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Time scales in rotating unstable Langevin-type dynamics
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In this Rapid Communication we propose a different and general characterization of rotating, unstable
Langevin-type dynamics in the presence of an external force in the context of two dynamical representations
x andy, using the passage time distribution. Hgris the transformed space of coordinates obtained by means
of a time-dependent rotation matrix. The Langevin dynamics in theynspace defines an interesting concept
of external force and internal noise due to rotation. The theory is applied to the characterization of rotational
unstable systems of tw@uch as the laser syste¢mnd three variables, and stimulates its application in other
fields, for instance, in plasma physics.
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Stochastic differential equations have become a usefuhitial unstable state, describe practically deterministic rota-
tool in the description of a great variety of physical systemdional trajectories to reach the steady state or some approxi-
in which the presence of fluctuations plays a fundamentamation of it. In Ref.[17] the (QD) approach, valid in the
role. During the seventies and eighties the study of transierdtmit of long times, is used to study the characterization of
relaxation of unstable statgsr in general, of any initial those particular systems of two and three variables, whereas
condition far from the steady statevas proposed as an in- in Ref.[18], a study has been made only in the case of two
teresting topic in the study of nonequilibrium phenomenavariables for not so large times, where the QD approach is no
[1]. The decay of unstable steady states has been studied Ipnger valid. In this Rapid Communication we propose the
various specific contexts such as dynamics of phase transgtudy, through the PTD, of the decay process of rotating
tions [2,3], hydrodynamical instabilities[4], spinodal unstable Langevin-type dynamics in the presence of an ex-
descompositiofi5], the switch on of laser$], relaxation of ~ ternal force. The theoretical approach, which is quite general
chemical instabilitie§7], and dynamics of liquid crysta[8]. ~ With emphasis in a time-dependent orthogonal rotation ma-
Among the various methods proposed to study the decay dfiX, is formulated in the context of two Langevin dynamical
unstable steady states, we find the method of time scalg€presentations andy, y being the transformed space of
called the passage time distributi®TD) and nonlinear re- coordinates in which the Langevin dynamics introduces a
laxation times(NLRT); both theoretically developed in the different concept of rotating external and interrtabise
context of Langevin-type dynamid®] or Fokker-Planck forces. It is precisely in thg scheme where it can be better
equation[10]. In the early nineties it was proposed by Ve- understood why the QD approach does not describe the ro-
mury and Roy[11] that very weak optical signals can be tational evolution of such systems, a fact not explained in
detected via the transient dynamics of a laser using the las&efs.[15,16. We also show that in the generalized formal-
as a superregenetive receiver. Immediately after the PTI3M, the systems of two and three variables are just particular
[12] and NLRT method$13] were used to corroborate the €xamples. We hope that the present paper may serve to
numerical[11] and experimentdl14] results. Later Dellunde stimulate corresponding experiments or theoretical studies in
et al. [15] proposed an alternative passage time method t@ther fields, for instance, the dynamics of particles in a
detect efficiently large optical signals in a laser, showing inplasma. Our proposal also admits a covariant formulation.
this case the oscillatory behavior of the system. In the fol- The rotating unstable Langevin-type equation for the col-
lowing year the detection of weak optical signals in the same&imn vectorx in the presence of an external forGecan be
laser system was studied by the same authors, taking intgritten as
account the phase fluctuations of the injected sighbds.

However, nothing about the oscillatory behavior of the sys- .
tem was discussed, neither why the quasideterminigi) x=ax+Wx+n(r)x+fe+2(t), @
approach works well in the time characterization of such a

system. Most of the works cited above rely upon a Langevinyherea is real and positiveW is anx n real antisymmetric

type equation, whose associated systematic force is derivef5irix such thaiv™= — W andWT is transposed. The scalar
from a potential, with the exception of those studied in RefSg,+ionn(r) accounts for nonlinear contributions due to the
[15,16. Inspired in these last works, a rotating Langevin-¢ thatr=x2=x"x, r being the square of the norm of the

type dynamics has recently been proposedii,18, in vector andz(t) the fluctuating force whose elemer§gt)

which that laser system is such a particglar case. For r_otatingatisfy the property of Gaussian white noise with zero mean
unstable systems we mean those which, once leaving ﬂ\?alue and a correlation function

*Email address: ines@xanum.uam.mx (&i(DE(1))=2Q;;;6(t—t"), (2)
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where Q;; is the matrix that represents the noise intensity. Q .
The linear systematic forcé&=ax+Wx is not in general (hih ) =Chi(O)h; () + - (1-e 95, (8

derived from a potential, becaud&xfs=VXWx#0 and

therefore the rotating character of the dynaniisis due to  where we have applied the orthogonality of the rotation ma-
the properties of the matiw/. _ _ trix J(t) and assumed th&,,= Q.

A different equivalent Langevin-type dynamics may be To solve the problem, we propose that,
obtained if we make the change of varialyle eV, such

that hi(t)=(hi(t))+a(t) 7, 9

o -1 -1 whereg?(t) = (1—e 23" and 7; is a Gaussian random vari-
y=ay+n(ny+R T (Of+ R 01, ® able with zero mean value and variange, ;) = Q/ag; .
where the factor ¥'=9%(t) is in general a time-dependent The procesg9) is quite cqmpatible with Eqd7) and(8). If.
orthogonal rotation matrix[19], satisfying that % (t) we assume tha_t the amplltude (_)f the external force domlnates
=R-Y(t) and therefore eV'=9R"1(t): n(r) remains the ©OV€' the intensity of internal noise, we can say that the domi-
: nant contribution of the proces$gs(t) must be the first term
f Eqg. (9), and therefore, we can make a series expansion in
g. (6) up to the first order in powers of;, such that

same function because is invariant; i.e.,r=x"x=y'y.
Clearly in these dynamics, the external force as well as th
internal noise, are rotational.

The PTD characterizes the linear approximation of non- g(tp) (hi(tp))
linear dynamicg1) or (3). Thus, it can be shown in general =tp— P 2 A
that the linear solution of Eqg1) and (3), assumingx;(0) a T [(h(tp))]?
=y;(0)=0, can be written as

n+0(7?), (10

where|(h(tp))|?==(h;(tp))? andtp is the zeroth order ap-

X(D="R; (0, y(H=ehy(), (4 Proximation given by
. RZ
with
tp==—1In —) (11)
t 28\ [(h(tp))[?
h;(t) = foefasmkj(s)[fek“‘ &x(s)]ds. ®)  The PTD is then
. - , 1 R?
The dynamical characterization of the system will be (t)=tp=——In| ——— (12)
given in terms of the square of the norm of veckoandy, 2a |\ |(h(tp))]?)’

which satisfies
and the variance defined &gAt)?)=(t?)—(t)? will be
r(t)=h*t)e*, (6)
n Q g*(tp) (hi(tp))?
whereh2(t)=hT(t)h(t). In the limit of long times, the pro- (A0T)=—5—2 o (13
cess(6) is dominated by the exponential term and the pro- P
cessh?(t) plays the role of an effective initial condition and  Clearly, the PTD is only dominated by the deterministic
therefore the solutiongt) become a quasideterministic pro- approximation, whereas the variance contains the effect of

cess. In this limit of approximation, the linear process assohoth internal noise through its intensiyand external force
ciated with Egs(1) or (3) can be well characterized by the through the mean valugh;(tp)).

quasideterministi¢QD) approach, but the rotational evolu- | the case of two variables, the matriddsand%i(t) are
tion of the system is not properly described by this approacl@iven by
[16,17.
For not so large time scales, the QD approach is no longer 0 1) Ccoswt sinwt
valid and therefore another approach must be proposed. W= 0/’ RO={ . '
- Sinwt coswt
Here, we use the strategy proposed in R&8], where the (14)

study has only been made for systems of two variables. The
PTD at which the system reaches a reference vafuean be and thereforeV x f.= — 2wk, which is a vector perpendicu-

qalﬁuLateg fr%m EIQ(G)é but it dls not an easy task, because the|,; 4 the rotation plane. We use the same experimental data
right-hand side also depends on time. However, we must ggfseq in Ref[15] to show, in Fig. 1, a single stochastic tra-
some profit from the statistical properties of the prodgs}, jectory of the system on the plang,(x,), which is a circu-

which are given in general by lar spiral. On the planey(,y.) the corresponding stochastic
. trajectory describes “loops” as shown in Fig. 2. According to
(hi(t»:f e ¥ Ryi(s)fe, ds, (7)  the solutions(4), the set of spiral or “loops” trajectories
0 k emerge from the origin of coordinates to reach the circle of
radiusR at random directions because of the rotational char-
and acter of the noise as given by E@).

050102-2



TIME SCALES IN ROTATING UNSTABLE LANGEVIN-. ..

0.2 . . .
0.1} .
><N 0 - -t
-0.1 | -
_0'2 1 1 1
~0.2 -0.1 0 0.1 0.2
X

1

FIG. 1. Linear dynamical evolution of a single stochastic trajec-
tory of Eq.(1) to reach the circle of radiuR?>=0.02 in the case of
two variables.
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FIG. 3. Same as Fig. 1, but in three dimensions.

=z(t)—z*(t). The passage time distribution in this case is
then

1
tP:to_gm[l"‘(ﬁ(tp)], (19
where
. 1I (a%+ w?) 16
:—n—
P2at| g2

and ¢(t)=[e 23— 2e 3 coswt]. In the limit of long times,

To calculate the mean value of each component of Eqt, goes toty, which is the deterministic limit of the QD

(7), we can assume, without loss of generality, tHi@lt
=fez=|fe|/\/§ with |fs| the modulus of vectof,. Defining
z(t)=|fe|/A2V2(1—e ) and z*(t)=|f|/N2V2(1
—e MY, where the asterisk stands for complex conjugate
N;=a+iw and\,=a—iw, and*iw, are the eigenvalues of
matrix W. In this case we geth(t))=A(t)+iB(t), and
(hy(t))=A(t)—iB(t), where A(t)=z(t)+Zz*(t) and B(t)
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FIG. 2. Linear dynamical evolution of a single stochastic trajec-
tory of Eq. (3) to reach the same circle as in Fig. 1.

approach in the case of a large amplitude of external force
and is not appropriate to characterize the rotation of the sys-
tem[12,16. The second term of Eq15) has an oscillatory
behavior due to the functiop(t), and therefore, for not very
long times the time scalg must be the appropriate one to
characterize the rotating evolution of the system.

For the variance we can get, for the large amplitude of an
external force such thgg?=alf,|%Q(a’+ w?)>1, the fol-
lowing approximation

-2
1 |

(17)
The time scalegp as well as the variance can be calculated
through the iterative procedure

9°(tp)
a?B1+p(tp)]

¢'(tp)
2a(1+¢(tp))

((AD)?)=

¥z

¥1

FIG. 4. Same as Fig. 2, but in three dimensions.
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° ' ' ' ' 0 w O coswt —sinwt 0
Ww=| —o 0 0 R(t)=| sinwt coswt O

0 0 0 0 0 1
(19)

where noww?= w3+ w3+ w3, Wherew; are the elements of
matrix W’. Similarly VXf;=—-2w k. Under these circum-
stances the dynamical evolution of only one stochastic tra-
jectory of the linear solution(4) to reach the spheré&ot

0.015 . . . )
- shown of radiusR, in the space of variables{,x,,X3), is
e also a circular spiral but now growing along tke axis as
~ 0.01 N . ) .
= seen in Fig. 3. Also, the set of the stochastic trajectories
§ leave from the origin of coordinates at random directions due
0.005 to rotational effects of the noise. Seen along xhexis, the
bacemede spiral trajectories are essentially the same as those described
0 ' ‘ ' 1 by the system of two variables. In the representation a
0 1 2 3 4 5 ; . .
© (Mhz) single stochastic trajectory of the system to reach the \Rlue

is also quite similar to that of Fig. 2, but in the three dimen-
FIG. 5. (a) Mean first time andb) variance(jitter) as a function  sional spacey(;,y»,y3), as shown in Fig. 4. Due to this fact,
of the rotafti(én F()fé;’imetgbt- (Tk;e t?IO"d |in|et.60r|resp0|ft1d5; 'I(?C)(,lt%e we can assume thég, =0 andé;(t) =0 in the linear dynam-
iteration o . , ana to(n), the analytical result O A7), . . . .
open circles(fi?led circles are the simulat)i/on results for the case of ics of Eq.(1) ar_ld the_ref(_)re{hg(t»: 0. Accor(_jlng Wlth this,
two (thred variables. the passage t|m<_a distribution and the varlance_wnl be the
same as those given by Eq45) and(17), respectively. In
1 Fig. 5 we show the excellent agreement between the theoret-
tO=ty, tM V=t~ —In[1+¢tM)]. (18 ical results(15) and(17) and numerical simulations for the
2a systems of two and three variables.

In the case of three variables, it can be shown that all the
3Xt'3 ant|s3t/r'nmetrlc'x\r}\1/atrlxvv ‘?af‘l bet retﬂutceq to "’.‘%fh The authors wish to thank to Professor L. Gar@oln
225'?(;?Tv(\/eon\c/:a;?:blneél,?]v?l'rgatslirgl airveon thi r%Zt?&/\;l’q " € and Professor E. Pinfor their comments and suggestions.
o 9 S Financial support from Consejo Nacional de Ciencia y Tec-
can be reduced to the matri%/ and its corresponding asso- . S
; ; . : nologa (CONACYT) Mexico is also acknowledged.
ciated rotation matri¥i(t) as follows:
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