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Critical behavior of propagation on small-world networks
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We report numerical evidence that an epidemiclike model, which can be interpreted as the propagation of a
rumor, exhibits critical behavior at a finite randomness of the underlying small-world network. The transition
occurs between a regime where the rumor “dies” in a small neighborhood of its origin, and a regime where it
spreads over a finite fraction of the whole population. Critical exponents are evaluated through finite-size
scaling analysis, and the dependence of the critical randomness with the network connectivity is studied. The
behavior of this system as a function of the small-network randomness bears noticeable similarities with an
epidemiological model reported recenfM. Kuperman and G. Abramson, Phys. Rev. L88, 2909(2001)],
in spite of substantial differences in the respective dynamical rules.
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Small-world networks have been introduced as an intertion, the number of | elements increases. Since this also im-
polation between ordered and random graphs, to capture twalies a growth of the R population, the contacts of | elements
specific features of real neural, social, and technological nebetween themselves and with R elements become more fre-
works[1,2]. On one hand, they have a relatively large clus-quent. After a while, in consequence, the | population begins
tering coefficient, i.e., the probability that two neighbors of ato decline. Eventually, it vanishes and the evolution stops. At
given vertex are in turn mutual neighbors is high, as in orthe end,Ng elements—now in the refractory state—have
dered graphs. On the other, the typical separation betwedreen infected at some stage during the evolution. Numerical
two vertices is much smaller than the total number of verti-simulations and analytical results show that, generaily,
ces, as in random graphs. Whereas the geometrical propertiegN. Therefore, there is a fraction of the population that
of small-world networks have been studied in deftai-10, never hears the rumor. In the original version of this model,
less attention has been paid to the dynamical properties r@ach | element is allowed to contact at random any other
sulting from their partially random structuf®,10-14. As  element of the population. It has been proven that, in such
explained in more detail below, the structure of small-worldsituation, the ratioNg/N approaches a well-defined limit,
networks is parametrized by the randomnpssherep=0 Ngr/N=0.7% ..., for asymptotically large values oN
andp=1 correspond to fully ordered and random networks,[16,17].
respectively. It has been shown that, in asymptotically large Here, in contrast, we assume that the elements are situated
small-world networks, statistical geometrical properties—at the vertices of a small-world network, and contacts can be
such as the mean distance between vertices—exhibit qualit@stablished between linked elements only. The small-world
tively the same behavior for any>0. Here, we study an network is constructed from a one-dimensional ordered net-
epidemiclike propagation process on a small-world networkwork with periodic boundary conditions—a ring—where
which in contrast with geometrical properties, shows a traneach node is linked to itsk nearest neighbors, i.e., to the
sition between two qualitatively different dynamical regimesnearest neighbors clockwise and counterclockwisg,12.
at a finite value ofp. Since this model addresses a socialThen, each of th& clockwise connections of each nodis
process and small-world networks are a presumably realisticewired with probabilityp to a randomly chosen nodenot
representation of social networks, the analysis could be rebelonging to the neighborhood ofA shortcut between two
evant to the description of threshold phenomena in real sostherwise distant regions is thus created. Double and mul-
cieties. tiple links are forbidden, and realizations where the small-

Our model[13,14] consists of arN-element population world network becomes disconnected are discarded. As ad-
where, at each time step, each element adopts one of threanced above, the paramefemeasures the randomness of
possible states. By analogy with epidemiological SIR modelsghe resulting small-world network. Note that, independently
[15], these states are called susceptilde infected(l), and  of the value ofp, the average number of links per site is
refractory (R). The evolution proceeds as follows. At each always XK. We have performed series of ¥l 1P numeri-
time step a randomly chosen infected elemetntacts an- cal realizations of the model for several valuesppN, and
other elemenj. Then, (i) if j is in the susceptible state, it K. At each realization, the small-world network was gener-
becomes infected(ii) if, on the contrary,j is infected or ated anew and the evolution was recorded until the exhaus-
refractory,i becomes refractory. These rules are better intertion of the | population.
preted in the frame of a rumor spreading process, where S In the first place, we have studied the distribution of the
elements have not heard the rumor yet, | elements have heandmberNg of R elements at the end of the evolution #r
the rumor and are willing to transmit it, and R elements have=2. Figure 1 shows the normalized frequenifiNg) ob-
lost their interest in the rumor and do not transmit it. Ini- tained from series of Prealizations for selected values of
tially, only one element is infected and the remaindg 1  andN. For small randomnegp=0.05, Fig. 1a)] the distri-
elements are susceptible. During the first stage of the evolusution is approximately exponential and does not depend on
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FIG. 2. Average fractiom =(Ng/N) of refractory elements at

the end of the evolution as a function of the randomnesm a

all-world network withK=2, and forN=10° (doty, N= 10"

(dashed ling N=10° (dotted ling, and N=1C° (full line). The

ert shows a close-up in the transition zone. The arrow indicates

the critical value ofp, determined as explained in the text.

Y mediate regime, just before the larljg-structure begins to
build up, is illustrated in Fig. (b) for p=0.19. The fre-
quency follows here a power lawf(Ng)~Ng* with
a~1.5, over a substantial interval. This interval is limited by
above by a smooth cutoff, which shifts to larger valueslgf

NA, with 8~0.5.
The appearance of a well-defined power-law distribution

is a clue to the critical-phenomenon nature of the transition

m the regime where the rumor remains localized to the

regime where it spreads over a finite fraction of the popula-
tion. To characterize the transition, we choose as an order

FIG. 1. Frequency distribution of the numidég of R elements  parameter the average fractidig/N of R elements at the
at the end of the evolution, foKk=2 and (a) p=0.05, (b) p end of the process,

=0.19, and(c) p=0.3. Different symbols correspond té=10°
(crossel N=10* (empty doty, andN=10° (full dots). In (b), the
dotted straight line has a slope fL.5. The dotted curve ifc) is a
schematic representation of theindependent profile observed for
smallNg . Note carefully the different scales of the three plots.

N
r=<r\|R/N>:N—1N20 Ngf(Ng), (1)

which can be straightforwardly calculated from the numeri-

cal results. In the small-randomness regime, wHéNy) is
N. In this regime, the rumor “dies” after a few time steps in independent ofN, we expectr~N~!, so thatr—0 asN
a small neighborhood of its origin, due to the loss of interest—cc. For largep, in contrast, the presence of the laflyg-
of the highly interconnected elements close to the initiallymaximum inf(Ng) should provide a finite contribution tio
infected site. Therefore, the sikeof the whole population is even for asymptotically large populations. These features are
irrelevant to the value oNg. The situation is considerably verified in numerical realizations. Figure 2 showas a func-
different for relatively large randomnepp=0.3, Fig. 1c)]. tion of p, calculated in series of @0 10* realizations foN
Here the distributionf(Ng) is bimodal, with a maximum ranging from 18 to 1¢® andK=2. A well-defined transition

close toNg=0 (not shown in the figuneand an additional at

a finite randomnesg,~0.2 is apparent for larghl. The

bump for largeMr. NearNg=0, the frequency is indepen- insert of Fig. 2 shows a close-up of the main plot npar

dent ofN, as in the case of small randomness. Contributiongh

e smoothness of the curves, observed even for the largest

to this zone of the distribution come from realizations wherevalues ofN, suggest that the critical exponeptassociated
propagation ceases before a shortcut is reached. In contraglith r ~|p—p.|” just above the transition, should be larger
the additional structure is strongly dependent™rThe po-  than unity.

sition of its maximum, in fact, grows linearly allg®*

To determine the values @f. andy, we apply finite-size

~0.23N. In a typical realization contributing to this zone of scaling analysi§18]. Results are presented in Fig. 3. The
the distribution, many contacts occur through shortcuts and msert shows a plot of the fractionas a function ofN for
finite portion of the population becomes infected. The inter-several values of the randomngsswith p=0.17 and 0.18
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) S ) _ FIG. 4. Average fractiom of refractory elements at the end of
FIG. 3. Data collapse in the finite-size scaling of the fraction the evolution as a function of the randomnpser several values of
as a function ofp—p., Eq. (2), with »=0.36. Different symbols K, andN=10°. The insert shows the critical randomness(full

correspond to different values &, ranging from 16 to 1. The  dotg and the difference* —r, (empty dots; see text for definitions
insert shows as a function oN for five values of the randomness: of r* andr,) as a function oK.

from below, p=0.17, 0.18, 0.19, 0.20, and 0.21. The dashed and
the full line have slopes-1 and—0.78, respectively. a frozen small-world network as above, a dynamic small-
world is considered11]. In this case, each contact of an |
we find the subcritical behavior expected fo<p;, i.e.,r element is established with one of it& 2hearest neighbors
~N~1. Forp=0.20 and 0.21, on the other handsaturates  with probability 1— p, and with a randomly chosen site with
to a finite value for very larg8l. Between these two regimes, probability p. The transition observed for these dynamic
with p=0.19, r decreases as~N"*, with p=0.78-0.02.  small-worlds is of the same type as on static small-world
We identify this intermediate regime with the critical point, networks, but presents quantitative differences. Ker2,

and thus gep.=0.19+0.01. for instance, the critical randomness shiftspie=0.07.
Oncep, has been determined, the critical exponens The geometrical properties of small-world networks have
obtained from the finite-size scalinfgnsatz[18] been shown to exhibit a crossover from ordered to random
behavior ap~N~*, which implies a vanishing critical value
IN?"=F[(p—pc)N"]. (20 of p for asymptotically large systeni§—8]. In contrast, we

have here presented evidence that a dynamical process oc-
curring on such structures exhibits critical behavior at a finite
value of the randomness. This difference suggests that an
explanation for the origin of the transition in purely geo-
metrical terms is unsuitable, and specific dynamical proper-
ties must be taken into account. Very recently, evidence of
) . ) g critical behavior at finite small-world randomness has been
The average fraction as a function op is shown in Fig. 4 reported for a strictly epidemiological model, whose evolu-
for N=10° and several values df, calculated over T0re- o jles are substantially different from those considered
alizations. Itis seen that the critical randomnpgslecreases nerer12]. In particular, the epidemiological model allows for
asK grows. This is due to the increment in the number Ofthe transformation R-S, giving rise to a closed disease

long-range contacts per element, as a consequence of G e through recovery. Moreover, the transformationR

higher conneciivity of each site. On the other hand, the value_>s is fully deterministic. The critical phenomenon found in
of r at p=1, rq, grows withK and approaches the level

4 f h inal ) th detl* that case is a transition to global synchronization of local
expected for the original version of the model”  yigaaqe cycles, whereas in our propagation process we have a

=0.7% ... [16,17. The insert "1 Fig. 4 displays the depen- g of percolation phenomend®,10]. In spite of these ba-
dence ofp. and of the difference™ —r, with K. Though this  gjc giferences, the dependence of the respective order pa-

plot covers less than one order of magnitude inkhexis, 3 meters on the randomnesss strikingly similar, even if
the results suggest power-law decays for both quantities. ompared quantitatively. This similarity calls for further in-

In summary, our numerical analysis shows that the reyegtigation in order to identify and characterize the whole

gimes where the rumor is bounded to a finite neighborhood,ss” of small-world dynamical processes with critical be-

of the initially infected site and where it affects a finite frac- ,5yior at finite randomness. and to give an analytical de-
tion of the population are separated by a well-defined tra”Siécription of such behavior. '

tion at a finite randomnegs. of the underlying small-world

network. The results of the finite-size scaling analysis sup-

port the presence of a critical phenomenorpat Quite in- Enlightening discussions with M. Kuperman and G.
terestingly, the transition is also found if, instead of building Abramson are gratefully acknowledged.

For p=p. we haver=F(0)N" 7", so that yv=p=0.78
+0.02. The best data collapse near the critical point is ob
tained forr=0.36=0.01, as shown in Fig. 3. This yields
=2.2+0.1.

We have examined this model for other value&ofip to
K =10, and found the same kind of transition in all cases
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