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Origins of phase transitions in small systems
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The identification and classification of phases in small systems, e.g., nuclei, social and financial networks,
clusters, and biological systems, where the traditional definitions of phase transitions are not applicable, is
important to obtain a deeper understanding of the phenomena observed in such systems. Within a simple
statistical model, we investigate the validity and applicability of different classification schemes for phase
transtions in small systems. We show that the whole complex temperature plane contains necessary informa-
tion in order to give a distinct classification.
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The thermodynamics of small systems, e.g., Bose- From classical statistical mechanics, it is clear that the
Einstein condensates in magneto-optical trps3], the  back-bending feature is forbidden in the thermodynamic
nuclear liquid-gas transition observed by multifragmentationiimit by the van Hove theorerfi 3]. Since the canonical and
in heavy ion reactionp4—6], and the solid-liquid phase tran- the microcanoncical caloric curves must give the same re-
sition of sodium clusterf7—9], have gained increasing inter- sults in this limit and the canonical caloric curve is propor-
est over the last few years. Because these systems are f@nal to the mean-squared energy fluctuations the microca-
away from the thermodynamic limit, the standard tools forngnical caloric curve cannot exhibit a back bending.

the description of phase transitions are not applicable angloyever, in small systems necessary and sufficient condi-
other concepts are needed. Within the last few years severghng for this type of microcanonical caloric curves have
classification schemes for phase transitions in finite systems,ap, gerived by Wales and Berry and Wales and Doye

Classiioation schemes by means of a Simple statatical modb:13: An analysis of thermodynamic stabity has gained
y P at a loop in the microcanonical caloric curve with turning

for atomic clusters and show that graveling transitions occur- ointsT>T. oceurs if the entropB is bimodal for canoni-
ring in these models can only be completely understood b m— " f . : PB allo .
cal temperatures in this range. As an equivalent condition,

considering the whole complex temperature plane. H h h d th loct h .
Among others, Gross and Votyakov and Gressl., have the aut ors showe t a_t neglecting phase-space regions cor-
responding to intermediate compositions, i.e., solidlike and

suggested a microcanonical treatmgt@—-12, where phase =~ . :
transitions of different order are distinguished by the curvalQuidlike forms, also result in a back bending.
We have proposed a classification scheme based on the

ture of the entropyS=kglnQ(E). According to their
y by B © "9 I distribution of zeros of the canonical partition function in the

scheme, @ack bendingn the microcanonical caloric curve . .
T(E)=1/d¢ IN[Q(E)], i.e., the appearance of negative hea,[c.omplex temperature plaf&6]. The classical partition func-

capacities, is a mandatory criterion for a first-order transition°"

Caloric curves without back bending, where the associated 1\

specific heat shows a hump, are classified as higher-order _ f 3N _

transitions. Z(B) 27 o ex — AV(X)] @)

(@) & (b )
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FIG. 1. Logarithm of the canonical potential-energy difference expectation valu\lBy(in the complex temperature plane f@

p2/p1=50000,(b) p,/p,=5000, andc) p,/p,=0.5. The location of the zeros of the partition function are signaled by the sharp needles.
In all cases, the distributions of zeros indicate first order phase transitions.
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can be factored into a product of the kinetic part and a prod- — — pJp, =05 .
uct depending on the zerd=By+ir, with B_,=B; of Sl I e 1
this integral function in the complex temperature plane, Too = i
4 r -~ B 1
= Iy B
1 \3N2 M B B e Cyx25 1A
Z(B)=|\5— 1-—lexp 5. 2 10F AN i
(B) (27Tﬂ> kzl_—[M ( Bk) p(Bk @ SNk
0 e
Phase transitions then can be classified by a set of three 05 0 B [1/AE] 05 1

parameters &,v,7,), describing the distribution of zeros
close to the real axis, wherg=tanv is the crossing angle FIG. 3. Canonical specific heat reduced by the kinetic contribu-
between the real axis and the line of zeros, anis deter-  tion for the same values @5 /p, as in Fig 1. For values with,/p;

mined from the approximated density of zeuér) ~ % on larger than 1, the expected signals of a first-order phase transition
this line. For infinite systems, it has been exactly shown thaf'¢ S€€n- The valye,/p; =0.5 corresponds formally to a first-order
phase transition at negative temperature. Teveling transition

a=0, y=0, and =0 corresponds to a first-order phase hibi e K10 h in th i

transition, whilea™0 corresponds to a higher-order phaseex ibits at positive temperature a very weak10 hump in the specific
o . . heat(the graph is amplified by a factor of 25

transition[17]. For finite systemsy; is always greater than

zero reflecting the size of the system. The classification

scheme can be extended to valuesxef0 also being inter-

preted as first-order phase transitions. This scheme sensj-

tively reproduces the space dimension and particle-numbéfe On @ straight line and are equally spaced yielding y

dependence of the transition order in Bose-Einstein conder- 0 thus implying a first-order phase transition in any case

sateg 18] and the first-order nature of the nuclear multifrag- (AE=E2—E1) (see Fig. 1 Itis important to note, that with
mentation phase transitidad]. !ncreasmg_system_ size, the energy difference between the
The differences between both schemes can be revealdgPmers will also increase, thus; approaches zero. The

within a simple statistical model for atomic clusters. A har-microcanonical caloric curv@ (E) = 1/9¢ In[Q(E)] for this
monic superposition of different vibriational densities of Model can be calculated via the inverse Laplace transform

states is well established in the cluster literat{26—23. Q(E)=L"}Z(B)}. Figure 2 shows that the back bending
This multiple normal-modes model describes structural tran2dvocated in the Gross scheme for a first-order phase transi-

sitions within small noble gas clusters by considering severdion can be tuned in and out by variation of the model pa-
isomers and the vibrational eigenfrequencies of the isomeréaMeters.

. .. . . i i o : —(3N—-6
For a two-isomer system, the partition function can be writ- The kinetic part of the partition functio™*"~® plays
the crucial role. If this is taken into account the micro-

By=[In(pa/py) +i(2k+1)7]/AE, 4

ten as canonical caloric curves change dramatically, whereas this
2 SN-6 5 part has no effect on the distribution of zer@ke particle
Z(B)= > o, exp— BE;) H — number dependence of the canonical partition function is not
=1 =1 By only reflected by the kinetic part itself but also implicitly by
= B~ BN=6) . exp( — BE,) + p, exp(— BE,)], the ground-state energjedhe change in the topology of the

configuration space or equivalently configurations space re-
(3 gions with significantly changing vibrational entropies seems
to be a necessary condition for phase transitions in small
systems. Similar results have been pointed out by Frametosi
al. [24,25. Equivalent findings are those of Wales and

where thew;; are the normal modes of isomeand theo;
are the permutational degeneracies of the isomers gand
=oiII’L ] ®(27/ wyj). The zeros o
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FIG. 2. Microcanonical caloric curves for the multiple normal- 2

modes model with energy difference between the isomé&s- 20. B [1/A E]

For (a) N=10, 12, and 15 and constap}/p;=50000 the back

bending is manifest foN= 10, can be tuned out by increasing the  FIG. 4. Specific heat in the complex temperature plane for

particle number, and disappears féras low asN=15. In (b) for po/p1=0.5. The figure displays how the interplay of the zero and

constantN=10, the back bending can be tuned out by decreasinghe pole of the specific heat influences the behavior of the specific

the ratiop,/p;. heat curve at positive temperatures.
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Berry, and Wales and Doyet al.[14,15. Utilizing also the  negative temperatures occurs. The structural transition be-
harmonic superposition of vibriational densities of states andween the isomers, which occurs when the temperature is
assuming "coexistence” of liquidlike and solidlike phases, increased, is accompanied by a drop in the vibrational en-
the loop in the microcanonical caloric curve is also tunabletrr‘T)]F;:lllfl-e r-rgign:'j i";‘] gtrhageslg]gcitfzgnﬁggnthvgghthz tsé%ntliftlgfﬁ]neilly
by vanqﬂons of s.ystem-mhere.nt parameters. Especially, th'lti'ransition(see Fig. 3 Figures 3 and 4 sho) that the zeros
mean d|fferenc_e n the poten_tlal energy of both phases €O the complex temperature plane sensitively detect phase
respond to variations gf,/p, in our model. transitions andii) it is very important to usg as the natural
Within classical statistical mechanics, the kinetic part ofy,5riable since only this yields continuous pictures of thermo-
canonical partition function is separable and the partitiordynamic properties.
function splits up into a kinetic and a potential part that can In conclusion, we have found that the classification of
be handled independently. Within the microcanonical enphase transitions in small systems based on the curvature of
semble structural phase transition might Wwashedout or  the microcanonical caloric curves seems to be not rigorous
hidden by the kinetic-energy contributions to the entropy.enough to make distinct statements about the order. In the
Equivalent effects of the kinetic- and potential-energy con-zeraclassification scheme, the potential-energy surface char-
tributions have been previously foufds]. acterizes the phase behavior of the system, while in the
A very interesting feature of the multiple normal-modesscheme of Gross, the density of states is the characterizing
model occurs in the case where the isomer with the loweguantity. We have shown that the investigation of the whole
ground-state energy has a larger vibrational entfepg Fig. complex temperature plane adds a valuable amount of infor-
1(c)]. In this case, formally a first-order phase transition atmation in order to classify phase transitions in small systems.
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