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Short- and intermediate-time behavior of the linear stress relaxation in semiflexible polymers
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The linear viscoelasticity of semiflexible polymers is studied through Brownian Dynamics simulations
covering a broad range of chain stiffness and time scales. Our results agree with existing theoretical predictions
in the flexible and stiff limits; however, we find that over a wide intermediate-time window spanning several
decades, the stress relaxation is described by a single power lawt2a, with the exponenta apparently varying
continuously from 1/2 for flexible chains, to 5/4 for stiff ones. Our study identifies the limits of validity of the
t23/4 power law at short times predicted by recent theories. An additional regime is identified, the ‘‘ultrastiff’’
chains, where this behavior disappears. In the absence of Brownian motion, the purely mechanical stress
relaxation produces at23/4 power law for both short and intermediate times.
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The present study identifies the effects of local stiffne
on the short- and intermediate-time relaxation of semiflexi
polymers. Common examples of these polymers inclu
biopolymers such as DNA, actin filaments, microtubules a
rodlike viruses, as well as a host of stiff synthetic polyme
such as Kevlar and polyesters. Although we explicitly co
sider the relaxation of a single polymer chain in a visco
solvent, our results should be valid even for concentra
polymer solutions and networks as long as the relaxation
interest occurs on length scales shorter than that charact
ing the entanglements or crosslinks. We focus on the sca
behavior in the stress relaxation based on the relation
tween the polymer configuration and stress, covering a w
range of time scales and flexibility~i.e., from flexible to very
stiff chains!. Our study identifies the limits of validity of the
power law decay oft23/4 at short times predicted in recen
theoretical studies@1,2#. In addition, we identify the effects
of the anomalous diffusion associated with the longitudi
relaxation at intermediate times@3,4#. Over a broad range o
intermediate times, our results show that the stress relaxa
is described by a single power law decayt2a, with the ex-
ponenta apparently varying continuously from 1/2 for flex
ible chains, to 5/4 for stiff ones, the latter confirming a rec
theoretical prediction@5#. We identify an additional regime
of rigidity, the ‘‘ultrastiff’’ regime, where the entire short
and intermediate-time relaxation shows only at25/4 decay.
Finally, we suppress the Brownian motion to identify t
influence of purely mechanical relaxation.

A discretized version of the wormlike chain model@6,7# is
employed based on a Brownian Dynamics method develo
in Ref. @8#. This method considers a~flexible! bead-rod
model with fixed bond lengths and ignores hydrodynam
interactions among beads as well as excluded-volume
fects. For stiff chains, hydrodynamics has little effect on
trachain dynamics, and in concentrated solutions and m
the hydrodynamic interactions are screened@6#. The polymer
chain is modeled as (N11) identical beads connected byN
massless links of fixed lengthb. The position of beadi is
denoted asXi , while the link vectors are given bydi
5Xi 112Xi . To account for polymer stiffness, a bendin
energy proportional to the square of the local curvature
1063-651X/2001/64~5!/050803~4!/$20.00 64 0508
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added. For a continuous chainfbend5(1/2)Eb*0
L(]d̂/

]s)2ds, whereL is the~constant! contour length of the chain
for polymer solutions or the entanglement length for n
works, andd̂ the local unit tangent. The bending energyE is
related to the persistence lengthLp via E/kBT[Lp /b, where
kB is the Boltzmann constant. The bending energy of
discrete model is given byfbend5E( i 51

N21(12di•di 11 /b2).
For a fixedb, the properties of the polymer chain are spe
fied by the number of linksN and the dimensionless bendin
energyE5E/kBT.

Assuming that the bead inertia is negligible, the sum of
forces acting on each beadi must vanish, which leads to th
following Langevin equation

z
dXi

dt
5F i

bend1F i
rand1F i

tension1F i
cor , ~1!

where the friction coefficientz is assumed to be uniform@8#.
The bending forceF i

bend is derived from the chain bendin
energy, andF i

rand is the Brownian force due to the consta
bombardments of the solvent molecules. The forceF i

tension

5Tidi2Ti 21di 21, whereTi is a constraining tension alon
the direction of each linkdi , ensures the link inextensibility
Finally, F i

cor is a corrective potential force added so that t
equilibrium probability distribution of the chain configura
tions is Boltzmann@8,9#. The resulting system of equation
may be solved inO(N) operations as described in Ref.@8#.
Ensemble averages are accomplished by generating inde
dent initial equilibrium configurations using a Monte Car
Metropolis algorithm based on the chain bending energy

The polymer stress is calculated froms52( i 50
N (Xi

2Xc)F i
total , whereF i

total is the sum of all forces appearin
on the right-hand side of Eq.~1!, andXc the center of mass
of the chain. Based on the fluctuation-dissipation theore
the linear stress relaxation is described by the str
autocorrelation function at equilibrium, Cstress,i j (t)
[^s i j (t)s i j (0)& with i , j 51,2,3. At equilibrium there is no
preferred direction and we calculate the arithmetic mean
the three diagonal components,Cnorm , and of the remaining
©2001 The American Physical Society03-1
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six components,Cshear, of the correlation tensor,Cstress.
Both functions show similar relaxation and thus we pres
only Cshear.

The Brownian and bending forces give rise to two mic
scopic time scales. The Brownian time scale is associa
with the diffusive motion of one bead and is given b
t rand5zb2/kBT. The bending time scale is associated w
the relaxation of the angle between two successive links.
large bending energyE@1, this time scale is given by
tbend5zb2/E5t rand /E!t rand . Although this time scale
does not manifest itself explicitly in the continuum represe
tation of a chain, a cutoff is required for any continuu
model to be well-defined. Therefore, this time scale rep
sents the smallest possible time scale in the current prob

At times t;tbend, only the chain ends show significan
transverse relaxation; the angles in the chain interior h
not yet relaxed due to the constraints imposed by the p
ence of neighbor beads. At later times, these angles, as
as portions of the entire chain, show significant transve
relaxation @10#. The end of the transverse fluctuations~as
well as the end of the intermediate-time behavior! occurs
when the entire polymer chain shows significant transve
relaxation. This time represents the relaxation of the long
bending mode and is given byt'5zL4/(b2E)5t rand N4/E,
readily obtained from the linearization of Eq.~1! around the
straight rod limit @1,2,4#. For a long chainN@1, t'

@tbend; thus these two time scales are well separated.
Due to the conservation of the polymer contour leng

the transverse fluctuations result in longitudinal fluctuatio
As discussed in Refs.@3,4#, the longitudinal tension
propagates ~as anomalous diffusion! a distance l i(t)
;t1/8E5/8 (kBT/z)1/8b3/4 along the polymer backbone durin
time t. At short times this propagation cannot cover the en
contour length, and the stress relaxation is dominated
transverse fluctuations. At intermediate times when the l
gitudinal tension influences the entire chain, both types
fluctuations affect the stress relaxation. This change oc
when l i;L, giving a time scale t i5zL8/(kBT b Lp

5)
5t rand N8/E5 @5#. Therefore, at short timestbend<t!t i ,
stress relaxation is caused by transverse relaxation only
intermediate timest i<t<t' , both transverse and longitud
nal relaxations contribute to the polymer stress decay.
emphasize that the expressions fort' , andt i, as well as the
related discussion, are valid only for stiff chainsE>N.

Figure 1~a! shows the shear stress autocorrelationCshear
at early times, for different values ofE and N. The initial
decay from the plateau is caused by transverse fluctuatio
the chain ends at timest;tbend. This interpretation is cor-
roborated by Fig. 1~b!, which shows the relaxation of th
angle at the chain ends,Cangle[^x(t)x(0)&2^x&2, with x(t)
the transverse fluctuation at the chain ends,x
5Ab22di•di 11 ( i 51 or N21). Therefore, the initial stres
decay depends only on the bending energyE; away from the
plateau the stress relaxation depends onN as well, due to the
influence of the transverse relaxation of the chain inter
Based on the correspondence between the conformation
stress relaxation, the bending time scaletbend for any bend-
ing energyE can be identified astbend[2^x x&/D1, where
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D1 is the diffusivity of a single beadkBT/z. Further analysis
reveals thattbend5t rand @12(112E)e22E#/@E(12e22E)#
@10#. For large bending energyE@1, this time scale is
tbend5t rand /E!t rand , while it approaches smoothly th
Brownian time scalet rand asE→0. Good scaling behavio
for the initial decay from the plateau is obtained when t
shear stress correlationCshear is plotted versus the scale
time t/tbend in Fig. 1~c!. We note that this microscopic tim
scale was not considered in previous studies employing
continuous wormlike chain model@1,2,4,5#.

FIG. 1. Relaxation of the polymer chain at early times.~a! Shear
stress autocorrelationCshear vs timet/t rand for several values ofE.
For each value ofE two different values ofN are included.~b!
Angle autocorrelationCangle vs timet/t rand for the same values o
E andN as in ~a!. ~c! Shear stress autocorrelationCshear vs time t
scaled by the microscopic bending time scaletbend, for the same
values ofE andN as in~a!, showing the good scaling behavior fo
the initial decay from the plateau.
3-2
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We now focus on the polymer stress at timestbend<t
<t' . In Fig. 2 we plot the shear stress correlation funct
Cshear versus timet for specific values of the chain stiffnes
relatively to the chain contour length, i.e., forE/N
50,0.5,1,2,10. The time has been scaled by thetranslational
diffusiontime tc , which describes the long-time behavior
the polymer stress. This behavior is associated with the
fusive translation or rotation of the entire chain as discus
in Ref. @10#. The time scaletc is defined as the ratio of a
mean square length of the entire chain~i.e., the radius of

FIG. 2. Shear stress autocorrelationCshear @in units of (kBT)2]
vs timet scaled by the translational diffusion timetc at short times.
~a! E50 ~——! andE50.5N ~- - - -!. The E50 curve was gener-
ated using chains withN510,20,40,160,320, while theE50.5N
curve with N510,20,40,80,160.~b! E5N ~——! generated with
N510,20,40,60,80.~c! E52N ~——! andE510N ~- - - -!. The E
52N curve was generated withN55,10,20,40,80, while theE
510N curve withN55,10,20,40,100. The fractional exponents a
merely to illustrate the changing slope and not meant to impl
precise numerical value.
05080
if-
d

gyration Rg) to the diffusivity DC of the chain’s center of
mass; tc[^Rg

2&/DC with DC5kBT/(N11)z @10#. Each
curve is generated by first performing runs using several
ferentN at a given value ofE/N for a time window spanning
5–7 decades, and then scaling the time withtc . The fact that
the curves for differentN collapse to a single curve at a give
E/N is strong indication of dynamic scaling.

The results in Fig. 2 reveal that for a given chain, after
plateau at early times, the stress relaxes in a power law m
ner towards the long-time regime. For a wide range of ch
stiffness, this stress decay appears to follow a single po
law, which varies continuously fromt21/2 for completely
flexible chains, tot25/4 for stiff ones. This behavior is in
contrast to the long-time behavior, where two distinct
gimes (E!N, E>N) were found with respect to the poly
mer stiffness@10#. The two limiting values of the power law
are in agreement with the analytical predictions of the Ro
model and the recent work of Ref.@5#, respectively. How-
ever, our results cover a much broader range of chain s
ness than these limiting cases.

The intermediate time behavior terminates at timest
;t' , while the long-time behavior becomes dominant
timestc . The gap betweent' andtc broadens forE@N; in
this casetc;t rigid;N3 @6,10# andt' /tc;N/E. This is re-
sponsible for the appearance of a second plateau at timt
;t' for stiff chains, as shown in Fig. 2~c! ~see the end of the
E510N curve, for timest/tc'53102321021).

In spite of the fact that we employed rather long chai
we were unable to verify the existence of thet23/4 law for
finite bending energy atshort times, tbend<t!t i @1,2#. From
our analysis of the time scales, it is clear that fort i to con-
stitute a distinct time scale, we needN!E!N2. The left half
of this inequality, which reflects the separation oft i andt' ,
can be easily satisfied for moderately large values ofN and
E. On the other hand, the right half of the inequality, whi
indicates the separation oftbend andt i , would require simu-
lations using very long chains that would be computationa
very expensive. Therefore, our results in Fig. 2 show
stress relaxation fortbend;t i<t<t' , where both trans-
verse and longitudinal fluctuations contribute to the str
decay.

The short-timet23/4 decay, predicted by recent theoretic
studies@1,2#, should disappear for chains withE@N2. In this
limit the longitudinal time scalet i becomes smaller than
tbend, the smallest time scale present. A logical conclus
is that t i and the associated predictions@1,2# become irrel-
evant in this regime, which we callultrastiff. In this regime,
the entire short- and intermediate-time relaxation should
hibit only a t25/4 decay. Note that the transverse time sc
t'5zL4/(b2E)5t rand N4/E can still be longer than the
Brownian time scalet rand associated with the diffusive mo
tion of a single bead. ForE@N4, the bending relaxation o
the entire chain occurs faster than the Brownian motion o
single bead, and this condition defines the rigid regim
where on times longer thant rand , only rotational relaxation
is observable.

Based on the above analysis, we can classify the dyna
behavior of long wormlike chains into the following re

a
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gimes: completely flexible (E50), flexible (E!N), semis-
tiff ( E'N), stiff (N2@E.N), ultrastiff (N4@E@N2), and
rigid (E@N4). We comment that similar analysis can b
applied to a segment of the chain in determining its lo
dynamic behavior, and the different regimes can be acce
through a change ofN for a given polymer.

Our results are in good agreement with current exp
mental findings. It is well-known that flexible polymers sho
high-frequencyv1/2 scaling of the shear modulus@6#, in
agreement with ourE50 results. Concentrated solutions a
networks of actin filaments were found to exhibit a hig
frequency viscoelastic modulusv0.75– 0.78@11–13#. In addi-
tion, our results may explain recent experimental findin
that suggest a high-frequency viscoelastic modulus vary
from v3/4 to v1 @13,14#. Finally, we hope that our stud
motivates experiments that cover all the stiffness regim
that we have identified.

To understand the effects of mechanical bending, we p
formed purely deterministic simulations by suppressing
Brownian motion. We start from configurations having sm
enough perturbations~so as to be in the linear regime! to the
initially straight chains. The initial perturbations are gen
ated using a Monte Carlo Metropolis algorithm at chos
initial temperatures. The temperature is then sudde
dropped toT50 and the chain is allowed to relax toward
the equilibrium straight configuration. Figure 3 shows t
relaxation of the polymer normal stress,snorm(t), defined as
the arithmetic mean of the three diagonal components of
stress tensor. The figure shows the existence of at23/4 power
law. In this case, the relaxation is governed by transve
motion and the power-law behavior is bracketed by the ti
scalestbend[zb2/E and t'[N4tbend, i.e., it is valid for
ys
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both short and intermediate times. Recall that the short-t
t23/4 relaxation is also due to transverse fluctuations. In c
trast, for ultrastiff chains over the same time interval a d
ferent power law (t25/4) was observed; this points to th
essential role of thermal motion at any finite temperature
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FIG. 3. Deterministic relaxation of the polymer stress for
chain with N540. The initial state (t50) corresponds toT52.5
31023 E/kB .
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