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Exact multilocal renormalization group and applications to disordered problems
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We develop a method, the exact multilocal renormalization group~EMRG! which applies to a broad set of
theories. It is based on the systematic multilocal expansion of the Polchinski-Wilson exact renormalization
group~ERG! equation together with a scheme to compute correlation functions. Integrating out explicitly the
nonlocal interactions, we reduce the ERG equation obeyed by the full interaction functional to a flow equation
for a function, its local part. This is done perturbatively around fixed points, but exactly to any given order in
the local part. It is thus controlled, at variance with projection methods, e.g., derivative expansions or local
potential approximations. Our EMRG method is well-suited to problems such as the pinning of disordered
elastic systems, previously described via functional renormalization group~FRG! approach based on a hard
cutoff scheme. Since it involves arbitrary cutoff functions, we explicitly verify universality toO(e542D),
both of theT50 FRG equation and of correlations. Extension to finite temperatureT yields the finite size~L!
susceptibility fluctuations characterizing mesoscopic behavior(Dx)2;Lu/T, whereu is the energy exponent.
Finally, we obtain the universal scaling function toO(e1/3) which describes the ground state of a domain wall
in a random field confined by a field gradient, compare with exact results and variational method. Explicit two
loop exact RG equations are derived and the application to the FRG problem is sketched.

DOI: 10.1103/PhysRevE.64.051102 PACS number~s!: 05.10.Cc, 11.10.Gh, 46.65.1g, 75.10.Nr
en
th

ed
o
r
c-
tt

n
o

ow

er
be
ri
ld

s
d

pr

e
T

tiv

s

d
io

ore
ept,
w
sed
nce,
h as
y
ti-
a-

G
s

-
n.
in
atter
ns,
is
an

um

ant
ll

to
ni-
er-

ull
d,
,

I. INTRODUCTION

The idea of writing an exact equation for the scale dep
dence of the full action functional already appears in
review of Wilson and Kogut@1#. Since it is an equation for a
full functional of the fields, its detailed analysis is hinder
by technical complications. The much simpler Wilson m
mentum shell@1# integration method is commonly used fo
one-loop calculations. Since it does not follow the full fun
tional, subsequent efforts were made to embed it into a be
controlled sharp cutoff exact renormalization group~RG!
@2,3#. For practical perturbative calculations beyond o
loop, field theoretical renormalization methods are more
ten used since they have proved vastly more efficient. H
ever, the exact RG equations offer the hope to developab
initio calculation relying on no assumption, possibly nonp
turbative, from any bare model. In principle, it should
useful to obtain precise results when applied to bare theo
for which we have little insight on possible underlying fie
theoretical description.

In the work of Polchinski@4#, the exact RG equation wa
put on a more precise and aesthetic framework, and use
prove the renormalizability of thef4 theory in four dimen-
sions. The exact renormalization group equations indeed
vide formal results or general proofs about symmetries@5#.
For practical calculations however, one needs to truncat
some way these highly complicated functional equations.
do so, different procedures have been proposed@6,7#, and
have been mainly applied to the study of nonperturba
problems@8#. For example the exponents of theO(n) model
in three dimensions were estimated@9# using a choice of
truncation. One commonly used projection method is the
called local potential approximation@10#, obtained by a con-
stant background field method neglecting the momentum
pendence. Further extensions include additional project
1063-651X/2001/64~5!/051102~27!/$20.00 64 0511
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on higher gradients of the field@11#. Although very interest-
ing, these projection methods are often uncontrolled. M
accurate results are expected if more couplings are k
which is possible with heavy numerical integrations of flo
equations. In this respect, exact RG as a tool is now u
both in particle and condensed-matter physics. For insta
outstanding problems in strongly correlated electrons suc
the Hubbard model inD52, have been recently studied b
numerically integrating the flow of a large number of ver
ces @12#, using a fermionic version of the Polchinski equ
tion @4#.

By contrast, comparatively few works use exact R
method to developperturbativecalculations. One example i
the computation of the beta function off4 in 42e dimen-
sions to one loop@13#, where universality is made particu
larly explicit through the use of an arbitrary cutoff functio
Although obviously more powerful methods are available
that case, there are some problems in condensed-m
physics that appear within reach of perturbative calculatio
but for which no coherent field theoretical formulation
available at present. This is the case for the pinning of
elastic system in a random potential, for which a moment
shell RG method has been developed@14#. In this problem,
an infinite number of coupling constants becomes relev
for D,Dc54, and one must write a RG equation for a fu
function R(u) ~the second cumulant of the disorder!, hence
the name ‘‘functional’’ renormalization group~FRG!. As
such, it differs from standard field theoretical RG. Thus,
better understand this problem, i.e., to show explicitly u
versality to one loop and beyond, there is a need for a p
turbatively controlled exact RG method, able to admit a f
function, the local partR(u) as a small parameter. Indee
the field theoretical formulation is frought with difficulties
in particular because the functionR(u) develops nonanalytic
©2001 The American Physical Society02-1



a

th
e
ul

sk
on

th
G

le
o

le
s
x
r
of
y

we
r
he
er
ob
e
n

op
ps

re
ilo
bi

en
o
ro

t
io

ll a
on
e
lyt
e

ry

e-
d-
ng
a
w

-
el
an

in-
the

t

he

r-
en-
o-
nce
ble
ce

nd

to
ob-

in
ed
to
e
ec.

e-
in
ec.
e
e

m-
me

onic

di-

g

-

PASCAL CHAUVE AND PIERRE LE DOUSSAL PHYSICAL REVIEW E64 051102
behavior at finite scale. These issues are discussed in
lated work@15#.

In this paper, we develop a novel method to solve
Polchinski exact renormalization group equation and us
for explicit calculations. We call this method the exact m
tilocal renormalization group~EMRG!. Writing the action as
a sum of multilocal interactions, we note that the Polchin
equation naturally reduces to a hierarchy of equati
obeyed by simple functions. This hierarchy can be solved
an expansion in powers of the local part. Indeed, we find
exact integration of the multilocal parts yields a single R
equation for the local part. The method is thus control
around fixed points where the local part is proportional t
well-defined small parameter~e.g., e542D). The EMRG
does not require any arbitrary projection procedure or neg
of operators, as is usually done in derivative expansion
local potential approximations. In addition, we obtain e
plicit formulas for any correlation functions that allow fo
practical calculations. Since this is done for arbitrary cut
functions, it allows an explicit check of universality order b
order in the expansion.

The aim of this paper is twofold. On the one hand,
present the general EMRG method to all orders, valid fo
large class of theories. We derive the explicit form of t
exact RG equation for the local interaction up to third ord
On the other hand, we apply this method to several pr
lems, first as a check, to theO(n) model, and second to th
FRG for disordered elastic systems. Explicit calculations a
applications in this paper are restricted mainly to one lo
Although briefly mentioned here, applications to two loo
will be detailed in a companion paper@16#.

Two variants of the method are presented. The most di
one consists in a straight expansion of the action in mult
cal terms. The second one consists instead of first absor
tadpoles into the interaction~so-called Wick ordering!, then
expanding. Being inequivalent, they provide independ
checks of the universal results. The first method yields m
complicated equations but can be better suited to some p
lems, such as theT.0 FRG.

As mentioned above, the method is indeed well suited
the FRG for disordered elastic systems of internal dimens
D since there the full local part is controlled bye542D. It
allows us to show that the one-loop FRG equation, as we
correlation functions, are independent of the cutoff functi
In addition, we obtain higher cumulants of the renormaliz
disorder, which as the second cumulant, are nonana
functions. This is necessary to escape the so-called dim
sional reduction@18#, i.e., the property of the present theo
by that all perturbative calculations atT50 are identical to
the same calculation in a trivial Gaussian theory@17# ~see
Appendix D!. This nonanalytic behavior is rounded at finit
temperatureT and we obtain the scaling form of the roun
ing region. This allows us to compute, for the first time usi
the FRG method, the susceptibility fluctuations that char
terize the glassy behavior of finite-size systems. Finally,
obtain the universalO(e1/3) correlation function that de
scribes the ground state of a domain wall in a random fi
confined by a field gradient, compare with exact results
variational method.
05110
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The method presented in this paper also allows us to
vestigate the theory of disordered elastic systems beyond
lowest order ine ~one loop!. A recent two-loop calculation
was presented in@19#. However, since it was performed a
T50, and for analyticR(u), it fails beyond a finite length
~Larkin length! and cannot describe universal properties. T
application of exact FRG to next order is described in@16#.
We sketch here, however, some preliminary results.

The paper is organized as follows. In Sec. II A, we fo
mulate in a concise though pedagogical way the conv
tional exact RG method. Appendix A and Appendix B pr
vide complements, respectively, about general invaria
properties of the correlations and about examples of solva
cases of the Polchinski equation. In Sec. II B, we introdu
the multilocal expansion in the local partU, up to bilocal
terms. The ensuing EMRG equations to orderU2 are derived
in Sec. II C. The multilocal expansion to arbitrary order a
the RG equation to orderU3 are derived in Appendix C. The
multilocal expansion of the Wick ordered functional up
second order, and the resulting one-loop RG equation is
tained in Sec. III A. The general multilocal expansion~Ap-
pendix C1! and the resulting form to third order is derived
Appendix C2. The explicit two-loop RG equation is obtain
in Sec. III 3 . As a check of the EMRG method application
the O(n) model to one loop is presented in Sec. III B. W
then turn to applications to disordered elastic systems in S
IV ~one loop! and Sec. V~two loops!. First we recall and
generalize in Appendix D the dimensional reduction ph
nomenon. Then theT50 FRG equations are established
Sec. IV A and finite-temperature extension are given in S
IV B. Finally, the calculations of the scaling function in th
random field Ising model is performed in Sec. IV C. W
sketch in Appendix E the variational calculation to be co
pared with the FRG results of Sec. IV C and sketch so
preliminary steps of a two-loop FRG in Appendix F.

II. METHOD

A. Exact RG procedure

Consider a system whose state is described by a bos
field fx

i 5f i(x), wherex denotes position in space, andi is a
general label denoting, e.g., fields indices, spin, replica in
ces, additional coordinate~e.g., time!, etc., ~or more gener-
ally, any quantity that will not undergo the coarse grainin!.
The system, in the presence of externalsources Ji

x , is de-
scribed by the partition function:

Z~J!5E
f
eJ:f2S(f) ~1!

obtained by the integration over the fieldf, where theaction
S(f) is a functional of the fieldf, andJ:f denotes here and
in the following the full scalar product~e.g.,*x( iJi

xfx
i , with

*x[*dDx). In a problem of equilibrium statistical mechan
ics, S(f)5H(f)/T, whereH(f) is the Hamiltonian andT
the thermodynamic temperature, the free energy beingF5
2T ln Z(0). Averages of anyobservableA(f) ~i.e., func-
tional of f) are defined by
2-2
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^A~f!&S5

E
f
A~f!e2S(f)

E
f
e2S(f)

. ~2!

The usual way to compute correlation functions and av
ages is to perform a perturbation expansion, writing the
tion as a sum of a quadratic part and a nonlinear partV(f)

S~f!5
1

2
f:G21:f1V~f!, ~3!

whereV(f) a functional off, andGi j
xy5Gji

yx is a symmetric
invertible matrix, f:G21:f5( i j *xyfx

i (G21) i j
xyfy

j . In the
following, we denote the Gaussian average of any observ
by @A(f)#G5^A(f)&SG

with respect to the quadratic theor

SG5(1/2)f:G21:f. We introduce the generating functio
of all correlation functions

W~J!5 ln@eJ:f2V(f)#G . ~4!

Note that it differs from the usual definition by
J-independent quantity lnZ(J)5W(J)1(1/2)Tr lnG. The
ultra-violet cutoff, present in physical models, is necessar
yield finite results in the perturbative calculation with resp
to V. A broad class of soft cutoffs can be implemented on
Gaussian part, giving a vanishing weight to fast fields. F
example, a scalar massive theory, rotationally invariant
regularized in the UV by the following general cutoff fun
tion

G~q!5

cS q2

2L2D
q21m2

, ~5!

wherec(0)51 andc(s) decreases rapidly to zero fors.1
as in Fig. 1.

The exact RG method@1,4# consists in varying the cutof
L and writing an equation for the functionV(f) so as to
conserve exactly the averages of all observables involv
only ‘‘slow’’ modes of the field. More precisely, the averag
of an observableA(f) depending only on modesq,L8 of
the fieldf can be computed within any of the theories link
by the equation presented by Polchinski corresponding
cutoff L.L8. As in any RG procedure, the strategy will b
to compute averages of slow observables using the coa
grained theory of cutoffL8!L0.

FIG. 1. Cutoff function.
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To this aim, a set of actionsSl

Sl~f!5
1

2
f:Gl

21 :f1Vl~f! ~6!

is introduced, where the Gaussian part is an arbitrary fu
tion Gl of l ~e.g., corresponding to a cutoffL l5L0e2 l). The
initial propagator, corresponding to a cutoffL0, is denoted
Gl 50[G and the bare interactionVl 50[V. The correlation
functions in Sl derive from Wl(J)5 ln@eJ:f2Vl (f)#Gl

5 ln Zl(J)2(1/2)Tr lnGl .
For any givenL8, one defines a (L8–!slow observable to

be a functional off depending only on thefq5f(q) with
q,L85L0e2 l 8. We want to choose thel-dependent nonlin-
ear partVl(f) so that the averages of slow observables
main unchanged. Through differentiation, it is equivalent
ensure that

] lWl~J! independent ofJ ~7!

for any sourceJ with Jq50 for q.L8. Using the general
identity

] l@Al~f!#Gl
5

1

2
TrS ] lGl :F d2

df df
Al~f!G

Gl

D 1@] lAl~f!#Gl
,

~8!

valid for Gaussian averages of anyl-dependent observabl
Al(f) and applying it toAl(f)5eJ:f2Vl (f), one finds

] l@eJ:f2Vl (f)#Gl

5H F1

2 S J2
d

df
Vl~f! D :] lGl :S J2

d

df
Vl~f! D

2] lVl~f!2
1

2
Tr ] lGl :

d2

df df
V~f!GeJ:f2Vl (f)J

Gl

,

where here and in Eq.~8!, Tr A:B[( i j *xyAi j
xyBji

yx . Hence, if
Vl(f) satisfies the Polchinski functional equation

] lVl~f!52
1

2
TrS ] lGl :

d2

df df
Vl~f! D

1
1

2

d

df
Vl~f!:] lGl :

d

df
Vl~f!, ~9!

then the above conservation condition~7! is satisfied. We
have used explicitly the condition

J:] lGl50, ~10!

which imposes that the cutoff function verifies] lGl
q50 for

q,L8 and l . l 8. Hence, for the example~5!, one has to
choose@20# cutoff functionsc(s) such thatc(s)51 for 0
<s<s0 with some~arbitrary! s0.

The above framework is in fact too restrictive. We c
easily lift the restriction on slow modes@and on the form of
the cutoff functionc(s)]. The applications of the Polchinsk
2-3
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PASCAL CHAUVE AND PIERRE LE DOUSSAL PHYSICAL REVIEW E64 051102
equation can be generalized to the computation ofany ob-
servable~not restricted to be ‘‘slow’’!. As shown in Appen-
dix A 1, one can indeed expressW(J) in terms of any of the
l-dependent actionsSl(f):

W~J!5
1

2
J:~G2G:Gl

21 :G!:J1Wl~J:G:Gl
21! . ~11!

In fact we show in Appendix A 2 an even more gene
method that allows for arbitrary field rescalings.

Differentiating W(J) once yields ^f&S5G:Gl
21^f&Sl

,
and once again yields the two-point connected correla
function

^ff&S
c5G1G:Gl

21 :~^ff&Sl

c 2Gl !:Gl
21 :G ~12!

and so on for higher correlations. When performing a per
bative calculation, the factorsG:Gl

21 restore the original
propagator for the external lines, whereas internal lines of
graph involve Gl . Accordingly, with this procedure the
functionc(s) can be arbitrary@it is however convenient—se
below—to usec8(0)50].

Note that ifG:J5Gl :J, one recovers Eq.~7!, i.e., W(J)
5Wl(J) for these slowJ’s as a special case of Eq.~5!. In
that case, forq,L8, Eq. ~12! reduces tô ff&S

c5^ff&Sl

c as

it should.
To compute correlation functions, it is useful to expre

W(J) in a perturbation expansion in powers ofVl(f), which
reads to lowest order

W~J!5
1

2
J:G:J2e2 (1/2) J:G:Gl

21 :G:J@eJ:G:Gl
21 :fVl~f!#Gl

1O~Vl !. ~13!

The Polchinski Eq.~9! can equivalently be written as
functional ‘‘diffusion’’ equation

] le
2Vl (f)52

1

2
Tr ] lGl :

d2

df df
e2Vl (f), ~14!

or in its integrated form

e2Vl (f)5@e2V0(f1f8)#G2Gl
, ~15!

where the average is overf8, which makes explicit the defi
nition of Vl(f) as a coarse-grained interaction, i.e., in
grated over the ‘‘fast part’’f8 of the field. In fact, the de-
composition into slow and fast modes and the definition
coarse-grained observables relies on the property@A(f)#G
5$@A(f1f8)#G2Gl

%Gl
of Gaussian averages~see Appendix

A 1!.
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Although, in general, the Polchinski equation is far t
complicated to be solved, in some simple cases, one can
exact solutions, e.g., Gaussian models, zero dimensiona
model. Most interestingly, there exist a large class of ex
solutions that appear as superpositions of Gaussians. I
these cases, one can explicitly verify an interesting prope
of the Polchinski equation to generate cusp singularit
This is further discussed in Appendix B and in a forthcomi
publication@21#.

B. Multilocal expansion

The Polchinski equation, in addition to being elegant,
conceptually more satisfactory than other RG methods, e
Wilson’s shell renormalization, because it is exact and be
controlled since, being valid for arbitrary cutoff procedure
it does not suffer from the problems associated with
sharp cutoff@3#. However, this functional equation generat
nonlocal operators, which until now, has limited its practic
applications. This generation can be seen in terms of Fe
man diagrams and compared to Wilson’s shell renormal
tion, sinceG2Gl , which contains a range of wave vecto
centered aroundL0e2 l , plays the role of the on-shell propa
gator. The termV 9 with a second derivative in Eq.~9! rep-
resents tadpoles, while the termV8V8 represents diagram
with only one contraction~one particle reducible!. These last
terms are nonlocal operators. For instance, inf4 theory, it
generates the operatorf(x)3]Gx2yf(y)3, which is bilocal
since it corresponds to a graph where external momenta m
be greater thanL l . The way Polchinski’s equation repro
duces the loop diagrams~i.e., local terms! is that after inte-
gration over a slicedl, a bilocal interaction generated by th
second term of Eq.~9! is fed into tadpole diagrams. A fas
momentum goes around the corresponding loop, and s
external momenta are allowed. Thus, one needs to integ
the flow and study the feedback of the generated nonlo
operators into local ones.

We now present a method which allows us to perform t
program in a controlled way. The following expansion in t
number of points~local, bilocal, etc.!:

V~f!5E
x
U~fx!1E

xy
V~fx ,fy ,x2y!1••• ~16!

is valid a priori for any translationally invariant functiona
V(f) interactions. We discuss here only the first two term
the general systematics being given in Appendix C. He
U(f) is a function of the vectorf i and involves the value o
the field at one point in space. The bilocal part is a funct
V(f,c,z) of two vectorsf,c and a space coordinate diffe
encez. In order that the expansion be well defined, one ne
the bilocal interactions to haveno projection on the local
ones. A natural way to define such a projection, inspi
from the conventional short-distance expansion, is the ex
equality
2-4
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E
xy

F~fx ,fy ,x2y!

5E
xy

F~fx ,fx ,y!1E
xy

@F~fx1y/2 ,fx2y/2 ,y!

2F~fx ,fx ,y!#

5E
x
~P1F !~fx!1E

xy
@~12P1!F#~fx ,fy ,x2y!,

where we have introduced the projections

~P1F !~f!5E
y
F~f,f,y!, ~17!

~P1F !~f,c,z!5d~z!E
y
F~f,c,y! ~18!

on the subspaces of local and bilocal interactions resp
tively. Indeed, @P1(12P1)F#(f)5*x@(12P1)F#(f,f,x)
50, i.e., (12P1)F has zero local part and is thus proper
bilocal. Interestingly, this definition implies that the functio
V(f,c,z) appearing in the proper bilocal operator of E
~16! also satisfy the stronger property*zV(f,c,z)50 for
any f,c. Note that with no loss of generality,V(f,c,z)
5V(c,f,2z). Here, in addition, we will consider parity in
variant theories@V(f,c,z)5V(f,c,2z) too#.

For theories where the initial interactionU is local and is
formally treated as a ‘‘small’’ quantityU ~e.g., thef4 theory
in D542e whereU;e), it is natural to consider that th
bilocal term will be of higher orderO(U2). In fact, this
property results from the Polchinski equation since the te
that creates bilocal interactions from local ones isO(U2)
~the first partV9 does not increase the degree of nonloca
of V). This property that solutions of the Polchinski equati
can be organized in powers ofU depending on their locality
holds to arbitrary orders@p-local operators areO(Up)] as is
discussed below and shown in Appendix C. Thus, to low
nontrivial orderO(U2), the flow equations involve local an
bilocal parts. Their schematic structure is

]U5U91P1~V91U8U8!1O~UV!1O~V2!, ~19!

]V5~12P1!~V91U8U8!1O~UV!1O~V2!, ~20!
05110
c-
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where we have written the subdominant terms that will
neglected in the following.

A simplification occurs if we choose, as done in this se
tion, (] lGl) i j (q50)50. Indeed, the termP1U8U8 vanishes
since

E
x
~] lGl

x! i j ] iU~f!] jU~f!50. ~21!

Let us write now Eqs.~19! and ~20! in an explicit form:

] lUl~f!52
1

2
]Gi j

x50] i] jUl~f!

2E
x
]Gi j

x ] i
1] j

2Vl~f,f,x!] lVl~f,c,x!

5
1

2
]Gi j

x ] iUl~f!] jUl~c!

2
1

2
]Gi j

x50~] i
1] j

11] i
2] j

2!Vl~f,c,x!

2] i
1] j

2S ]Gi j
x Vl~f,c,x!

2d~x!E
y
]Gi j

y Vl~f,c,y! D ,

where ]G stands for] lGl and ] i
1A(f,c) @] i

2A(f,c)# for
]/]f iA(f,c) @]/]c iA(f,c)#.

C. Solution to the lowest-order RG equations

To solve Eqs.~19! and~20!, one switches to Fourier spac
~in the field!:

UK5E df e2 iK .fU~f! ~22!

VKPx5E df dc e2 iK .f2 iP.cV~f,c,x!, ~23!

whereK•f[( iKif
i . It turns out that the equation forVl

can be integrated explicitly as a retarded function ofUl :
Vl
KPx5

1

2 S Fl
KPx2d~x!E

y
Fl

KPyD , ~24!

Fl
KPx52E

0

l

dl8~K•]Gl 8
x
•P!Ul 8

K Ul 8
P e(1/2)K•(Gl

x50
2G

l 8
x50

)•K1(1/2)P•(Gl
x50

2G
l 8
x50

)•P1K•(Gl
x
2G

l 8
x

)•P, ~25!

since we have chosenVl 50
KPx50. One can then reinject this result in Eq.~19! and obtain a closed RG equation forUl(f):
2-5
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] lUl~f!52
1

2
]Gi j

x50] i] jUl~f!2
1

2EKP
ei (K1P).f

3E
x
K•~]Gl

x2]Gl
x50!•PE

0

l

dl8K•]Gl 8
x
•Pe(1/2)K•(Gl

x50
2G

l 8
x50

)•K1(1/2)P•(Gl
x50

2G
l 8
x50
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x
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P .
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This is theexact renormalization equation for an arbitrar
local interactionU(f) to O(U2). Note that the second-orde
term is retarded inl, since as discussed above, local terms
generated only after integration.

More generally, this procedure can be carried out to a
order inU using the hierarchical structure of the flow equ
tions for p-local interactions~see Appendix C!. It is found
that the general structure for the flow of the local part is

] lUl~f!5b@Ul 8, l~f8!#~f!

5 (
n>1

E
l 1, l 2,•••, l n, l

K l ,l 1 . . . l n21

n F ]

]f1
, . . . ,

]

]fn
G

3Ul 1
~f1!•••Ul n

~fn!ufp5f , ~27!

and in~26! we achieved the calculation of theb function to
second order inU. Once the solution of Eq.~27! is known up
to O(Up), all thep8-local flowing interactions forp8<p are
also known by injecting the solution forUl . For example,
for p52, the bilocal part is obtained from Eqs.~24! and~25!
injecting the solution to Eq.~26!.

To a given order inU one can also perform a loop expa
sion by expanding the exponentials of propagators that
pear in Eq.~26! @see Appendix C4 for theO(U3) equation#.
To orderU2 and one loop it reads

] lUl~f!5Jl
0] i i Ul~f!1E

0

l

dl8Jll 8
D ] i j Ul 8~f!] i j Ul 8~f! ,

~28!

Jl
052

1

2Eq
]Gl

q ,

Jll 8
D

52
1

2Eq
]Gl

q]Gl 8
q ,

where here and in the following] i j 5]f i]f j .
In order to compute the correlation functions for sm

wave-vectorsq, the strategy of the RG consists in perform
ing a perturbative calculation in the theory renormalized
to l 85 ln(L0 /q). In the favorable cases, the interactionVl
flows, from a small initial-initial interactionV0, to ‘‘fixed
points’’ in functional space~up to appropriate rescalings!
controlled by a small parameter~such as the offset from th
critical dimension!. Once the asymptotic largel behavior of
Ul(f) is known, one uses the invariance property ofW(J)
@see Eq.~11! and Appendix C5 where this is done in deta#
05110
e

y
-

p-

l

p

to compute the observables. To lowest order inU, it is suf-
ficient to keep only the local part in Eq.~13! which yields to
O(Ul)

W~J!5
1

2
J:G:J2E

x
E

K
Ul

Ke2(1/2)K•Gx50
•KeiK •(G:J)x

.

Thus, one has for the two-point function̂fq
i fq8

j &S
c5d(q

1q8)Ci j
q with

Ci j
q 5Gi j

q 1E
K
~K•Gq! i~K•Gq! j Û l

K,

Û l
K5Ul

Ke2(1/2)K•Gl
x50

•K,

and more generally then-point function (nÞ2):

^fq1

j 1 . . . fqn

j n &S
c52d( i qiS)i

Gj iki

qi ]ki D Û l~0!, ~29!

with dq[(2p)Dd(q). To compute, e.g., the two-point corre
lation function at wave-vectorq, one carries perturbation
theory inUl 8 at a large scalel 8 and it is convenient to choos
l 85 ln L/q. To first order inUl 8(f), one has

Ci j
q 5Gi j

q 1E
K
~K•Gq! i~K•Gq! jUl 85 ln L/q

K

3e2(1/2)K•G
l 85 ln L/q
x50

•K. ~30!

Of course, sinceW(J) is by construction independent ofl the
result should not depend on the choice ofl 8. Using the RG
flow equation, it can be checked order by order in pertur
tion in powers ofUl that this is the case.

In the above computation of the two-point function, th
natural vertex that appear is notUl(f) but Û(f)
5*KeiK •fÛ l

K ; it is thus interesting to study directly its flow
equation.

III. REMOVING OF TADPOLES
AND APPLICATION TO f4

A. Modified Polchinski equation

It is useful for some applications, and in particular
simplify higher-order calculations, to get rid of the line
term in the Polchinski equation. This can be achieved exa
by introducing the following functional:
2-6
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V̂l~f!5e(1/2)(d/df):Gl :(d/df)Vl~f!. ~31!

Inserted in Eq.~9! one finds that it satisfies

] l V̂l~f!5
1

2
e(d/df1):Gl :(d/df2)

d

df1
:]Gl :

d

df2

3V̂l~f1!uf15fV̂l~f2!uf25f . ~32!

The graphical representation of this equation is drawn in F
2. Since this equation does not contain a linear term,
solution does not contain tadpolelike diagrams. This fu
tional has thus several advantages: first it enters directly
computation of any observable, second its flow is simp
than the one of the bare vertices. Finally, in the context
quantum field theory it has the direct meaning of being
normally ordered vertices.

We now perform a multilocal expansion, similar to th
one introduced in the previous section, but on the functio
V̂l(f) as:

V̂l~f!5E
x
Û l~fx!1E

xy
V̂l~fx ,fy ,x2y!1••• . ~33!

The modified Polchinski Eq.~32! can be solved order by
order inÛ l(f). The general analysis is performed in Appe
dix C1. Here, we give only the result to orderÛ2, which
reads

] l Û l~f!5
1

2Ex
e]1Gl

x]2
]1]Gl

x]2Û l~f1!uf15fÛ l~f2!uf25f ,

~34!

where ]15]f1
. An interesting property of this equation

that it is now local inl.
Expansion in the number of loopsk, restricted to order

Û l
2 , is thus straightforward:

] l Û l~f!5
1

2 (
k51

1`
1

k!
I l

k] i 1 , . . . ,i k11
Û l~f!] i 1 , . . . ,i k11

Û l~f!,

~35!

I l
k5E

x
~Gl

x!k]Gl
x5

1

k11
] lE

x
~Gl

x!k11. ~36!

Note that the multilocal expansion forV̂ and V are not
identical, i.e., they do not produce order-by-order equati
that can be transformed back into each other. However,
should yield the same result at the end when calcula

FIG. 2. Graphical representation of the modified Polchin
equation. The point represents any vertex, the broken line
propagator on shell]Gl and the full line is aGl .
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universal fixed point quantities. This property will be test
and used in the rest of the paper.

We also give the expression of the bilocal term, as o
must check that it effectively reaches a fixed point for co
sistency. It reads as a function of the local term:

V̂l~f1 ,f2 ,q!5
1

2Ex
~eiqx21!E

0

l

dl8e]1G
l 8
x

]2
]1]Gl 8

x ]2

3Û l 8~f1!Û l 8~f2!.

B. Modified RG equation to one loop and application
to O„n… model

Expanding the exponential of the propagator in Eq.~34!
yields a loop expansion of the beta function to orderU2. To
one loop this gives

] l Û l~f!5I l
D] i j Û l~f!] i j Û l~f!, ~37!

I l
D5

1

2Eq
]Gl

qGl
q . ~38!

As a check of our EMRG method, let us apply it to th
O(n) model inD542e with the polynomial interaction:

Ul~f!5
1

2
g2,lf

21
1

4!
g4,l~f2!21

1

6!
g6,l~f2!31•••,

~39!

the dimensionless variables beingg̃n,l5gn,lL l
2D1n(D22)/2 .

The RG can be performed either usingUl(f) as in the pre-
vious section, or in terms ofÛ l(f). Let us follow the second
method for completeness. One has

Û l~f!5e(1/2)Gl
x50¹2

Ul~f!5
1

2
a2,lf

21
1

4!
a4,l~f2!2

1
1

6!
a6,l~f2!31•••, ~40!

and, similarly@22# ãn,l5an,lL l
2D1n(D22)/2 , thus

ã2,l5a2,lL l
22 , ~41!

ã4,l5a4,lL l
2e , ~42!

ã6,l5a6,lL l
222e . ~43!

From ] i j Û l(f)5a2,ld i j 1(a4,l /3!)(d i j f
212f if j )

1(a6,l /5!)@d i j (f
2)214f if jf

2#1 . . . , oneobtains the RG
equations:

]ã2,l52ã2,l1I D
2

3
~n12!ã4,l ã2,l1O~ ã4,l

2 !, ~44!

]ã4,l5eã4,l1I D
2

3
~n18!ã4,l

2 1O~ ã4,l
3 !, ~45!

i
a
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]ã6,l5~2212e!ã6,l1O~ ã4,l
3 !, ~46!

in terms of the single integralI D, which has a universal valu
in D54:

I D5L l
eI l

D5L l
e 1

2Eq

c8S q2

2L l
D

L l
2

cS q2

2L l
D

q2
~47!

5
1

2
SDE

s.0
~2s!2e/2c8~s!c~s!52

S4

4
1O~e!,

~48!

with S451/(8p2) and here, and in the following,SD is the
unit sphere area divided by (2p)D. Thus, ã4,l flows to the
fixed value:

ã4* 5
3

~n18!
16p2e, ~49!

which is universal to this order. We have indicated terms
the above RG equations that arise at two loops and y
fixed point for ã2,l and ã6,l with

ã2* 5O~e2!, ã6* 5O~e3!, ~50!

and more generally,ã2n* 5O(en) for n>3. The derivation of
this is simple but goes beyond this paper@16#. This fixed
point is unstable in the directionã2 and stable in all other
directions. The stability eigenvalues toO(e) read

l2522
n12

n18
e, ~51!

l452e, ~52!

l2n522~n22!1e~n21! for n>3. ~53!

The critical manifold of theO(n) model corresponds to
ã25ã2* . This corresponds indeed to the massless case, s
the self-energy

Sq5Û9~0!1O~Û2!5L l
2ã2,l ~54!

vanishes to lowest order on the critical manifold. The ins
bility eigenvalue at the fixed point gives the critical expone
g

g5
2

l2
511

~n12!

2~n18!
e1O~e2!, ~55!

thus recovering the standard result. One also getsv52e
andh5O(e2).

Note that to first order ine there is noq dependence ofSq

and no wave-function renormalization. This, and the cal
lation of h can be incorporated in the method to two loop
05110
n
ld

ce

-
t

-
,

but this goes beyond the present paper. Such a calcula
using a slightly modified version of the present method, w
be presented in@23#.

Having checked the method on a well-known examp
we turn to far-less chartered territory.

IV. APPLICATION TO DISORDERED ELASTIC SYSTEMS

A. FRG equations and universality to one loop

1. The model

Let us consider an elastic system of internal dimensionD
embedded in a disordered medium. It is described b
single-component displacement fieldux (x is the internal
variable!, which is either the height function for an interfac
problem, or the continuous deformation field for period
systems. Applications of such models to physical syste
have been discussed in recent reviews to which we refer
reader@35,34#. The aim of this section is to apply our EMRG
method to this class of problems and show how one co
putes correlation functions and prove universality. T
model usually studied is defined by the energy where it re

H~u!5E
x
S c

2
u¹uxu22W~x,ux!1

m2

2
uuxu2D , ~56!

where a short-distance cutoff~e.g., in momentum space! is
implicit. The elastic constant is set toc51 here, and the
mass tom50, its effect will be studied in Sec. IV C. The
disordered potential2W(x,u) is a random variable that ha
the following properties:~i! W(x,u)50; ~ii ! the potential at
different x are uncorrelated;~iii ! the distribution ofW(x,u)
is translationally invariant inu space. Its cumulants read

W~x1 ,u1!, . . . ,W~xN ,uN!c

5d~x12x2!, . . . ,d~x12xN!S(N)~u1 , . . . ,uN!, ~57!

where the symmetric functions S(N) satisfy
S(N)(u1 , . . . ,uN)5S(N)(u11u, . . . ,uN1u) for any u. In
particular, the second cumulant is denoted byR(u2u8)
5S(2)(u,u8). Two cases are usually considered when stu
ing a domain-wall interface in disordered spin mode
random-field disorder that yields long-range correlatio
R(u);uuu at largeu ~see @24# and Sec. IV C below! and
random-bond disorder yielding short-range correlatio
R(u)→0 at largeu. When studying a charge-density wave
a vortex lattice, one is led to consider a periodic disord
@27,28#. In that case the cumulants have the periodicity of
system considered~a wavelength for a density wave and
lattice constant for a vortex lattice!. We assume parity sym
metry S(N)(2u1 , . . . ,2uN)5S(N)(u1 , . . . ,uN). This prob-
lem is usually studied by introducingn replicas fa

x , a
51, . . . ,n, of ux and by averaging over the disorder.
yields the action

S~f!5E
x
F 1

2T (
a

u¹fx
au2

2 (
N>2

1

N!TN (
a1 , . . . ,aN

S(N)~fx
a1 , . . . ,fx

aN!G .

~58!
2-8
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Thus the bareS has the general form~3! with

Gab
q 5

T

q2
cS q2

2L2D dab,

V~f!5E
x
U~fx!,

U~f!52
1

2T2 (
ab

R~fa2fb!2
1

3!T3 (
abc

S(3)~fa,fb,fc!

1••• .

We will consider any cutoff functionc(s) such thatc(0)
51 with no loss of generality and withc8(0)50 for conve-
nience~see below!.

Direct perturbation theory can be performed on this mo
@18,24#. One can show that it has a well-definedT50 limit
~see Appendix D!. Furthermore, atT50 this perturbation
theory—at least at the naive level—is in fact trivial, i.e., t
disorder average of any observable is identical to its valu
linear random force model, as shown in the Appendix
Within the exact RG one can in fact escape this well-kno
dimensional reduction phenomenon, since, as we will
below, the flowing disorder becomes nonanalytic. As sho
below, it yields nontrivial results for correlations.

2. RG analysis

We now, use the exact RG method introduced above.
now, we use the RG equations based on the multilocal
pansion ofV while the other method in terms ofV̂ ~explained
in Sec. III A and Appendix C 1! will be used in Sec. IV C.
The method withV turns out to be more convenient to an
lyze finiteT effects. Thel dependence of the Gaussian part
implemented by the choice

~Gl !ab
q 5T~Ḡl !ab

q 5
T

q2
cS q2

2L l
2D dab , ~59!

whereL l5Le2 l . This choice is particularly convenient he
since there is no correction to any order to the connec
quadratic part~statistical tilt symmetry@25#!. The flowing
interaction functionalVl(f) remains translationally and pa
ity invariant in x space. Since translation invariance in theu
space is conserved, its local partUl(f) remains of the form
of the bareU0. In order to obtain fixed points it is convenien
to define a rescaled dimensionless temperatureT̃l5TL l

D22

and rescaled functions

Ũ l~f!5L l
2DUl~f!

52
1

2T̃l
2 (

ab
R̃l~fa2fb!

2
1

3!T̃l
3 (

abc
S̃(3)~fa,fb,fc!1•••,
05110
l
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R̃l~u!5L l
D24Rl~u!,

S̃l~u1, . . . ,uN!5L l
DN22N2DSl

(N)~u1 , . . . ,uN!.

The general RG Eq.~27! for Ul(f) implies a set of
flow equations for the rescaled cumulantsR̃l(u),
S̃l

(N)(u1 , . . . ,uN) ~since the former is in fact asetof equa-
tions for functions of an-dimensional vectorf for any n).
The rescalings above have been chosen such that thes
scaled functions flow to fixed functions denotedR̃* (u),
S̃(N)* (u1 , . . . ,uN) independent ofT.

An important property of the theory~58! is that it admits
a well-definedT50 limit, at least at the perturbative leve
This can be seen either by examination of the diagramma
~all negative powers ofT in the perturbative calculation o
observables are in factor of a positive power ofn, see Ap-
pendix D!, or in the T50 dynamics@15#. Similarly, there
exists a well-definedT50 limit of the set of flow equations
for the cumulants. For smalle542D, this complicated set
of coupled equations can be organized in powers ofe. Spe-
cifically, one finds thatR̃* 5O(e) while S̃(N)* 5O(eN) for
N>3. This can be seen on the schematic structure~ordered
in U andT) of the flow equations obeyed by the rescaledR̃l ,
S̃l

(N) , which can be read off from Appendix C4:

]U5TU1T2U2eT1T3U3eT1•••. ~60!

The two first terms reproduce Eq.~26! since]G}T, while
the third term mimics theO(U3) in theb function. Its three
U vertices must be linked by at least three propagators
cause of the constraint of locality. Substituting symbolica
Ũ5R̃/T21S̃/T3, where we restrict to the two lowest cumu
lants, one finds

]R̃5eR̃1S̃u21R̃2u21R̃S̃eT/Tu21R̃3eT/Tu2 ,

]S̃5~622D !S̃1R̃S̃u31R̃3u31S̃2eT/Tu31R̃2S̃eT/Tu3 ,

where we have denoted projections on two and three rep
parts. All terms containing 1/T vanish after these projection
since a well-definedT50 limit exists. We have discarde
terms, such as] l S̃5TR̃2u3, which ~formally! vanish atT
50.

One sees immediately on these equations that the fi
R̃* 5O(e) while S̃* 5O(e3). This can be generalized b
noting that the lowest-order~in e) correction toS(N) is of the
form R̃NuN , thus,S̃(N)* 5O(eN). To O(e2) at T50 we thus
need

]R̃5eR̃1R̃2u21S̃u21R̃3eT/Tu2 , ~61!

]S̃5~622D !S̃1R̃3u3 . ~62!

In this paper, we simply perform theO(e) calculation to
which we now turn, for which consideration of two replic
terms is sufficient.

We perform the analysis in theT50 limit as explained
above. The propagator can be expressed in terms of dim
sionless quantities asGl

x5T̃l*q@c(q2/2)/q2#eiqL l x. At finite
2-9
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T, the exponentials of propagators in Eq.~26! would reduce
to one asymptotically at largel. This is also true in theT
50 limit for any l. It is thusa priori unnecessary to includ
higher number of loops within orderU2.

Denoting byM̃ l(f) the two-replica term contained in th
local operatorU

M̃ l~f!52
1

2 (
ab

R̃l~fa2fb!, ~63!

the flow equation to one-loop Eq.~28! ~using the change o
variablesl 8→ l 2 l 8 yields

] l M̃ l~f!5~42D !M̃ l~f!

2
1

2E0

l

dl8Kl 8(
ab

@]abM̃ l 2 l 8~f!#2u22rep ,

~64!

where the kernel responsible for the retarded nature of
flow is

Kl 854Jl ,l 2 l 8
D L l 2 l 8

2e L l
2e

52e2(62D) l 8E
q
c8S q2

2 D c8S q2

2
e22l 8D . ~65!

Sincec8(u) is typically peaked aroundu;1 and decrease
fast at infinity, one sees in Eq.~65! that the range of the
kernel Kl is also of order one and can be made as smal
desired by choosing narrow enough cutoff functions. T
above RG Eq.~64! involves computing the contraction

(
ab

@]a]bM̃ ~f!#2

5(
ab

@R̃9~fa2fb!222R̃9~0!R̃9~fa2fb!#

1(
abc

R̃9~fa2fc!R̃9~fc2fb!,

where we have used]a]bM̃ (f)5dab(cR̃9(fa2fc)
2R̃9(fa2fb). The last sum being a three replica term,
does not enter the equation forR̃ ~it is a correction toS
proportional toT), which reads

] l R̃l~u!5eR̃l~u!1E
0

l

dl8Kl 8S 1

2
R̃l 2 l 8

9 ~u!2

2R̃l 2 l 8
9 ~0!R̃l 2 l 8

9 ~u! D . ~66!

Let us first study the case of periodic elastic systems, w
R̃l(f) periodic of period one. Taking the largel limit we find
the fixed-point equation:
05110
e

s
e

h

05eR̃* ~u!1S E
0

1`

dl8Kl 8D S 1

2
R̃* 9~u!22R̃* 9~0!R̃* 9~u! D .

~67!

It is now easy to see that the factorK5*0
` dl Kl in Eq. ~67!,

which a priori depends on the dimension of space and of
whole arbitrary cutoff functionc(s), becomes universal in
D54. Indeed,

K52SD22e/2E
0

`

ds s2ec8~s!E
0

s

dt tec8~ t ! ~68!

52S4E
0

`

ds c8~s!„c~s!21…1O~e!5S41O~e!,

~69!

where we used the new variabless5q2/2, then t5se22l ,
kept only the lowest order ine, and usedc(0)51. We de-
note bySD the surface of the unit sphere inD dimensions
divided by (2p)D. Thus, to lowest order ine, the FRG equa-
tion does not depend on the cutoff procedure. It coincides
with the fixed-point equation obtained@14,26# from Wilson’s
momentum shell renormalization.

In Appendix C 3, we also mention the result of a two-loo
calculation of the beta function in our exact renormalizati
framework.

The solution to Eq.~67! is known to be the one-periodi
function defined by

R̃* ~u!5
e

72S4
S 1

36
2u2~12u!2D ~70!

for 0,u,1. This fixed point function is nonanalytic, whic
is an important and unusual feature. It was argued in@14#
that this nonanalyticity appears at a finite scale. This sc
Rc5el c/L can be identified with the Larkin length at whic
metastability and glassiness appears. Taking the fourth
rivative atu50 of Eq.~66! yields a closed retarded equatio
for R̃l

iv(0)

] l R̃l
iv~0!5eR̃l

iv~0!13E
0

l

dl8 Kl 8R̃l 2 l 8
iv

~0!2. ~71!

In the limit of narrow cutoffs, the equation becomes loc
andR̃l

iv(0) diverges at a finite scale. One can show that t
feature persists in the nonlocal equation.

The case of an interface~i.e., a directed polymer forD
51) corresponds to another fixed point where one must
scale the functionR̃l(u) as follows:

R̃l~u!5e4z l r l~ue2z l !, ~72!

and we must now determinez5O(e) such thatr l(v) con-
verges to a fixed pointr * (v). Inserting Eq.~72! into Eq.~66!
yields
2-10
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] l r l~v !5~e24z!r l~v !1zvr l8~v !

1E
0

l

dl8 Kl 8e
24z l 8S 1

2
r l 2 l 8
9 ~vez l 8!2

2r l 2 l 8
9 ~0!r l 2 l 8

9 ~vez l 8! D . ~73!

Although the kernel has been modified, this does not af
the results for the fixed point to lowest order ine. The fixed
point equation reads

05~e24z!r * ~v !1zvr * 8~v !

1S4S 1

2
r * 9~v !22r * 9~0!r * 9~v ! D , ~74!

and is thus universal, independent ofc(s). This shows thatz,
which, as shown below, is the roughness exponent, is
versal to one loop. It will be studied below for the random
field case and in the case of short-range disorder it is t
equal toO(e) to the values given in@14#.

3. Correlation function

Let us now compute the two-point correlation function
T50 using Eq.~12!. To lowest order ine, it is sufficient to
use the first-order formula~30!. The bare Gaussian partGq

vanishes atT50. We thus get

Cab
q 52

T2

q4
cS q2

2L2D 2

]a]bUl~f!uf[0

52
Rl 5 ln(q/L)9 ~0!

q4

52
R̃* 9~0!

qD
5

e

S4

1

36
q2D, ~75!

where we used thatR̃l converges to the fixed pointR̃* and
smallq such thatc(q2/2L2)51. In real space, it yields loga
rithmic growth of the displacements with a universal prefa
tor

^~ux2u0!2&5
e

18
lnuLxu. ~76!

In the case of short-range disorder~e.g., random bond for
Ising interface! one gets instead

Cab
q 52

Rl 5 ln(q/L)9 ~0!

q4
52e2z lL l

e r * 9~0!

qD
;

1

qD12z
.

~77!

This yields ^(ux2u0)2&;uxu2z with a universal roughnes
exponent:

z50.208 298 04e ~78!
05110
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to lowest order@14,15# as well as a nonuniversal amplitud
@since the FRG fixed-point Eq.~74! is invariant under
r * (v)→l4r * (v/l) and, contrarily to the periodic case
nothing here fixed the scale#.

We can now investigate in more detail the structure of
asymptotic flow of the various higher-order interactio
~three replica terms and higher, as well as bilocal interact
and more!. Although this is beyond the scope of this pap
such an analysis is in principle necessary for consisten
i.e., to ensure the existence of a global fixed point~for all
interactions! and the validity of the result toO(e). We
sketch it here for the periodic casez50, generalizations to
interfaces being simple.

We start with estimating the higher cumulants of t
renormalized disorder, i.e., the higher replica component
the local interactionUl . To lowest order inR, the correction
to Sl

(N) is proportional toRl
N and takes the schematic form

]S̃(N)52~2N1D2DN!S̃(N)1R̃9N. ~79!

Graphically, the diagram is made of one loop. We dropp
the numerous higher-order terms ine coming from contrac-
tions of various other cumulants thanR. One finds that the
fixed pointS̃(N)* takes the following form to lowest order in
e:

(
a1 , . . . ,aN

S̃(N)* ~fa1, . . . ,faN!

5cN,DS Tr~WN!2 (
a1 , . . . ,aN ,b

R̃ba1
* 9 , . . . ,R̃baN

* 9 D ,

where Wab(f)5dab(cR̃ac* 92R̃ab* 9 , R̃ab* 9 denotes R̃* 9(fa

2fb), and cN,D is some number depending on the cuto
procedure. The last term in the trace has been subtra
since the product of theN d ’s is a N11 replica term. For
instance, the third cumulant is of orderO(e3) and reads

S̃(3)* ~u1 ,u2 ,u3!

5c3,DSymu1 ,u2 ,u3
@R̃* 9~u22u3!R̃* 9~u32u1!

3R̃* 9~u12u2!23R̃* 9~u12u2!

3R̃* 9~u12u3!213R̃* 9~0!R̃* 9~u22u1!

3R̃* 9~u32u1!# , ~80!

wherec3,4 is computed in@16# and reads

c3,45
S4

12E0

`

ds
@12c~s!#3

s2
. ~81!

Now we check that the bilocal part has a well-defin
fixed point. Its expression is given by Eq.~24!, where atT
50, the exponentials should be expanded at most to
order. The zeroth-order term yields three replica terms, w
the first-order term yields two replica terms~as well as a
2-11



e

lic

a

rm

es
a
f

f t

e
n
la
e
s
el

e

t

g

died

PASCAL CHAUVE AND PIERRE LE DOUSSAL PHYSICAL REVIEW E64 051102
correction proportional toT to three replica terms that w
can discard atT50). Thus we get

Vl~f1 ,f2 ,q!52
L l

e

2T2 (
ab

Ṽl
(2,2)S q

L l
D

2
L l

2e22

6T3 (
abc

Ṽl
(2,3)S q

L l
D ,

where we have explicitly separated two and three rep
terms, respectively,

Ṽ* (2,2)~ q̃!5 f ~ q̃!(
ab

R̃ab* 91R̃ab* 92 , ~82!

Ṽ* (2,3)~ q̃!523
c~ q̃2/2!21

q̃2 (
abc

R̃ab* 81R̃ac* 82 , ~83!

where we have defined

f ~ q̃!5
1

2Ek
H 1

k2~k1q̃!2 FcS k2

2 D21GFcS ~k1q̃!2

2
D 21G

2 idem q50J , ~84!

whereR̃ab81 stands forR̃8(f1
a2f1

b), etc. We have discarded

term proportional to R̃* 9(0)(ab(R̃ab* 911R̃ab* 92) since it
yields vanishing contribution to the action. The bilocal te
thus has a scale invariant fixed form of ordere2 and is a
well-defined function ofq̃5q/L l with no divergences. This
shows consistency of our procedure to this order.

More generally, we conjecture, and verify here to low
order, that there is a fixed asymptotic form for all multiloc
interactionsV(p) that can be explicitly written as a sum o
properly rescaled multireplica terms as

Vl
(p)~f1 , . . . ,fp ,x1 , . . . ,xp!

5L l
Dp(

c>2

L l
c(22D)

c!Tc

3 (
a1 , . . . ,ac

Ṽl
(p,c)~$fa

ai% i 51, . . . ,c
a51, . . . ,p ,L lx1 , . . . ,L lxp!,

~85!

where the number of replicasc corresponds graphically to
the number of connected components. The consistency o
method demands that theṼl flow to well-defined fixed
points, perturbative ine. It is indeed natural to conjectur
that in this theory there is no wave-function renormalizatio

We can now come back to the calculation of the corre
tion function. Although for convenience we have comput
Cab

q from the theory withl 5 ln(q/L), this is unnecessary. A
discussed above, the existence of a fixed point with w
05110
a

t
l
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l-

defined functions ofq̃5q/L l implies that thee expansion of
Cab

q at fixedq!L should be of the form

Cab
q 5

1

q4
L l

eS̃~ q̃!, ~86!

where the dimensionless self-energyS̃(q̃) depends only on
q̃ and e. SinceCab

q is l independent, it implies, taking th

derivative, thatS̃(q̃)5Ceq̃
e and thus

Cab
q 5Ceq

2D, ~87!

Ce5
2p2

9
e, ~88!

to lowest order ine, as in@27#. The form~87! should be valid
to all orders ine if the hypothesis about the fixed poin
formulated above Eq.~85! are satisfied.

B. FRG at finite temperature

1. Renormalization equations

Since in Eq.~26! the terms in the exponentials containin
the temperature go to zero asL l

D22 one can first study the
effect of temperature, compared toT50 by looking at the
linear term. Up to orderTR andR2 ~i.e., to one loop! the RG
equation thus reads

] l R̃l~u!5eR̃l~u!1T̂l R̃l9~u!1E
0

l

dl8 Kl 8S 1

2
R̃l 2 l 8

9 ~u!2

2R̃l 2 l 8
9 ~0!R̃l 2 l 8

9 ~u! D , ~89!

with

T̂l52]Gl
x5052TE

q
L l

22c8S q2

2L l
2D

52TS4L l
2E

s.0
c~s!1O~e!.

In the case of the sharp cutoff, this equation has been stu
in @29,30#. It was found that at fixedu, R̃l(u) converges to
R̃* (u) but that temperature rounds the cusp of theT50
solution in a boundary layer of sizeu;T̂l . As in @30# we
look for a solution of the form

R̃l~0!2R̃l~u!52R̃l9~0!
u2

2
2K

T̂l
3

e2k2
HlS uek

T̂l
D . ~90!

Here,k ~of ordere0) is defined byek5R̃* -(01) and thus
H* iv(0)521. One has alsoHl(0)5Hl9(0)50. Injecting
Eq. ~90! into Eq. ~89! and identifying the leading order in
T̂l , one gets
2-12
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x2

2
5H* 9~x!1

1

2El .0
Kle

4lH* 9~xe22l !2, ~91!

with * l .0Kl51. This equation can be solved iteratively inn
for H* (x)5(n.0anx2n/(2n)!. One hasa151, a2523 but
higheran’s are nonuniversal. The largex behavior ofH* is
universal and given byH* (x);x. In the case of the shar
cutoff one recovers@30#

H* 9~x!5A11x221. ~92!

This result should be further examined by considerat
of consistency within higher-loop corrections, which go
beyond this paper.

The most important result of the section is that the f
lowing relation between the finite-temperature solution a
the T50 solution:

lim
l→1`

T̂l R̃l
iv~0!5CR̃l* -~01!2, ~93!

whereC5S4 holds irrespective of the cutoff function, an
thus is determined by theT50 fixed point. This property
will be used below.

2. Calculation of universal susceptiblity fluctuations

It was noted recently that a signature of glassy behavio
a disordered system was the large sample-to-sample fluc
tions of the response to external perturbations@31,33,34#.
These are described by the following suceptibility:

x5
1

T

1

LDExy
~^]aux]auy&2^]aux&^]auy&! ~94!

in a finite system of sizeL, which measures the response in
given sample to a field coupling to¹u ~e.g., the tilt or com-
pression a flux lattice, or the compression response!. The^X&
denotes the thermal averages in a given sample. These
been studied in connection with mesoscopic behavior of
ordered systems@36#. Here we have considered only th
trace of the response tensor~extension being straightfor
ward!. To perform the calculation in the replicated theory w
define

Cab
ab5

1

T

1

LDExy
^]aux

a]buy
b&, ~95!

Cabcd5
1

T2

1

L2DExyzt
^¹ux

a
•¹uy

b¹uz
c
•¹ut

d&. ~96!

We now compute, respectively, the first and second mom
of the sample-to-sample fluctuations of the susceptibil
They read

x̄5Caa2Cab51, ~97!

x 2̄5Caabb1Cabcd22Caabc, ~98!
05110
n
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where X̄ denote disorder averages anda,b,c,d take values
all distinct from each other. Note the well-known proper
@25# that the average susceptibility is identical to the susc
tibility of the pure system. We now computeCabcd to lowest
order ine. Only zero and one loop graphs involving, respe
tively, Rl9(0) and Rl-8(0) contribute. Interestingly, due to
the quadratic nature of the term proportional toRl9(0) the

zero loop graphs cancel inx 2̄, as can be easily seen sinc
Cabcd5Cab

2 12(ab(Cab
ab)2 for any Gaussian theory~per-

forming the Wick contractions!. One is left with

Cabcd5~ndabcd2~dbcd1dcda1ddab1dabc!

1~dabdcd1dacdbd1daddbc!!ARl-8~0!,

whereA5L22D*w(*xy¹Gx2w
•¹Gy2w)2, and thus

~Dx!2[x 2̄2x̄25ARl
iv~0!;Rl

iv~0!CL42D ~99!

for a system of finite-sizeL @see also@34# for a similar result
in straight perturbation theory#. Note that one can equiva
lently study the perturbation of an infinite system~i.e., L
→` first! by a periodic external field of wave-vectorqext. In
that case,A5qext

D24 . Thanks to the exact RG equations
finite T and substitutingl 5 ln L, we obtain the mesoscopi
susceptibility fluctuations at low temperature as

~Dx!25C8
Lu

T
, ~100!

whereu5D2212z is the energy fluctuation exponent an
C85O(e2) for a periodic system (z50) and C8
5O(e4/3)s2/3 for an interface in random-field disorder~see
Sec. IV C!.

This result, derived here through exact FRG calculati
is consistent with the droplet picture@37#. Indeed, the second
moment of the susceptibility fluctuations is dominated by
rare configurations of disorder~of probability pdeg!1) with
two almost degenerate@i.e., within O(T) in energy# ground
states as follows:

~Dx!2;pdeg~dx typ!
2, ~101!

where pdeg;T/Lu and the typical fluctuation isdx typ
;T21L2DL2D2212z from Eq. ~94!. One thus recovers the
above result sinceu5D2212z.

C. Interface in a biased random field and toy model

In this section we study the model~56! in the presence of
a mass termm.0, which confines the fluctuations of th
displacementux . We consider two cases~i! random-field
disorder~ii ! periodic disorder. A physical realization of~i!
consists in a domain wall separating the6 phases in a fer-
romagnet, submitted to a random-magnetic field, as mode
e.g., by the random-field Ising model. The magnetic ene
of the interface, assumed without overhangs and represe
in Fig. 3, is
2-13
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E~u!52E dDxE
0

ux
du8 h~u8,x! . ~102!

Thus, the effect of the mass term corresponds to applying
additional field gradienth(u,x)→h(u,x)1m2u/2. Note that
this field gradient can either stabilize (m2.0) or destabilize
(m2,0) the domain wall. We will study the approach to th
critical value m2→01. The case~ii ! is of interest when
studying the competition between disorder and, e.g., a p
odic potential. In the phase where the periodic potentia
relevant, it is natural to approximate it by replacing it by
harmonic well~see, e.g.,@38#!.

Here we examine only ground-state properties~zero tem-
perature!. We show that the disorder-induced fluctuations
the displacementux is described, asm→0 by a universal
scaling function of the form

uqu2q5m2aF@cq2/m2#, ~103!

which we determine to lowest order ine542D. Note thatc
can be measured from the thermal connected correla
which is unchanged by disorder for models like Eq.~56!
which possess the statistical tilt symmetry.

1. RG equations in the presence of a mass

In this section, it is more convenient to use the RG eq
tion resulting from the multilocal expansion onV̂, which is
local in l to this order. Since we are studyingT50, we set
R̂l5Rl in the following. The RG equation reads

FIG. 3. Interface between two domains with opposite magn
zation in a ferromagnet.
05110
an

ri-
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f

n,

-

] lRl~u!5Jl S 1

2
Rl9~u!22Rl9~0!Rl9~u! D , ~104!

Jl522E
q
]Ḡl

qḠl
q . ~105!

Using the actionSl , the T50 correlation function reads
to lowest order inR

uqu2q52Rl9~0!S c~q2/2L2!

cq21m2 D 2

. ~106!

It is easy to transform Eq.~104! into the RG equation in
the absence of a mass. Using the change of variable

Rl~u!5c2L t( l )
e24zR̃t( l )~uL t( l )

z !, ~107!

one finds thatR̃l satisfies them50 flow equation

] tR̃t~x!5~e24z!R̃t~x!1zxR̃t8~x!

1SDS 1

2
R̃t9~x!22R̃t9~0!R̃t9~x! D ,

provided thatt( l ) satisfies

L t( l )
2e dt

dl
5Jl

c2

SD
, ~108!

which is integrated into

eet l21

e
5E

0

`

qD21 dq
c~q2/2!22c~q2e2l /2!2

~q21a!2
, ~109!

with a5(m2/cL2). The function t( l ) is increasing and
bounded. Its limitt(1`)5t` for D,4 is given by

eet`21

e
5E

0

`

qD21 dq
c~q2/2!2

~q21a!2
, ~110!

and it diverges form→0 as

eet`;eE
0

`

qD21 dq
1

~q21a!2
;a2e/2S 12

e

2D ~ep/2!

sin~ep/2!
.

~111!

In D54 it diverges as

t`;
1

2
lnS 1

a D . ~112!

We now distinguish the two cases.

2. Random field

In that case, the correlations of the potential a
@W(r ,u)2W(r 8,u8)#2522dD(r 2r 8)R(u2u8) with @from
Eq. ~102!#, R(u);2suuu at largeu. In the massless case,
is known that the FRG to one loop reproduces the pur

i-
2-14
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dimensional resultu0ur;s2/3c24/3r 2(42D)/3 with a rough-
ness exponentz5(42D)/3. From this we expect, in the
massive case, the smallm behavior:

u;s1/3m2e/3c2D/6.

It is known @14# that one must fixz5e/3 to obtain a reason
able fixed point. From the above equation, the~reduced! cor-
relator of the forceD t(x)52R̃t9(x)SD then satisfies

] tD t~x!5
e

3
@xD t~x!#82

1

2
@D t~x!2D t~0!#29,

and flows fort→`, to a fixed pointD`(x) given in terms of
a functiony(x) @14# implicitly defined as@30#

5
D`~x!5D`~0!yS xA e

3D`~0!
D ,

D`~0!5S e

24g2D 1/3S E
2`

1`

dx D0~x! D 2/3

,

x2

2
5y~x!212 ln y~x!,

with g5*0
1 dyAy212 ln y50.548 222 889 3. Note tha

*2`
1`dx D t(x) is t independent and thus equal

*2`
1`dx D0(x)52(SD /c2)*R0952s(SD /c2).

Putting this together with Eqs.~106!,~111! yields the re-
sult

uqu2q5s2/3m2D22zcD/6FD@cq2/m2#,

FD@x#5CD

1

~11x!2
1h.o.t, ~113!

CD5S ~4p!D/2

6GS e

2Dg2D 1/3

,

with z5e/3. Note that the universal scaling function mu
behave at largex asFD@x#;xz2D/2, and is determined her
only to order 0 ine.

From this, one also finds the local fluctuation

~ux!
25e22/3621/3S eGS e

2D
~4p!D/2g

D 2/3

s2/3m22zc2D/3,

~114!

which is also universal. The fact that this quantity is dom
nated by large-scale fluctuations can be seen from the
vergence of the integral (z.0).

The calculation can also be performed exactly inD54.
One finds
05110
t

-
n-

uqu2q5S ln
1

mD 21/3S 4p2

3g2 D 1/3
s2/3c2/3

m4S 11
cq2

m2 D 2 .

The values we find forCD , which vanishes asCD
;3.5246e2/3 as D→42 are as followsC3'2.406 53, C2
'1.910 06,C1'1.304 16,C0'0.821 57, remarkably close
to the exact result inD50 @28# C051.054 238 565 19.

It is also useful to compare these results with the Gaus
variational method with replica symmetry breaking. Exten
ing the calculation of@31# to the nonzero mass case, which
done in Appendix E, we find the same form as Eq.~113!
with

FD@x#5CD8 F 1

~11x!2
1

u~22u!

4~11x!
E

1

1` dy

y11u/2

y21

y1xG ,

~115!

CD8 /CD5S 12

p
g2D 1/3

51.047 08, ~116!

andu5(62e)/3 andz5e/3. Since ase→0 for fixed x the
second integral is subdominant, the leading order ine are
identical, and the amplitude of the RSB solution compared
the FRG solution isCD8 /CD ase→0.

3. Periodic case

In the case of a periodic system with perioda, one gets a
fixed-point function withz50 which reads

D`~u!5
e

6 S a2

6
2u~a2u! D . ~117!

It yields

uqu2q5a2cD/2m2D
~4p!D/2

36GF e

2G
1

S 11
cq2

m2 D D/2 ~118!

ur
2;

e

36
a2 lnS 1

mD , ~119!

and inD54,

uqu2q5
2p2

9

a2c2

m4 ln
1

m

1

S 11
cq2

m2 D 2 . ~120!

V. TOWARDS THE TWO-LOOP FRG

The exact EMRG method allows to compute quantit
beyond the lowest order ine. It can be carried either atT
→0 for fixed system size (T50 limit! or at finiteT. Solving
the exact RG equation atT50 requires us to follow nonana
lytic functions. This is a difficult question, e.g., distinguis
ing the various cumulants in the local part demands a spe
2-15
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procedure that we have developed. This is discussed
@16,15#.

The resulting two-loop FRG equation atT50 derived in
@16# is given in the Appendix F. This equation differs fro
the one obtained in@19# as it contains a new ‘‘anomalous
term of the formlR-(01)2R9(u). We find that the coeffi-
cient of this term is universal withl51/2. Interestingly, this
value is consistent with the renormalizability argume
given in @15#. The approach of@15# and the present one a
T50 yield consistent results and allow us to compute
roughness exponentz to orderO(e2) ~see Appendix F!.

The difficulty which was faceda priori was ~i! possible
ambiguities when distinguishing the various cumulants in
local part and~ii ! a nonuniversallÞ1/2 value that would
imply that fixed-point solutions would exhibit the property
a nonzero value ofR8(01), referred to as a supercusp sin
it is a stronger nonanalyticity than the one-loop o
@R-(01)Þ0#. This feature would be unpleasant as it naive
yields ~by perturbative expansion! additional divergences a
T21/2, a sign of possible fractional dependence ine ~a related
phenomenon is discussed in@26#!. In fact, as our study indi-
cates, such ambiguities can be avoided@16# and the FRG
equation does not yield to a supercusp~see Appendix F!.

At finite temperature these possible problems do not a
since the singularity is smoothed within a boundary layer~at
one loop see Sec. IV B!. In Appendix F, we have used th
exact RG flow to third order~given in Sec. III 4! and obtain
the two-loop exact FRG equation for the second cumu
Rl(u) at T.0. At large l, the effective temperatureT̂l→0
and one recovers an ‘‘effective’’ zero-temperature equati
The analysis of this limit, and its relation to the structure
the boundary layers at high orders, is complex and furt
examined in@16#.

VI. CONCLUSION

In this paper, we have introduced a systematic meth
the EMRG, which turns the exact, though abstract, RG fu
tional equation of Wilson-Polchinski into a tool for concre
perturbative calculations to any number of loops using a
trary cutoff functions for a broad class of models. The str
egy was to explicitly integrate out all nonlocal interaction
which can be expressed in terms of the local part alone, o
by order in the local part. In the process, we have preser
the exactness and the controlled nature of the orig
Wilson-Polchinski equation. Indeed, no approximation w
made, and the resulting RG equation for the local part,
well as the expressions for the nonlocal ones and for
correlation functions, are formally exact order by order in
expansion in the local part. This expansion will be useful
theories where the local part is small, i.e., when it is co
trolled by a small parameter~e.g., the shift from the uppe
critical dimension! and when the RG equation admits a pe
turbative fixed point in this parameter. We have conside
here theories with a bare local interaction and a fixed po
for the local part, e.g., as in theO(n) model, but the method
is more general and can be extended to theories where
bilocal part of the interaction serves as the small parame
e.g., for self-avoiding manifolds@39#. In a sense, the exac
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multilocal RG in the operational form presented here direc
translates the ideas of Wilson and provides explicit check
universality.

In addition to presenting the method formally to all o
ders, we have derived theexplicit RG equation for the loca
part up to third order. Further expanding in the number
loops, we have explicitly given the coefficients up to tw
loops and third order. Two distinct, although equivale
methods have been presented, depending on whether
considers the Wick ordered functional or not. Each meth
has its advantages: the Wick ordered method yields ap
ently simpler~less nonlocal! RG equations, but it is not al
ways the most adequate~e.g., for the finiteT one-loop FRG
analysis!. Although the present paper contains all the ma
rial necessary for two loop applications~for the FRG! we
have preferred to defer giving the detailed calculations a
results to a companion paper@16#.

We have thus considered here mostly one-loop appl
tions. The first one was a simple check to recover the o
loop exponents of theO(n) model. The second applicatio
was to the theory that describes elastic systems in ran
potentials. It was previously analyzed through simpler W
son momentum shell integration@14# but the rather unusua
nature of the theory (n→0 limit, nonanalyticity! made it
important to verify explicitly that the results are universa
Also universality in disordered systems is rather less es
lished than in pure systems, especially in theT50 limit
where it is known to fail in some cases. Thus, we first d
rived theT50 one-loop RG equation for the second cum
lant functionR(u) in arbitrary cutoff scheme and found tha
its coefficients are universal to this order. This yields t
universality toO(e) of the roughness exponentz of pinned
interfaces. In the periodic case, we also explicitly verifi
that the correlation function contains a universal amplitu
Similarly, we computed the scaling function of the groun
state deformations of a confined interface in a random fi
and found a universal result. This quantity can be experim
tally measured in disordered magnets in the presence
small additional field gradient.

Although temperature is formally irrelevant~the dimen-
sionless temperature flows to zero! it is well known to be
‘‘dangerously’’ so. Our exact FRG atT.0 shows that al-
though the ‘‘boundary layer,’’ i.e., the detailed asympto
form of the cumulantR(u) for u;Tl is nonuniversal, some
of its features are universal, and in particular, we were a
to extract from it the universal divergence of the mesosco
fluctuations of the suceptibilityDx. The divergence of this
quantity, which is dominated by rare, almost degenera
low-energy configurations, is an accepted unambiguous m
sure of ‘‘glassiness’’ in a disordered system and is measu
in experiments, e.g., in microsize vortex systems.

Some of the peculiar features of the theory of pinned e
tic systems have been also discussed. We have found it
ful to give a detailed diagrammatic proof of the triviality o
naive perturbation theory, as we have not seen it explicitly
the literature~though more general statements about dim
sional reduction appear in a number of other works!. We
have discussed how the nonanalytic nature of the the
yields nontrivial results.
2-16
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EXACT MULTILOCAL RENORMALIZATION GROUP AND . . . PHYSICAL REVIEW E 64 051102
Pinning of disordered media thus provided us here w
one example of a problem where exact renormalization
needed to get insight, as no field theoretical description is
available. The reason for it is that one must follow in pri
ciple a rather complicated object, the full probability dist
butions or the disorder, or equivalently the whole series
cumulants. The method seems thus promising for other p
lems with similar features, such as random sine Gord
models@40#. It is interesting to note that while presenting th
FRG method, Fisher pointed out~Ref. 12 in @14#! that the
momemtum-shell RG ‘‘suffers from pathologies due to t
sharp cutoff,’’ and that the cusp inR(u) ‘‘requires a careful
analysis of the full renormalization group.’’ Through the u
of the exact EMRG method presented here, we provid
simple way to integrate explicitly and exactly what is le
aside in the traditional RG and check that no damage co
from neglected operators. We are thus able to control
approximations of former approaches and to perform n
calculations. Furthermore, thanks to our general framew
expressed in terms ofanycutoff function, the universality of
the results is checked.

Let us close by noting that the application of the EMR
method via the multilocal solution to the exact RG equat
seems promising also to study other disordered problem
even give a new perspective on simpler pure problems.
instance, one could apply it to wetting problems taking in
account the nonlinear part, or to the roughening problem
improve on previous analysis using uncontrolled projectio
methods@41#.

The multilocal expansion allows also interesting exte
sions to theories with bilocal bare action, such as polym
mutually interacting or with disorder. Finally, it is also wor
studying more closely the set of exact solutions to
Polchinski equation presented in this paper~Appendix B!.
Some of these extensions will be explored in future publi
tion.

APPENDIX A: INVARIANCE PROPERTIES OF THE
GENERATING FUNCTIONAL AND RENORMALIZATION

EQUATION

In this appendix, we give a concise derivation of the ex
invariance properties of the generating functional of corre
tion functions under coarse graining. These properties p
vide the basis for developing exact renormalization pro
dures of the Polchinski type. In the second part,
generalize the framework to include additional field transf
mations, such as rescaling.

1. Invariance under coarse graining

We use only the two following properties of Gaussi
averages. The notations are the same as in the body o
paper. First, transformation under a change of variablef
→f1c for any fieldc in the functional integration overf
yields

@A~f!#G5e2(1/2)c:G21:c@e2c:G21:fA~f1c!#G ~A1!
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for any functionalA(f). We will also use the composition
property

$@A~f11f2!#G2
%G1

5@A~f!#G11G2
, ~A2!

where in the left-hand side~l.h.s.! the average overf i is
performed using Gaussian correlationsGi .

Using successively the shiftsf1→f12G2 :J and f2
→f21G2 :J yields the fundamental relation

@eJ:f2V(f)#G0
5$@eJ:(f11f2)2V(f11f2)#G2

%G1

5e2(1/2)J:(G21G2 :G1
21 :G2):J

3$eJ:(11G2 :G1
21):f1@e2V(f11f2)#G2

%G1
,

where we denotedG25G02G1. Thus, if V1 is coarse-
grained transformed of the interactionV, defined by

e2V1(f1)5@e2V(f11f2)#G02G1
, ~A3!

then one has

@eJ:f2V(f)#G0
5e(1/2)J:(G02G0 :G1

21 :G0):J

3@eJ:G0 :G1
21 :f1e2V1(f1)#G1

. ~A4!

We now use this property of Gaussian integrals as
lows. One defines a family of actionsSG(f) and their asso-
ciated generating functionalWG(J)

SG~f!5
1

2
f:G21:f1VG~f!,

WG~J!5 ln@eJ:f2VG(f)#G .

They are indexed by the matrixG and we choose them to b
related by the coarse-graining operation~A3! whereG plays
the role ofG1, namely:

e2VG(f)5@e2VG0
(f1c2)#G02G , ~A5!

or, equivalently in a differential form, theVG satisfy the
‘‘RG equation’’

d

dG
e2VG(f)52

1

2

d2

df df
e2VG(f) ~A6!

obtained by differentiating Eq.~A5! with respect toG. The
coarse-graining Eq.~A6!, read along a given pathl °Gl , is
the Polchinski equation in its ‘‘diffusive’’ form~14!.

It is easy to see from Eq.~A4! that this choice of a family
VG implies the property

W̃G~J:G8:G21!, independent ofG, ~A7!

where we have defined the interaction partW̃G(J)5WG(J)
2(1/2)J:G:J. It allows us to relate correlations within an
member of the familySG , i.e., under coarse graining.
2-17
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2. Generalization including rescaling and change
in the Gaussian part

The previous properties can be extended to a larger s
transformations that include simultaneous~i! coarse graining,
~ii ! linear transformation of the fields, and~iii ! redefinition of
the Gaussian part~such as needed to absorb its possi
renormalization!. It is based on the following properties o
Gaussian integrals: One defines

WG,V ~J!5 ln@eJ:f2V (f)#G . ~A8!

The first property corresponds to performing an arbitrary
ear transformation on the field

WG,V ~J!5WM21:G:M21,V (M :f)~J:M ! ~A9!

valid for any G,V,J,M . The second property is simply th
identity obtained when redistributing the Gaussian part

WG,V ~J!52
1

2
Tr ln~11H:G!

1W(G211H)21,V (f)2(1/2)f:H:f~J!

valid for anyG,V,J,H.
First, let VG(f) satisfy the RG Eq.~A6!. Then from the

previous section we know thatWG,VG
(J:G8:G21)

2(1/2)J:G8:G21:G8:J is independent ofG for any J,G8.
SettingG5Gl andG85G0 one gets the Polchinski equatio
and one can computeW(J). One now defines

VG,M~f!5VG~M :f!1
1

2
f:~M :G21:M2G21!:f.

Using the above properties, one has that

WG,VG,M
~J:G8:G21:M !2

1

2
J:G8:G21:G8:J

2
1

2
Tr ln~11M 21:G21:M 21:G! ~A10!

is independent ofG andM, for anyG8,J.
We have used the two invariances choosingH

5M 21:G21:M 212G21 leading to the intermediate for
mula

WG,V ~J!52
1

2
Tr ln~11M 21:G21:M 21:G!

1WG,V (M :f)1(1/2)f:(M :G21:M2G21):f~J:M !.

Defining a new family of functional indexed byl as

Vl5VGl ,Ml
, ~A11!

and symmetric matricesG,M one finds that the functionalVl
now satisfies a new RG equation

] lV1f:M 21]M :
dV
df

5f:K:f ~A12!
05110
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2
TrS M 21]GM21:F d2V

df df
2

dV
df

dV
dfG D , ~A13!

with K52M 21]MG211(1/2)(M]G21M2]G21). which
contains additional terms. Once this equation is solved,
correlations can be related within any of the correspond
Sl theories using the above invariance property~A10! of
WG,VG,M

(J).

APPENDIX B: GENERAL PROPERTIES AND EXACT
SOLUTIONS OF THE POLCHINSKI EQUATION

Let us first mention a few general properties of Eq
~9!,~14!. For the class of cutoff functions~5! used in practice,
the diffusion tensor in Eq.~14! is positivec8(s)<0 ~but not
definite positive since there exists modes with] lGl

q50).
There are some exactly formally conserved quantities, s
as *fe2Vl (f) and @e2Vl (f)#Gl

. Since ~14! is a diffusion
equation, it satisfies aH-theorem of increase of the
‘‘entropy’’ Sl5*fVl(f)e2Vl (f), which flows as ] lSl
52 1

2 *f(d/df)e2Vl (f):] lGl :(d/df)e2Vl (f)>0 and is
compatible with the fact that RG trajectories do not ha
limit cycles. Finally, since~14! is a linear equation, if we
now a set of solutionsV l

a(f), then any superposition such a

Vl~f!52 ln (
a

cae2V l
a(f) ~B1!

is also a solution.
This can now be used to construct nontrivial exact so

tions to the Polchinski equation. The simplest family of exa
solutions is of course the quadratic potential, for which o
finds the solutions

Vl~f!5
1

2
~f2c!:Ml :~f2c!2

1

2
Tr ln Ml , ~B2!

Ml5~M0
211G02Gl !

21, ~B3!

where c is an l-independent field, with ^f&S5(1
1M 21:G21)21:c.

A much less trivial family of exact solutionsof the
Polchinski equation is obtained by superposition of Gau
ians, i.e., of quadratic potentials. It reads

Vl~f!52 ln (
a

cae21/2(f2ca):Ml
a :(f2ca)1(1/2)Tr ln Ml

a
,

~B4!

with arbitrary constant coefficientsca and eachMl
a satisfies

Eq. ~B3!. This is somewhat reminiscent of a decompositi
into ‘‘pure states’’ and is clearly of interest to describe low
temperature states in pure models~in phases with broken
symmetry! or in disordered models and glasses~with many
metastable states!. It is an interesting question to ask, qui
generally, whether this family of solutions can in some ca
be an attractive manifold in a larger functional space, o
2-18
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whether one can carry perturbation around this subsp
These and related issues will be discussed in a future pu
cation @21#.

A generic property of these solutions to the Polchin
equation is to generate cusp singularities separating
‘‘pure states.’’ This can be seen directly above since nega
curvatures tend to increase in absolute value@see Eq.~B3!#
and is presumably a very general mechanism. It can als
seen on the simple example of the zero-dimensional
model. There, the fieldf is a real number and

Z5E
2`

`

dfe2(f2/2G)2V(f), ~B5!

whereV is an arbitrary function. One can introduceGl5G
2 l , andVl(f) for this model, verifying

] lVl~f!5
1

2
@Vl9~f!2Vl8~f!2#, ~B6!

with initial condition V0(f)5V(f), and one can integrat
up to l 5G. One hase2Vl (f)5@e2V(f1c)# l . The evolution of
Vl(f) is that the curvatureMl5Vl9(0), which would obey
Eq. ~B3! Ml5M0 /(11M0l ) for a quadratic hill or well,
diverges at a finitel for maxima and decreases as 1/l for
minima ofV(f). Thus, the landscapeVl(f) develops cusps
encoding for discontinuities in the force2V8(f).

In the case of a periodic landscape, the natural superp
tion of Gaussian solutions is theVillain potential V(f)5

2 ln (nce2(f2n)2/(2l). In these sine Gordon-type potential,
well as in the 2D XY model, it is a well-known property tha
the renormalized potential converges towards the Vill
form at low temperature as found in@42# from the Migdal
Kadanoff RG ~see also more recently@41#!. The detailed
behavior of the RG flow can be studied in a more control
way using the method presented of this paper@21#.

APPENDIX C: MULTILOCAL EXPANSION
AND HIGHER-ORDER RG EQUATION

In this appendix we derive the systematic multilocal e
pansion and obtain the RG equation to higher orders.
give a detailed presentation for the functionalV̂l(f), which
is simpler, and give explicitly the corresponding RG equ
tion to orderV̂ l

3 and up to two loops. Then we simply sketc
the result for the same procedure applied to the functio
Vl(f), which is more involved and will be presented in@16#.

1. Multilocal expansion for V̂
The tadpole-free functionalV̂l(f), defined in Eq.~31!,

can be written as a sum of multilocal interactions

V̂l~f!5 (
p.0

E
x1 , . . .xp

V(p)~fx1
, . . . ,fxp

,x1 , . . . ,xp!.

~C1!

Note that we are not even assuming here translational inv
ance. The translationally invariant case discussed in Sec.
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can be recovered by settingVl
(1)(f1 ,x1)5Û l(f1),

Vl
(2)(f1 ,f2 ,x1 ,x2)5V̂l(f1 ,f2 ,x12x2), etc. Since we

want to impose that eachV(p), p.1, has zero local part~this
is sufficient for our purpose!, we define @extending Eqs.
~17!,~18!#, respectively, the projection operatorP̄1, which
projects ap-local interaction on a local one, and the proje
tion operatorP1, which transforms ap-local interaction into
anotherp-local interaction as

~ P̄1A!~f,t !5E
x1 , . . . ,xp

dS t2
x11 . . . 1xp

p D
3A~f, . . . ,f,x1 , . . . ,xp! ~C2!

~P1A!~f1 , . . . ,fp ,x1 , . . . ,xp!

5d~x12x2! . . . d~x12xp!

3E
y1 , . . . ,yp

dS x12
y11 . . . 1yp

p D
3A~f1 , . . . ,fp ,y1 . . . yp!. ~C3!

The property

E
x1 , . . . ,xp

~P1A!~fx1
, . . . ,fxp

,x1 , . . . ,xp!

5E
t
~ P̄1A!~f t ,t !

5E
t
A~f t , . . . ,f t ,t, . . . ,t ! ~C4!

ensures that one can choose theV(p), p.1 in the decompo-
sition ~C1! to have no local part, i.e.,

P1Vl
(p)50 P̄1Vl

(p)50 ~C5!

for any l by applyingP1 and 12P1 act on both sides of the
Polchinski equation.

Since the modified Polchinski Eq.~32! concatenates two
operators, it is then easy to see that if theVl

(p) satisfy the
following set of equations:

] lV
(1)~f,t !5

1

2 (
p.0

(
q51

p21 E
x1 , . . . ,xp

dS t2
x11, . . . ,1xp

p D
3e]1, . . . ,qGl]

q11, . . . ,p
]1, . . . ,q]Gl]

q11, . . . ,p

3V(q)~fx1
, . . . ,fxq

,x1 , . . . ,xq!

3V(p2q)~fxq11
, . . . ,fxp

,xq11 , . . . ,xp!uf i5f

~C6!
2-19
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3] lV
(p)~fx1

, . . . ,fxq
,x1 , . . . ,xq!

5
1

2
S~12P1! (

q51

p21

e]1, . . . ,qGl]
q11, . . . ,p

3]1, . . . ,q]Gl]
q11, . . . ,p

3V(q)~fx1
, . . . ,fxq

,x1 , . . . ,xq!

3V(p2q)~fxq11
, . . . ,fxp

,xq11 , . . . ,xp! for p.1

~C7!

then Eq.~32! is obeyed byV̂l(f). Since we prefer to work
with symmetric functions we have defined the symmetri
tion operator:

SB(p)~f1 , . . . ,fp ,x1 , . . . .xp!

5
1

p! (
sPSp

B(p)@fs(1) , . . . ,fs(p) ,xs(1) , . . . ,xs(1)#,

~C8!

we have also defined the following shorthand notations~with
] i

a5]f
a
i ):

]1, . . . ,q]G]q11, . . . ,p5 (
a51

q

(
b5q11

p

]Gi j
xaxb] i

a] j
b , ~C9!

and similarly]G→G.
It is easy to see that ifV(1) is considered formally as

‘‘small’’ in some sense~e.g., controlled by a small paramet
such ase) then one can integrate exactly these equati
order by order inV(1) and check thatV(p)5O@V(1)p#. More
precisely, to a given order one can exactly integrate the eq
tions for higher point functions and reduce to a single eq
tion for V(1). This is the procedure that we now follow. Th
structure to the lowest-orderO@V(1)2# is simply a closed
equation forV(1) of the schematic form

] lV
(1)5 P̄1@V(1)* V(1)1O~V(1)3!#. ~C10!

To next-orderO@V(1)3#, one needs to solve the coupled s

] lV
(1)5 P̄1@V(1)* V(1)1V(1)* V(2)#1O@V(1)4#,

~C11!

] lV
(2)5~12P1!@V(1)* V(1)#. ~C12!

The second equation is explicitly integrated, which yie
V(2)@V(1)#, which is then substituted in the first equatio
producing a closed equation forV(1). This procedure can be
extended to any order inV(1). We now give the explicit
calculation.

2. RG equation up to order V „1…3

To ~lowest! orderV(1)2, the beta function is local inl as
the modified Polchinski equation itself and reads
05110
-

s

a-
-

s

] lV
(1)~f,t !5

1

2Ex1x2

dS t2
x11x2

2 D
3e]1Gl]

2
]1]Gl]

2V(1)~f1 ,x1!uf15f

3V(1)~f2 ,x2!uf25f ~C13!

up to terms of orderO@V(1)3#.
To next-orderV(1)3, as explained above, one first com

putes the bilocal operator as a function ofV(1). Its flow equa-
tion to the necessary order reads

] lVl
(2)~f1f2 ,x1x2!

5
1

2
e]1Gl]

2
]1]Gl]

2V(1)~f1 ,x1!V(1)~f2 ,x2!

2d~x12x2!E
y1y2

dS x12
y11y2

2 D
3e]1Gl]

2
]1]Gl]

2V(1)~f1 ,y1!V(1)~f2 ,y2!,

~C14!

up to O@V(1)3# terms. Integrating]mVm
(2)(f1f2 ,x1x2) using

Eq. ~C14! from 0 to l and substituting the result into th
equation forV(1) one finds the RG equation of the local pa
of the interaction to orderV(1)3:

] lV
(1)~f,t !5

1

2Ex1x2

dS t2
x11x2

2 D
3e]1Gl]

2
]1]Gl]

2V(1)~f1 ,x1!V(1)~f2 ,x2!

1
1

2Ex1x2x3

dS t2
x11x21x3

3 D
3e]12Gl]

3
]12]Gl]

3S E
0

l

dm ~C15!

3Fe]1Gm]2
]1]Gm]2Vm

(1)~f1 ,x1!uf15f

3Vm
(1)~f2 ,x2!uf25f2d~x12x2!

3E
y1y2

dS x12
y11y2

2 De]1Gm]2
]1]Gm]2

3Vm
(1)~f1 ,y1!uf15fVm

(1)~f2 ,y2!uf25fG
3Vl

(1)~f3 ,x3!uf35f) ~C16!

up to O@V(1)4# terms.

3. Translation invariant theory and loop expansion

In a spatially translational invariant theory, the local i
teraction does not depend explicitly on the space variabt,
2-20
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V(1)(f,t)5Û l(f). The above formulas, when expandin
the exponentials in a loop expansion, possess a repres
tion in terms of Feynman graphs as indicated in Fig.
Interestingly, all one-particle reducible graphs vanish d
to the property ] lGl

q5050 @c8(0)50#. In addition,

since each graph to orderÛ3 possesses a counterpa
with a minus sign which is the product of tw
~factorized! graphs with independent sets of loo
integrations, this automatically cancels all such~factorized!
graphs.

The RG equation, at any given order inÛ l , can be
further expanded in the number of loops by expand
the exponentials in Eq.~C15!. Let us give the specific resu
for the case of a diagonal Gaussian partGl ,i j

q 5d i j Gl
q , the

generalization being straightforward. To orderÛ l
3 and up to

two loops we obtain from Eq.~C15! the RG equation for
Û l(f) as:

] l Û l~f!5I l
DDl~f!1I l

FFl~f!1E
0

l

dm@ I lm
T Tlm~f!

1I lm
A Alm~f!1I lm

A8Alm8 ~f!#, ~C17!

up to O(Û l
4) terms, where the contraction graphs are

Dl~f!5] i j Û l~f!] i j Û l~f!, ~C18!

Fl~f!5] i jmÛ l~f!] i jmÛ l~f!, ~C19!

Tlm~f!5] i j Û l~f!] jmÛm~f!]miÛm~f!, ~C20!

Alm~f!5] i j Û l~f!] imnÛm~f!] jmnÛm~f!, ~C21!

Alm8 ~f!5] i j Ûm~f!] imnÛm~f!] jmnÛ l~f! , ~C22!

and the momenta graphs read

FIG. 4. Graphical representation of the expansion of the mo
fied RG equation in powers of the local part up toO@V(1)3#. The

points represent the verticesÛ l , the broken solid lines are propa
gators on shell]G, the full solid lines are propagatorsG, the indices
l or m are indicated at each vertex and at each bond. While the s
lines are necessarily present, additional dashed lines appear
arbitrary number when performing the loop expansion.
05110
ta-
.
e

g

I l
D5

1

2Eq
]Gl

qGl
q , ~C23!

I l
F5

1

4Eq1q2q3

dq11q21q3
]Gl

q1Gl
q2Gl

q3 , ~C24!

I lm
T 5E

q
Gl

q]Gl
q]Gm

q , ~C25!

I lm
A 5E

q1q2q3

~dq11q21q3
2dq21q3

!Gl
q1]Gl

q1Gm
q2]Gm

q3 ,

~C26!

I lm
A85E

q1q2q3

dq11q21q3
~ 1

2 ]Gl
q1Gl

q2Gl
q3]Gm

q1

1]Gl
q2Gl

q3Gl
q1]Gm

q1!. ~C27!

Note that to two loops the RG flow is generically nonlocal
l. The values of the above integrals will be computed in@16#.

4. RG equation for Ul„f…

The systematic expansion in multilocal interactions c
also be performed directly on the functionalV(f). The pro-
cedure parallels the previous section and its details are g
in @16#. Here we give only the result for a translational
invariant theory, for the RG flow of the functionUl(f) in
the translationally invariant case to orderUl

3 . We define

Plm~x1 , . . . ,xp ,]f1
, . . . ,]f3

!5]1, . . . ,p]G]1, . . . ,p

5 (
a,b51

p

]Gi j
xaxb] i

a] j
b , ~C28!

and similarly]G→G, as well as the operator

Klm~x1 ,x2 ,x3 ,]f1
,]f2

,]f3
!

5]123~]Gl2]Gl
x50!]123e2 ~1/2! ]123Glm]123

]12]Gm]3.

~C29!

It reads

i-

lid
an
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]Ul~f!52
1

2
~]Gl !ab

x50]a]bUl~f!2
1

4Ex1x2

dS x11x2

2 D ]12~]Gl2]Gl
x50!]12E

0

l

dm e2(1/2)]12Glm]12
]1]Gm

3]2Um~f1! uf15fUm~f2! uf25f2
1

4Ex1x2x3

dS x11x21x3

3 D
3E

0

l

dmFKlm~x1 ,x2 ,x3 ,]f1
,]f2

,]f3
!2KlmS x11x2

2
,
x11x2

2
,x3 ,]f1

,]f2
,]f3D G

3E
0

m

dne2(1/2)]12Gmn]12
]1]Gn]2Un~f1! uf15fUn~f2! uf25fUm~f3! uf35f . ~C30!
io
e
.
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G
-
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Again, the 1PR diagrams are eliminated by construct
since they have one pointxi on which one can integrat
freely, producing a]Gq50, which vanishes by construction
The loop expansion of this formula will be detailed in@16#.

5. Computation of the correlation functions via RG

The invariance of the generating functionalW(J) of the
~connected! correlation functions with respect tol is now
used as a tool for computing the correlation functions of
initial model S0. The expansion ofW(J) in powers of the
running interactionVl(f) reads formally to all orders

W~J!5
1

2
J:G:J1 (

m51

1`

km , ~C31!

where we have defined

mn5@eJ:G:Gl
21 :f

„Vl~f!…n#Gl
, ~C32!

Y5e2(1/2)J:G:Gl
21 :G:J, ~C33!

(
m51

1`

kmxm5 lnS 11Y(
n51

1`
~2x!n

n!
mnD . ~C34!

Up to second order, this expansion reduces to:

W~J!5
1

2
J:G:J2e2(1/2)J:G:Gl

21 :G:J@eJ:G:Gl
21 :fVl~f!#Gl

1
1

2
e2 ~1/2! J:G:Gl

21 :G:J@eJ:G:Gl
21 :fVl~f!2#Gl

2
1

2
~e2~1/2!J:G:Gl

21 :G:J@eJ:G:Gl
21 :fVl~f!#Gl

!2

1O~V l
3!. ~C35!

The interaction functionalV̂l(f) defined by Eq.~31! natu-
rally appears in the expansion ofW(J). Using the properties
~A1! and @A(f)#G5e(1/2)(d/df):G:(d/df)A(0), oneobtains:
05110
n

e

W~J!5
1

2
J:G:J2V̂l~G:J!1

1

2
@V l

2̂~G:J!2V̂ l
2~G:J!#

1O~V l
3!, ~C36!

where V l
2̂(c)5e(d/df1):Gl :(d/df2)V̂l(f1)V̂l(f2)uf15f25c .

On this expression, it becomes obvious thatW(J) is indeedl
independent~order by order!, as a consequence of the R
equation forV̂l(f). As is clear from these formulas, all ex
ternal legs of correlation functions will carry the propaga
G while all internal legs will carryGl .

We must now distinguish between the two methods t
consist of performing the multilocal expansion onVl(f),
V̂l(f), respectively. Before doing so, we give a formula,
Fourier representation, which is valid in both cases:

W~J!5
1

2
J:G:J2E

xK
Ûl

KeiK •(G:J)x

2E
xyKP

eiK •(G:J)x1 iP•(G:J)yS V̂l
KP~x2y!

2
1

2
~e2K•Gl

xy
•P21!Û l

KÛ l
PD

Û l
K5Ul

Ke2(1/2)K•Gl
x50

•K

V̂l
KP~x!5Vl

K,P~x!e2(1/2)K•Gl
x50

•K2(1/2)P•Gl
x50

•P2K•Gl
x
•P,

the way to compute the functionsÛ l and V̂l being however
different in each case. Inserting the corresponding form
for V̂l as a function ofÛ l yields expressions in terms ofÛ l
only, which we now give in each case~for variety, we also
alternate between the—equivalent—field and Fourier rep
sentations!.

a. Method withV̂l„f…

We start with the formalism using the multilocal expa
sion of V̂l . One finds
2-22
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W~J!5
1

2
J:G:J2E

x
Û l@~G:J!x#

1
1

2Exy
E

l 8.0
Fd l l 8~e]1Gl

x2y]221!

2u l l 8] l 8Fe]1G
l 8
x2y

]2
2d~x2y!E

z
e]1G

l 8
z

]2G
3Û l 8~f1!uf15(G:J)xÛ l 8~f2!uf25(G:J)yG ,

~C37!

up to O(U3) terms. We denoted l l 85d( l 2 l 8) and u l l 8
5u( l 2 l 8). From this formula, one can compute all co
nected correlations toO(U2). Let us give the self energy
defined as usual from the two-point functionC5G1dC as

S5C212G2152G21dCG211G21dCG21dCG21

1O~dC3!. ~C38!

It reads

S i j
q505] i] j Û l~0!2E

x
@~] i

1] j
11] i

1] j
2!~e]1Gl

x]2
21!

2] i
1] j

2]1Gx]2#Û l~f1!Û l~f2!uf i50 ,

Sq2Sq505E
x
~eiqx21!Sx, ~C39!

S i j
x 52] i

1] j
2E

l 8.0
@d l l 8~e]1Gl

x]2
2]1Gx]221!

2u l l 8]
1]Gl 8

x ]2e]1G
l 8
x

]2
#Û l 8~f1!Û l 8~f2!uf i50 .

Note that it involves a term with aG propagator.

b. Method withVl„f…

Inserting the multilocal expansion ofVl , Eq. ~C35! trans-
forms into an expansion in powers of the local interact
Ul(f):

W~J!5
1

2
J:G:J2E

x
E

K
Ûl

KeiK •Gx :J

1
1

2Exy
E

KP
eiK •Gx :J1 iP•Gy :J

3F Û l
KÛ l

P~e2K•Gl
x2y

•P21!

2E
0

l

dl8Û l 8
K Ûl 8

P ] l 8S e2K•G
l 8
x2y

•P2d~x2y!
05110
E
z
e2K•G

l 8
z
•P1K•(Gl

z
2Gl

0)•PD G1O~U3! . ~C40!

Using the RG equation forUl , it is easily checked again tha
this expression isl-independent order by order. From E
~C37!, one can compute the self energySq of the theory.
One gets to orderUl

2 :

S i j
q5052E

K
KiK jUl

Ke2(1/2)KGl
x50K1E

KP
@KiK jAl

KP~q50!

1Ki PjBl
KP~q50!#, ~C41!

Sq2Sq505E
KP

Ki Pj@Bl
KP~q!2Bl

KP~q50!#,

where

Al
KP~q!5E

l 8.0
Ul 8

K Ul 8
P e2(1/2)~KG

l 8
x50

K1PG
l 8
x50

P!

3H d l 2 l 8E
x
eiqx~e2KGl

xP21! ~C42!

1u l 2 l 8E
x
@eiqx2eK•(Gl

x
2Gl

0)•P#K]Gl 8
x Pe2KG

l 8
x

PJ
~C43!

Bl
KP~q!5E

l 8.0
Ul 8

K Ul 8
P e2(1/2)~KG

l 8
x50

K1PG
l 8
x50

P!

3H d l 2 l 8E
x
eiqx~e2KGl

xP1KG0
xP21!

1u l 2 l 8E
x
@eiqx2eK•(Gl

x
2Gl

0)•P#K]Gl 8
x Pe2KG

l 8
x

PJ .

~C44!

APPENDIX D: DIMENSIONAL REDUCTION
FROM GRAPHS

1. Perturbation theory

In this appendix, we sketch diagrammatically how t
perturbation expansion inR of the average of any observab
A@u# at T50 is the same as the one that would be obtain
in the Gaussian theory corresponding to a simple rand
force.

Precisely, the actions

S@u#5
1

2T (
a
E

xy
ux

a~Ḡ21!xyuy
a2

1

2T2 (
ab

E
x
R~ux

a2ux
b!,

~D1!

and

Srf@u#5
1

22R9~0!
(
ab

E
xy

ux
a
„~Ḡ* Ḡ!21

…

xyuy
b ~D2!
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where (Ḡ* Ḡ)x5*zḠ
x2zḠz yield the same results whe

computing the average of any functionalA@u# of the repli-
cated field atT50, e.g.,A@u#5) iuxi

ai ~see Fig. 5!.

To this aim, one must first show that the perturbati
expansion within Eq.~D1! is well defined atT50. We use a
diagrammatics with propagator

^ux
auy

b&5TdabḠ
xy, ~D3!

which conserves the replica index, and vertex

2
1

2T2 (
ab

E
x
R~ux

a2ux
b! ~D4!

associated toonepoint in space but involving a summatio
over two replica indices. Thus, we choose to split the ver
into two subvertices corresponding to each replica index

For any graph occurring in the computation
^A@u#Rp&S

c , let us denote byk the number of lines connect
ing A to the vertices~involving the extraction ofk legs from
A: ]u

x1

a1 . . . u
xk

akA@u#). Let K be the graph obtained by consid

ering only the splitted vertices, the propagators betw
them, forgetting the observable and thek lines attached to it.
The graphK hasv52p subvertices. Contrarily to the initia
graph with unsplitted vertices,K is not necessarily connecte
and is made ofc connected components. To each one cor
sponds a replica index. If one of them is not connected to
observable, i.e., if it does not inherit from a replica ind
contained inA, then the summation over this index is fre
giving a factorn. Hence, each connected component has
be linked to the observable in order to survive then→0
limit, which yieldsk>c.

Collecting the factors ofT in front of the initial graph (K,
A, the k propagators, and possiblyt tadpoles onA), the
power of T is t1e1k2v wheree is the number of propa
gators inK. Euler relation inK readsv1 l 5c1e wherel is
the number of loops inK. But sincek>c andl>0,t>0, one

FIG. 5. Typical graph contributing to the computation of t
average of an observableA to third order (p53) in perturbation
theory. Note here thatv52p56, t51, k53, e54, c53, and l
51.
05110
x

n

-
e

o

obtains that each graph is in factor of a non-negative po
of T. The existence of theT50 perturbation theory is thus
confirmed.

The graphs that remain atT50 havet50, l 50, k5c,
which means the following properties:~i! their subgraphK
has no loop, each of its connected component is a tree,~ii !
there is no tadpole onA, ~iii ! A is linked to each connecte
component ofK by one unique propagator. This result
easily extended to a non-Gaussian disorder, which pos
higher cumulants of the general form~57!.

The second part of the argument uses the property
translation invariance inu space of the disorder distribution
on which the first part does not rely. Since each connec
component ofK is linked toA, let us callroot the point to
which it is attached. This provides a natural orientation to
branchesof the trees from root toleaves. If any point ofK
possess at least a branch going to the direction of the lea
the graph obtained by mounting this branch to the comp
ion point ~which belongs to the sameR before splitting! has
the opposite value. One can convince oneself that s
graphs can be grouped by mutually canceling pairs. Thus,
only graphs that survive to this mounting operation look li
flowers, with A at the center and petalsR made of two propa-
gators~see Fig. 6!.

The generalization including higher cumulants is straig
forward, but yields a non-Gaussian theory. The correspo
ing equivalent action for computing observables is

Srf@u#5
1

2T (
a
E

xy
ux

a~Ḡ21!xyuy
a

2 (
N>2

1

N!TN
]1, . . . ,NS(N)~0 . . . 0!E

x
S (

a
ux

aD N

.

Even if this is not obvious on its expression,Srf@u# possesses
statistical tilt symmetry as can be checked thanks ton→0.

2. Corrections to R

The computation of the effective actionG ~1PI! involves
corrections to the various cumulants of the disorder. AtT
50, the graphs correcting aN replica term (Nth cumulant! is
made ofN connected components, so that there exists a
sum overN replica indices. The power ofT in front of such
a cumulant has to be2N. The graphs correctingR with p

FIG. 6. Vanishing contribution to the average ofA: the second
graph is obtained by mounting a branch to the first graph. The o
remaining graphs are simple ‘‘flowers.’’
2-24
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R’s are made of two connected components (c52), the
power ofT is e2v wheree is the number of propagators an
v52p. Euler relation yieldse2v5 l 2c>22 with equality
for l 50. Hence, such graphs are made of two trees.

Furthermore, the graphs such that the two points o
splitted R are connected to the same connected compo
and such that one of them is connected to at least
branches vanish. This can be seen by mounting one of t
two branches on the companion point. Hence, if two poi
of a R belong to the same connected component, then e
one is connected to a unique branch. As a corrollary, the
points of anR cannot be connected to each other by a bra
~since it would be impossible to connect thisR to the rest of
the diagram thanks to the argument above!.

This considerably reduces the form of the possible corr
tions toR. These corrections obey in particular

dR5~e24z!R1zuR81 (
p.0

S d

duD 4(p21)

Rp, ~D5!

where the last term symbolically only means that thepth
order term contains 4(p21) derivatives@not that it is a total
4(p21) derivative#. We allowed for a field rescaling with
exponentz. To orderR3 the arguments above allow only fo
the following corrections

dR5~e24z!R1zuR81K@ 1
2 R922R9R9~0!#

1A@R92R9~0!#R-21C@R92R9~0!#2Riv,

with some constantsK, A, andC, and valid only for an ana-
lytic R(u). In the periodic case (z50), the fixed point equa-
tion is easily solved since there exists to any order ine a
fixed point function of the form

R* ~u!5a1bu~12u!1c@u~12u!#2, ~D6!

wherea,b,c can be computed in series ofe, once the coef-
ficients of the fixed point equation are known. This is furth
examined in Appendix F.

APPENDIX E: VARIATIONAL CALCULATION

Here we sketch the derivation of the scaling function
the confined interface using the replica variational meth
extending the explicit solution of Ref.@31# to a nonzero
mass. We use all notations of Ref.@31# and Ref.@27#.

The disorder correlator for the random-field problem stu
ied here corresponds to the caseg51/2 andg5s for the
parameters of Ref.@31#. Applying the variational ansatz fo
N51 components yields the functionf̃ (x)5ĝAr f

21x, which

describes the correlations, andĝ5sA2/p. We have artifi-
cially extended the correlator to small scales, so as to ob
a well-definedT50 limit. The large scale results howeve
are independent of the small scale details in the limit of sm
m. The variational equation reads

@r f
212TB~u!#3/25ĝ j D$@s#~u!1m2%2e/2, ~E1!
05110
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with j D5*k(k
211)225G(22d/2)/(4p)(d/2) and the

equation for the breakpoint~see Ref. @27#! is: @r f
2

12TB(uc)#3/25ĝ j D(Sc1m2)2e/2. This yields the solution:

@s#~u!1m25Au2/u5Sc~u/uc!
2/uu* ,u,uc , ~E2!

s~u!5s~0!5Au/2
2

22u
m22uu,u* , ~E3!

and @s#(u)5Sc for u.uc . Here u5(62e)/3 is the free
energy fluctuation exponent andA5@(e/6T)ĝ2/3j D

21/3#2/u.
This solution allows us to compute the smallq behavior of
the correlation~for small m;q) as

uqu2q5
T

q21m2 S 11E
uc(m2/Sc)u/2

du

u2

Sc~u/uc!
(2/u)2m2

q21Sc~u/uc!
(2/u)

,

1s~0!
1

q21m2D ,

which yields the large scale result~116! given in the text. In
D50 one recovers the result of@32#

u25
3

~4p!1/3
m28/3s2/3. ~E4!

APPENDIX F: FRG TO TWO LOOPS

The EMRG method allows to obtain the FRG equation
two loops both at zero and finite temperature.

1. Method with V
The exact RG equation to orderU3 given in Appendix C4

when expanded to two loops yields the following finit
temperature RG equation forR̃l(u) at largel for the periodic
case~the derivation is detailed in@16#!:

] l R̃l5eR̃l1T̂l R̃l91KlmS 1

2
R̃m9 ~u!22R̃m9 ~0!R̃m9 ~u! D

1KA@R̃92R̃9~0!#R̃-21KC@R̃92R̃9~0!#2R̃-8

1KS]12S̃l~u,u,0!1T̂lKlm
E $R̃m

iv@R̃m9 ~u!2R̃m9 ~0!#

2R̃m-8~0!R̃m9 %1T̂lKlm
F R̃m-

2 . ~F1!

In this formula, all terms of orderR2 and higher are retarded
and integrals*0

l dm are understood. For theR3 terms we have
omitted the retardation integrals~which involve an additional
integral*0

mdn) because near the fixed point they can be
placed by a single number. The feedback of the three-rep
term is through its partial derivatives. This three-replica te
satisfies its own RG equation given in@16#. The precise val-
ues of all coefficients are detailed in@16# where the largel
limit is also studied, using the fact thatT̂l→0, property~93!
and the third cumulant RG equation that admits the fix
point value~80!.
2-25
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On the other hand, one can also directly work atT50.
Then one obtains@16# the following fixed-point equation for
the general casez>0:

05] l R̃5~e24z!R̃1zuR̃81F1

2
~R̃9!22R̃9~0!R̃9G

~F2!

1F1

2
1K̄CG$~R̃-!2@R̃92R̃9~0!#2R̃-~01!2R̃9%

~F3!

1K̄CR̃iv@R̃92R̃9~0!#2 ~F4!

1zS E
0

l

dl8l 8K̄ l 8D H uR̃-@R̃92R̃9~0!# ~F5!

24F1

2
~R̃9!22R̃9~0!R̃9G J , ~F6!

we have absorbed inR̃ the exact one-loop coefficientK ob-
tained in Eq.~68!. The third line comes from retardation o
the flow expanding to first order inz. This complicated-
looking equation can be simplified drastically. First, it d
pends on only one nonuniversal coefficientK̄C. In terms of
the cutoff functionc(s)5*aĉ(a)e2as ~or its expression as a
sum of exponentials! one has:

K5
1

2~2p!d/2 F11eS 1

2
2E

a
ĉ~a!ln a

1
3

2Eab
ĉ~a!ĉ~b!ln~a1b! D G ,

K̄C52E
a
ĉ~a!ln a1E

ab
ĉ~a!ĉ~b!ln~a1b!

5E
0

`

ds
c~s!@12c~s!#

s
,

to the desired order ine. The other coefficient is not inde
pendent since:

E
l
l K̄ l5

2

S4
E

l
le22lE

q
c8~q2/2!c8~q2/2e22l !1O~e!

~F7!

5K̄C1O~e!. ~F8!
05110
Then, one can use the one loop equation (e22z)R* 9
1zuR* -52$R* -8@R* 92R* 9(0)#1(R* -)2%1O(e3) to
eliminate the term containing the fourth derivative and o
gets after some manipulations absorbing an extra
22eK̄C) coefficient inR the universal two loop fixed poin
RG equation:

05~e24z!R* 1zuR* 81F1

2
~R* 9!22R* 9~0!R* 9G

~F9!

1
1

2
@~R* -!2$R* 92R* 9~0!%2R* -~01!2R* 9#,

~F10!

which coincide with the one obtained in@15# by a different
method. For short range disorder, study of this fixed-po
equation yields@15# no supercusp and the roughness exp
nentz50.208 298 04e10.006 858e2.

2. Method with V̂
The method using the Wick ordered functional can a

be used. Using the RG equation to third order inÛ and
two-loops~C17! one finds the equation for the correspondi
two replica part ofÛ:

] l R̃l5~e24z!R̃l1zuR̃l81KS 1

2
R̃l9~u!22R̃l9~0!R̃l9~u! D

1KA@R̃92R̃9~0!#R̃-21T̂lKl
FR̃l-

2 , ~F11!

with:

K52
4

T2
I l

DL l
e , ~F12!

Klm
A 5

4

T4
~ I lm

A 1I lm
A8!, ~F13!

Klm
F 52

6

T2
I l

FL l
e , ~F14!

where the integrals have been defined in Sec. III 3. Calc
tion shows that the constantKA51/2 ~to lowest order ine)
independent of the cutoff functionc(s). The coefficient of
this term is in agreement with@19,15#. The analysis of the
boundary layer is more intricate in this formulation@16#.
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