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Critical behavior of propagation on small-world networks

Damián H. Zanette
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Rı́o Negro, Argentina
~Received 4 June 2001; revised manuscript received 22 August 2001; published 24 October 2001!

We report numerical evidence that an epidemiclike model, which can be interpreted as the propagation of a
rumor, exhibits critical behavior at a finite randomness of the underlying small-world network. The transition
occurs between a regime where the rumor ‘‘dies’’ in a small neighborhood of its origin, and a regime where it
spreads over a finite fraction of the whole population. Critical exponents are evaluated through finite-size
scaling analysis, and the dependence of the critical randomness with the network connectivity is studied. The
behavior of this system as a function of the small-network randomness bears noticeable similarities with an
epidemiological model reported recently@M. Kuperman and G. Abramson, Phys. Rev. Lett.86, 2909~2001!#,
in spite of substantial differences in the respective dynamical rules.
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Small-world networks have been introduced as an in
polation between ordered and random graphs, to capture
specific features of real neural, social, and technological
works @1,2#. On one hand, they have a relatively large clu
tering coefficient, i.e., the probability that two neighbors o
given vertex are in turn mutual neighbors is high, as in
dered graphs. On the other, the typical separation betw
two vertices is much smaller than the total number of ve
ces, as in random graphs. Whereas the geometrical prope
of small-world networks have been studied in detail@1–10#,
less attention has been paid to the dynamical properties
sulting from their partially random structure@2,10–12#. As
explained in more detail below, the structure of small-wo
networks is parametrized by the randomnessp, wherep50
andp51 correspond to fully ordered and random networ
respectively. It has been shown that, in asymptotically la
small-world networks, statistical geometrical properties
such as the mean distance between vertices—exhibit qua
tively the same behavior for anyp.0. Here, we study an
epidemiclike propagation process on a small-world netwo
which in contrast with geometrical properties, shows a tr
sition between two qualitatively different dynamical regim
at a finite value ofp. Since this model addresses a soc
process and small-world networks are a presumably real
representation of social networks, the analysis could be
evant to the description of threshold phenomena in real
cieties.

Our model@13,14# consists of anN-element population
where, at each time step, each element adopts one of
possible states. By analogy with epidemiological SIR mod
@15#, these states are called susceptible~S!, infected~I!, and
refractory ~R!. The evolution proceeds as follows. At ea
time step a randomly chosen infected elementi contacts an-
other elementj. Then, ~i! if j is in the susceptible state,
becomes infected;~ii ! if, on the contrary,j is infected or
refractory,i becomes refractory. These rules are better in
preted in the frame of a rumor spreading process, wher
elements have not heard the rumor yet, I elements have h
the rumor and are willing to transmit it, and R elements ha
lost their interest in the rumor and do not transmit it. In
tially, only one element is infected and the remainingN21
elements are susceptible. During the first stage of the ev
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tion, the number of I elements increases. Since this also
plies a growth of the R population, the contacts of I eleme
between themselves and with R elements become more
quent. After a while, in consequence, the I population beg
to decline. Eventually, it vanishes and the evolution stops
the end,NR elements—now in the refractory state—ha
been infected at some stage during the evolution. Numer
simulations and analytical results show that, generally,NR
,N. Therefore, there is a fraction of the population th
never hears the rumor. In the original version of this mod
each I element is allowed to contact at random any ot
element of the population. It has been proven that, in s
situation, the ratioNR /N approaches a well-defined limit
NR /N50.796 . . . , for asymptotically large values ofN
@16,17#.

Here, in contrast, we assume that the elements are situ
at the vertices of a small-world network, and contacts can
established between linked elements only. The small-wo
network is constructed from a one-dimensional ordered n
work with periodic boundary conditions—a ring—whe
each node is linked to its 2K nearest neighbors, i.e., to theK
nearest neighbors clockwise and counterclockwise@1,2,12#.
Then, each of theK clockwise connections of each nodei is
rewired with probabilityp to a randomly chosen nodej, not
belonging to the neighborhood ofi. A shortcut between two
otherwise distant regions is thus created. Double and m
tiple links are forbidden, and realizations where the sm
world network becomes disconnected are discarded. As
vanced above, the parameterp measures the randomness
the resulting small-world network. Note that, independen
of the value ofp, the average number of links per site
always 2K. We have performed series of 103 to 105 numeri-
cal realizations of the model for several values ofp, N, and
K. At each realization, the small-world network was gen
ated anew and the evolution was recorded until the exha
tion of the I population.

In the first place, we have studied the distribution of t
numberNR of R elements at the end of the evolution forK
52. Figure 1 shows the normalized frequencyf (NR) ob-
tained from series of 105 realizations for selected values ofp
andN. For small randomness@p50.05, Fig. 1~a!# the distri-
bution is approximately exponential and does not depend
©2001 The American Physical Society01-1
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N. In this regime, the rumor ‘‘dies’’ after a few time steps
a small neighborhood of its origin, due to the loss of inter
of the highly interconnected elements close to the initia
infected site. Therefore, the sizeN of the whole population is
irrelevant to the value ofNR . The situation is considerabl
different for relatively large randomness@p50.3, Fig. 1~c!#.
Here the distributionf (NR) is bimodal, with a maximum
close toNR50 ~not shown in the figure! and an additional
bump for largerNR . NearNR50, the frequency is indepen
dent ofN, as in the case of small randomness. Contributi
to this zone of the distribution come from realizations whe
propagation ceases before a shortcut is reached. In con
the additional structure is strongly dependent onN. The po-
sition of its maximum, in fact, grows linearly asNR

max

'0.25N. In a typical realization contributing to this zone o
the distribution, many contacts occur through shortcuts an
finite portion of the population becomes infected. The int

FIG. 1. Frequency distribution of the numberNR of R elements
at the end of the evolution, forK52 and ~a! p50.05, ~b! p
50.19, and~c! p50.3. Different symbols correspond toN5103

~crosses!, N5104 ~empty dots!, andN5105 ~full dots!. In ~b!, the
dotted straight line has a slope of21.5. The dotted curve in~c! is a
schematic representation of theN-independent profile observed fo
small NR . Note carefully the different scales of the three plots.
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mediate regime, just before the large-NR structure begins to
build up, is illustrated in Fig. 1~b! for p50.19. The fre-
quency follows here a power law,f (NR);NR

2a with
a'1.5, over a substantial interval. This interval is limited b
above by a smooth cutoff, which shifts to larger values ofNR
asNb, with b'0.5.

The appearance of a well-defined power-law distribut
is a clue to the critical-phenomenon nature of the transit
from the regime where the rumor remains localized to
regime where it spreads over a finite fraction of the popu
tion. To characterize the transition, we choose as an o
parameter the average fractionNR /N of R elements at the
end of the process,

r 5^NR /N&5N21 (
NR50

N

NRf ~NR!, ~1!

which can be straightforwardly calculated from the nume
cal results. In the small-randomness regime, wheref (NR) is
independent ofN, we expectr;N21, so that r→0 as N
→`. For largep, in contrast, the presence of the large-NR
maximum in f (NR) should provide a finite contribution tor
even for asymptotically large populations. These features
verified in numerical realizations. Figure 2 showsr as a func-
tion of p, calculated in series of 103 to 104 realizations forN
ranging from 103 to 106 andK52. A well-defined transition
at a finite randomnesspc'0.2 is apparent for largeN. The
insert of Fig. 2 shows a close-up of the main plot nearpc .
The smoothness of the curves, observed even for the lar
values ofN, suggest that the critical exponentg associated
with r;up2pcug just above the transition, should be larg
than unity.

To determine the values ofpc andg, we apply finite-size
scaling analysis@18#. Results are presented in Fig. 3. Th
insert shows a plot of the fractionr as a function ofN for
several values of the randomnessp. With p50.17 and 0.18

FIG. 2. Average fractionr 5^NR /N& of refractory elements a
the end of the evolution as a function of the randomnessp on a
small-world network withK52, and for N5103 ~dots!, N5104

~dashed line!, N5105 ~dotted line!, and N5106 ~full line!. The
insert shows a close-up in the transition zone. The arrow indic
the critical value ofp, determined as explained in the text.
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we find the subcritical behavior expected forp,pc , i.e., r
;N21. For p50.20 and 0.21, on the other hand,r saturates
to a finite value for very largeN. Between these two regime
with p50.19, r decreases asr;N2r, with r50.7860.02.
We identify this intermediate regime with the critical poin
and thus getpc50.1960.01.

Oncepc has been determined, the critical exponentg is
obtained from the finite-size scalingAnsatz@18#

rNgn5F@~p2pc!N
n#. ~2!

For p5pc we have r 5F(0)N2gn, so that gn5r50.78
60.02. The best data collapse near the critical point is
tained forn50.3660.01, as shown in Fig. 3. This yieldsg
52.260.1.

We have examined this model for other values ofK, up to
K510, and found the same kind of transition in all cas
The average fractionr as a function ofp is shown in Fig. 4
for N5105 and several values ofK, calculated over 103 re-
alizations. It is seen that the critical randomnesspc decreases
as K grows. This is due to the increment in the number
long-range contacts per element, as a consequence o
higher connectivity of each site. On the other hand, the va
of r at p51, r 1, grows with K and approaches the leve
expected for the original version of the model,r *
50.796 . . . @16,17#. The insert in Fig. 4 displays the depe
dence ofpc and of the differencer * 2r 1 with K. Though this
plot covers less than one order of magnitude in theK axis,
the results suggest power-law decays for both quantities

In summary, our numerical analysis shows that the
gimes where the rumor is bounded to a finite neighborh
of the initially infected site and where it affects a finite fra
tion of the population are separated by a well-defined tra
tion at a finite randomnesspc of the underlying small-world
network. The results of the finite-size scaling analysis s
port the presence of a critical phenomenon atpc . Quite in-
terestingly, the transition is also found if, instead of buildi

FIG. 3. Data collapse in the finite-size scaling of the fractior
as a function ofp2pc , Eq. ~2!, with n50.36. Different symbols
correspond to different values ofN, ranging from 104 to 106. The
insert showsr as a function ofN for five values of the randomness
from below, p50.17, 0.18, 0.19, 0.20, and 0.21. The dashed
the full line have slopes21 and20.78, respectively.
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a frozen small-world network as above, a dynamic sm
world is considered@11#. In this case, each contact of an
element is established with one of its 2K nearest neighbors
with probability 12p, and with a randomly chosen site wit
probability p. The transition observed for these dynam
small-worlds is of the same type as on static small-wo
networks, but presents quantitative differences. ForK52,
for instance, the critical randomness shifts topc'0.07.

The geometrical properties of small-world networks ha
been shown to exhibit a crossover from ordered to rand
behavior atp;N21, which implies a vanishing critical value
of p for asymptotically large systems@6–8#. In contrast, we
have here presented evidence that a dynamical proces
curring on such structures exhibits critical behavior at a fin
value of the randomness. This difference suggests tha
explanation for the origin of the transition in purely ge
metrical terms is unsuitable, and specific dynamical prop
ties must be taken into account. Very recently, evidence
critical behavior at finite small-world randomness has be
reported for a strictly epidemiological model, whose evo
tion rules are substantially different from those conside
here@12#. In particular, the epidemiological model allows fo
the transformation R→S, giving rise to a closed diseas
cycle through recovery. Moreover, the transformation I→R
→S is fully deterministic. The critical phenomenon found
that case is a transition to global synchronization of lo
disease cycles, whereas in our propagation process we h
kind of percolation phenomenon@9,10#. In spite of these ba-
sic differences, the dependence of the respective order
rameters on the randomnessp is strikingly similar, even if
compared quantitatively. This similarity calls for further in
vestigation in order to identify and characterize the wh
class of small-world dynamical processes with critical b
havior at finite randomness, and to give an analytical
scription of such behavior.

Enlightening discussions with M. Kuperman and
Abramson are gratefully acknowledged.

d

FIG. 4. Average fractionr of refractory elements at the end o
the evolution as a function of the randomnessp for several values of
K, and N5105. The insert shows the critical randomnesspc ~full
dots! and the differencer * 2r 1 ~empty dots; see text for definition
of r * and r 1) as a function ofK.
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