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In this paper we develop a Born-approximation theory of coherent bremsstraf@Bjgproduction by
relativistic electrons in icosahedral quasicryst#3Cs), described by a schematic model that incorporates the
presence of phonon and phason disorder. Our main result is a formula for the cross degfiddk of this
process, differential with respect to the photon endeglf predicts intense low-energy CB emissitigpeA
CB) when an electron is incident on an IQC along a direction almost, but not exactly, parallel to that of a major
axis. It also entails a scaling law that could serve as a powerful experimental signature &f G®emitted
by these 1IQCs and more general ones. We illustrate our theory by discussing numerical results Ao€B/pe-
emitted by electrons of 5-MeV kinetic energy incident in a direction close to a fivefold axis of icosahedral
Al-Mn-Si (i-Al-Mn-Si) described by the above model. These calculations predict the presence of CB macro-
peaks indocg/dk vs k, to which many smaller peaks contribute, and which should be experimentally detect-
able. This is also expected to be the case for other directions of incidence. Reasons for believing that the
schematic model yields qualitatively correct predictions for this cross section for relativistic electrons incident
on reali-Al-Mn-Si are stated.
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[. INTRODUCTION crystal planes. Typ& CB is less intense, higher-energy ra-
diation that can be emitted whenis approximately, or even
The purpose of the present paper is to initiate the theoretexactly aligned, along a major crystal ai.

ical study of coherent bremsstrahluf@@B) emitted by ener- It is well known that QCs, although they are aperiodic,
getic electrons traversing quasicryst&@Cs. Before sum- possess long-range order and that their atoms are distributed
marizing its contents, it may be helpful to discuss briefly CBalong lines and planes analogous to those in crypidldt is
produced by fast electrons in crystals. This type ofyala-  therefore natural to expect that fast electrons traversing QCs
diation has been extensively studied experimentally andh appropriate directions can emit CB of typésand B,
theoretically during the last 40 yeal]. It occurs when a defined analogously to the corresponding types in crystals. It
crystal target is irradiated with relativistic electrons whoseis thus very satisfying that typB-CB from a T-phase QC
incident momenta are parallel or almost parallel to majorirradiated with 200- and 400-keV electrons has been detected
crystal axes or planes. There are two kinds of CB in crystalsat an electron microscope at the Max Planck Institute in Stut-
the most common of which arises from “free-free” radiative tgart[6]. In view of the great current interest in the study of
transitions and the other from “free-bound” transitions properties of QCs, one expects that other experiments on
[2,3]. In contrast, a related type of cohereptradiation, accelerators and electron microscopes will be performed to
channeling radiation, arises from “bound-bound” transitionsinvestigate CB and CR production in these mateffi@ls
[2]. Here “free” refers to electronic states described by In this paper we will discuss a theory of CB emission
plane-wave solutions of Dirac’s equation for a free electronfrom relativistic electrons traversing icosahedral quasicrys-
which are good approximations to the corresponding exadgls (IQCs) with phonon and phason disordgd] which are
solutions when the magnitude of the incident electron modescribed by a simple modéK mode). In particular, we
mentump is sufficiently large. On the other hand, the term will derive a Born-approximation formula for the cross sec-
“bound” refers to electronic states which are solutions oftion, differential with respect to photon energy, for CB pro-
Dirac’s equation describing free motion along the directionduction in such IQCs. Using this formula, we have calculated
of a major crystal axis to whiclp is almost parallel, and this cross section numerically for the case of type&B
transversely bound in the plane perpendicular to this direcemitted by 5-MeV electrons incident on icosahedral
tion. We can distinguish two types of free-free CB in crys- Al-Mn-Si(i-Al-Mn-Si) (Ref.[9]). These calculations predict
tals: type A and typeB. Roughly speaking, typ&-CB is  the presence of irregularly distributed macropeaks to which
intense radiation lying in the lower portion of the CB spec-many smaller peaks contribute. Although the smaller peaks
trum that can be emitted when the incident electron momenmay not be individually observable, the macropeaks to which
tum p is almost, but not exactly, parallel to a set of majorthey give rise should be. These results are in strong contrast
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with the regular distribution of peaks in the CB spectra from 6

electrons traversing crystals. The corresponding cross sec- A= az mig;;meZ, i=1,...,6 (2.1
tions for typeA or typeB CB in more realistic QC models =1

are expected to exhibit similar properties. The feasibility of

experimental detection of the above macropeaks is enhanc%(i! side lengtha, where{s;) is the standard basis R® andZ
. ) I
by the fact that our theory predicts that tyReSB obeys a  yenotes the integers. In this method, a projection opefator

djstinctive scaling law that could serve as its experimentatsee Ref[14], especially p. 184, wherl = ) mapsR® into
signature. _ _ _ a three-dimensional subspaéeof R® which is identified
At present, about 100 intermetallic compounds of icosayith ordinary physical space, while its orthogonal comple-
hedral quasicrystalline structure are knojd®] as well as  ment & is commonly called perpendicular space. Xf
many such compounds with other types of quasicrystalline=[1y andX’=I1'Y, whereY € R® andIl’=1—1I, we will
symmetries. However, complete structural information issay thatX, X’ is acomplementary paior simply that these
lacking for many of them. A basic reason for this is thatvectors arecomplementaryAn important property oflI is
quasiperiodicity introduces too many structural variables fothat if Y € A, then the vectors of the complementary péjr
x-ray diffraction analyses to cope wiffil]. All available X’ are in 1-1 correspondence.
methods will probably be needed in order to arrive at a sat- The model IQL of interest is defined as the #&bf all
isfactory general understanding of the structure of QCs. Thipoints (vectors X e £ which belong to the set
makes theoretical studies of CB production in QCs, such as
the present one, especially timely, since they furnish an in-
dependent way of testing structural models experimentally.
This paper is organized as follows. In Sec. Il we recall
some basic quasicrystallographic facts which we use to de-
fine theK model. In addition, this section includes a discus-
sion of the kinematics of CB from relativistic electrons tra- and whose unique complementary vect¥rss £’ lie in an
versing an 1QC described by this model and a statement adpen triacontahedro(a) with center at the origin. Here
the above cross-section formula for CB production in it. ThisC(a)=11"vyg, where yg is the open six-dimensional cube
formula is proved in Appendix B. In Sec. Il we also define ys={(z,,...,25) e R®:-a/2<z<a/2, i=1,...,68 of side
CB of typesA and B from such IQCs and discuss their sa- lengtha, centered at the origifil4,15. The points ofiC are
lient properties, including the scaling law for type€B al-  the vertices of prolate and oblate rhombohedrons which to-
luded to earlier. The above-mentioned numerical results fogether tile€ (Ammann tileg [16]. A schematic modeK, of
i-Al-Mn-Si, as well as their analytical interpretation, are pre-a perfect static IQC is obtained by placing a single atomic
sented in Sec. Ill. In Sec. 1V, the final section, we give rea-species(Mn in our numerical calculationsat each of the
sons for expecting that these results differ only qualitativelyvertices of the Ammann tiles o€. This model has satisfac-
from the corresponding ones for relativistic electrons inci-torily explained to first order the observed electron-
dent on reali-Al-Mn-Si. We also mention an interesting diffraction patterns of icosahedral Q47,18 and has
topic for future research on CB emitted from QCs with noproved useful in studying the feasibility of ion channeling
phason disorder. Appendixes A and C collect results needeitherein[19]. It can be viewed as a first step in constructifig
in Sec. I, and in Appendix D we prove properties of CB the more realistic disordered 1QC, which we now define.
peaks that are used in Sec. lll. Finally, in Appendix E, we K belongs to an extensive class of disordered IQCs dis-
consider the effects of Landau-Pomeranchuk-Migdal and dicussed by Jari@nd Nelson[20]. Physically, it models an
electric suppression12,13 on our numerical predictions, 1QC in which phonons and phasons are thermalized, or in
concluding that most of the predicted CB peaks are unafwhich the phasons have been quenched at a high temperature
fected by these phenomena. In future work, we intend t@nd the phonons thermalized at the lower quenching tem-
apply the present method to study coherent pair productioperature. The reader will find further details in RE20].
in QCs. Formally, we identifyK with a set of disordered realizations
K., of Ky which are distributed in a Gaussian manp20].
EachK,, is defined by the following two steps. First, for each

6
L=IIA={a> me:mez, i=1,...,6f (2.2
i=1

Il. THEORY OF CB FROM RELATIVISTIC ELECTRONS pair XelL, X"eL'=II"A of complementary vectors, let
IN A MODEL IQC w(X,X")=u(X)®u’'(X") be a random vector, whetg X)

o ] _ o andu’(X’) are complementary. Thek,, is defined as the
A. Auxiliary quasicrystallographic facts and definition discrete subset of. consisting of all vectorsX+ u(X)(X

of the K model el) whose complementary vector¥’+u’(X’') are in
The icosahedral quasilatti¢eQL) considered can be gen- C(a). Second, the disordered IQG, is obtained by placing
erated by the cut-projection methddi4,15, which we re- an atom of a single atomic species at each sitdCof In
view briefly in this section both for the sake of completenesother wordsK,, is the disordered version &, obtained by
and to introduce useful notation. The experts will find noth-displacing the atom at each tile vert&xof I by u(X). The
ing new here. The method will be applied to the six-random vectorsi(X) andu’(X') are interpreted as phonon
dimensional simple cubic lattice and phason displacements, respectively.
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B. CB kinematics and Born-approximation formula
fOI’ dU’CB/dk

Before stating the formula for the cross sectthmng/dk

of CB production by relativistic electrons incident of IQCs
described by th& model, which is our main result, we con-

sider some kinematical properties of the relevant CB.

PHYSICAL REVIEW E 64 046505

in the relativistic regime. Since will be fixed henceforth,
the p dependence okg(p) and A(x) has been omitted, as
will also be done in the case of otherdependent quantities.
Contrary to the case of the analogous CB cutoff energies
for ordinary crystals, thé&g(p) are dense in the kinemati-
cally allowed photon energy region<tk<Kk;,,,=E. [This

The energy-momentum conservation laws for CB emitted©!lows in a standard way from Eq&2.2) and(2.4), and the

by electrons traversing the disordered I®Care expressed
by the relationg21]

E=E'+k, p=p'+k+G (Gel*). (2.3

irrationality of 5%2.] Most of the above drops idocg/dk

are too small to be experimentally observable. However, for
certain directiong close to a QC directiolisee Ref[5]) it

can happen that thies(p) corresponding to an infinite num-
ber of distinct vectorsGe L* coincide. This can lead to a

Here p,p’,k denote the initial and final electron momenta large drop indocg/dk, and hence to a large, observable

and the photon momentum, respectively:=(p?+m?)*?,

peak[23]. We term such peaksacropeaks(Concrete ex-

E'=(p'2+m?)¥2 k=|k| denote the corresponding ener- amples of macropeaks for tygeCB are given in Sec. II).

gies, with p=|p|, p’=|p’| and with m the electron rest

Large CB peaks in crystals have a similar origin; but while

mass;G denotes the momentum transfer to the quasilatticefor directionsp close to appropriate crystal directions the

and

6

L*={(2m/a)>, mgeZ, i=1,...,6(. (2.2/)
i=1

distribution of these peaks falls into regular patterns, that of
CB peaks in QCs is always irregular, due to the denseness of
the kg(P).

The promised formula for the cross sectidacg/dk is

These laws are analogous to the corresponding ones for crys-

tals [22]. They arise from the delta function§(q—G)(G
eL*) occurring in{|p.(9)|%) in Eq. (B9), where q=p
—p’'—k, and from8(E—E’ —k) in Eq. (B10).

In the relativistic regime y=E/m>1), the only vectors
G in L* contributing significantly to the CB fronK are
those with|G|<p. Whence Egs(2.3) entail that for giverp

and G the energy of a CB photon emitted in the direction

k=k/k is well approximated by
(2.4

Using Eq.(2.4), one sees that for givem and G the energy
of each emitted CB photon lies in the interval<@
<kg(p), where

p-G

ke(ﬁ)=—E_p+ﬁ,G, (2.5

with p=p/p. Hencedocg/dk, viewed as a function ok,
drops sharply at each sudkg(p), thus forming a peak.
Equivalently, the only vector&SeL* contributing to the
emission of CB photons of enerdyfor a givenp are those
for which

p-G=A(x), (2.6
wherex=k/E and A(x) is the magnitudg—p’ —k of the

minimum momentum transfer td&, which is accurately
given by

(E—p)k~ Ex
p—k ~ 2y%(1-x)

A(Xx)= (2.7

= > F(G,x,p)exp —2B|G|?
Gel*
—2B'[G'[))[x(-G"%, (2.9
and is derived in Appendix B24]. HereN is the number of
atoms in the IQCpo=2zar3, wherez is their atomic num-
er, a=13;, andr, the classical electron radius; and exp
(—2B|G|?), exp(-2B|G’'|?) are the Debye-Waller factors
arising from phonon and phason fluctuations, respectively
[25]. We defineF(G,x,p) as

F(Gxp)= lW(G)[2A(x) G$[1+(1_X)2
" a%V(a) G?

4(1-XAX[G~AX)]
G

} (2.9

if G obeys condition(2.6) and as zero otherwise. In Eq.
(2.9), V(a)=2Y41+ 7)(3— 7)¥2a8, the volume of the tria-
contahedronC(a), where r=(5Y2+1)/2; G,=p-G, G,
=(G?-GY)¥? ~ where G=|G|; and w(|G|)
=(Yaz)[rsexp(=iG-r)v(r)dr. Herev(r) is the electron-
atom interaction potential, which will be assumed to be of
the Thomas-Fermi-Moli@ form[26]. Therefore,

3
wW(G)=4m, (210

a;
<1 (Bilag)*+G*’

Where (C!l,az,ag):(0.10,0.55,0.35), I[sl,ﬁz,ﬂg)
=(6,1.2,0.3), andy is the screening length in the Thomas-
Fermi theory. Finally)y denotes the Fourier transform of the
characteristic functiory of C(a) [27]. An exact formula for
X due to Elsef15] is stated as Eq.C1) in Appendix C for
the reader’s convenience.
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Naturally, B andB’ will be assumed to be positive unless l. NUMERICAL RESULTS ON TYPE- A CB
otherwise stated. Under this hypothesis, one can easily prove FOR THE DISORDERED IQC MODEL K
that the serie$2.8) converges for alp if GeL* and 0<x . . . .
v In this section we will d|scus§ results of numerical calcu-
max lations of Sx(x,p;d) and Sg(x,p;d) for electrons of 5-MeV
kinetic energy incident oitAl-Mn-Si, described by the spe-
C. Definitions of CB of typesA and B, and scaling law cialization of theK model (vertex model in which a Mn

for type-A CB atom is placed at each vertex of the disordered tilel<.dh
In this section, we will consider a fixed, but arbitrary unit these calculations, we assumed that2'/*x 4.6 A (see Ref.

vectord parallel to an 1QC directiorfaxis) (Ref. [5]), Eq.  [19]) and chose directions of incidence closeijoi.e., al-
(2.8 can be written in the form most parallel to an axis of fivefold symmetry. He{iﬁle is

A A the right-handed orthonormal basis of the physical sgace
(k/Nao)(docg/dk)=Sa(x,p;d) + Sg(x,p;d), (2.1)  mentioned in Appendix A. Hence we naturally chase
=i, (i=1,2), d3=d=i,. Thus, the vector&SeL* [recall
whereSa(x,p,d) [respectivelySg(x,p,d)] is the part of the Eq. (2.2')] involved in our calculations oB,(x,p;d) [re-
SerieS(2.8) contributed by vector& e L* with G-d=0 (re- Spective|y’ SB(X,I'j,a)] were those W|thGgZG,|\3:0 (re-
spectivelyG-d#0). CB of these two respective types is spectively, G;#0). A simple argument using EqA1) in
called typeA and typeB CB (with respect tod). From this  Appendix A, (2.2)), and the irrationality of 2 show that
definition and arguments similar to those adduced to arrive a6 e L* is such thaiG;=0 if and only if
Eqg. (2.13, these types of coherent radiation from the above
disordered IQCK have the following qualitative properties.
TypeA CB is very intense at sufficiently smaibsitiveval- G:(Zﬂ/a)iz:l m;(&—€s), (3.9
ues ofx when p is almost, but not exactly, parallel 0
(G;=0), and is sensitively dependent on the angle betweem/hereml,...,m are arbitrary integers.
p andd. On the other hand, fop=d, or even forp=d, Since d=15 in this section, Sa(x,p;is) [respectively,
typeB CB is significant only at much larger values »f
<1. It is generally much less intense than that of typand
varies slowly withé. These properties are similar to those of
the corresponding types of CB in crystd2].
We now mention an important property of typecB in K
which could serve as its experimental signature. Consider

right-handed orthonormal bas{sl}?_; for £ such thatd,

4

Sg(X,P;i3)] will be abbreviated byS,(x,p) [respectively,
Sg(x,p)] henceforth without fear of confusion. We will first
review our numerical results for typ®-CB and will then
comment briefly on those for typ@-CB. By the above dis-
gussion and the fact that(— G')=%(G') for GelL*,

=d is viewed as the polar axis. Let<0#< denote the Sa(x,p) = 2* exp( —2B|G[*—2B'|G'|?)
angle betweerp and 83, and 0< ¢<27 that between the Geto
projection ofp into thed, ,d,-plane andd;. We have XF(G,x,p)|%(G")|?, (3.2

p-G=sin0(coshG,+sin$G,) +coshG,, (2.1 whereL ¢* is the subset oE* composed of vector§ of the
' form Eg.(3.1). Hence the sum in Eq3.2) can be written as

. _ o a quadruply infinite sum over all integers,, ... ,m,. It
where G;=G-d; (i=1,2,3). Using the definition of was evaluated by using the truncatiojm|<8 (i
Sa(x,p;d), and taking into account Eq&.9) and(2.7), the  =1,...,4) inmost cases, but occasionally a higher-order

definitions G,=(p- G), Gt=(Gz—G,2)1’2, and Eq.(2.12, truncation was employed. In Figs. 1 and 2, we depict results
one concludes that i#>0 andx>0 are sufficiently small, for Sa(x,p) in the interval 6sx=<0.005, assuming that the
then the approximate scaling law parameter8,B’ determining the phonon and phason Debye-
Waller factors have the respective values 0.01 and 6,4nA
- ) i agreement with the widely held view that is usually much
Salx,p;d)=(1/sind)f(x/sin 6, $) (213 Jjarger tharB [29]. Indeed, values 08’ as large as 1.35 have
been advocated in the experimental literati8@]. Our cal-
holds for typeA CB emitted by relativistic electrons travers- culations were performed using exact valuesy¢G') ob-
ing K. A similar scaling law holds in the Born approximation tained from Elser’s formul#C1) in Appendix C rather than
for CB of this type occurring in a large class of QCs whoseby making the equivalent-sphere approximation, commonly
tiles are decorated more realistically than thosekKofAn ~ employed to compute the intensity of the Bragg diffraction
analogous law that is predicted to hold for crystals has beepeaks of QC$31]. This approximation consists of replacing
verified experimentally for typé CB emitted by electrons the complicated exact expression for the Fourier transfprm
of about 3-MeV kinetic energy incident on Si crystf&s]. of the characteristic functiog of C(a) by that of a sphere of
In these beautiful experiments, this law served to identifythe same volume centered at the origin. Errors of about 10%
typeA CB. would have been incurred by making it. An overall accuracy
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Sa

-=1.1) (0,-2)

12 1

SA(x, )

4 5x 104

FIG. 1. Sx(x,p) vs x for electrons of 5-MeV kinetic energy
incident oni-Al-Mn-Si (described by the model defined in the first
paragraph of Sec. lilin a direction close to that of a fivefold axis.
With 6,¢ defined as in Sec. ll{second sentence, third paragraph
parts (a)—(c) of the figure refer to the following cases(a) 6
=1°, ¢=0° (0<x=<0.005); (b) 6=1°, ¢=2° (0.0005<x
<0.005); (c) #=1°, $=2° at very low photon energies {Ox
<0.0005). Note that the missing part of the graph in Fidp) for
0<x=0.0005 is depicted in detail in Fig(d.

PHYSICAL REVIEW E 64 046505

5 T
(a)

5x10-3

4

FIG. 2. SA(x,p) vs x for electrons of 5-MeV kinetic energy
incident oni-Al-Mn-Si (described by the model defined in the first
paragraph of Sec. lllin a direction close to that of a fivefold axis.
With 6, ¢ defined as in Sec. ll{second sentence, third paragraph
parts(a) and (b) of the figure refer to the following cases(a) 6
=1°, ¢=18° (0<x=<0.005);(b) #=1°, ¢=13° (0<x=<0.005).

better than 2% was achieved in the present calculations of
Sa(x,p) by using Elser’s formula and the above truncation.

A rich variety of typeA CB phenomena was revealed by
these calculations. Before summarizing the results, we recall
that in the present case€i;) 6,4 are the angles betwegn
andis, and between, and the projection op into thei,,i,
plane, respectively. Figured concerns the case whénis
given by #=1°, ¢=0°. It depicts three typé& macropeaks
and two smaller peaks. In this case, edgl{p) (Gel,)
depends on then; only through a unique pair of integers
Mmi=Mmy+m,, wr,=my+ms [property (1), Appendix D
Hence, infinitely many different quadruplets, ,m,,ms,m,
correspond to each suéf(p), which accounts for the large
vertical drops depicted in Fig.(d) [23]. The pairsuq,us
labeling the peaks in this figure are as indicated there. More
generally[properties(2) and (3), Appendix O], for arbitrary
0>0 a necessary condition for each such quadruplet to pos-
sess this property is that
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stang=a+ Jgﬂ, (3.3

where s=sin(2#/5) and «,8 are rationals. In more detail
[property (3), Appendix D], when Eq.(3.3) does not hold,
exactly one quadruplet mq,...,m,; corresponds to each
ke(p) (Gely*). Whenp is changed t#d=1°, ¢=2°, one
sees from Fig. (b) that the drops in the three largest peaks in
Fig. 1(a) become “fragmented” into smaller drops, and Fig.
1(c) shows that several very large peaks appear at extreme
small x values (6<x=0.0005) when this change is made.
The smallness of these drops is expected sipee2° vio-
lates(3.3) [32], which implies that the drops are due to the
loss of only one term of the suf3.2). As to the low-energy
typeA peaks in Fig. Ic), our theory predicts their occur-
rence for6>0 when¢>0 is small enough. The vectofs
eLy* contributing to them are overwhelmingly those for
which mz=-m,, my,=—-m;, wherem;,m, are suitable
positive integers.

It is well known that the Landau-Pomeranchuk-Migdal
(LPM) and dielectric supression effedt$2,13 can act to
reduce very soft bremsstrahlung emission. As discussed
Appendix E, we expect that the LPM effect will not reduce
any of the peaks in Figs. 1 or 2, and that dielectric suppre
sion will affect at most the lowest peak in Fig.cl

Figures 2a) and 2b) depict results for the respective
cases#=1°, $=18° andfd=1°, ¢=13°. In the first case,
¢ satisfies Eq(3.3) [33] and macropeaks with “clean” ver-
tical drops are very much in evidence, as in Figg)lIn the
second case¢ does not satisfy it, and the drops are frag-
mented, similarly to those shown in Figlbl. Fragmentation
was also detected in another case in which Bf) is vio-
lated, namelyg=1°, ¢=15°.

The results in Figs. 1 and 2 are fairly insensitive to rathe
large variations inB and B'. For example, decreasing’
from 0.4 to 0.1 & while keepingB=0.01 A? increased the
intensity of the highest peak in Fig. 1 by only 17%. On the
other hand, settingg=0.001 while keepind3’ =0.4 AZ in-

creased this intensity by only 16%. The qualitative shape o

the graph ofS,(x,p) in Fig. 1(@ and the positions of the
vertical drops in this figure werenchangedy these varia-
tions.

Finally, a spot check of the accuracy of the experimentally.

significant scaling law2.13 for type-A CB atx=0.005 and
¢ =0 showed that in this case the valuex{x,p) is 0.8599
(respectively, 0.429%or 6=1° (respectively§=2°), in ex-
cellent agreement with this law.

We now turn to the results fd8z(x,p) obtained by sum-
ming the sixfold infinite series representing it. We confine
our remarks to the case=1°, ¢=0. Since the calculation
of a reasonably detailed graph 8g(x,p) would have taken

an unreasonably long time with the computer facilities at our

S-

I
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IV. CONCLUDING REMARKS

We have developed a Born-approximation theory of CB
emission by relativistic electrons traversing the primitive
model ofi-Al-Mn-Si (vertex mode), in which a Mn atom is
placed at each vertex of the Ammann rhombohedrons. The
structure ofi-Al-Mn-Si has been investigated by x-ray and
neutron-diffraction experiments, whose results have been in-
terpreted in the framework of the theory of atomic hypersur-
[?ces. This has led to the following conclusions: the rhom-

ohedral vertices are occupied with very high probability by
Mn atoms, positions on the faces are occupied with a certain
frequency of occurrence by Al atoms, and Si atoms are
placed at three different sites along the long diagonal of the
prolate rhombohedrongl9]. How well should one expect
that the cross sectiodocg/dk, differential with respect to
the photon energ¥k, for CB production in real-Al-Mn-Si
QCs be approximated by E.8)? Briefly, forp close to a
major axis, one expects that the largest CB peaks in
docg/dk occur at the same values rfand have the same
shapes, qualitatively speaking, as those predicted by Eg.

i$12'8)’ but that they differ from them quantitatively. The rea-

son for this is twofold. First, the summands on the right-
hand-siderhs) of the Born serie$2.8) and those in the cor-
responding series falocg/dk run over allGeL* and are
given by a product of a function @,x,p independent of the
atomic decoration times the intensity of the Bragg diffraction
spot atGe L*. [This follows by arguments of the type used
to prove Eq(2.8) in Appendix B] Second, one expects that if
there is a prominent Bragg peak of the vertex model indexed
by a givenGeL*, then a large Bragg peak will appear for
the sameG in the case of its more realistic counterpart, but
that the intensities of corresponding Bragg reflections for the
two models will generally be different, due to the difference
in decorationg34].

Needless to say, detailed formulas for CB production by
relativistic electrons incident on realistically decorated mod-
els ofi-Al-Mn-Si and other IQCs could be obtained, straight-
Erwardly but tediously, by the methods of the present paper.

ather than dwelling on this matter, we close this section by
mentioning an important topic not considered in this paper.
Since x-ray diffraction experiments show that 1QCs with
little or no phason disorder exist in natUr@5], it would be
very interesting to measure the CB cross section, a differen-
tial with respect td, for such materials and compare it with
the corresponding theoretical results. The problem is that the
Born series for this cross section converges very slowly or
not at all for such IQCs, due to the smallness of their
B’-values. The theoretical challenge is to devise a rigorously

justified method for accelerating its numerical convergence.
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Max Planck Institute in Stuttgart. Last but not least, the auto order a?(a=1/137). Hereq=p—p’ —k, and we recall
thors are indebted to Professor H. L. Crannell, Dr. V. L.thatk=|k|, k are the respective photon energy and momen-
Jacobs, Dr. I. Mazin, Dr. T. Picraux, and Professor H.tum and thaE=(p?+m?)2 E’'=(p’?+m?)*? are the ini-
Uberall for valuble remarks. tial and final electron energies, respectively, wiik|p|,
p’=|p’|, and withm the electron rest mass:
APPENDIX A: AUXILIARY QUASICRYSTALLOGRAPHIC
FORMULAS V(q’)zfgexp(—iq’-x)V(x)dx (B5)

Sete=Ilg, € ;=Il"g (i=1,...,6), where{g}%_, is
the standard basis 6t® andIl’ the projection complemen- (see Ref[27]); and the function 7 is independent oK,
tary toIl. Using a convenient orthonormal ba$i§}3j:1 in andV, and contains no delta functions. By the definition of
&, such thai; is parallel toeg, which in turn is parallel to a K,, in Sec. Il A, it follows that the atomic densify,,(x) and
fivefold symmetry axis, we can write interaction potential of an electron with the atomsKqgf are
defined by the respective formulas
e=(10)" Y42 cog2mi/5),2sin2wi/5),1) (i=1,...,5,

pu(X)= > x—X=u(X))x(-=X'—u'(X")), (B6)

e=1(0,0,2"1?), (A1) XL
where Q(l,xz,x3)=21-3:1xjij. In terms of a suitable ortho- B v ERVTEIO
normal basis{i’j}f:1 of &, and writing &’q,X'5,X’3) VW(X)_x;L D (= X=UXDY (=X = (XT)
=Ej3: 1Xj1j , the vectorse/ can be expressed in the form
(A1), but with e,e,6;,64,65,65 replaced by IJU(X—Y)pW(Y)dy. (B7)
€., 4,6,,65,65,—€g, respectively. £

By the second equalit{B7), the Fourier transform o¥,,

APPENDIX B: DERIVATION OF THE CROSS-SECTION can be expressed as

FORMULA (2.8

As a first step for deriving this formula for tH€ model, V(@) =2m) "% (q")puw(a’). (B8)
we make some remarks on thKg model. Directly from the
definition of £ andK, in Sec. Il A, it follows that the atomic
density ofK, is given by

By definition, the cross section for the above bremsstrahlung
processp—p’+k in K is given by Eq.(B4), but with

V(9)[2=(2m) 3T(a)2B(a)|> replaced by ([V(a)]?)
=(2m) % [5()|X([Bu(a)[?), where () is an appropriate

p(X)= 2 S(Xx—=X)x(—X"). (B1) Gaussian average20] over the random variables. More
xek specifically,
wherelL is defined by Eq(2.23, y is the characteristic func- (2m)3
tion of C(a), andX,X’ are complementary vectors. The in- <|7)W(Q)|2>:Nm 2* 8(q—G)[x(—G")|?
teraction potential of an electron with the atomsHKg is Gel
assumed to have the form X exp(—2B|G|?—2B'|G’|)+--+, (B9

where the sum ranges over the kétdefined by Eq(2.2'),
V()= 2 v(x=X)x(=X'), (B2) N is the number of atoms iK, V(a) the volume ofC(a),
xet and exp2B|G|?) and expt2B'|G’|?) the respective
Deybe-Waller factors arising from phonon and phason fluc-
tuations. The terms on the rhs of E@®9) involving delta
functions §(g—G)=46(p—p’'—k—G) are the only ones
contributing to coherent bremsstrahlung, since those denoted
by ‘* +---* contain no delta functions involving|, and thus
can only contribute to incoherent bremsstrahlung.
V(x)= J v(x—Yy)p(y)dy. (B3) In summary, the cross section for an unpolarized electron
€ in K with momentump to produce acoherentbremsstrah-

lung photon and an electron with momerkg’, respec-
By standard results of quantum electrodynaniB8, the  tjvely, can be written as

differential cross section for the procgss-p’ +k in which . e 12 o
an unpolarized electron of momentumtraveling through d®ocg/dkdp’ =(2m) °[5(q)[[Pu(@)| )0 Z(p,p’ k)
K, produces a bremsstrahlung photon and a scattered elec- e

tron of momenta andp’, respectively, is given bj21] X S(E-E"~k) (B10)

wherev (x) is the value of the shielded Coulomb potential of
an atomic nucleus at the origin acting on an electrox at

e &, which we assume to be of the Thomas-Fermi-Mealie

form. Note that

B to ordera?, where(|5,,(q)|?), denotes the terms in the rhs
d®a/dkdp’ =|V(q)|2 #za(p,p’ k) S(E—E’'—k) (B4)  of Eq. (B9) preceding ‘+---"".
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In the small-angle and high-energy approximati¢83|,

which are accurate enough for our purposes, we arrive at the

desired formuld2.8) by using Eqs(B10) and(2.3), the defi-
nition of {|pw(a)|?)o, and the expression forz [36], after
tedious but straightforward calculations.

APPENDIX C: EXACT FORMULA FOR X(G")

The Fourier transforr27] of the characteristic functiog
of the triacontahedro€(a) is a real-valued function given
by [38]

X(GY= X Si(1,]k)Sy(] k),

<i<j<ks

(CY

where G’ =(2w/a)3f_;m;e , as before. We note that the
rhs of (C1) is independent o&. For 1<i<j<k<®6,

Si(1,],K) =vimn(sinz /2))(sinzy,/z2,)(sinz, /2,),

4 2
S,(i ,j,k)=(§— gaijk)coszicoszj coSsz,,

1 2
+(§ + 5 Uijk)coiajk Zi+0-kizj + O'ijZk,

(C2

wherei,j,kl,mnis a permutation of 1, 2, 3, 4, 5, 6 and gin
is defined as unity when=0.

The significance of the other symbols in EE2) is as
follows. For 1<i<j<ks=®, v;jc denotes the volume of the
rhombohedron with edges; ,e’;,€'y:

(C3
where we recall thae';=1I1"#; and whereo; = ojjo ko,

with oj; =0 =sign(€’; ,€';) (i,j=1,...,6). Explicitly,

1 -1 1 1 -1 —1]
-1 1 -1 1 1 -1
1 -1 1 -1 1 -1
[oilij-1. &~ 1 1 -1 1 -1 -1},

1 1 -1 1 -1 -1
-1 1 1 -1 1 -1
-1 -1 -1 -1 -1 1

) (2

as follows directly, but tediously, from the formulas for the

e’ obtainable from Appendix A. Finally, for=1, . .. ,6,

v
;=4 mi+5_l/2 z

C5
5 - (CH
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APPENDIX D: PROOF OF CERTAIN PROPERTIES
OF kg(p) (GeLy*) FOR d=ij4

This appendix is devoted to proving properties of these
cutoffs which are needed in Sec. Ill. Of course, in this ap-
pendix we chooseé,=i; (i=1,2), d=d;=1i3, where the or-
thonormal base$d;}?_, and{i;}?_, are defined in Sec. Il

and Appendix A, respectively. Thug,is parallel to a fivefold
axis. Denoting by6,¢ the polar and azimuthal angles pf
defined in Sec. ll[second sentence of the paragraph contain-
ing Eq.(3.3)], we proceed to prove the following three prop-
erties ofkg(P) (GelLy*). [Recall the definition of ,* after

Eqg. (3.2.]

(1) If >0 and¢=0, then each suchg(p) depends on
the m; [recall Eq.(3.1)] only throughuij=m;+m, and u»
=m,+m;.

To prove this and other properties asserted in this appen-
dix, we will need the fact that the componems=G-ai (i
=1,2,3) of GeLy* are given by

Gy=(2mla)\2/5 (c—1)(my+my)+(c'—1)(mp+mgy)],

(D1a
G,=(2m/a)\2/5s[ (my—my) +2c(m,—mg)],

(D1b)

G;=0. (Dlo)

wherec=cos(27/5), ¢’ = cos(4r/5), s=sin(27/5). This fol-
lows, in particular, from Eq93.1) and(Al), and the defini-
tion of Ly*. By Egs.(2.12 and(D1c),

P-G=sing(G, cos¢+ G, sing). (D2

Property(1) follows immediately from Eqgs(D1), (D2), and
(2.5.

(2) If stang=a+ \/5,8, where «,8eQ, the rationals,
then to each value dig(p) (GeLy*) there corresponds a
denumerably infinite number of distinct vectors
(ml,mz,m3,m4) S Z4.

We will prove this property by showing that under the
stated hypothesis the equatipnG=0 is satisfied by a de-
numerably infinite number of distinct vector&eLy*.
Henceforth, we assume th@t obeys this last relation.

By Egs.(D1a), (D1b), (D2), andstan¢=a-+/58, it fol-
lows thatp- G=y+ 55, wherey,deQ, and thusp-G=0
is equivalent to the pair of equations=0, 6=0. If in addi-
tion sinfcos®+0, these equations are equivalent to the ma-
trix equation

Mm=0, (D3)

wherem=col(m,m,,mz,m,) andM is a 2<4 matrix over
Z of rank 2 depending ow, 8. It follows [39] that there exist
a 2X2 matrix AeGL(2,Z) and a 4x4 matrix

Be GL(4,Z) such that
5 0 0 O
AMB= .

0 5 0 O

Here §,, 8, are unique positive integefsvariant factors of
M) such thats; divides &,. Therefore, the most general
(m;,m,,my,m,) e Z* satisfying Eq.(D3) is given by
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1.6x 10" MeV (the value ofE py for solid Mn). Hence a
necessary condition for CB from 5-MeV kinetic energy elec-
trons to experience large LPM suppression in this QC is that
wherens,n, are arbitrary integers. This completes the proofx<3.4x 10~ 7. We thus conclude that this does not occur for

m= > Byn; (i=1,...,4, (D4)
=34

of property(2). any of the CB peaks in Figs. 1 and 2.
(3) Let stangeQ(4/5), where Q(\/5)={p+ 50:p,0 Dielectric suppressiofl2,13 takes place because of the
€ Q}. Then to each value dig(p) (GelLy*) there corre- interaction of the bremsstrahlung photons with the electrons
sponds exactly onenf,,m,,ms,m,) e Z*. in the medium via Compton scattering. This interaction can
The proof is similar, but much simpler than that of prop- be coherent for forward scattering, producing a photon phase
erty (2). shift. If this phase shift is large enough over the formation
length, then a loss in coherence results which reduces photon
APPENDIX E: LPM AND DIELECTRIC SUPPRESSION emission. A necessary condition for large dielectric suppres-
EFFECTS ON LOW-ENERGY CB EMISSION sion is thatx<w,/m, where w,= \/477N<z>e2/m is the
FROM i-AL-MN-SI [40] plasma frequency an¢y) the average value of the atomic

numberz in the medium. Foi-Al,,Mn,Sis, this condition

The Landau-Pomeranchuk-MigddlPM) effect [12,13  becomesx<0.82x 10 4, i.e., k<0.45 keV for the case of
is the suppression of low-energy bremsstrahlung photons b&-MeV kinetic energy electrons of interest here. Thus, none
cause of multiple scattering of the incident electron within agf the CB peaks depicted in the figures are significantly re-
distance known as thdradiation) formation lengthl;  duced by dielectric suppression, except possibly the lowest-
=27°lk (see Ref.[21]). Originally, the phenomenon was energy peak in Fig. (t).
only considered for ordinary bremsstrahlung, but the basic With modern detection devices, one can measure x rays of
arguments involved also apply to CB in QCs, to which weenergies as low as 0.5 keM0]. We also remark that very
confine ourselves henceforth. In order for the latter radiatiofew of the peaks in Figs. 1 and 2 lie close to the absorption
to be significantly LPM suppressed, the conditios k/E edges of Al, Si, and Mrj41]. This is fortunate, since the
<E/E_py should be satisfied. For a monoatomic material,corresponding characteristic x rays could impede their direct
ELpm(€V)=3.8X10"Xo(cm), where X, is the radiation observation. However, we note that the scaling k&3
length 137/2r3n log(18% ), with n the number of atoms could be used to find such CB peaks indirectly by varyihg
per cn?, z their atomic number, and, the classical electron keeping ¢ and E fixed, in a way similar to that used by
radius. Fori-Al;,Mn,Sis, an upper bound folE py, is  Watson and Koehle42].
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