independent of the small scale details in the limit of smal|;e5 of all coefficients are detailed ia6] where the large

m. The variational equation reads limit is also studied, using the fact th@f— 0, property(93)

) a2~ oo and the third cumulant RG equation that admits the fixed-
[rf+2TB(W)]™*=gjp{lol(u)+mTF}~<5  (ED  point value(80).
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On the other hand, one can also directly workTatO.
Then one obtaingl6] the following fixed-point equation for
the general casé=0:

~ S
0=aR=(e-4)R+{uR'+|5(R")*~R'(0)R"

(F2)
+ %_’_EC {("'R///)Z[ﬁ//_ﬁ//(o)]_ﬁ///(0+)2ﬁ/l}
(F3
+KRY[R"-R"(0)]? (F4)
| _ ~ o~ ~
+¢ fd|,|'K|/)[UR’”[RN_R,,(O)] (F5)
0
1. -~ ~
—45(R)*-R(OR’ ] (F6)

we have absorbed iR the exact one-loop coefficieit ob-
tained in Eq.(68). The third line comes from retardation of
the flow expanding to first order i§. This complicated-
looking equation can be simplified drastically. First, it de-

pends on only one nonuniversal coefficigtft. In terms of

the cutoff functionc(s) = [ ,c(a)e™2S (or its expression as a
sum of exponentia)sone has:

1+ e(%— Lé(a)lna

Kcz—fé(a)mawj bf:(a)f:(b)ln(a+b)

K 1
2(277)d/2

3 s b)l b
+§Lbc(a)c( )In(a+b)

= c(s)[1-c(s)]
S————,

0 S

to the desired order ir. The other coefficient is not inde-
pendent since:

[

2
S—fle*Z'J c'(g%/2)c’(g%/2e ")+ O(e)
4.J | q

(F7)

=KC+0(e). (F8)
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Then, one can use the one loop equatian-R2¢)R*”
+ gu R* n_ _{R* ////[R* "n__ R* ”(O)]‘i‘ (R* //r)2}+ 0(63) to
eliminate the term containing the fourth derivative and one
gets after some manipulations absorbing an extra (1

—ZGEC) coefficient inR the universal two loop fixed point
RG equation:

0:(6—4§)R*+§UR*,+ %(R*”)Z_R*”(O)R*”}
(F9

1
+ E[(R* ///)Z{R* "_R* //(0)}_ R* ///(O+)2R~k //]’
(F10
which coincide with the one obtained 5] by a different
method. For short range disorder, study of this fixed-point

equation yieldd15] no supercusp and the roughness expo-
nent=0.208 298 04+ 0.006 8582

2. Method with ¥

The method using the Wick ordered functional can also

be used. Using the RG equation to third orderUnand
two-loops(C17) one finds the equation for the corresponding

two replica part ofU:

~ ~ ~ 1. ~ ~
IR = (e~ 4R+ {UR +K ERi'(U)Z— RI(OR/(u)

+KA R =R"(0)IR"2+ T K[ R/"?, (F11)
with:

_ _ _ D€
K= T2|I Af, (F12

A 4 A A’
K|#:F(||#+I|M), (F13)

6

KFM=—§IF c (F14)

where the integrals have been defined in Sec. Il 3. Calcula-
tion shows that the constakt=1/2 (to lowest order ine)
independent of the cutoff functioa(s). The coefficient of
this term is in agreement witfl9,15. The analysis of the
boundary layer is more intricate in this formulatipto].
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