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Propagation of dark solitons with higher-order effects in optical fibers
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In this paper, we analyze dark soliton propagation in nonlinear optical fibers with higher-order effects such
as third order dispersion, self-steepening, and stimulated Raman scattering. We consider the Hirota equation
and the higher-order nonlinear ScHilnger equation, and identify conditions for dark soliton propagation
through Painlevanalysis. We also construct an explicit Lax pair, and Hirota bilinear form is used to generate
one and two dark solitons.
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[. INTRODUCTION vices [6] and waveguide optics as dynamic switches and
junctions[7]. These applications are based on the fact that
Optical solitons have been the objects of extensive theodark spatial solitons actually create waveguides in a self-
retical and experimental studies during the last three decadedefocusing medium. They are also considered for signal pro-
because of their potential applications in long distance comeessing and communication applications because of their in-
munication. The pioneering works of Hasegawa and Tappeterent stability{8]. In fact, the influence of noise and fiber
[1], who predicted solitons theoretically, and Mollenauer,loss on dark solitons is much lesser than that on bright soli-
Stolen, and Gordof2], who observed them experimentally, tons. Recently, Kivshar and Davies gave an extensive review
made solitons a realistic tool for this cause. The solitonsarticle on dark solitons which discussed the above points and
localized-in-time optical pulses, evolve from a nonlinearmore[9].
change in the refractive index of the material, known as Kerr Motivated by these facts, in this paper, we consider the
effect, induced by the light intensity distribution. When the theoretical aspects of dark soliton propagation in nonlinear
combined effects of the intensity-dependent refractive indexSchralinger (NLS)-type equations, namely, the Hirota equa-
nonlinearity and the frequency-dependent pulse dispersiotion and the higher-order NLS equation which include the
exactly compensate for one another, the pulse propagatéggher-order effects such as third order dispersion, self-
without any change in its shape, being self-trapped by thsteepening, and stimulated inelastic scattering. We explicitly
waveguide nonlinearity. The propagation of optical solitonsconstruct a Lax pair for the dark solitons in the NLS equa-
in a nonlinear dispersive optical fiber is governed by thetion, and the other two higher-order equations and an exten-
well-known completely integrable nonlinear ScHimger  sion toN-coupled systems are also discussed. In the case of

equation which is of the form higher-order systems, in addition to the already known bright
soliton case, a case for dark solitons is identified through
ig:=(1/2gy+|9l29=0, (1)  Painleveanalysis. The dark one- and two-soliton solutions

are generated by means of Hirota's bilinear form and the
whereq is the complex amplitude of the pulse envelope, significance of these solutions are discussed.
andt represent the spatial and temporal coordinates, and the The paper is organized as follows. In Sec. Il, we discuss
+ or — signs before the dispersive term denote the anomathe Lax pair for dark solitons in the NLS system. In Sec. IlI,
lous and normal dispersive regimes, respectively. In thave discuss the Painlevenalysis of the higher-order NLS
anomalous dispersive regime, this equation possesses (HNLS) equation through which cases of dark soliton sys-
bright soliton solution, and in the normal dispersive regime ittems are identified. In Sec. IV, we give a Lax pair for the
possesses dark solitons. When compared with bright solitonslirota equation and darks one- and two-soliton solutions are
the investigations of dark solitons are inadequate. Howevegbtained for the Hirota equation through Hirota’s bilinear
in recent years, the dark soliton has also attracted a lot dPrm. We also construct the Lax pair for the HNLS equation
attention, and many innovative results have already appearéd Sec. V. For this system, dark one- and two-soliton solu-
concerning this exciting topic. tions are presented.

The generation of dark solitons was first predicted by Ha-
segawa and Tappel8] and Zakharov and Shabgt], and
experimentally demonstrated by Empit al. [5]. The bright
soliton is a pulse on a zero-intensity background, while a
dark soliton appears as an intensity dip in an infinitely ex- The Lax pair assures the complete integrablity of a non-
tended constant background. Apart from the inverse intensitiinear system, and is especially used to obfsiroliton so-
profile, an additional unique feature of a dark soliton is itslutions by means of inverse scattering transform method. In
specific phase profile. The dark-soliton phase chirp is ahis paper, we follow the Ablowitz, Kaup, Newell, and Segur
monotonic and odd function of the spatial coordinate. Re{AKNS) formalism to obtain the Lax pair. The linear eigen-
cently, increased interest in dark spatial solitons has becomealue problem for optical solitons in the NLS system can be
connected with their possible application in optical logic de-constructed as follows:

II. LAX PAIR FOR DARK SOLITONS IN THE NLS
SYSTEM

1063-651X/2001/641)/0466089)/$20.00 64 046608-1 ©2001 The American Physical Society



A. MAHALINGAM AND K. PORSEZIAN
Vv,=UWV,
V=V,
where
V=V, ¥, (3]

Here the Lax operators andV are given in the forms

—iN2 —uq
| g i)\lz)’
__ _ ()
very e 0 0 e
0 i wl2m —uq* 0
.\ ipplgl> iy
—ipay  —ipplgl?)’

where\ is the eigenvalue parameter, apdand u are con-
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is due to the intensity-dependent group velocity of the optical
pulse, which gives the pulse a very narrow width in the
course of propagation. Because of this, the peak of the pulse
will travel more slowly than the wings. Recently, Painleve
analysis for this equation has been carried out by many au-
thors, but they identified only the bright soliton case; the
dark soliton case was not reportgb—18. Here it should be
mentioned that the authors of RgL8] anticipated that Pain-
leve analysis of the HNLS equation could also be extended
to the dark case. Also, a thorough analysis of the Sasa-
Satsuma equation was performed in the case of bright soli-
tons by using the inverse scattering transform metfid]
and by the Riemann problem methf@D]. By fully exploit-
ing the symmetry properties of the scattering matrix ele-
ments, the most general one-parameter single-soliton solu-
tion, the four parameter breather soliton solution and the
most generaN-soliton solution of the perturbed nonlinear
Schralinger equation in the bright soliton case were given by
the authors of Refl18] in these references.

The effect of third order dispersion was discussed by

stants whose choices make the resultant equation either ftfivshar and Afanasjev, who showed that near the zero point

bright or dark solitons as indeed shown below.

Case (i) u=un=1. For this case, the compatibility condi-
tion U,—V,+[U,V]=0 gives the nonlinear Schdinger
equation for bright solitons of the form

¢+ Gt 2[al?q=0. 4
Case (iiy w=i and u=—i. For this case, the compatibility

condition gives the nonlinear Schiinger equation for dark
solitons:

ig:—0uxt2[ql?q=0. (5

Thus, in this section, we discuss a single system of La
pair for both bright and dark solitons for the nonlinear Sehro

dinger equation. In the case of bright solitons, thekand
transformation and soliton solutions are well kno\0].

However, for the dark solitons, we are not able to obtain

X

of the group velocity dispersion, dark solitons exist as humps
instead of dips. It was proved that the solitary wave acts as a
source generating trailing oscillations, which with the lead-
ing front propagates with the group velocky [21]. When

we take third order dispersion and self-steepening together
into account with the group velocity and self-phase modula-
tion terms of the NLS system, the governing equation is
known as the Hirota equation, whose bright soliton proper-
ties were analyzed by many authd22,23. On the other
hand, if we include the stimulated inelastic scattering to-
gether with these two effects, we would obtain the higher-
order NLS equation. For the known integrable systems,
Radhakrishnan and Lakshmar@d] considered both bright
and dark soliton propagation in higher-order NLS systems.
In this paper, we carry out the Painles@alysis to find out
new integrability conditions for the case of dark solitons.
The HNLS equation is given in the form

Backlund transformation and soliton solutions yet. Hence we ) o ) )
proceed to determine the conditions for dark soliton propa- = * 1t 2i[a]*q+ e[ Aot aa(lala)+ a2q(|al )x:(|6)

gation in higher-order systems.

lll. PAINLEVE ANALYSIS OF THE NLS EQUATION
WITH HIGHER-ORDER EFFECTS

whereq is the slowly varying amplitude of the pulse enve-
lope, anda, and a, are arbitrary constants and the sign
corresponds to the anomalous dispersive regime and-the

Even though the NLS equation explains pulse propagatiosign to normal dispersive regime. The parametespresents
in a nonlinear optical fiber, it has its own limitations. For the relative width of the spectrum that arises due to quasi-
example, when the optical pulse is of the order of femtosecmonochromocity, and it is assumed thatt@<1. As the
onds, the NLS equation becomes inadequate, as higher orderight soliton versions of the above equations are well stud-

effects like third order dispersioTOD), self-steepening
(S9, and stimulated Raman scatterit@RS should be in-

ied, in this paper, we consider only the dark soliton version
of Eq. (6). To identify the new integrable systems, we follow

cluded. In such a case, the governing equation is the onthe Weiss, Tabor, and CarnevdM/TC) procedure[25] to
known widely as the higher-order NLS equation, first de-carry out the Painlevanalysis, according to which a given

rived by Kodama and Hasegawal]. The effect of these

partial differential equatiofPDE) is integrable, if its solu-

effects in uncoupled and coupled systems for bright solitongions are single valued about the movable singularity mani-

is well explained in many papefd2-14. Inelastic Raman

fold. This method requires the following steps to prove the

scattering is due to the delayed response of the mediunintegrability: (i) determination of the leading orders of Lau-
which forces the pulse to undergo a frequency shift which igent series(ii) identification of the powers at which the ar-
known as a self-frequency shift. The effect of self-steepeningdpitrary functions can enter into the Laurent series called reso-
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nances andiii) verification of the existence of sufficient HNLS equation first given by Sasa and Satslitr, and the
number of arbitrary functions at the resonance values withlatter case corresponds to the dark soliton solutions.

out the introduction of a movable critical manifold and con-  The Hirota equation corresponding to dark solitons can be
nection with complete integrable properties. Throughout thiggiven as

analysis, we used the Kruskal's reduced manifold ansatz.

In order to carry out the Painlévanalysis, let us assume  Gt=—10xct 2i[al?q+ e[ Aot @a(|al?a)— a1a(|al?),].
g=a andqg* =b. Equation(6) becomes (15)
ay=—iayt 2ia’b+e[agt ai(@’h)+ aza(ab),], In order to check the existence of a sufficient number of

(7a) arbitrary functions at other resonance values, we substitute
_ - ) the full Laurent series in Eq$7) with @,= — 4. From the

by=iby,—2ib a+ e[ by, + ai(ba)+ asb(ab),]. b coefficients of ¢~ 3,¢ %), it can be shown that
. . . agh,=—bpa; and =—6. 16
To determine the leading order behavior, we expand 0= 0%1 a1 (16)

Equation(16) clearly shows that eithes; or b, is arbi-
trary, which corresponds to the resonancg¢=afl. Also, the
value ofa; shows that it corresponds to a case of integrabil-
ity for which dark solitons may occur. Collecting the coeffi-
cients of (@ 2,¢ ), we obtain values fom, and b, as

a~agp™ and b=bye", (8)

wheremandn are negative integers. Substituting E8). into
Egs.(7) and equating the dominant terms, we obtain

m=n—1 and agby=—6/(3a;+2a,). (9) follows:
To find the resonances, we substitute a2:6;; [0+ 2iaghy+ 6easb,].
. , o
a=agp '+aj¢/ "t and b=boep t+bjpl "t (10) (17)
. -1 _
Collecting the coefficients of!~# and solving the resultant b2:68a0[¢t_2|b°a1+ 6zcasbq].

determinant, the resonances are obtained as

Similarly from other coefficients op, one can prove the
20, existence of sufficient number of arbitrary functions without
J—3aja,—2a3 the introduction of any movable critical manifold. Hence it
can be concluded that the system of Hirota equation for dark
The resonance gt=—1 corresponds to the arbitrariness Solitons passes the Painlesealysis, and is expected to be
of the singular manifold and the arbitrarinesg &t0 is veri-  integrable.
fied from Eq.(9), which shows that eithea, or by is arbi- Now let us consider the arbitrary analysis of the Sasa-
trary. From the resonance analysis, it can be seen that theftsuma case for dark solitons in whieh= —2a,, and the

are two possible cases for the resonances to be integers. Thegsonances are given by E@4). The HNLS equation for
are dark solitons is given in the following form:

j=-1,0,3,4,3" (11

case(i): =—a,, ) ) a
0 a=ma a9 it 2Pt e oot aralfae 5 adaly.

case(ii): a1=—2ay. (18

At this juncture, it is interesting to note that casghas the

We recall that the resonances for this case are given by
resonances

Eq. (14). In order to check the existence of a sufficient num-
ber of arbitrary functions at other resonance values, we sub-
stitute the full Laurent series in Eq6l) with 2a,=—a;.
From the coefficients of¢~3,¢3), it can be shown that

j=-1,0,1345 (13

for both ¢y=—a,=6 ande;=—a,=—6.

The former case corresponds to well-known bright soli- 2i(aghy—1)
tons for the Hirota equation, and the latter one corresponds to = -0 (193
dark soliton solutions. From arbitrary analysis, we also found a;ebg
that Eq.(6) admits sufficient number of arbitrary functions at )
the resonance values as proved below. _ ~2i(agho—1) (19b)
On the other hand, cag@) has the resonances 1 a1€8g '
j=-1,02,3,4,4 (14) Similarly, from the coefficient of ¢ 2,¢ %), we can

show that eithem, or b, is arbitrary, which corresponds to
for both @;=—-2a,=6 and a;=—2a,=—6. The former the resonance gt=2. From higher powers of, one can
case corresponds to the well-known bright solitons for theshow that in order to prove the existence of a sufficient num-
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ber of arbitrary functionsg; = —6 and hencer,=—3. Thus ity of dark Hirota and HNLS systems through Painleve
it is concluded that the dark soliton cases for both Hirota andnalysis, now we move on to establish the complete integra-
HNLS equations are expected to be integrable only for thevility properties of these systems, such as the Lax pair, Hi-

particular values oftv; and a, viz a;=—6 anda,= —3. rota’s bilinear form, and soliton solutions.
It is interesting to note that the constraints given in Egs.
(12)—(14) obtained from Painlevanalysis are similar to the IV. LAX PAIR FOR DARK HIROTA SYSTEM

one obtained for the bright soliton case, except for sign . . )

changes in the parameters of higher-order effects. The pres- 1he linear eigenvalue problem for dark solitons of the
ence of bright optical solitons with higher-order effects hagHirota system can be constructed as follows:

been experimentally verified, and the influence of these ef- Vo= U

fects well studied. However, the dark solitons with these X '
higher order effects is of only theoretical interest now. How-

ever, we believe that the constraint given by E4®)—(14)

is experimentally realizable, as we are able to obtain darkynere
one- and two-soliton solutions for the integrable versions of
these systems. Thus Painlearalysis proves to be a valu- v=(V, V)" (20)
able tool for obtaining the constraints of the parameters for

the existence of dark solitons. Having proved the integrabilHereU andV can be given in the forms

\PtZV\P,

—iN2  —iq
U= ig* in2 )’

iel2 0 i/2 ieq ie|q|? iq—eqy
RO N : N,
0 —iel2 —ieq* —il2 —ig*—eq} —ielq|
( ilql?+e(qqf —g*ay)  2islal’q—ac—isge )
—2ielgl’q—ay +isgy —ilal*+e(—ad +q*q,)/

v=x%

(21)

The compatibility conditiord;—V,+[U,V]=0 gives rise to t

Eq. (15). T=t, Z=x+ 35" (23
Since we are able to obtain the Lax pair for the dark

soliton version of the Hirota equation, we conclude that it is

possible to perform the inverse scattering transform metho#/sing the above transformations in E@2), the resultant

for this equation to obtaifl dark soliton solutions. We give complex modified KdV equation is obtained in the form

the Hirota bilinear form and the one-soliton solution for this

case below. Qr—¢{Qs7,—6|Q|?Q}=0. (24)

Bilinearization and dark soliton solutions Next we consider the Hirota bilinear transformation

Hirota’s bilinear methodl26] is one of the most direct and
elegant methods available to generate multisoliton solutions Q=GIF (25)
of nonlinear PDE’s. In order to obtain dark soliton solutions ’

for the Hirota equation, we rewrite Eq15) in the more _ _ _
conventional form whereG(Z,T) is a complex function ané(Z,T) is a real

function. Using Eq(25), we obtain the decoupled forms of
i0y— g+ 2| |20 —i e{0yxx— 6] | %ay} = 0. (220 the bilinearized cmK-dV equation as follows:

To avoid mathematical complexities, it is rather conve-

. ) : . 3 -
nient to transform this equation to a simpler form, so that we (Dr—eDz—3e\Dz)G-F=0, (263
may be able to generate multisoliton solutions. We make the

following transformations to convert the Hirota equation to (D2+\)FF=-2|G|%, (260)

complex modified KdV(cmKdV) equations:

where\ is a constant to be determined, and the Hirota bilin-
' ear operator®, andD, are defined as

| Z T
g(x,t)= Q(Z,T)ex;{ | (g— ﬁ)
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DMDIG(x,t)- F(x,t)=

g 9\Ma a)" (DE+N)(L-fytfy-1)=—4[gol’gs. (35D
ax ox'| \at ot _
To solve these equations, we assume

X G(x,t)-F(x',t") g1=Piexd &1+ Poexd &;]

x=x't=t’

(27  and

Further, we assume that fi=exg &1+ exd &), (369
G=go(1+xg,) and F=1+yxf,, (28

whereé&; = w,T+c,Z+ &9 and &= w,T+c,Z+ &9 with
whereg, is a complex constant, argj andf, are real func- . 5
tions. Substituting Eq(28) into Eq. (26), and collecting the w1=eC;+3eNc; and w,=s&C5+3eNC,. (36b)

coefficients ofy°, we obtain
The values of?; andP, are found to be

N=—2|gol2 (29
2|gol?~cf
The coefficients of¢ and x? lead to the following equations: Pl:W'
0

(Dr—eD3—3sAD5)(1-f;+90;-1)=0, (303 ,
; b _ 2|gol?—c3 (360
(D2+A)(1-f1+f1-1)=—4|gol?g;, (30D 2= 2g 7 ©

(Dy—&D3—3e\D2)(g;- f1)=0, (300 The coefficients ofy? lead to the following equations:

(DZ+N)(F1f1)=—4]go|’g]. (30d (Dr—eD3-3eADz)(1-f,+0:f1+9,-1)=0, (379

It can be easily shown that Eq&0) can be solved if we

assume that (DZHN)(1-Fot fify+f,1)+2(2]gol?gn+ |90|29%)(:0-

37b
=—f;=— T+c,Z+¢&Y 1 _
% 1= T exfleTH ez 6T, S It can be shown that the above system of equations can be
where satisfied if we assume
w1=£C1(C2+3\), 02=ApP1Poexd 1+ €] and fo=Apexdé+ ]
(32 (389

c2=—2\=4|g|?.

Using Egs.(32), (31), and(25), we can obtain the dark one- The value ofA;, is found to be
soliton solution in the form

A1z

C%sT

1
Q=gotank{§[c1(z— >

By using transformation§23), we can obtain the dark one-
soliton solution of the Hirota equation. It is clear that the
higher-order effects TOD and SS effects affect the velocity

of the dark soliton, yet they propagate without any change in  Fom the values of;, gz, gs, f1, andf,, one can

their shape and intensity. Next, we move on to the construcobtain dark two-soliton solutions of the Hirota equation. In

tion of two-soliton solutions of the Hirota equation. To ob- 19- 1, this two-soliton solution is plotted. From detailed in-
tain the two-soliton solution, we assume the following formsVestigations, we find that dark two-soliton solutions behave

0
&

}- (33 _ (P,=P){—(w—w1) +&(c,— ;)% +3eN(c,—Cy)}
_(1_ PlPZ){—(w2+ w1)+8(C2+ C1)3+ 38)\(C2+ Cl)} ’

(38b)

for G and F: in an elastic manner characteristic of all soliton solutions.
They retain their shapes after collision with only a slight
G=0o(1+x9:1+x?g2) and F=1+xfi+x*f,. change in their phase. Also, like all dark solitons, they ap-

(34) pear to repel each other, and hence there is no possibility of
forming a bound state between them. This important feature
The coefficients of° lead to Eq.(29). From the coefficient is an attractive factor that makes dark solitons a preferred
of x, we obtain tool, instead of bright solitons, in long-distance communica-
tions. Our next aim is to find the dark one- and two-soliton
(D1—eD3-3eADy)(1-f;+9;-1)=0, (353  solutions for the HNLS system.
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FIG. 1. Dark two-soliton solution of the Hirota system.

V. LAX PAIR FOR DARK HNLS SYSTEM

PHYSICAL REVIEW E 64 046608
where
Ap=ilgl?+ilr]?+e(aos —qa* +rri—rgo*),
A= —0y—ie0t 2ie(qlal?+r|r|?),
Arg=—ry—iery+2ie(r|q|?+r|r|?),

Aor=—0f +ieqh—2ie(q* o>+ q*[r[?),

The integrable version of the dark HNLS equation takegNith

the form

0= — Gyt 2i] 0|20+ e[ Axux— 60 A 2= 3a(] alD)«]-

As described in the Sec. IV, we present the linear eigenvalu
problem and the Lax pair in the same manner:

v,=U",
V=V,
where
V=¥, ¥, ¥, (40

The Lax operatoré) andV can be given in the forms

—iN2 —ig —ir
u=| ig* in2 o
ir* 0 N2
(419
iel2 0 0
v=x3 O —iel2 0
0 0 —iel2
i/2 ieq ier
+N\2| —ieq* —-1/2 O
—ier* 0 —i/2
ie(|q|2+]|r|?) —eqetiq —ergtir
+\| —eax—ig*  —ielal®*  —ig*r
—erf—ir* —ir*q —iglr|?
All AlZ A13
+| Azn Az Az,
As1 Aszx Az

04660

Ag=—ilal*+e(a* a—aagy), (41b)
Agz=—iq*r+e(g*r—ray),
Agi=—rF+ierf,—2ie(r*|q|?+r*|r|?),
Azy=—ir*q+e(r a—ary),
Agg=—i|r[>+e(r*r,—rr}),
r=e%* and O(x,t)=3(x+3t). (410

The compatibility conditionU,—V,+[U,V]=0 gives
rise to Eq.(39). The construction of Lax pair confirms that
fhe dark HNLS equation is indeed completely integrable.
The next logical step would be to extend our above results to
N-coupled systems to analyze thefield propagation. This
work is under progress and the results will be published
soon. Though we are able to obtain the Lax pair for dark
soliton systems, we could not yet obtain dark soliton solu-
tions from it through standard methods likeé d&&und trans-
formation. Hence, in the next subsection, we use Hirota’s
bilinear technique to derive the dark soliton solutions.

Bilinearization and dark soliton solutions

We follow the same method used for the Hirota equation
in the previous sections to obtain dark soliton solutions for
HNLS equation. First we transform E(9) to a CmK-dV
equation using Eqg24) as follows:

Qr—&[Qzz7-6/Q|*Qz—3Q(|Q|?)z]=0.

The decoupled bilinear forms of E¢2) are given as

(42

(Dr—eD3+3e\ND;)G-F=0, (43a
(D3—\)F-F=—4|GJ?, (43b)
D,G*-G=0. (430

To obtain one-soliton solutions, we assume
G=go(1+xg,) and F=1+xf,, (44)

where, gy is a complex constant, angl, and f, are real

functions. Substituting Eq44) into Eq. (43), and collecting

the coefficients of°, we obtain
N=4|gol%. (45)
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The coefficients ofy lead to the following equations: wheregg is a complex constant, argd, g, 93, f1, andf,
are real functions. The coefficients gf lead to Eq.(45).
(Dr—&D3+3eND5)(1-f;+g;-1)=0, (468  From the coefficient of, we obtain

(D2—\)(1-f,+f,-1)+8|go|?9,=0, (46b) (Dr—eD3+38\Dz)(1-f1+0;-1)=0, (513
Dy(1-g4+0;-1)=0. (460 (D3=M)(1-f1+11-1)+8]go g, =0 (51b
To solve these equations, we assume

g1=Piexd é;]+Pyexd é,] and

The coefficients ofy? lead to the following equations:

Dr—&D3+3e\D -f1)=0, 47
(Drrebzrasba ) e f1=exiL &1+ exi £, (523
2 2_
(DZ—N\)(f1-f1)+4|go|?g7=0, (47D \where&; = w,T+c,Z+E9) and £,= w,T+c,Z+ £, with
D20,9:=0. (470 w;=8C3—3eNc; and w,=eC3—3shc,. (52b)

Equationg46) and(47) suggest that they can be solved if we The values of?; and P, are found to be

assume
b _ 4|gol*— ct
glz—f1=—exr[w1T+Clz+ gg_o)], (48@ ! 4|go|2 '

where b _4]gol*—c
2 4lgol®

The coefficients of¢? lead to the following equations:

(53)
w1:8C1(Ci_3)\),

¢i=21=8|gol” (480 (Dr—&D3+38ADy)(1-fo+0;-f1+0,-1)=0,
Using Egs.(48) and (44), the dark one-soliton solution of (543
cmK-dV equation is obtained as (D2=N\)(1-fot fy- 1+ fp 1) +2(2]gol2g2+ 90|29 =0.
1 cleT (54D
Q=gotank{i(cl(2— 2 )Jrg(lO)H' (49t can be shown that the above system of equations can be

satisfied if we assume

Using transformation23), we can easily obtain the cor-
responding dark one-soliton solution of the HNLS equation 92=A1P1P2exdé+&] and fo=Apexdé +&].
(39). It is clear that the higher-order effects TOD, SS, and (553
SRS affect the velocity of the qlark soliton, yet the_y Propa-rpa value ofA;, is found to be
gate without any change in their shape and intensity. In this
context, it should be mentioned that Mel'nikat al. ob- A,
tained the most general single soliton solution for Ep),
showing the dark-gray to dark-black bifurcatifv,2§. The (P,—P){—(wy— 1) +e(cy—¢1)3—3eh(c—Cy)}
dark soliton solution given in Eq49) can also be obtained =7— — 3 .
from the most general solution, which exhibits either a single (1=P1Po){~ (w01 +a(CotCy) 38)\(02+C(1géb)
dip or two dips of equal width, given in these references with
appropriate limit, viz by pushing one dip to infinity. It is  The dark two-soliton solution for the HNLS equation can
interesting to note that the mKdV equation analyzed here ige obtained by using the expressiongef g,, f;, andf,.
of interest not only in fiber optics. The twin hole dark soli- |n Fig. 2, this two-soliton solution is plotted. The dark two-
tary waves in nonintegrable systems were found in variousgoliton solution behaves in an elastic manner characteristic
physical settings such as the propagation of terahertz electref all soliton solutions. They retain their shape after collision
magnetic pulses in media characterized by the simultaneousnly with a slight change in their phase. Also, like all dark
presence of second and third order nonlinear[t2 and the  solitons, they appear to repel each other. Thus for the first
parametric interaction in diffractive quadratic nonlinear me-time, to our knowledge we have reported on a dark two-

dia[30,31. soliton solution of an integrable HNLS system.
From here, we proceed to the next step of obtaining dark
two-soliton solutions, for which we assume VI. CONCLUSION
G=0o(1+x0:+x%gy) and F=1+ yf,+x?f,. In this paper, we have discussed the dark solitons of NLS,

(500  the Hirota equation, and the HNLS equation. For the NLS

046608-7



A. MAHALINGAM AND K. PORSEZIAN PHYSICAL REVIEW E 64 046608

It is seen that the higher-order effects TOD, SS, and SRS
affect the velocity of the dark soliton, however, they propa-
gate without any change in their shape and intensity. The
dark two-soliton solution behaves in an elastic manner char-
acteristic of all soliton solutions. The solitons retain their
shape after collision only with a slight change in their phase.
Also, like all dark solitons, they appear to repel each other,
and hence there is no possibility of forming a bound state
between them. This important feature is an attractive factor
that makes dark solitons a preferred tool, instead of bright
solitons, in long-distance communications. The bright soliton
solutions for the nonlinear Schdimger equation with higher-
order effects are well known. What we have attempted in this
paper is to establish dark soliton propagation, which is not
well understood in systems with higher-order effects. Hence
we have not tried to analyze gray soliton solutions. Also,
dark solitons are more important than gray solitons from the
point of view of practical applications such as optical com-

system, we have given the Lax pair for the dark soliton using{;‘un'cat'on.’ etc;. Hence, we conclude that dark §0I|tons can
the AKNS formalism. For the Hirota system, we have ob- ropagate in hlgher-orQer NI.‘S systems under_sunabl_e physi-
tained dark soliton conditions using the Painlewvalysis. It Cfd_l Cond'“m?s’ as predicted in this paper by using an |_ntegra-
was found that, the system admits dark soliton propagatio@IIIty analysis, an_d that they are expe_rlmentally realizable.
when the coefficient of self-steepening is negativé, to be ue to.the superior nature of_dark SOI'thS when compared
precise. The integrability of the above equation was als 'th bright solitons, viz. S.tab'"ty’ repulsive nature, efc. we
proved by the specific Lax pair. This clearly indicates the elieve that these dark so_lltor_ls are more favc_JrabIe for the use
existence of dark solitons similar to the dark soliton propa—Of Ion_g-d|stance communication. The extension of the above
gation in NLS systems in the normal dispersion regime. |n£quations toN—coupIed system is under progress, and the
deed, the dark one and two-soliton solutions were found b&esults will be published soon.

the Hirota bilinear method, and the solutions were plotted.
Similar results were produced for the HNLS equation. In this
case, the system admits dark soliton propagation when the K.P. wishes to thank AICTE, DST, and NBHM, Govern-
coefficients of both self-steepening and inelastic Raman scatnent of India, for their financial support through major
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FIG. 2. Dark two-soliton solution of the HNLS system.

ACKNOWLEDGMENTS

tering are negative;-6 and —3, respectively. projects.
[1] A. Hasegawa and F. Tappert, Appl. Phys. L28, 142(1973. Mahalingam, Phys. Rev. Let80, 1425(1998.
[2] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev[15] K. Porsezian, M. Daniel, and M. LakshmananEighth Work-
Lett. 45, 1095(1980. shop on Nonlinear Evolution Equations and Dynamical sys-
[3] A. Hasegawa and F. Tappert, Appl. Phys. L88,.171(1973. tems edited by V. G. Makankoet al. (World Scientific, Sin-
[4] V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. F4, gapore, 199% p. 436.
1627(1973 [Sov. Phys. JETRB7, 823(1973]. [16] K. Porsezian, P. Shanmugha Sundaram, and A. Mahalingam,
[5] P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Phys. Rev. B50, 1543(1994.
Barthelemy, Opt. Commuré2, 374 (1987). [17] M. Gedalin, T. C. Scott, and Y. B. Band, Phys. Rev. L&8,.
[6] G. A. Swartzlander, Jr., Opt. Lett7, 493(1992. 448 (1997).
[7] B. Luther-Davies and Y. Xiaoping, Opt. Lett7, 496 (1992. [18] D. Mihalache, N. Truta, and L.-C. Crasovan, Phys. Re®6E
[8] D. Krokel, N. J. Halas, G. Giuliani, and D. Grischkowsky, 1064(1997.
Phys. Rev. Lett60, 29 (1988. [19] D. Mihalache, L. Torner, F. Moldoveanu, N.-C. Panoiu, and N.
[9] Y. S. Kivshar and B. Luther-Davies, Phys. Rep98 81 Truta, Phys. Rev. E8, 4699 (1993; J. Phys. A26, L757
(1998. (1993.
[10] A. Hasegawa, and Y. Kodam&plitons in Optical Communi- [20] D. Mihalache, N.-C. Panoiu, F. Moldoveanu, and D.-M.
cation (Oxford University Press, Oxford, 1985 Baboiu, J. Phys. 27, 6177(1994.
[11] Y. Kodama and A. Hasegawa, IEEE J. Quantum Elect2@. [21] Y. S. Kivshar and V. V. Afanasjev, Phys. Rev. 4, R1446
510 (1987. (199).
[12] N. Sasa and J. Satsuma, J. Phys. Soc. 6pn409(1991). [22] R. Hirota, J. Math. Physl4, 805(1973.
[13] D. N. Christodoulides and R. I. Joseph, Opt. Let8, 53 [23] R. S. Tasgal and M. J. Potasek, J. Math. PB®s1208(1992.
(1988. [24] R. Radhakrishnan and M. Lakshmanan, Phys. Red,2949

[14] K. Nakkeeran, K. Porsezian, P. Shanmugha Sundaram, and A.  (1996.

046608-8



PROPAGATION OF DARK SOLITONS WITH HIGHER-. .. PHSICAL REVIEW E 64 046608

[25] J. Weiss, M. T. Tabor, and G. Carnevale, J. Math. Piys. Panoiu, Pis'ma zZh. Eksp. Teor. Fig5, 380 (1997 [JETP
522(1983. Lett. 65, 393(1997].

[26] R. Hirota, in Solitons edited by R. K. Bullough and P. J. [29] K. Hayata and M. Koshiba, J. Opt. Soc. Am. B, 2581
Caudrey(Springer, Berlin, 198D (1994).

[27] I. V. Mel'nikov, D. Mihalache, F. Moldoveanu, and N.-C. [30] K. Hayata and M. Koshiba, Phys. Rev.59, 675(1994).
Panoiu, Phys. Rev. A6, 1569(1997). [31] A. V. Buryak and Yu. S. Kivshar, Phys. Rev. Bl, R41

[28] I. V. Mel'nikov, D. Mihalache, F. Moldoveanu, and N.-C. (1995.

046608-9



