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We consider band structure calculations of two-dimensional photonic crystals treated as stacks of one-
dimensional gratings. The gratings are characterized by their plane wave scattering matrices, the calculation of
which is well established. These matrices are then used in combination with Bloch’s theorem to determine the
band structure of a photonic crystal from the solution of an eigenvalue problem. Computationally beneficial
simplifications of the eigenproblem for symmetric lattices are derived, the structure of eigenvalue spectrum is
classified, and, at long wavelengths, simple expressions for the positions of the band gaps are deduced. Closed
form expressions for the reflection and transmission scattering matrices of finite stacks of gratings are estab-
lished. A new, fundamental quantity, the reflection scattering matrix, in the limit in which the stack fills a half
space, is derived and is used to deduce the effective dielectric constant of the crystal in the long wavelength
limit.
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[. INTRODUCTION We study not only propagating modes, but also the eva-

Photonic crystals are structures in which the refractivenescent states. We also deduce the reflection and transmis-
index varies periodically with position. Their unprecedentedsion matrices corresponding to a finite stack of gratings, and
ability to steer the propagation of light makes them promi-construct the limit of the reflection matrix to deduRe , the
nent candidates to be the technology underpinning noveeflection matrix of a semi-infinite space composed of
classes of photonic devices. An important tool in the modelstacked gratings. It is shown that this is a useful tool in
ing of photonic crystals is the band structure, which indicate$tudies of homogenization, i.e., the replacement of the crys-
how the propagation of ||ght depends on frequency, po|arizata| by an equivalent homogeneous dielectric. Fina”y, we dis-
tion, and direction. For some photonic crystals, all travelingcuss the occurrence of band gaps at long wavelengths, pre-
wave solutions are forbidden for a particular frequency intersenting a simple criterion for the onset of a band gap, and
val, which is then referred to ag@omplet¢ band gap. There comment on the behavior of the photonic crystal near the
exists a mature literature on the calculation of photonic bangdges of band gaps.
structure§ 1], with various approaches such as plane wave We formulate the method for the most general two-
methodq 2,3], transfer matrix methof#,5], finite difference dimensional Bravais lattice, and give examples for the high-
time domain method[6], layer Korringa-Kohn-Rostoker Symmetry square and hexagonal lattices. Part of the formu-
method[7] and multipole methodE8,9]. Here, we introduce lation is an investigation of the pairing properties of the
a generic method for calculating the band structure of twoBloch factors. Though the reflection and transmission matri-
dimensional photonic crystals, based upon the observatiof€S can be obtained in a variety of ways, here we use the
that such crystals can be considered as a stack of identicEUltipole method for cylinder gratings described earlier by
one-dimensional layers, each of which is a periodic diffrac-us [15,16. Since multipole methods rely on the knowledge
tion grating. The scattering matrices of the gratings are useff lattice sums, our approach, in which we consider a two-
in combination with Bloch’s theorem to determine the banddimensional structure to be built up from one-dimensional
structure of the crystal in a way first developed by McRaedratings, leads to relations between lattice sums of one- and
[10] for electron diffraction, and applied recently to the pho-two-dimensional lattices.
tonic crystal problem7,11] In this way, band structure cal-

culations can use any technique from the substantial litera- Il. THE EIGENVALUE PROBLEM
ture on scattering by diffraction gratin§j$2,13.
There are a number of features in the treatment presented A. Nomenclature
here that generalize the earlier wgf0,11. We take advan- We consider an infinite periodic structure comprising

tage of the symmetry that is present in rectangular, centerggentical layers, each of which is a one-dimensional diffrac-
rectangular, and hexagonal cryst@lsl| to develop the ei- tjon grating, consisting of regular cylindrical inclusions of
genvalue problem in a form improved in both computationalinfinite extent in thez direction, in an otherwise uniform
stability and efficiency. In fact, starting from a plane Charac'background medium. The basis vectors of the latticeegre
terized by the Miller indice$h;h,], the method can be used —,(1,0) ande,=d,(cosy,siny), with a general lattice
to generate the band structure in ftigh,] direction in the  yector being

Brillouin zone, though here we only apply this to the usual

high-symmetry directions. [mn=me +ne,. (h)
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A y O O o O O p,. The matrices defined in this way, of course, depend on
e the incidence angle and frequency through the quantities
ﬁ'¢ PL;P ?ff anda@
T i In the present paper we assume that the matrices
} j ! RO, 1O R'© andT’'® are known from the outset for
O ot :'.9 o - all gratings. These matrices are of infinite dimension and
A\ U " Ny I’ X . .
/ /€1 must be truncated for computational purposes, keeping suf-
/' /’ ficient plane wave orders to ensure that the solution is well
f; * P, ?f; characterized and stable. For the cylinder gratings that we
consider here, this can be done using multipole methods dis-
O O O O O O cussed earligrl5,16. However, scattering matrices for these

and other grating structures may be generated using integral
FIG. 1. Geometry of the unit celdefined by the fundamental €quation techniques, differential methods as well as modal
translation vector®, ande,) for the Bloch method calculations. methods. Indeed, for gsymmetric structure such as the
The phase origing®; and P, of the fields respectively above simple cylinder grating we haveR©=R’(® and T©
(ff, f1) and below 5, f) the grating are shown. =T’ Nevertheless, while the theory developed here does
not depend on the details of the geometry in general, there

For convenience, we introduce some additional nomencla@re @ number of elegant simplifications that follow for spe-
ture: d,=d; denoting the period in thex-direction, d, cific symmetries. _ _
=d, siny denoting the vertical displacement of successive ASSUMINg no interpenetration of layers, the field at the
gratings in the lattice, and,=d, cosy denoting the lateral €dge of the layer interfacey & +d,/2) may be expanded in
shift of one grating relative to the next. For a square lattice®MS of plane waves. From here on, the phase origins of the
we haved; =d,=d and = /2, so thatd,=d,=d ands, fields above and below the grating are taken to lie respec-
—0, while for a hexagonally closed packed latticg tively on the centers of the upper and lower edges of the
=d, dy=d\/§/2 ands,=d/2 (i.e.,d;=d,=d and = 7/6). parallelogram .unlt cel(gee Fig. 1 at pointsP;=(x;,y;) = .
A schematic diagram for a general array is shown in Fig. 1= (54/2.dy/2), j=1,2. Fields above and below the grating
We begin with a single grating, corresponding to oneli =1 andj=2, respectivelyare then expanded in the form
layer of this lattice. A plane wave of angular frequensy
and unit amplitude, is incident onto the grating with wave
vector («g,— xo) perpendicular to the axes of the cylinders,
and wave numbek=w/c=(a3+ x3)*? wherec is the L
speed of light in vacuum. The grating generates various re- + P eV exdiap(x—x)]. (4
flected and transmitted ordefghannels p that may be ,
propagating or evanescent. The direction sines and cosines bf Eq. (4), the wave amplitudes are denoted §Y, with
the associated plane wave fields are given by the prefactorsy, Y2 introduced so as to normalize energy
quantities as the square modulus of the corresponding com-
@) plex amplitude[15,16]. If the incident wave isE polarized

(the electric field is perpendicular to the plane of incidence
V denotes the component of the electric field,, while for
cost,=xp/k, xp=Vk?—as, (3)  aH polarized wavéthe electric field is parallel to the plane
of incidence V denotedH,. Note that the plane of incidence
with the y, being real for propagating orders and positiveis defined by the direction of incident ragiation and the nor-
P mal to the grating plane. Here, we consider only the case of

imaginary for evanescent orders. in-plane incidence so that the plane of incidence isxhe
For each grating, and for each possible incidence channef,1 P : P .
lane, perpendicular to the axes of the cylinders.

we now introduce vectors of amplitude reflection and trans* . )+
mission coefficients that constitute the columns of the reflec- 't IS clear that Fhefp must b_e Te'a‘ed to one ano_ther
tion and transmissiorscattering matriceghat characterize through_the reflection and transmission scattering matrices 9f
the diffraction properties of the structure. In the case of outthe gratlng: However, as .the. f'eld. phase origins of each indi-
theory for a cylinder gratingl15], the phase origin of ampli- vu_ju_al grating do_ not coincide, in general, with the_ phase
tudes is taken to lie on a line through the centers of th&rigins Py andP, it is necessary to transform the basic scat-

. . . . i i (0) (0) i i -
cylinders. In general, four scattering matrices are required —e/ing matrices R™, T, etc). If the basic scattering ma
R© and T(® representing reflection and transmission scat{/ICeS have their phase origin at the origin of coordinates
tering corresponding to incidence from abotie., fromy IS the case for the simple cylinder grating is straightfor-
>0 in Fig. 1, andR’© and T'(© being the corresponding ward to show that the transformed scattering matrices with
quantities for incidence from below the gratifige., from  Phase origins at point8; and P, are given by
y<0). The (;,p,) element of matrixT(®), for example,
represents the transmitted amplitude in chanpglcorre-
sponding to unit incidence amplitude from above in channel

vin= > Xi;llz[fg)_e_iXp(y_Yj)
p=—o

sind,=aylk, ap,=2mpldy+ ag,

T R TO RO

R T

P, ©)

Plro 10
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where C. Symmetric lattices
ol 0 P 0 We will return to a discussion of the distribution of the
o= } :{ } eigenvalues in Sec. Il E but note here that the existence of
0 Q 0 P such relations for symmetric structures enables a factoriza-

) tion of the eigenvalue equation, yielding an eigenvalue prob-
0 represents the zero matrix, and lem of half the dimension of the general form to be intro-
. i . i duced in Sec. Il D. Aside from being more computationally
— i Sy /2 — i xpdy/2 . -
Q=diad e'*»>], P=diad e™y7]. 6) compact, they are also more stable numerically, avoiding

Denoting byfl-i (i=12) a column vector with elements theinversion of matrices whose conditioning may be

£)= ite th tteri fthe i ing fieléls problematic.
p » Wecan write the scatiering ot the Incoming hell, We commence witly-symmetric structures composed of
andf, , from the grating in the matrix form y-symmetric gratings arranged in a rectangular array. Noting
_ - thatR=R’ andT=T’, we apply the unitary transformation
5] IR T3] " 1y b
=— (14)
N
B. Bloch condition )
Returning to the array structure, we now search for quaJ—[0 Eq.(11) to derive
siperiodic solutions satisfying Bloch’s theorem % 0
. 4 = 1
U(r + ) =€ 0" Imnu(r), ®) [gz} H' 49
whereu is any field quantity, anéty= aox+ Boy denotes the where
Bloch vector. The quasiperiodicity conditio@), in the x _
direction, is consistent with the family of plane wave fields - . | THR=cl isl 5
that have direction sines,/k. In contrast, there is no such W' =IWI' = isl T-R—cl!|’ (16)
constraint for the quasiperiodicity in thedirection, and, in
the procedures discussed belgy, is thus treated as an ei- 9 o 1 fofr
genvalue. Quasiperiodicity in thedirection is characterized 1} :1{ i} = 2 (17)
by 9 fo] 2| —fi+f;
fo=uf;, fy=puf], (9)  with c=(u+pu H/2=cosy, s=(u—u Y/(2i))=siny.
From Eq.(15) we have a linear system that can be con-
where verted into a pair of equivalent eigenvalue equations
p=exp(~iko-€). (10 1
N _ _ 8 ' Tg=5:0 (=12, (18)
Combining Eq.(9) with Eqg. (7), we obtain
WF=0, (1)  Wwhere
where S1=1+(T-R)(T+R), (19
T—ul R’ fo S,=1+(T+R)(T—R). (20)
= .ol F=ELL (12
R T'—ul f3

The eigenvalue equatidi8) is highly stable and compu-

We now consider the structure of the eigenvalue equatioéationa"y tractable. Since the eigenvalues occur in the form
(12). For computational purposes, all infinite dimensional? C=p+ 1p, the eigenvaluep and 1 must be paired; that
matrices are truncated and so is, if u is an eigenvalue, then so isgl/ The occurrence of

1/(2c) in Eq. (18) implies that the eigenvalues are generated
P(u)=detW=0 (13)  With the real or propagating statele|< 1) occurring before

the evanescent or nonpropagating states<1). Either of
is a polynomial with terms inw and u~*. For lattices for the problemg18) may be solved to generateand either of
which s,=0, i.e., for rectangular lattices of vertically sym- g1 Or g, with the other vector of the pair being inferred from
metric scattering elements that are also symmetric with rethe system(15) and(16). From thesef; andf, are gener-
spect toy=0, it can be shown thal’=T andR’=R, and  ated from an inversion of Eq17). As will become apparent
thus P(u)=P(1/u). Accordingly, for each roof. of Eq.  below, the pairs of vectord { ,f;) (wheref | =u~f,) are
(12) there must be a rogt %, with such a pair correspond- very significant and may be used to form a reflection scatter-
ing to forward and backward propagation through the latticeing matrix for a semi-infinite medium of inclusions.
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Im (u) Im ()

Fory-symmetric structures with,=d,/2, the grating lay-
ers interleave one another uniformly, as in a hexagonal lat-
tice. With this value ofs,, then Q= exp({«yd/4)Q,, where
Qo=diag expip7/2) and it follows that the eigenvalue prob-
lem of Egs.(11) and(12) may be transformed to the form

Re (W) Re ()
—— ~ | T=pul R . >
WF=0, where W=| _ - - . (21 )
R T-—ut 4
with FIG. 2. Eigenvalue distribution for an arbitrary, nonsymmetric
~ pT(O)pA-1 lattice (a) and for a hexagonal lattid). The scattering matrix data
T=Qy PT™PQ, ", (22) corresponds to a unit period gratirg=1 of cylinder voids of
_ radiusa=0.3921 and refractive index=0.8636 arranged in a unit
R=Q, 'PROPQ, !, (23)  cell characterized bg,=0.342@l,, d,=0.866@, (nonsymmetric
lattice), and s,=d,/2, dy:dx\/§/2 (hexagonal lattice Here, k
ILZ,U« expli agd,/2). (24) =7.946 56 andvy=2.717 88. For the hexagonal lattice the primary

ray along which many of the eigenvalues are clustered4s

The form of the eigenvalue equati¢®l) is identical to that ~— ®odx/2=—1.35894.
for the rectangular array and is thus amenable to the same .
transformation used to fact¢t8). The only essential differ- I-AB A" |1 —-A
ence is the replacement pf by . leading to deduction that -B | |B 1-BA/’
the eigenvalueﬁ and 1;& are paired. This is illustrated later o
in Sec. Il E. thereby yielding
We finally observe that the above pairing relations are
derived through algebraic manipulation of the eigenvalue
equations, relying solely on thg symmetry of the grating
and the rectangular and centered rectangular symmetries of .
the lattice. Since nothing has been assumed about the matéhe Bloch factorsu are the eigenvalues of E(5) and thus
rial properties of gratings, the pairing relations are purely .
1
T[ff

structural in their origin and hold for both lossless and ab-
sorbing gratings.
D. General treatment from which the u andfji can be obtained using standard
The general treatment of the eigenvalue problem must bEchniques. Some care is required in the computatioh of
used in the absence of any symmetry and requires the forNd T and, for structures that exhibit particular symme-

mulation in terms of theZ” matrix [11,17,18. Returning to tries, the forms of the preceding section are numerically

Eq. (7), the eigenvalue problem may be cast in the form ~ more robust. _ _
In any numerical implementation, the plane wave series
fa fy
t2] Tlf1

are truncated to contaiN, terms and the matrisZ_is there-
where the scattering matriX’is given by

(29

T—l

T 1=
RT !

(30

_T—lR/
T -RTIR'|

fi

£ (31)

=up

, (25 fore of dimension Rl,,, and consequently has\g eigenval-
ues. In what follows, we assume thais not defective and
thus possesses a complete basis of linearly independent
eigenvectors. While problems in the accuracy of the extreme
(very large and very smalkigenvalues can arise, in practice
only a truncated set of the eigenvalyesin the vicinity of

the unit circle are of real significan¢see, in particular, Sec.
III). Our experience has been that the most significant eigen-
values(i.e., those having the least absolute valuesof u

+ w1~ 1)/2) are stable with increasing matrix sizee., in-
creasingNp).

T_R/T/—lR R/T/—l
_T/—lR T/—l

= 1 i

A=T'R',

(26)

(27)

where

B=T'-IR. (28) E. Classification of the eigensystem

The pairing of eigenvalues can occur irrespective of lat-

We note that the form in Eq27) is derived by factorizing

the matrix in Eq.(26). Of significance in the back propaga-

tion problem is the ready construction of the mat@x *,
obtained by observing for ang andB that

tice symmetry, again partitioning the set of eigenvalues into
forward and backward propagating states. Figuie &hows
the eigenvalue distribution for an arbitrary, lossless lattice
(whose constituent element is titesymmetric cylinder grat-
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ing), with rays drawn from the origin to each eigenvajuén TABLE I. Properties of the 18 most significant modes for the
the complex plane. The plot region has been scaled radiall§ata corresponding to a hexagonal lattice displayed in Fig). 2
according tor = |M|0'04 (with r denoting the distance of the Colu~mns 2 and 3 give the modulus and argument of the eigenval-
plotted point from the originto compress the dynamic range ues u= u exp{agd/2), while column 4, only the sign of which is

of the data. On each ray, there is an even number of eigerimportant, gives the energy flu82).

values(at least one pajrand thus we deduce the pairing rule

that if x is an eigenvalue then so E‘l, where the super- n |l arg(u)/ = Er

posed bar denotes the complex conjugate. While this prop- 4 2 250¢ 107 0.0000 0.0000
erty has been demonstrated for lossless structures in all of 2 2 117 10P 1.0000 0.0000
our computational work, an analytic proof of its existence 3 1.491¢ 10° 05401 0.0000
has thus far eluded us. This property fails to exist, however, 4 1.491¢ 10° 0.5401 0.0000
for absorbing gratings and possibly points to an application 5 8-650>< 10 0.0000 0.0000

of time reversibility in its derivation for lossless structures. ' ' '
Figure 2Zb) shows the eigenvalue distribution for a loss- 3 g'zgz 1822 (1)'8888 8'8888
Iess_ hex_agonal Ife\ttlcei Ihe prg\{loua,g h _pamng is 8 1.000¢ 10° 0.1105 09783
again evident, as is theu(u 1) pairing derived in Sec. Il C 9 1.000< 10° —0.7785 ~0.9900
Again, we note that for_ I_ossy materlal_s _th(—;- former pairing 1 1.000< 1¢° 0.7785 0.9900
fails while the latter pairing, whose origin is purely struc- 4 1.000¢ 10° 01105 0.9783
tural, is preserved. Ag=u exp(agd/2), then for lossless 12 1.129< 102 1.0000 0.0000
materialsy. is associated with both ~* and . Hence, for 13 3.466<10 ° 0.0000 0.0000
this symmetry,u is also paired withe, implying that thex 14 11561 1072 0.0000 0.0000
must be real or occur in complex conjugate pairs. This is 15 6.7068¢ 1076 0.5410 0.0000
evident in Fig. 2b), recalling that the distribution of the 16 6.7068 1076 —0.5410 0.0000
differs from that ofu by a rotation ofg= — aod/2. Precisely 17 4.723% 10 1.0000 0.0000
18 44435108 0.0000 0.0000

the same structure occurs for lattices exhibiting rectangular
symmetry, this time with a principal axis @f=0.
We next partition the set of eigenvalues and eigenvectors

into forward and backward propagating states. In the presJating orders. This form of. is derived from an application
ence of loss, eigenvalues have eithef<1 or|u|> 1, while of Green’s theorenj16] to the functionV (4). Since&p is

for lossless structures some eigenvalues may Haye 1. purely positive, the direction of energy flow is determined

Now, designating the form of the eigenvector correspondingntirely by the sign ote.
to an eigenvalugy; to be[fi_Tfi”]T (suppressing the previ- When &¢ is positive there is a net flow of energy down-

. ! — ward (i.e., into the structupe which we associate with for-
ous subscript for conveniencethe vectorf; denotes the , : .
“eigenincid " into the | ¢ b fd th ward propagation. Conversely, whép is negative, the net
elgemgg eTcg n Oﬂ et' aytirTrr(])m apove, af mne corl- flow of energy is upwards away from the structure, and this
responding “eigenretiection.” The painng ol €1genvalues iq 450 ciated with backward propagation. This relationship is
above leads to a natural partitioning of the eigenstates. Th

h . 1 and so f h ﬁerhaps seen most clearly in the simple case of a
evanescent states are c ara_(:terlzebuh)yﬁ and so for eac y-symmetric grating embedded in a rectangular lattice for
state such thatu|<1 there is one for whichu|>1. The

whichR=R’ andT=T". Here, the eigenvectors correspond-
decay of the field in the forward propagation problem is thusmyq tou andp* are g P

mirrored by the associated eigenvalue that represents deca
in the back propagation problem.

Propagating states have magnityge=1 and are again
paired, representing forward and backward propagation. Un-
like the evanescent states, that can be differentiated accord-
ing to whether their magnitudes are greater than or less thagspectively—a result that follows readily from the structure
unity, the classification of propagating states can be detef the original system of equatiori$l) and(12). The change
mined only from a consideration of the direction of energyfrom forward to backward propagation involves the transpo-
flow characterized by the group velocityee the Appendix  sition of 1 and ™1, which in turn reverses the roles bf
that is proportional tofg/(k&p), where & denotes the andf~, thus reversing the direction of energy flow.
downward energy flux andp is the energy density per unit  Taple | displays the eigenvalues &F that was used to
cell. The flux & associated with a particular eigenstate isgenerate Fig. (). The datasee Figs. 7 and)&orrespond to
given by a hexagonal lattice of cylindrical voids in an arbitrary inci-

dence configuration, with the most significawt 18 eigen-
= > (|f;|2_|f;|2)_2 Im >, f;f_; , (32 values shown. Eigenvalues 1-9 and 10-18, respectively cor-
peQ PEQ, respond to the backward and forward travelling states.
Eigenstates 8—11 are propagating states, with the direction of
where(), denotes the set of propagating plane wave propapropagation being determined by the sign of the energy flux

f+
=

f-
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(column 3—uwith positive fluxes indicating downward, or °
forward, propagation. The remaining states are evanescent .
and carry no energy. .
° ®

F. Application to band diagrams

We now apply the above method to the calculation of
band structures, commencing with the procedure for the
simple case of a rectangular lattice of sidhsandd,. The
primitive cell is then spanned bg;=(d;,0) ande,=(0,d,),
and the associated primitive cell in reciprocal space is
spanned by, =27(d; *,0) andu,=27(0,d,'). Any point °
ko= (ag,Bo) (in Cartesian coordinatgsn reciprocal space
may then be written °

ko= §&1Uy + &5 (34

FIG. 3. The unit cell and fundamental translation vectors for the
Consider now a diffraction problem for a single constitu- reciprocal of an arbitrary lattice.
ent grating of this lattice, the plane of which is parallekio

(and z) and has period;. We consider an incident plane jnig which we may substitute the actual vecteyande,, or
wave (possibly evanescenof fixed frequency and incident some linear combination, as required for a particular in-
angle 6o, and observe that the phase change of the field ovegiance. In what follows, the formal parameters are uniformly
one period in the plane of the grating kg-e;=kd; sinfy  denoted by the tilde nomenclature.

=2m&;. Using the methods of Secs. Il C and II D, we gener-  The grating code, i.e., the implementation of the diffrac-
ate scatt_ering .matrices and then _solve the eigenvalue prolpn theory for a single grating, may be regarded as an algo-
lem to yield eigenvalueg.=exp(~iko-&,) [see EQ.(10].  nq 4 A(w,Koq,d) that computes scattering matrices of

From Sec. Il B we recall that, is an eigenvalue of the ~
L2 J a single grating of periodl that is irradiated with a field

problem, the value of which i§,= —argu/(2), sincekg ) . .
-e,=2m¢,. Each propagating solutiong{e[ —1/2,1/2) !vhose component of the Bloch vector in the grating plane is

found in this way lies on the line of fixeg in the primitive  Kog- We formally take the plane of the grating to be aligned
cell of the reciprocal lattice. We thus generate the band strucwith e, and to have periodi=|e,||. The projection of the
ture in the line defined by fixe@d and¢;. The complete band  Bjoch vector onto the plane of the gratingﬁ§g=projélk0

structure is generated by varyingand¢, (or 6o) [11]. We g the grating is periodically replicated with displacement
note, in contrast, that plane wave methods generate the bard

structure in a different order with fixegy and¢, defining an € to form the Iatt!ce. . .
eigenproblem in which is the eigenvalue We must also introduce formal reciprocal lattice vectors

Of course the band structure can also be generated Q?I andu, that satisfy relations identical to those in Eg5).
considering diffraction by a constituent grating of peribgd  1hen, expanding the Bloch vectky in this basis, we write
that is parallel toe,. The only difference is that we now
generate the band structure from a line of constaandé,.

In fact, we can use any constituent grating that is parallel to
the plane specified b§z andh,e;+h,e, (where[h;h,] are

the Miller indices to generate the band structure on lines of ~We begin by regarding the array as the replication of a
constantw, orthogonal to this plane. In order to deal with basic grating elemeng aligned withe;=e,, shifting each
this general case, and with the most general crystal lattice, jhyer relative to its predecessor Ey= —e,. In reciprocal

is necessary to introduce a general framework that can COpﬁ)ace, we hava, =u, andU,= — u,. Consider now the line
with nonorthogonal basis vectors and arbitrary section%_ in reciprocal spacdFig. 3 which is parametrized by

through the array. ~ .~ .
For a general lattice, we introduce general basis veeiors constant¢, and varying¢; e[ —1/2,1/2. From Eq.(35), it

ande, for the direct lattice, and basis vectarg andu, for ~ follows thatk0'%=2ﬂél, indicating that a one period step
the reciprocal lattice satisfying in the directione; advances the phase of the field in the

grating plane by a constantzZ,. To solve the required dif-

fraction problem for gratingg, we specifykoy=Ko- €, /d;
(35) with d1~=||(il|\,~and invoke the grating algorithm with

Alw,27¢&,/dy,d;). We then compute the eigenvalugs
As above, we take the lattice to be composed of constituent exp(—ik,-€,) according to the methods of Secs. Il C and

gratings parallel to botle; ande,. It is convenient to formu- || p, and fromk,-e,=27&,, we deducé,= —argu/(2)
late the method in terms of “formal” parametees ande,, e[ —1/2,1/27. Finally, we reconstruct the eigenvalkigfrom

ko=&1Us+&5Us. (36)

Up-e=2m, U;-6=0;

u2-81=O, U2'€2:2’7T.
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/

~

wd/2nc

|
14

. - Y FIG. 5. The first Brillouin zone, and two of its replicates, for a
square(left pane) and a hexagondtight panel array.

FIG. 4. The band diagram for a square symmetric lattice of

dielectric cylinders of normalized radile¥d=0.3 and refractive We now apply the method to the calculation of the band

index v=3.0, for E polarization. The continuous lines have been . . .
obtained from the Rayleigh multipole method, while the dots markdlagrams for two symmetric lattices. For the square array

the eigenvalue@,. The symbols on the abscissa represent the cor-(F'g' 4, the dlagram shows tr,]e dimensionless frequency
ners of the irreducible part of the first Brillouin zoxgee Fig. 5. (wd/27rc) as a function of Bloch's vectolkg) as the bound-

ary I'YMI' of the irreducible part of the first Brillouin

~ zone—the octant shown in the left panel of Fig. 5—is tra-
*0| o~ &1 (37) versed. Table Il shows the parametrization of the reciprocal
Bo & lattice path and the direct lattice basis vecigrsdefining the

5 _ 5 grating plane, an@, defining the replication displacement.

whereU is a matrix with columnsi; andus,. The table shows that segmediy and MI" are computed

In Fig. 3, the lineOL, corresponds t@,;=0, i.e., normal  from the normal incidence properties of gratings of perdod
incidence ontag. The parallel edges of the primitive recip- and+/2d, while the segment YM requires a Littrow configu-
rocal cell, PQ and SR respectively have¢,=+1/2 for  ration for a grating of periodl. The points in Fig. 4 have
which kO'Elz + 7. In traditional grating terminology, these been calcqlated using th.is methqd, while the Iineg were cal-
respectively correspond to Littrow mounts in the{)th and ~ culated using the Rayleigh multipole theory applied to the
1st orders—for which the plane wave orderd are respec- Whole array[20].

tively diffracted back along the path of the primary incident  For the hexagonal arragFig. 6), the irreducible part of
wave[19]. the first Brillouin zone(Fig. 5) is parametrized in Table IIl.

Similarly, the primitive cell may be scanned with lines What is initially surprising is that the three segments can be
parallel tou; =u,. This time, we consider incidence on the hanQIed using.only two normal incidence calculations for
basic grating elemeng§ aligned withe;=e, and replicated grgtmgs O_f periodsi(I"M) and. V3d (MK and KNF)' To see
with spacinge,=e,. With these definitions, the above proce- this, consider Table i, ShOW'”Q that on Mk € =27—a
dure carries through unaltered. We note that the scan lingcond order Littrow configuration. In this case, we would be
OM, corresponds to a normal incidence configuration onto dequired to operate the grating code Wiy =2=/d, lead-
grating parallel toe;, while the edgesRQ and SP corre-  ing to direction sinegof the plane wave ordergiven by
spond to first order Littrow configurations. a,/k, where

TABLE Il. Parametrized paths and basis gratings for each of the segments required to traverse the
boundary of the first Brillouin zone for a square array of pedodhe columnk ; and “Range” show the

parametrization of the path and the range of the indicated parameter, while the \@cthoav the basis
vectors (in Cartesian coordinatgf the direct lattice used in the calculations. The colurﬁrllséd and
k o- €, show the normalized period and phase change along a period of the grating.

Path Ko Range ‘e /d ‘e /d d, /d Ko €
Ty (0.koy) o% (1,0) (0,2) 1 0
YM (kOX Z) o (0,1) (—1,0) 1 ™
"d ‘d
MT ko(ii) 072 (~1.1) (0,1) 2 0
J2d' 2d d
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N/ the Rayleigh multipole theory for a hexagonal arfag]. In

st this case, however, in the application of the method for the
segmentl’KM interpenetration occurs for rada/d>0.25
0.4 and thus the application may not be strictly valid. However,
-\< as is evident from Fig. 6, the results are in excellent agree-
. : ment with those obtained from multipole theory. In this re-
gard, the insistence on noninterpenetration is a sufficient but
0.2 [T not a necessary condition for the method. The issue is di-
rectly related to the Rayleigh controversy of diffraction grat-
ing theory[12] concerning the validity of plane wave repre-
sentations for outgoing fields. The first insight into what, at
M T K M the time(the 1960% was a highly contentious problem came
) _ ) with the work of Petit and Cadilhg®1]. They considered an
' FIG._6. The band diagram f_orahexggonally symmetric Iat_tlce 0fana|ytiC continuation into the complex plane of the plane
fjleleCtI’IC cylinders of nqrmqllzed radlLfslq:O.S apd refractive |\ ove expansion of the outgoing field for a perfectly conduct-
index »=3.6, for E polarization. The continuous lines have been i, " ginysoidal gratingDirichlet boundary conditionsand
obtalped from the Rayleigh multipole methoq, while the dots markdemonstrated that the Rayleigh expansion converged pro-
the eigenvalue@,. The symbols on the abscissa represent the cor- . .
ners of the irreducible part of the first Brillouin zofsee Fig. % vided that.the groove depth was sufflf:lently ?ha"OW' The
T consideration of the Rayleigh hypothesis has since been fur-
- ~ _ ther generalizefi22—24 to show that use of the plane wave
ap=aot+2mp/d;=27(p+1)/d;. expansion is valid provided the series converges, with the
_ crossover occurring at a singularity of the analytic continua-
The list of direction sinegay/k} for this configuration is tion of the diffracted field. It is the location of the singulari-
identical to that for normal incidence, except that the list isties that characterizes the necessary condition and, in our
shifted by one place. The entries in the scattering matricesase, they depend on both the radius of the cylinders and
are similarly identical but shifted by one row and one col-their dielectric constant. While we have not closely investi-
umn. The corresponding eigenproblems for normal incidencgated the nature of the necessary condition, nevertheless, we
and the second order Littrow mount are thus equivalent, gerhave observed the effects of layer interpenetration becoming
erating the same eigenvalues but with eigenvectors whosevident more quickly with increasing refractive index of the
entries are displaced by one position. Thus, a single normalylinders.
incidence calculation for a grating of periq®d placed in a
hexagonal array of spacirdj2 gives bands for both K and
MK. Due to the symmetry of the hexagonal arr&M’, the Il. SCATTERING IN FINITE STACKS
extension ofl' K (see Fig. 5, is equivalent to KM. Note that,
in the case of a square array, the extensiod bf is not
equivalent to any of the segments MY IBl. Consequently, Following the partitioning of the eigenstates into forward
to calculate the band diagram, we need three gratings for and backward propagation, it is natural to partition the eigen-
square array but only two for a hexagonal array. In the casealue equation$31) similarly. Recasting Eq.31) for all i in
of a hexagonal array, the two sets of bands can be disemnatrix form we may write
tangled, since the arguments of the eigenvajuessociated
with 'K are in the rangé— 2/3,0], while those associated TF=FA, (39)
with KM are in the rangg — 7, — 27/3].
Once again, the photonic band diagram produced by this
method(Fig. 6) is identical with the diagram obtained from where

wd/2nc

A. Formulation

TABLE Ill. Parametrized paths and basis gratings for each of the segments required to traverse the
boundary of the first Brillouin zone for a hexagonal array of perodther quantities are as defined in

Table II.

Path Ko Range ‘e /d ‘s, /d d, /d Ko- €

™ (0koy) 02" (1,0) (1@) 1 0
dy3 272

MK (kOX,C%) oor (0.3) (_g,f) 3 27

KT ko(%,‘/;) og_g (_gg) (—1,0) J3 0
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FoF. - [A 1F =
= d A= . 39
F+ F’+ an 0 A’ ( ) — — T J
_ 08 — _'_Q}—
The left and right partitions of the block structured maffix

that constitute the left and right partitions &f respectively
correspond to the forward and backward propagation prob-
lems.

The 7 matrix represents propagation across a single layer

and, correspondingly, 02 .
T7= (ERE- 1P =FATE 1 40 Jﬁ WN b )
( ) (40 . . e L1

. . . 04 0.45 0.5 0.55 0.6 0.65 0.7
denotes the propagation operator for a stack adlentical }"[Hm]

layers. Denoting

and the diagonal matriceA=diad ;] and A’ =diad x/ ] i L \

04

G G FIG. 7. Reflectance of a stack of 88 cylinder gratirigith d,
~ 4 = - + o
Fl=G=| _, . (41 =0.51 um), hexagonally packed, at normal incidence,€0).
G.L Gi The cylinders are infinitely long, have a radias 0.2 um, and a

. ) refractive indexv.=1.33, and are embedded in a background with
and writing 7™ in a form analogous to Eq25), we deduce ,, —1.54. The vertical dashed lines correspond to the band gap in
the photonic band diagram shown in the inset.

T.—RT, 7R, RiT.7H [F. FL|[A™ 0O
-T/ 'R, Tt - F. F.J[0 A" earlier recurrence methdd5]. The strong reflection around
A=640 nm gives the sea mouse its brilliant red iridescence
G. G, [25,26] at normal incidence and is due to the partial band gap
x G G.| (42) shown in Fig. 8. The band diagram has been computed using

the theory of Sec. Il C and Il D and displays the band gap in
Similarly, from the form of the backward propagation opera-complexk, space, displaying the trajectory of the primary
tor 7! (30) whose eigenvalues are the reciprocals of thos€vanescent state crossing the gap.

for 7, we may form

B. The matrix R,

-1 _ T 1p ’ -n
Tn Tn R0 = F- Pl 0 } It is natural now to examine the limit behavior with in-
RaT, b To-R, TR, [Fo FL]l 0 AT creasing stack deptin{-) to establish the reflection scat-
G G tering matrix of a semi-infinite stack. The model must be
«| + . (43) formulated such that no wave can return from the bottom of
G. G the stack. While the evanescent terms are such that both

u,u' ~"—0 asn—x, it is necessary to suppress the reflec-
Expanding Eq.(43) and equating like terms we derive ex- tion of propagating states, for whidje|=|x’|=1, from the
plicit expressions for the scattering matrices of théayer  pottom of the stack. This can be achieved conceptually by
structure in terms of those for a single layer. The computa-
tionally stable forms that we use in our calculations are kd/n

26 27

2.5

T, =G 'A"F YI1+F A’ "G' G *A"F 7L, (49

24
2.3

Ry=[1+F, A’ "G G*A"F;1F,F !
X[I+F A'"""G' G A"F_17 L. (45) Tm(Bo) 01

Similar expressions may be derived fbf andR), using Eg.
(42). 0
Figure 7 displays the normal incidence reflection spec-
trum for an 88-layer stack that models a photonic crystal = e
found in a living creature, the sea moJsb,26. The stack Re(Bo) 08
comprises a hexagonally packed arrdpf period d
=0.51 um) of hollow cylinders (of radius a=0.2 um) FIG. 8. Complex band diagram for the sea mouse spine, show-
filled with sea water of index.=1.33 in a matrix of chitin  ing the gap states. Here, and in Fig. 7, the braces indicate the loca-
of refractive indexv,=1.54. The results have been calcu- tion of the partial band gap. Note that the |3} =0 plane corre-
lated using Eq(45) and are identical to those based on oursponds to the inset of Fig. 7.

0.4
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introducing an arbitrarily small amount of loss, ensuring thatFrom this, it follows that
the elements of botA’ ! and A have magnitudes less than

unity and that powers of these matrices appro@etith in- def

creasingn. Thus, from Eq.(45), Py=(-R/R.,) T, =F_A"F%, (53
R.= limR,=F,F_1. (46)  in which we have used the definitigd6) of R... This result

n—o holds for anyn and is the spectral decomposition of the
i . ) ) propagation matrix’, .

Correspondingly, a similar analysis based on @@ yields The significance of the result may be understood by con-

the reflection scattering matrix of the bulk crystal corre-gigering a stack of grating layers placed atop a stack of

sponding to propagation in the reverse direction, infinite depth, the reflection matrix of which ... The

operatorl’,,, when applied to a field incident upon the top
of the n-layer stack, generates the vector of amplitudes for
the downward propagating field between théayer stack
and the semiinfinite array below. IR,, the postmultiplied
matrix T,, transmits the field through the-layer structure
R.,=-G. G’ , R.L= -G 'G,, (48) while the matrix (—R/R..) " generates multiple reflections
in the cavity by reflection of the down-going field off the
may be established from Eq#2) and(43). The consistency array R..) and of the up-going field reflecting off thelayer
of these forms with Eqg46) and(47) is assured by Eq41). structure from aboveR;). Similarly, the upward going field
The computation oR., using Eq.(46) can require some in the same interface I8! f, whereP’, =R..P’; , whose spec-
care as some of the spectral quantities can be difficult teral decompositior; =F_ A"F_*. We finally note from Eq.
obtain accurately for eigenvalues having extreme magni¢53) that for lossy gratings the eigenvalues must all have
tudes. However, such problems may be overcome by truncaiagnitude less than unity as absorption causes the fields to
ing the column dimensions d¥, andF_ to accommodate decay with increasing depth into the stack.
only those most significant eigenstates—and those whose ac- Accordingly, Eq.(53) indicates that the downward propa-
curacy can be assured—and by computing the inver$e of gating field between tha-layer and the semi-infinite array
using the generalized inverse through the singular value dezan be understood as a superposition of Bloch functions of
composition[27]. In this way, the product of the truncated the structure, each of which is associated with its own eigen-
matrices can be constructed as a series of projections that walue or Bloch facto". Specifically, the matrixe~* trans-
have found to converge quite rapidly. forms a plane wave field to the natural Bloch basis, the di-
We complete this section with an alternative derivation ofagonal matrix A" scales each Bloch function by the
R.. and R, based directly on the defining eigensystem. Inassociated Bloch factor, while the matix transforms the
general, any field must be able to be written as a linear comfield back to the plane wave basis.

R.=limR/=F_F, 1 (47)

n—oo

Two alternative forms foR., andR.,,

bination of eigenstates. Thus, In a similar manner, we may also derive
f- fi (I=RR,)'T'=F, A" "1F, 1, (54)
f+}=2 . (49)
! T Y(1-RRH=F,AF?!, (55)
for constantsy; . It thus follows that
T YI-R'R, H=F A'"1F 1 (56)
f"=F_y, f'=F.v, (50)

by expanding the various partitions of E@.3). The first of
where theF. are matrices with column$;” and with y  these, Eq(54), is the single layerr{=1) analog of Eq(53)

=[v;]. Eliminating v from Eq. (50) yields except for propagation in the reverse direction. The physical
meaning of Egs(55) and (56) is more difficult to deduce
fr=F,F_ ', (51 and, in fact, neither have real computational significance,
except in the long wavelength asymptotics for which they
from which we infer the definitioR..=F,F_ 1. provide a way of deducindr,. and R, directly. We have
included them to show the matrices whose spectral decom-
C. Physical significance of the spectral quantities positions define the outgoing fields. andF’ .

To this point, the various spectral quantities associated
with 7 have been used in a relatively abstract manner. We
now seek to attribute some physical significance to these The relationships of the Sec. Il C, together with
quantities. We begin with " "F=FA " from Eq. (38), ex-
panding the (1,1) partition to yield

D. Asymptotic forms for deep arrays

F_.G_=1-R.R., (57)
TP T, 'RIF,=F_A™" (52 F' G' =—-RLR.(I-RLR.) %, (59
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F,G_=R.(I-R,R,) '=-F.G’, (59 p(1—e?ixzc2)

R glxi1, (64)

L - 1_p2e2i)(202
that follow from the definition ofG (41), enable the trans-

mission matrix(44) of ann-layer structure to be recast in the (1— p2)eixec
following, more physically significant form: T= PR

ix1€
1_p2e2iX2(:2 e, (65)

To=(—RLR)(F_A"F_'=F_ A’ "F_RJR.) "L o _ _
(60 where the multiplicative term exi;c;) is used to pad the

layer of thicknesg, with two background layers of index;
This expression closely parallels the scalar transmission c@nd thicknesg,/2 to form a period layer of thicknesk, . In

efficient of a simple Fabry-Perot cavif28] Egs.(64) and(65), p denotes the interface reflection coeffi-
cient which, forg; polarization, isp=(x1— x2)/(x1+ x2)-
1—p? After substitutingR (64) andT (65) into the eigenvalue equa-
T= - —, (61 tion (11) we derive
exp—ip)—p®explie)
T—upn uR ||~ 0
wherep is the amplitude reflection coefficient of the mirrors R uT—1| £ “lol’ (66)

and ¢ is the phase advance upon propagation through the
cavity. Note the correspondence between the respective scghich, after some manipulation, can be written in the
lar and matrix quantities. In particular, observe the correxronig-Penney form

spondence between the reflection quantiiésand R.R..,
and the phase factors expie) and A~" and A’ ~". Note
that for up-down symmetric structures, the matricesand
A' are inverses of one another. Equati@®) is therefore
similar to the usual expression for the transmission of a =c0g Body), (67)
Fabry-Perot filter, but generalizes it to include all the dif-
fracted orders of the two “mirrors.”

Finally, for the particular case of absorbing gratings, all
eigenvalues oA have magnitudes less than 1 and all eigen- X34+ x3c,= p2d, (69)
values inA’ have magnitudes greater than 1. ThA$—0 Y
andA’ " "—0, and forn sufficiently large we take these to be reducing to
negligible. Using Eq(25), Eq. (60) then reduces to

X1 X2\ . .
—+ —|sin(x1C1)sin(x2C>)
X2 X1

1
€O x1C1)COY x2Cp) — 5

where u=exp(gd,). The quasistatic limit of Eq(67), in
which we take small argument asymptotic expansions, yields

def

T~ (I=RLR.)(F_A~YF )" Keeerr = ag+ B = ko, (69)
~(1-RLR[(I-RLR.) T, (62)  whereeg is given by the Wiener formul§29] of electro-
statics
for largen.
c c
Eoff= Vid—l-l- V%d—z (70
IV. HOMOGENIZATION AND R y y

As a demonstration of the significance Rf., we con- In the dispersion relation of Eq(69), namely, kv
sider one- and two-dimensional photonic crystals in the long=Ko, Ko 1 =(ag,80) is the projection of the crystal mo-
wavelength limit and demonstrate tHat provides a useful mentum onto the-y plane andve;= Veer. In keeping with
mechanism for computing the effective dielectric constant othe definition(63) of the propagation constangs, it is natu-

a homogenized medium. ral to introduce the constagt. = \k%s¢;— a3 corresponding
We begin with a model of a one-dimensional photonictg propagation in an unbounded medium of effective permit-

crystal in which the period cell consists of two uniform lay- tivity &0 and from Eq.(69) it is clear that8y= x.. .

ers of refractive indices; andv,, of thicknesses; andc,, The null vectors of the eigenequation then enable us to

with dy=c; +c,. The Bloch factor, or propagation constant construct the reflection coefficierR..,. Taking the quasi-

in thex direction, isao=kv, sin6;=kv,sin6,, whered; and  static limit of the eigenvalue equatidal), we form
0, are the angles of the propagating rays in media 1 and 2.

The corresponding propagation constants in yhairection (Xeo— x1)2 (Xf—xi)
are

-

f+ = 1 (71)

0

—(X2=X2) (Xetxu)?

xi= VK3 —af. (63 the null space of which characterizes the forward and back-

ward propagating eigenstates. Selecting the null vector cor-

In this case, the reflection and transmission scattering maesponding to the forward propagating wave associated with
trices reduce to scalar form Bo=* x-, We calculate
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TABLE IV. Dynamic extrapolated estimate efy for H| polar- TABLE V. Static extrapolated estimate efy for H polariza-
ization. tion.
Nd Ad
n 25 50 100 200 400 n 25 50 100 200 400
1 1.67 128 1.667 43 1.666 48 1.666 25 166619 1 1.67183 1.667 58 1.666 52 1.666 26 1.666 19
2 0 1.66359 1.66553 1.66601 1.66613 2 0 1.66333 1.66546 1.66599  1.66612
3 0 0 166618 166617 166617 3 0 0 166617 1.66617 1.66617
4 0 0 0 166617  1.66617 4 0 0 0 1.66617 1.66617
5 0 0 0 0 1.666 17 5 0 0 0 0 1.666 17
X1 X 2 =1.666 16 obtained from the Rayleigh multipole theory of
X1t X (72) electrostatics, and its well-known dipole approximation, the

Maxwell-Garnett formulee,c=1.664 82. We have also ap-
the Fresnel reflection coefficient corresponding to propagaplied the method to the calculation of the permittivity of an
tion into a unbounded medium of permittivigy, . array with an electric field oriented parallgk., theE prob-

The result(72) is the basis of the “electrostatic” method lem) to the cylinders and found the convergence to the
of calculating the effective permittivity of two- and three- Wiener[29], or linear mixing formula, to be extremely rapid.
dimensional photonic crystals. Here, the specular order of The E; and H; problems are distinguished by a marked
R.. is used to define a reflection coefficiemt Ry, for E| dependence on the interlayer coupling mechanism. To inves-
andH polarizations, respectively, from which we may cal- tigate this, we truncated the scattering matrices at opder

culate the “electrostatic” refractive index and infer an effec- €{0,1,2 ... ,5 and calculated . in each case. The results
tive permittivity according to are shown in Table VI and reveal that f&j polarization
convergence is achieved by the inclusion of only the specular
1-r o order in the scattering matrices, while fbk; polarization,
Nsta™ 7570 Ceff™ Nstat (73 convergence requires the inclusion of both specular and eva-

nescent orders. This agrees with previous W& in which
for normal incidence ¢,=0). An alternative method esti- it was shown that long wavelength homogenization was
mates the “dynamic” refractive index from the slope of the dominated by the monopole term in the cylindrical harmonic
acoustic band. Again for normal incidence, we hane field expansion that is related directly to the specular plane
=exp(Byd,) and we defing8] wave order. In contrast, homogenization féy polarization
is dictated by the dipole term, the expansion of which in
dBo  Bo 2 plane waves requires both specular and evanescent orders.
ndyn:W T CeftT Nayn: (74)

_ _ V. LONG WAVELENGTH FORMULATION
The estimates of ¢ are functions of the wave numbky

For sufficiently long wavelengths, the coupling between

eeft(K) =0+ 81k +ek?+egk®+ -, (79 layers is dominated by the specular=0) order that is the
sole propagating channel. Provided that the layers are suffi-
and we compute a sequence ciently separated and that evanescent coupling is negligible,
the scattering matrices can be replaced by a single scalar
{eer (ko). err (Ko/2), 2err (kof4), - . .}, element corresponding to input and output in the zeroth order

to which we apply Richardson extrapolatif80] to acceler- _ _ )

ate the convergence of the estimates to the static limit TABLE VI. Comparison of the effect of different interlayer cou-

£ (0) pling mechanisms oag; for bothEj andH) polarization number of
eﬁln T;'Jlbles IV and V we show the five step extrapolation plane wave orderp. Here, scattering matrices contain the orders

. . e -p,—p+1,... ... P}

table for the calculation of the effective permittivity of a {=p—p+l,... 0L, p}

square symmetric lattice of dielectric cylinders of normalized £ei(0)

radiusa/d=0.3 and refractive index=3.0, subject to an of

electric field oriented perpendicular to the axes of the cylin- P ) polarization H) polarization
ders (H, polarization. This calculation exploits scattering 0 5.24115 1.676 09
matrices from theH diffraction problem, in which we have 1 5.24115 1.666 20
preserved only the five most significant plane wave dif- 2 5.24115 1.666 17
fracted order§—2,—1,0,1,2. We see that excellent conver- 3 5.241 15 1.666 17
gence is obtained in five steps commencing with a normal- 4 524115 1.666 17
ized wavelength ofA/d=25.0. The extrapolated limit of 5 5.241 15 1.666 17

eof=1.666 17 is to be compared with the true valuesgf
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channel. In what follows, we initially derive results for loss- 1-Tpt
less structures and extend them to highly conducting gratings Ry=——m", (83
at long wavelengths. R’

As we have seen, a layered media is characterized by two 71
key quantities, the eigenvalugs and the reflection coeffi- R’ :1_Tr“ (84)
cientR.. . Here we demonstrate their close interrelationship, * R

deriving a simple formula that predicts the location of band

gaps at long wavelengths, for which only the specular dif-so thatR’R..=RR. . It may be shown that these forms are

fracted order is propagating. the fixed points of the usual recurrence relations that are used
We denote byR and T the single layer reflection and to calculate the reflection coefficient of a stack properties in

transmission coefficients corresponding to unit incidence recursive or inductive manngt5]. Now, from the respec-

from above, and bR’ andT’ the corresponding coefficients tive pairs of spectral formg3) and(55), and(54) and(56),

for incidence from below. From the reciprocity theorem, thewe may derive quadratic equations R, and R, that are

forward and backward transmission coefficients are identicaljnked according to

i.e., T=T'. While R#R’ in general, a relationship between

them can be derived using the principle of time reversal. We R.=R., exdi(yr— tr)/2], (85
consider an initial problem corresponding to incidence from
above and, under time reversal, we return the two outgoing RL=R., exd —i(¢r— ¥r)/2], (86)

fields—a wave of amplitud® from above, and one of am- _
plitude T from below. These form an upward going wave of WhereR., satisfies the quadratic equation
amplitudeRR+TT above and a downward going wave of

) = o ) R2-2aR.+1=0, (87)
amplitudeT R+ R’T below. From the principle of time rever-
sal, it follows that T2—RR —
RR+TT=1, (76) IR
TR+R'T=0. (77

o ] . ~ From Egs.(82) and(89) it follows that
By considering a second problem associated with unit inci-

dence from below and, by returning its outgoing waves, it IR|2
follows similarly that b?—1=—(1—a?), (89)

RIR+TT=1, (78) implying that for propagating stategi.e., b?<1, a®
B LT =>1) R. must be the minimum magnitude real solution of
TR +RT=0. 7 ;
0 79 Eq. (87). Correspondingly, for evanescent or band gap states,
From Egs.(76) and (79) it follows that|R|=|R’| and from  R. is a complex number of unit magnitude and, in either

Egs.(77) and(79) we see that case, it follows readily thaR..=R.,. We also observe that
C . the scalar resultR..| =1 that holds in a band gap shows that
exp(2i¢r) = —exdi(yrt ¥rr)], 80 the crystal behaves as a mirror. Its generalization, to full

wheregr=argT, yr=argR, and g =argR’ scattering matrices, can be shown to be

We commence with the eigenvalue equat{@®2) which, R R =1 +il.R —iRI (90)
in the scalar approximation, reduces to a quadratic equation el T e e

wherel, is a diagonal matrix that selects the propagating

2— =
po=2bp+1=0, 81 plane wave order§, (i.e.,[l,],q= dpq for pe ;) andl, is
T2_RR+1 cosyr the corresponding Q|agonal matrix that selepts_the evanescent
b= = , (82 plane wave ordersi.e., I, +1.=1). The derivation follows
2T Tl the treatment of Bottert al. [16] and has been verified nu-

merically.
The transition from propagation to evanescence delimits
e band gap and occurs whiaj=|b|=1. That is, when

a result that follows from E80). Sinceb is real for lossless
structures, it follows that propagating modes may occur ag
conjugate pairs of eigenvalugsof unit magnitude provided
that bzg_l, and as evanescent modes associated with recip- |R|=coq g+ )2 of |T|=cosyr. (91)

rocal pairs of real eigenvalues fof>1.

We next consideR,. and R.,, observing that the corre- While these derivations assume lossless media, the results
spondence between them and the respective eigenvaluesalso apply to highly conductingossy materials, as is evi-
and u’=1/u is given by the scalar forms of Eq&3) and  dent from Fig. 9 that displays the reflectande)( transmit-

(54): tance ('), and absorptanceA), defined a§15]
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FIG. 9. ReflectanceR®), transmittance 7), and absorptance
(A) for E; polarization, for a stack of 25 cylinder gratings in
vacuum, forming a square arragh=dy=1 um, s,=0). The cyl-
inders are made from gold and have a radis0.20 um. The
dashed curve shows the reflectaiBe|? of a semi-infinite stack.

FIG. 10. E polarization: envelope of the transmittance and the
positions of the partial band gaps, delimited |Bj=|cosyg|, for a
stack of eight cylinder gratings in vacuum, forming a square array
(dy=dy=1 um, s,=0). The cylinders are of radiua/d,=0.3
; S B a and refractive index,,= 3. The vertical thick lines, determined by
The vertical thick lines ah,=1.23 um, A;=1.66 um, andks o intersection$R| = |cosyy| (dashed curvgs mark the edges of

t:hg.(e)zgl; ?bffﬁirg‘;ﬁ; z);ptshefolrniﬁtr:i(t:;gff:glfaﬁfn‘gRs'l 'In']:erkinse{he partial gaps for the stack of gratings. The envelope that touches
: he interference transmittance minima is given b .
above the plot, shows the regidiy (see Fig. % of the photonic g y &m

band diagram for a square arrag,&dy=1 um, s,=0) of per-

fectly conducting cylindersa/d,=1) in vacuum, with the gray T 1—|R.|? . 4
i : = =1t
rectangles specifying the partial gaps. en 1+|Roc|2 a|Rm|
R=|R]?, T=|T|?, A=1-R-T, (92

For up-down symmetric layers, it follows from Eq85) and

. . 86) that
of a 25-layer square symmetric stack of gold cylinders of( ) tha

periodd,=1.0 xum and radiusa=0.2 um. For this appli-

cation we used the dielectric function of gold obtained by . L

interpolating the experimental data from RE32]. We see [Tend =1~ §_1_00§ Ve (99)

that the boundaries of the band gaps are well approximated R

by Eg. (91) and note that these are slightly displaced from ] -

those of the corresponding perfectly conducting structurdigure 10 displays the envelope and the position of the band
(i.e., a structure consisting of perfectly conducting cylindersdap delimited by|R|=|cosyg, coinciding with the base of
leading to Dirichlet and Neumann boundary conditions forthe eénvelope. We note that the positions of the transmission
the E; and H field problems, respectively shown in the ~Maxima and minima are given by

band diagram at the top of the figure.

Also shown in Fig. 9 is the reflectance of the semi-infinite cog2¢r) =|R|?>—|T|?cos argx;), (96)
array |R..|? [calculated according to Eq83)] that closely
follows the actual data®) for the 25 layer structure. Ob-
serve, in the propagation band region for 66<2.05, that
the transmittanceX®) is quite low, and that the reflectance
(R) is reduced by enhanced or anomalous absorptadge (
[33]. In contrast, in the second propagation band region (1

wherey is the phase of the reflected field andienotes the
nth roots of 1, in the case of the fringe maxima, andntte
roots of — 1, for the fringe minima. These roots are

=<A=1.23) the transmittance is very low, while the reflec- max_ exr{i 21_77 97)
tance and absorptance are almost equal. ) nJ’
Finally, we consider the long wavelength form of the
transmission coefficient,, using Eq.(60): _ (2j+1)m
K= ;{i . } (98
_ (A= [RHp" ©3
TR for j=0,1,... n—1. In general, however, Eq96) has no

closed form solution as the reflected and transmitted efficien-
Clearly, | T,| maximizes at 1 whemu?"=1 and minimizes cies are functions of wavelength, as is the phase of the re-
when u?"=—1, the latter value defining an envelope, flected field 1//R()\)=tpg()\)+277dy/)\, where ¢g is the re-
touched by the transmission minima, whose form is flected field phase relative to phase origin throyghO.
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VI. INFERENCE OF TW;)L-J?/Ill\S/IENSIONAL LATTICE L=[sC 1=[S® ], U=diag(-1)"],
. — —[a—ind — —Tainé
Thus far, the eigenvalue method has been used to calcu- J=[Jnpl=[e "],  K=[Kpnp]=[e"%],
late band structures from plane wave scattering matrices. In _ . .
this section, we show that it can be also applied to the wave- x=diad xp], 6 =[5, ].

guide modal fields for problems formulated with the Ray- L i
leigh method to derive computationally important relation- 1€ outgoing fields above and below the grating may be

ships between the lattice sums of the two-dimensional latticEeconstructed in terms of the incident plane wave fields and

and those of the constituent grating. fields radla_ted _by the cylindefd5]. Above the grating, the
We follow the treatment and nomenclature [a5] and ~ UPWward going field has components

consider a cylinder grating of periatl, with a single cylin- o

der per period. In the vicinity of each cylinder, the field is f;:5;+ i)(,gllz > B,e ", (105

expanded in cylindrical harmonics idy e

~ " o with the first term denoting the specular transmission of the
V(= 2 [Awdn(kn+BHP(kr)]e"™, (99  incident field from below, and the second term representing
" the diffracted field. In matrix form, the outgoing plane wave

wherek denotes the wave number from the Helmholtz dif- fields above and below the grating are, respectively,

ferential operatoiv?+k?. At the surface of each cylinder,

the physical boundary conditions impose relationships fr=6t+ iX—HZJTB (106)
of the form idy

An=—M, B, (100 and
Following [15] and applying Green’s theorem over the unit - i —12, T
cell, we derive the Rayleigh identity that expresses the coef- =+ idXX KUB. (107
ficients of the regular part of the field\{) in terms of the _ _ .
coefficients of sources on all the other cylindeB,) and The modes of a general two-dimensional lattice are now
sources at infinityi.e., plane waves Thus, formed by imposing the Bloch condition, which requires that

* . mexfi(apS2—xpdy/2)]6,
An= Z Sy-mBm . _
m=—o =exfd —i(apsd2— xpdy/2) I,

+ p;x Xp Pl(=1)"e s + Mg, mexdi(aps 2+ x,pd,/2) 1
=ex —i(apsd2+ xpdy/2)]16, (108

(107

for the pth plane wave coefficient, taking into account the
need to adjust plane wave phase origins in accordance with
Sec. Il A. In matrix form, we have

where the$G denote the grating lattice sums

GZE H(l)(k nld )e—il arg(n)eiaondxy (102)
S= &, Hi(kind, f-=pQ?P 26", fr=p"'Q 2P 26" (109

that specify the multipole contributions arising from sourcesand, substituting these into Eq406) and(107), we express
at the centers of the cylinders. The final term in Ef01)  the eigenincident field$™ in terms of the source coeffi-
comprises two plane wave sources respectively incident oBientsB. In turn, these are substituted into the field identity
the grating from abovés, } and below{ s, }, where thes; (105 to yield a homogeneous system that is the Rayleigh

are coefficients in plane wave expansions of the form identity for the two-dimensional array:
—1/2 o ; 2 X—l X—l
> Xp  Op eXHi(apXExpy)]. (103 S+ —|U—"———KTU+K—F——1J7
d MQP71_| /—Lfl *lpfl [
Substituting the boundary conditiond00) into the field
identity (101, and recasting the expression in matrix form +M{B=0, (110
we have
(SP+M)B=—(Udy Y26~ +Kx ¥26"), (104 or
where [S°+AS+M]B=0. (111
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This form (111 of the Rayleigh identity must be equiva- o[ * .
lent to the alternative form in which the modes of lattice are  AS,=— >ou > Xp €% explil (apSc+ xpdy)}
expressed directly in terms of the array lattice suiBils dli=1" p=—=

[S*+M]B=0, (112 L) a S xple
=1 p=—»
with the boundary condition matri¥ being the same in
both cases. Here, Xexp(il (= apSet xpdy)} |, (119
S*=[Shml=[Sh-m]. (113

and immediately, from the presencewdfandu ', it follows
that the terms in the series of EQL19 represent contribu-
where tions to the array lattice sums from grating layers displaced
vertically from the central grating by-Id, .
_ This heuristic derivation of the relationship between array
Sh= > " HO (K|l exd —il argl,y,) ]e'ko 'nm, and grating lattice sums has also been supplemented by a
(n.m) rigorous analytic demonstration from first principlE34].
(114 The relationship is of considerable significance computation-
ally as it increases the speed of evaluation of array lattice
and the prime means that the termif) = (0,0) is excluded sums(116) by a factor of at least 10 over the original tech-
from the sum. By subtracting E¢111) from Eq. (112, we  nique[35,36].
have

VIl. CONCLUSIONS
[S*—(SC+AS)]B=0, (115

This paper has presented a comprehensive discussion of
. . o ) the Bloch technique, which enables one to go from the scat-
with the coefficient matrix in Eq(115 depending solely on tering properties of a grating to the modes that propagate in
the lattice geometry parameters and not involving materlagny array comprising a stack of gratings. The method is ac-
propert_ies such as cylinder radius or electric permittivity.cyrate, computationally robust as well as of enhanced effi-
Accordingly, we deduce that Eq115 must hold for allB  cjency, in comparison with both our Rayleigh multipole
and thus theory for arrayg20] and plane wave methodg,3].
Unlike plane wave techniques, the method is also well
S=5P+AS. (116 suited to the analysis of arrays and lattices containing lossy,
metallic components. In such cases, the eigenvalues are com-

While the derivation has involved plane wave coupling be_plex numbers and problems to be addressed in future relate

tween layers, the final form of the result is independent of NOre to their \_/|suaI|zat|on than calcul_anon. . -

. L . . The analytic treatment of scattering matrices of finite
the cylinder radius and should thus be valid for all lattices, tacks has led to a fundamental new ity that is th
including those with interpenetrating layers for which planeS acks has ed 1o a fundamenta’ N€w qua kA atis the
wave coupling between layers is no longer appropriate. scattering matrix for a semi-infinite array and is deduced

Finally, we infer expressions for the array lattice SL&%S directly from the modal eigenproblem. Indee,. can be
. Y ) pre G y1atl used as a “black box” to encapsulate the properties of a
in terms of grating lattice sum§;” and correction terms

_ substrate comprising an array of arbitrarily large thickness,
AS: as arises in the treatment of photonic crystal gratiigys.
The technique is not limited to the connection between
S'=S°+AS, (117  gratings and arrays and, in future work, we will explore the
connection between scattering from a monolayer of spheres,
and modes that propagate in lattices composed of such
monolayers. Again, the grating need not contain one scat-
terer per unit cell, and so we may investigate the modes that
2 1 el (—1)e % propagate in crystal structures of quite general form in this
~ X_p PREo R ] +,U~Q p—1_1|° way. The method has also elucidated the connection between
PP PP monolayers and arrays constructed from them in the form of
(118 relationships between their lattice sums.

where

For p sufficiently large the term exjf,)=(xp+iay)/k be-
comes  exi@,)~i2mip|[1+sign(p)]/(kd) +O(k?). Corre-
spondingly, | P,jl|~exp(27r|p|kd) and so the series in Eq.  This work has been supported by the Australian Research
(118 are exponentially convergent. Recasting the denominacouncil. Helpful discussions with J. Pendry, D. Maystre, G.
tor of the terms in Eq(118 as geometric series, we obtain Tayeb, and S. Enoch are acknowledged.
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APPENDIX: ENERGY FLOW AND GROUP VELOCITY In Eg. (A6), the contourd” .. are the upper and lower hori-
Here, we relate the group velocity and energy flux to de_zontal boundaries of the parallelogram cgdhrallel to the
five the’result vectore;). Quasiperiodicity in the directiop; cancels con-
tributions to the line integral from the sides of the parallelo-
c? & gram that are parallel te,. Applying the Helmholtz equa-
o (Al) tions (A3) and the quasiperiodicity equatiorid5) in Eq.
b (A6) and taking limits ak’ —k, Bg— By in yields

Vkow—

where& denotes the vector energy flux through the unit cell

and&p denotes the electric energy density per unit cell. The ) — —

derivation given here is foE polarization. A similar treat- K2 K2 _'dyJF [udu/ gy —uduldy]dx

ment yields the same result fét| polarization. We derive lim = - . (A7)
one component of the group velocity by considering the limit ' —kBo~ Bo J J e(r)|u(r)|2dA

of an energy integral associated with two field problems, and u

infer from this the general form of the result.

We begin by defining two field problems for fieldsand Following the treatment of16], the numerator of the
u’, respectively, satisfying Helmholtz equations right-hand side of Eq. A7 may be shown to be
[V2+Kk%e(r)Ju=0, (A2)
; _ o -2 +12 -+
[V24K'26(r)]u’ =0, (A3) 2id,Er = 2id, p;)r (If,12=1f 1] )_2|mp§§ fofl,
and Bloch conditions (A8)
u(r+mey+ney) =v"uu(r), (A4)  where& , is downward energy flux in thg direction. Cor-
, o respondingly, the denominator of right-hand side of &)
u’(r+me;+ney)=v"u"u'(r), (AS) s &, dxdy, where&y denotes the electric energy density per

, unit cell. It then follows from Eq(A7) that they component

where = v=exp(ko-€), u=exp(-iko-€), and u of the group velocity is given by

:exp(_lk(,)eZ)l Wlth kO:(a01ﬁO) andkC,):(aOuB(,))'
An application of Green’s Theorem around a unit paral-

lelogram cellU, with sides defined by the vectoes ande,, ‘9_k _ @ (A9)

enables us to derive By kép'

f J' uvV2u —u'V2u dA= dx—f dx u’?_”,_aﬁg_“_ The same arguments yield an :_:malogous expression for the
U r, r_ ay ay component of the group velocity, from which the result in

(AB) Eq. (Al) follows.
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