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Short- and intermediate-time behavior of the linear stress relaxation in semiflexible polymers
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The linear viscoelasticity of semiflexible polymers is studied through Brownian Dynamics simulations
covering a broad range of chain stiffness and time scales. Our results agree with existing theoretical predictions
in the flexible and stiff limits; however, we find that over a wide intermediate-time window spanning several
decades, the stress relaxation is described by a single powér fawith the exponent apparently varying
continuously from 1/2 for flexible chains, to 5/4 for stiff ones. Our study identifies the limits of validity of the
t~%* power law at short times predicted by recent theories. An additional regime is identified, the “ultrastiff”
chains, where this behavior disappears. In the absence of Brownian motion, the purely mechanical stress
relaxation produces & 4 power law for both short and intermediate times.
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The present study identifies the effects of local stiffness,qqed. For a continuous Chaimbendz(llz)gbIL(aa/
on the short- and intermediate-time relaxation of semiﬂexible&S)zdS whereL is the (constant contour length of thg chain

polymers. Common examples of these polymers includgqor polymer solutions or the entanglement length for net-
biopolymers such as DNA, actin filaments, microtubules anqNOrks andd the local unit tangent. The bending enetis
rodlike viruses, as well as a host of stiff synthetic polymers ' : r _
such as Kevlar and polyesters. Although we explicitl Con_relqted o the persistence lendtf via glkBT-_Lp/b' where
. ANd polyes 9 _exphicitly kg is the Boltzmann constant. The bending energy of the
sider the relaxation of a single polymer chain in a wscous(iiscrete model is given byPen=gsN-Y(1—d-d;,,/b?)
i= i i+ :

solvent, our results should be valid even for concentrateg,. o fixedb, the properties of the polymer chain are speci-

polymer solutions and networks as long as the relaxation ‘?ified by the number of linkal and the dimensionless bending
interest occurs on length scales shorter than that characterléhergyE: ElkgT.

ing the entanglements or crosslinks. We focus on the scaling Assuming that the bead inertia is negligible, the sum of all

behavior in the stress relaxation based on the relation beyrces acting on each beadnust vanish, which leads to the
tween the polymer configuration and stress, covering a widg|lowing Langevin equation

range of time scales and flexibility.e., from flexible to very
stiff chaing. Our study identifies the limits of validity of the
power law decay of %4 at short times predicted in recent %
theoretical studie§l,2]. In addition, we identify the effects ¢ dt
of the anomalous diffusion associated with the longitudinal
relaxation at intermediate tim¢8,4]. Over a broad range of
intermediate times, our results show that the stress relaxati i bond | X i :
is described by a single power law deday®, with the ex- '€ bendmgrg%c_(-?i is derived from the chain bending
ponente apparently varying continuously from 1/2 for flex- €Nergy, and="""is the Brownian force due to the constant
ible chains, to 5/4 for stiff ones, the latter confirming a recenf?mbardments of the solvent molecules. The fde&™*!*"
theoretical predictiorf5]. We identify an additional regime = Tidi—Ti_10—1, whereT; is a constraining tension along
of rigidity, the “ultrastiff” regime, where the entire short- the direction of each linkl;, ensures the link inextensibility.
and intermediate-time relaxation shows only & decay. ~ Finally, Fi®" is a corrective potential force added so that the
Finally, we suppress the Brownian motion to identify the €quilibrium probability distribution of the chain configura-
influence of purely mechanical relaxation. tions is Boltzmanr{8,9]. The resulting system of equations

A discretized version of the wormlike chain modé|7]is ~ may be solved irD(N) operations as described in RE8].
employed based on a Brownian Dynamics method developeinsemble averages are accomplished by generating indepen-
in Ref. [8]. This method considers &lexible) bead-rod dent initial equilibrium configurations using a Monte Carlo
model with fixed bond lengths and ignores hydrodynamicMetropolis algorithm based on the chain bending energy.
interactions among beads as well as excluded-volume ef- The polymer stress is calculated from=—3{L(X;
fects. For stiff chains, hydrodynamics has little effect on in-—X)Fi°®?! whereF!°'@ is the sum of all forces appearing
trachain dynamics, and in concentrated solutions and melt®n the right-hand side of Eql), and X, the center of mass
the hydrodynamic interactions are screef@d The polymer of the chain. Based on the fluctuation-dissipation theorem,
chain is modeled asN+ 1) identical beads connected by the linear stress relaxation is described by the stress
massless links of fixed length. The position of bead is  autocorrelation function at equilibrium, Cgressij(t)
denoted asX;, while the link vectors are given byl =(0yj(t)y;(0)) with i,j=1,2,3. At equilibrium there is no
=X;,1—X;. To account for polymer stiffness, a bending preferred direction and we calculate the arithmetic mean of
energy proportional to the square of the local curvature ighe three diagonal componen,,,, and of the remaining

:FPend+ Firand+ Fitension+ Ficor, (1)

dhere the friction coefficienf is assumed to be uniforh8].
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six componentsCgpear, Of the correlation tensoiCg;ess
Both functions show similar relaxation and thus we present
Only Cshear-

The Brownian and bending forces give rise to two micro-
scopic time scales. The Brownian time scale is associated
with the diffusive motion of one bead and is given by
Trang= (b?/kgT. The bending time scale is associated with
the relaxation of the angle between two successive links. For
large bending energ¥>1, this time scale is given by
Toend= (0?1 E= Trang| E<Trang. Although this time scale
does not manifest itself explicitly in the continuum represen-
tation of a chain, a cutoff is required for any continuum
model to be well-defined. Therefore, this time scale repre-
sents the smallest possible time scale in the current problem.

At times t~ m,.ng, ONly the chain ends show significant
transverse relaxation; the angles in the chain interior have
not yet relaxed due to the constraints imposed by the pres-
ence of neighbor beads. At later times, these angles, as well
as portions of the entire chain, show significant transverse
relaxation[10]. The end of the transverse fluctuatio(es
well as the end of the intermediate-time behayioccurs
when the entire polymer chain shows significant transverse
relaxation. This time represents the relaxation of the longest
bending mode and is given by = ¢{L*/(b%€) = 74,4 NY/E,
readily obtained from the linearization of E(.) around the
straight rod limit [1,2,4. For a long chainN>1, 7,
> Tpengs thus these two time scales are well separated.

Due to the conservation of the polymer contour length,
the transverse fluctuations result in longitudinal fluctuations.
As discussed in Refs[3,4], the longitudinal tension
propagates (as anomalous diffusion a distance I|(t)
~tY8ESB(k;T/¢)Y8b%* along the polymer backbone during
timet. At short times this propagation cannot cover the entire
contour length, and the stress relaxation is dominated by
transverse fluctuations. At intermediate times when the lon-
gitudinal tension influences the entire chain, both types of
fluctuations affect the stress relaxation. This change occurs
when | j~L, giving a time scale rj= [L8(kgT b Lg) scaled time t/Tpend
= 7rana N®/E® [5]. Therefore, at short times,eng<t<7|,
stress relaxation is caused by transverse relaxation only. At FIG. 1. Relaxation of the polymer chain at early times.Shear
intermediate times<t<r, , both transverse and longitudi- Stress autocorrelatioBsnear VS timet/ 7anq for several values dk.
nal relaxations contribute to the polymer stress decay. WEOF each value of two different values ofN are included.(b)
emphasize that the expressions for, andr|, as well as the Angle autom:_orrelatlorcang|evs timet/ 7,504 for th_e same val_ues of
related discussion, are valid only for stiff chaifis=N. E andN as in(a). () Shear stress autocorrelai@iiea, Vs timet

. led by the microscopic bending time scalg,q, for the same
Figure Xa) shows the shear stress autocorrela@fes; oo ) \ nd: ;
at early times, for different values @& and N. The initial values ofE andN as in(a), showing the good scaling behavior for

. . he initial f he pl .
decay from the plateau is caused by transverse fluctuations E’:lte initial decay from the plateau

the chain ends at times- 7,.,4. This interpretation is cor-

roborated by Fig. (), which shows the relaxation of the Dj is the diffusivity of a single beaklgT/{. Further analysis
angle at the chain endSqngie=(X(t)x(0))—(x)?, with x(t) ~ reveals thatrpeng= 7rang[1— (1+2E)e” **/[E(1—e ?F)]

the transverse fluctuation at the chain endg, [10]. For large bending energi>1, this time scale is
=\b?—d-d, (i=1 orN—1). Therefore, the initial stress 7pend= Trand/ E<7rang, While it approaches smoothly the
decay depends only on the bending endEggaway from the  Brownian time scaler,,,,q asE—0. Good scaling behavior
plateau the stress relaxation depend¥Nas well, due to the for the initial decay from the plateau is obtained when the
influence of the transverse relaxation of the chain interiorshear stress correlatioBg.,, iS plotted versus the scaled
Based on the correspondence between the conformation atiche t/ 7,.,qin Fig. 1(c). We note that this microscopic time
stress relaxation, the bending time scalg,qfor any bend-  scale was not considered in previous studies employing the
ing energyE can be identified as,.,~2(x X)/D,, where  continuous wormlike chain modé¢1,2,4,5.
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gyrationRy) to the diffusivity D¢ of the chain’s center of
mass; 7,=(R%)/Dc with Dc=kgT/(N+1)¢ [10]. Each
curve is generated by first performing runs using several dif-
ferentN at a given value oE/N for a time window spanning
5-7 decades, and then scaling the time with The fact that
the curves for differenil collapse to a single curve at a given
E/N is strong indication of dynamic scaling.

The results in Fig. 2 reveal that for a given chain, after the
plateau at early times, the stress relaxes in a power law man-
ner towards the long-time regime. For a wide range of chain
stiffness, this stress decay appears to follow a single power
law, which varies continuously from™*2 for completely
flexible chains, tot~%* for stiff ones. This behavior is in
contrast to the long-time behavior, where two distinct re-
gimes E<N, E=N) were found with respect to the poly-
mer stiffnesqg10]. The two limiting values of the power law
are in agreement with the analytical predictions of the Rouse
model and the recent work of Rgf], respectively. How-
ever, our results cover a much broader range of chain stiff-
ness than these limiting cases.

The intermediate time behavior terminates at tintes
~ 7, , while the long-time behavior becomes dominant at
times7.. The gap between, andr; broadens foE>N; in
this caser,~ 7igig~N* [6,10] and 7, /7.~ N/E. This is re-
sponsible for the appearance of a second plateau at times
~ 7, for stiff chains, as shown in Fig(&) (see the end of the
E=10N curve, for timest/7,~5x 10 3-10"1).

In spite of the fact that we employed rather long chains,
we were unable to verify the existence of the’’* law for
finite bending energy athort times 7,¢ng<t<7) [1,2]. From
our analysis of the time scales, it is clear that fptto con-
stitute a distinct time scale, we neBdgcE<N?2. The left half
of this inequality, which reflects the separationrpand 7, ,
can be easily satisfied for moderately large valuesl @nd
E. On the other hand, the right half of the inequality, which
indicates the separation ofe,qand 7, would require simu-
lations using very long chains that would be computationally

FIG. 2. Shear stress autocorrelati®g,, [in units of (kgT)]] ~ Very expensive. Therefore, our results in Fig. 2 show the
vs timet scaled by the translational diffusion time at short times. ~ stress relaxation fofrpenq~ 7<t<7, , where both trans-
(@) E=0 (—) andE=0.5N (----). TheE=0 curve was gener- Vverse and longitudinal fluctuations contribute to the stress
ated using chains witiN=10,20,40,160,320, while thE=0.5N decay.
curve with N=10,20,40,80,160(b) E=N (——) generated with The short-time ~%* decay, predicted by recent theoretical
N=10,20,40,60,80(c) E=2N (—) andE=10N (----). TheE  studieq1,2], should disappear for chains wi®N?. In this
=2N curve was generated with=5,10,20,40,80, while th&  |imit the longitudinal time scaler; becomes smaller than
=10N curve withN=5,10,20,40,100. The fractional exponents are .~ the smallest time scale present. A logical conclusion
merely to illustrate the changing slope and not meant to imply gg that 7 and the associated predictiofts2] become irrel-

precise numerical value.

evant in this regime, which we calitrastiff. In this regime,
the entire short- and intermediate-time relaxation should ex-

We now focus on the polymer stress at timgs,q=t hibit only at~%“ decay. Note that the transverse time scale
<7, . In Fig. 2 we plot the shear stress correlation functionr, = (L% (b?€) = 7,2, N*/E can still be longer than the
Cshear Versus time for specific values of the chain stiffness Brownian time scaler, 5,4 associated with the diffusive mo-
relatively to the chain contour length,
=0,0.5,1,2,10. The time has been scaled byttasslational  the entire chain occurs faster than the Brownian motion of a
diffusiontime 7., which describes the long-time behavior of single bead, and this condition defines the rigid regime,
the polymer stress. This behavior is associated with the difwhere on times longer thar,,q, Only rotational relaxation
fusive translation or rotation of the entire chain as discusset observable.
in Ref. [10]. The time scaler; is defined as the ratio of a Based on the above analysis, we can classify the dynamic
mean square length of the entire chdire., the radius of behavior of long wormlike chains into the following re-

ie.,

foE/N  tion of a single bead. FAE>N?*, the bending relaxation of
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gimes: completely flexibleE=0), flexible E<N), semis- 10? —r—
tiff (E~N), stiff (N>>E>N), ultrastiff (N*>E>N?), and

rigid (E>N%. We comment that similar analysis can be

applied to a segment of the chain in determining its local 10°
dynamic behavior, and the different regimes can be accessed
through a change dfl for a given polymer.

Our results are in good agreement with current experi-
mental findings. It is well-known that flexible polymers show
high-frequencyw'/? scaling of the shear modulys], in
agreement with ouE =0 results. Concentrated solutions and 107
networks of actin filaments were found to exhibit a high- T S S S
frequency viscoelastic modulus®’>-%78[11-13. In addi- 10 10° 10° 10° 10t
tion, our results may explain recent experimental findings time t/7vend
that suggest a high-frequency viscoelastic modulus varying
from »%* to w' [13,14. Finally, we hope that our study FIG. 3. Deterministi_c_relaxation of the polymer stress for a
motivates experiments that cover all the stiffness regime§hain withN=40. The initial state {=0) corresponds 1d'=2.5
that we have identified. X107 &lkg .

To understand the effects of mechanical bending, we per-
formed purely deterministic simulations by suppressing théoth short and intermediate times. Recall that the short-time
Brownian motion. We start from configurations having smallt~¥*relaxation is also due to transverse fluctuations. In con-
enough perturbationso as to be in the linear regimt the  trast, for ultrastiff chains over the same time interval a dif-
initially straight chains. The initial perturbations are gener-ferent power law (%% was observed; this points to the
ated using a Monte Carlo Metropolis algorithm at choseressential role of thermal motion at any finite temperature.
initial temperatures. The temperature is then suddenly _
dropped toT=0 and the chain is allowed to relax towards  This work was supported by the Grant No. DMR-
the equilibrium straight configuration. Figure 3 shows the9970589 from the National Science Foundation. The compu-
relaxation of the polymer normal stress,m(t), defined as tations were performed on multiprocessor computers pro-
the arithmetic mean of the three diagonal components of thgided by the National Center for Supercomputing
stress tensor. The figure shows the existencetof4d power ~ Applications at Urbana, and the Center for Advanced Com-
law. In this case, the relaxation is governed by transversputing Research at Caltech. The authors wish to thank David
motion and the power-law behavior is bracketed by the timéMorse for providing access to his recent wdf{ and for

scales rpen={b% € and 7, =N*7peng, i.€., it is valid for  helpful discussions.
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