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Random dynamics of the Hodgkin-Huxley neuron model
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Noise can alter the response of neurons, enhancing their ability to detect weak inputs. We analyze how the
Hodgkin-Huxley equations, a canonical neuron model, respond to white noise stimulation. We show that this
model possesses a stochastic attractor, reduced to a unique stochastic equilibrium point that attracts all trajec-
tories.
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Neurons operate in fluctuating environments and are alsimitial points, the densityp(V,m,h,n,t) of the solutions of
subject to internal variability. Both sources of noise play anEq. (1) eventually stabilizes ap*. Practically, p* is the
important part in shaping the response of neuffdjsNota-  distribution of the values taken by any solution of E)
bly, they can increase their sensitivity to weak stinf@l, a  over a long time interval. For the HH modegh* has a
feature that may present behaviofdl and biomedical[4] = Gaussian-like shape centered on the equilibrium point, at low
advantages. The purpose of the present study is to analyzmise intensities. It takes on a different form due to noise
how neurons respond to noiselike inputs. The applications ahduced firing at large noise levels. For instance the joint
the understanding gained in this way are twofold. On the onelistribution of V andn presents a marked loop representing
hand, it sheds light on the mechanisms underlying the influfrequent noise induced suprathreshold excursions and the re-
ence of noise on neuronal coding. On the other hand, it desulting action potentials. The progressive transformation
termines how such inputs — which occur in central neurongrom the former to the lattefFig. 1) takes place in a narrow
[5], and have been extensively used in experimghiffl —  noise range, previously referred to as noise induced transi-
are encoded. To carry out our program, we investigated théon [9,10]. This phenomenon has been also observed and
random dynamics of a canonical neuron model, namely thanalyzed in other neuronal models, such as the FitzHugh-

Hodgkin-Huxley(HH) equationd8]. Nagumo, the active rotator and the leaky integrator, and its
The stochastic HH equations form a system of four dif-implication for neuronal coding, notably spike timing preci-
ferential equations: sion has been analyzed and discussef®#l2).

The stationary distributiop* contains only partial infor-
mation about the behavior of the stochastic system(Ex.
because it provides a static picture. The present work is con-
cerned with dynamical aspects, notably the phase portrait of

dv 3 4
EZGNam h(Vna— V) +Gkn*(Vk—V)+G|(V,— V) + &,

[ _ the random dynamical systefRDS) defined by Eq(1). In a
dx, X, (V)—x i N . : :
= 1<i<3, (1) deterministic dynamical system, the phase portrait depicts
dt (V) the general organization of the trajectories in the phase

space. It is constructed by computing the orbits of initial

whereC is the membrane capacitan€&y,, Gk, andG, are  conditions. Similar studies are possible for RDSs. We pro-
the maximal sodium, potassium, and leak conductances novide a brief description of the concepts used in our study,
malized by membrane capacitan€g,Vy,, Vi, andV, are  and refer to the comprehensive monograp8] for a thor-
the corresponding reversal potentials, afids the white  ough treatment.
Gaussian noise of intensity. In the second equatior; , X,, We label byw a given sample path of the noiggt),
andxs represent the gating variables h, andn. The param-
eter values and the auxiliary functions are the same as ir, 38
[9,10]. They satisfy 8<x.<1 and7.>0. In the absence of = *
noise, the HH model has a unique globally asymptotically
stable equilibrium point, which represents the resting state of
neuronal membrane.

The transition probability density functio’DF) associ-
ated with Eq(1) represents the probabi_li.ty toreach any point 5 4. Stationary distribution of the HH model. The joint dis-
X=(V,m,h,n) at a timet, given the position of the system at yipytion is shown in thev-n phase plane. Noise intensities are
a times, with s<t. In the long run, i.e.f— the transition -1 (left pane) and 2.5 (msY2 wAlcm? (right pane). Histograms
PDF becomes independent from the initial state: it representgere constructed from 10 000 simulated units using bin size 1 mV
the stationary distributiop* of the system. In other words, in along theV axis and 0.01 along axis. V is expressed in mVi
starting from any initial distributiorpg=p(V,m,h,n,0) of is dimensionless, and the vertical axis is in 1/mV.
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formally, we writew={&(t)} _.~t~., and we denote bf}, . 0

the set of allw. Schematically, for a fixed, Eq. (1) can be lim u(t=0t",up,w)= lim e up+ J',egsf(s)ds
studied in the same way as a nonautonomous deterministic t'—-= oo i

system. For instance, one can wonder whether it possesses an

attractor, and if so, what the structure of this attractor is. - J' 0 e9%(s)ds

Carrying such a task for allbb would be daunting. Fortu- —w

nately, it is unnecessary. The random dynamical system .
theory provides the proper framework to derive the behavior =u"(0,0). (4)
of the system and representative phase portraits for typical . ,
sample pathso, and even discuss qualitative changes in!NUS the pullback shows that E@) has a unique stochastic
these based upon single solutions of EY. The following _eqU|I|br|um point which is globally asymptotlca_lly stable,
paragraphs clarify these general considerations; first throughf- attracts all other solutions. Furthermore, using the pull-
the discussion of a significant example, and then through th ka method, this stochastic equilibrium is represented by
analysis of the stochastic HH dynamics. Rigorous definitiond” (0:»), which does not depend on time any more: in other
and mathematical analyses can be founfLis. words, it is a random variable, rather than a stochastic
We consider a system satisfying process. _ _
The above example illustrates the concept of stochastic
du fixed points and the pull-back method that can be used to
— =—gu+&(t), 2) obtain information about the phase portrait of noisy systems.
dt A concept, more general than equilibria, used in the descrip-
tion of the asymptotic behavior of deterministic dynamical
whereg>0 is constant, and(t) is the white Gaussian noise systems is that of attract¢i4]. Essentially, a deterministic
of intensityo. The solution of Eq(2), taking the valualy at  dynamical system possesses an attractor when all trajectories
t=t’, and the noise sample pathcan be formally written as  eventually enter and remain within some bounded region of
the phase space. This concept can be extended to stochastic
systems in the same way that was discussed for equilibria
[13]. Schematically, a random dynamical system possesses a
stochastic attractoA(w) if for almost all w, all trajectories

Clearly, except for particular, unrepresentative realization$tarted at’=—cc are within a bounded regioB(w) at the
, these solutions do not stabilize at a constant or periodiéme t=0. In such a case the stochastic attracigw) is
behavior, but display sustained undamped irregular fluctuahat “remains” att=0 from the pull-back method when
tions throughout time. These oscillations not withstandingt’ — — - For example, for Eq(2), the stochastic attractor is

for a fixedw, the difference between any two solutions tends? Single pointA(w) ={u* (0,)}. In the following, we argue
exponentially fast to zero:u(t,t’,ug,@)—u(t,t’,u;,w) thatthe situation is similar for the stochastic HH model. To

= exp(—g(t—t'))(up—uy). In fact all solutions converge to a this end, first we show the existence of a stochastic attractor
single oneu* (t,w) = ' exd—g(t—9)]&9)ds This specific for this model, and then determine its nature from numerical

solution plays an important part in the phase portrait of the0mputations. _ .
stochastic system. The fact that Eq(1) possesses a stochastic attractor is due

Each random selection af yields a different realization © WO properties. The first is that the gating variabiesh,
of U*, so thatu* is a stochastic process. In fact* is a andn are _bou_nded between zero and_or_le, _regardless of the
stationary stochastic process, in the sense that its mean, va joIse realllzatllonu. The second is the similarity betwgen the
ance, autocorrelation, and other higher order moments do n fst equanpn in Eq(1) and Eq.§2). Indeed, the equation for
depend on time. In this respeat* is time-invariant and "€ dynamics ol can be rewritten as
plays the same role as an equilibrium for deterministic dy- qv
namical systems. Such stationary processes solutions of sto- —=G(t)(alt)—V)+¢, (5)
chastic differential equations are referred to as stochastic dt
equilibrium points.

As pointed out above, solutions of E@) keep fluctuat- Where  G(t)=Gy,m*h+G,n*+ G, and  a(t)
ing throughout time. This makes it impossible to actually =(GnaM’hVyat Gin*Ve+GV))/G(t), so that G<G
represent a stochastic equilibrium point by a single point as~G(t) <(Gnat Gkt G)) and miny,)<a(t)<max(Vi,),
t—o. More generally, one encounters the same difficulty forvhere Ve, =Vya, Vi or V. Defining v andy as v(t)
representing attractors of stochastic systems because they ard _..exp(—JG()dnG(s)a()ds and y=V-v—u*, we
time-dependent. The way out of this is the pull-back methodhave
rather than starting the system at titrie=0 and examining g
the asymptotic regime as—«, the system is initiated at y *
some timet’ in the past, i.e.t’<0, and allowed to run until ar - CWyr@-GmuT(te), ©)
t=0, and the asymptotic behaviot— —< is investigated.
Let us illustrate this with Eq(2). Takingt=0 and the limit  so that forg satisfying 0<g<G,, there exist positive con-
t'— —o in Eq. (3) yields stantsg and vy such that

, t
u(t,t’,ug,m)=e 9"t )u0+f e 9-9¢(s)ds. ()
t/
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y €
Gr =AY U (L)), Y] 2
dt S
g 04 ;
so that, with notations similar to E¢3), we have 3 .06 "
g ‘g
g 08 ‘
ey

, t
Y2(t,t',yo,w)<e A-t)y24 7f e A9 u*(s,w)]?ds.
t/

®) noise intensity
Using the pull-back, method, i.e., settihg 0 andt’ — —, FIG. 2. The first three Lyapunov exponents of the HH mditel
we have ms %) against noise intensityn (m9*?x Alcm?]. For each noise
amplitude, the exponents were estimated from eight simulations
. ) , 0 - 2 lasting 100 000 ms, from which the starting 5000 ms were dis-
lim y“(0t’,yo,w)< ® [U*(s,w)]°ds. (9 carded, using the algorithm ifL7], with a step of 0.05 ms. The

t'——w

fourth Lyapunov exponent was also compu¢edt shown and was

. found to decrease from 5.3 to — 9.8 for the same noise range.
The above shows that there is a bour(d) for the pullback

of y. Given thatV=y+v+u*, and that the pullback of each | conclusion, we analyzed the dynamics of a noisy ca-
of these three quantities is bounded, the same holds for th@bnical neuron model, namely the HH equations, from the
of V. Combining this with the boundedness of the gatingperspective of random dynamical system theory. We showed
variables suffices to establish the existence of a stochastiat this system possesses a stochastic attractor that is in fact
attractorA(w) for Eq. (1) [13]. In the following, we discuss g single globally asymptotically stable stochastic equilibrium
the structure of this attractor. point. In the following paragraphs, we discuss first the gen-
At the limit of zero noise, the stochastic attractor is re-erality of the results, and then their implications in terms of
duced to the unique equilibrium point of the HH, and theneuronal coding.
system is globally asymptotically stable. The situation is the The first stage of our study consisted in proving the exis-
same at low noise levels, in the sense that the random dyence of a stochastic attractor for the HH model. The proof
namical system remains globally asymptotically stable with &elied only on two properties of these equations, one that the
unique stochastic equilibrium point playing the same role agjating variables are bounded, and second that the equation
that of the deterministic system. In other words, the |0Wgoverning the dynamics of has a linear dependence on this
noise behavior of stochastic HH equations is similar to that/ariable, with bounded coefficients. These two properties are
of Eq. (2). Given that the shape of the stationary distributionsactually shared by all HH-type equations, modeling electrical
p* changes when noise is increas&dy. 1), the question is  activity of cellular membranes, regardless of the number of
whether this noise induced transition is concurrent with agating variables and transmembranar currents they imple-
qualitative change in the stochastic attractor of the modelment. So that, our work establishes that all such biophysical
Such a qualitative change is referred to as a dynamical stqnembrane models possess stochastic attractors. The nature

chastic bifurcation[13]. For a random dynamical system, of this attractor is model dependent. For the HH model, we
stochastic bifurcations are detected as a sign change in the

Lyapunov exponents of the system. These exponents are de-
fined in a way similar to those of deterministic dynamical
systems, and thanks to the ergodicity of the stochastic sys-
tem, they take on the same value for almost all initial condi-
tions and almost all noise sample path This same ergod-
icity ensures in fact that when the dynamics of the system are
confined within some bounded region, a negative leading
Lyapunov exponent implies that the solutions eventually

converge to a finite number of stochastic equiliri&,16. 8'2 g'g
In this sense, a negative Lyapunov exponent in a random 04 S 04
dynamical system is more restrictive than negative real parts 02| ° 02

of the eigenvalues of the Jacobian matrix at an equilibrium
point of a deterministic dynamical system.
Figure 2 represents the Lyapunov exponents of @&.
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against the noise intensity. All four exponents are negative g 3. pulibacks of the noisy HH model far=3, at t=
and remain so at all noise levels, thus ruling out the presence ; ms (upper left pang| t'=—5 ms (upper right pang| t’ =
of dynamical stochastic bifurcations in this system. These- 29 ms(lower left panel, andt’ = —50 ms(lower right pane),
results suggest that the stochastic attraétan) is restricted  for a starting grid ofN=10000 initial conditions positioned at
to a single stochastic equilibrium point at all noise levels.v(t')=V,+(j—1)(Vna—Vk)/N,  m(t’)=m.(V(t’)), h(t")
Pull-backs(Fig. 3) and time reversed simulations run at sev-=n(t’)=1/2N+ (k—1)/N, with j, k=1, --- N. AbscissaeV (in
eral noise levels agreed with the above regudtt shown. mV), ordinatesn (dimensionless
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found it to be a single stochastic equilibrium point. This bal asymptotic stability of the stochastic equilibrium point

result generalizes our previous analysis carried in the case #feans that to each input realizatian there corresponds a

the leaky integrate and fire model2]. unigue asymptotic response. In other words, if an HH model
For the HH model, our results reveal a striking difference!S Presented with the same input realizationat different

o . . _gccasions, it will present the same respo(massibly after a
between the response to periodic stimulation and fluctuatmgransienl even ifFi)nitiaIIy it was at a difr;erent sta¥e. In this

noise like inputs. Indeed, for the former, increasing the iNpUkense, the response evoked by such inputs is reliable, a phe-
amplitude leads to successive bifurcations separating resomenon that has been observed in a large number of experi-
gimes, such as subthreshold oscillations and suprathreshatdental preparations, including invertebrate as well as verte-

phase lockings. In contrast, modifying the intensity of thebrate neuron$7].
noiselike inputs does not induce any dynamic stochastic bi- k p_\would like to thank Professor Ludwig Arnold for

furcation as attested by the constant sign of the Lyapunoguggesting the method to prove that HH equations admit a
exponents. From the standpoint of neuronal coding, this glostochastic attractor.
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