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Front propagation in laminar flows
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The problem of front propagation in flowing media is addressed for laminar velocity fields in two dimen-
sions. Three representative cases are discussed: stationary cellular flow, stationary shear flow, and percolating
flow. Production terms of Fisher-Kolmogorov-Petrovskii-Piskunov type and of Arrhenius type are considered
under the assumption of no feedback of the concentration on the velocity. Numerical simulations of advection-
reaction-diffusion equations have been performed by an algorithm based on discrete-time maps. The results
show a generic enhancement of the speed of front propagation by the underlying flow. For small molecular
diffusivity, the front speedv; depends on the typical flow velocity as a power law with an exponent
depending on the topological properties of the flow, and on the ratio of reactive and advective time scales. For
open-streamline flows we find alway§~ U, whereas for cellular flows we observg~ U for fast advec-
tion andV;~ U for slow advection.
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[. INTRODUCTION f(#) depends on the phenomenon under investigation, and
we will consider two relevant functional forms.

Interface motion and front propagation in fluids occur in (1) f(8)=6(1— 6), or more generally any convex func-
many different areas of interest to science and technologyion [f”(#)<0] such thatf(0)=f(1)=0, f'(0)>0, and
Among the most important examples we mention chemicaf'(1)<0. This is called the Fischer-Kolmogorov-Petrovskii-
reaction fronts in liquids, population dynamics of ecological Piskunov (FKPP nonlinearity[4]. The production term is
communities (e.g., plankton in the oce&n atmospheric proportional to the concentration of reactants; 4, and to
chemistry(ozone holg and flame propagation in gasgs§.  the concentraygn/aof products, _ _

The mathematical description of those phenomena is (2 f(6)=e"""*(1—6). This is the Arrhenius nonlinear-
based on partial differential equatiofDE) for the evolu- 1Y [5]- In this case, the solutio@=0 is only marginally

tion of the concentration of the reacting species and the evdinstable and the parametéy plays the role of an activation
lution of the velocity field[2]. In principle, the two PDEs concentration, since practically no production takes place for

(for the reactants and the velocity figlare coupled, often in products concentrations below that threshold. Production is

o o still proportional to the concentration of fresh material.
a nontrivial way. An examplg s given by a recent study of V\E)e 5vi|| always consider initial conditions such that
reactants coupled to the Nawer-Sftoke;_ eqyatlon by a Bous%’(x 0)—1 exponentially fast a%, the horizontal coordinate
inesq term[3]. A mathematical simplification can be ob- ' X '

) . ) approaches-«, and 8(x,0)— 0 exponentially fast ag—oo.
tained assuming that the reactants do not influence the Velo%e initial profile of & has no variation along the transverse

ity field, which evolves independently. In such a limit the 5is The choice of such an initial condition, for which the
dynamics is still completely nontrivial and it is described by concentration of products has a noncompact support, is of
a so-called advection-reaction-diffusion equation. In thenterest because it suppresses all possible flame-quenching
most compact model one considers a single scalar fieldffects that may appear in ca&® (see, e.g.[6]). This al-
6(x,t), which represents the fractional concentration of prod{ows a direct comparison between FKPP and Arrhenius pro-
ucts. The fieldd has a zero value in the regions containingduction terms. There exists a huge literature for the case
fresh material onlyg is unity where the reaction is over and =0 (see, e.g.[5]). In that case the physical mechanism for
there are only inert products left. In the region where thefront propagation resides in the the combined effect of dif-
production takes place and reactants and products co-exigision and production. Let us indeed consider a one-

the field & assumes intermediate values. _ dimensional situation where a reservoir of fresh material is
The evolution off) in a reacting fluid with molecular dif- |ocated on the right side, whereas on the opposite side we
fusivity Dy is described by the PDE have only inert products. At the boundary between the two

phases, diffusion mixes fresh material and inert products,
J 1 broadening the interface. Then, production raises the level of
E«%—(u'V)a: DoV26+ 7f(¢9), (1)  the concentration of products, thus shifting the interface to
r the right in this case. The final result is a front propagating
from left to right, eating out fresh material to leave behind
whereu(x,t) is an incompressible velocity field. The second digested, inert products. The front speed at large times
term on the right-hand side of E{l) describes the produc- reaches a limiting valu¥,. For the FKPP nonlinearity one
tion process, characterized by a typical time The shape of has the exact result
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\/m structure of the flow field. One can distinguish two main
Vo=2\/——, (2 classes: cellular flows, characterized by having closed
Tr streamlines only, and percolating flows, which possess open
streamlinegshear flows are a particular case of this second
class, having only open streamlinegor cellular flows, it
5 5. (o) has been shown that;/V,=C,;Da Y2+ C, for Da=1 and
2/ =2F(0)= V=<2 + | —sup——. @ Vi IVo=C,Da °+C, for Da<1, with constantE, ,C, de-
Tr o, 0 pending on the shape of the production term. For percolating
flows, the lower bound is expressed W$=K;U, where
It has to be remarked that the convergence to the limitingigain K; is a constant depending dn The most general
velocity is extremely slow for FKPP producti¢8,9], there- upper bound, valid for flows of both classes, \i§<V,
fore this case requires special attention especially for non+K,U [27]. We therefore see that percolating flows are con-
uniform flow. strained to a linear dependence on the stirring intendity

In the presence of a moving medium, i.a#0, one ex- (see Sec. IV A, for numerical resultsCellular flows have
pects that the front propagates with an average limiting speeahore intriguing properties, as we will see in Sec. IV B: for
V;. A problem of primary interest is to determine the depen-fast advection, D&1, the front speed depends on the flow
dence ofV; on the properties of the velocity field[10,11.  velocity asV;<U4 to be compared with the lower bound
In this article we consider front propagation in simple lami- prediction=UY® and the upper bound U; for slow advec-
nar flows (shear flow and systems with cellular structyres tion, Da>1, we obtainV;<U%* to compare with the lower
which, in spite of their apparent simplicity, show intriguing bound= U and the upper boundU. It is clear that these
behavior[12—-15. For a given structure of the flow field, we bounds do not provide a sharp evaluation of the front speed
aim to explore the dependence\éf on relevant parameters, in the case of a cellular flow.
such as the typical flow velocity and the production time To close the overview of mathematical results, we antici-
scaler, . In terms of adimensional quantities, we look for an pate that a different upper bound for the front speed enhance-
expression for the speed enhanceméntV, in terms of the ment can be obtained by reformulating the solutions of Eq.
Damkdler numbey Da=L/(U r,), which measures the ratio (1) in terms of a path integralsee Sec. Il for details, and
of advective to reactive time-scales, and in terms ofRee  references thereinThis bound yields an expression similar
clet number Pe=UL/D,, which expresses the relative to the one obtained in the absence of any flow, but with an
weight of advection and diffusion. We will mainly be inter- effective diffusion coefficienD 4 replacing the molecular
ested in the case of large Pe, to highlight the combined efone. Explicitly, we show that
fects of advection and reaction. The two regimeslaand
Da>1 are quite different in nature: in the first case, typical De  (6)
for slow reaction rates or fast advection, the front interface is Vis2 —SUIOT, (4)
distributed over several length scalgsand for this reason it
goes under the name of “distributed reaction zone” regime
[16]; in the second case, the front is thin comparetl tmd  where the dependence Dt on the flow parameters and on
it propagates according to a Huygens-like principle, hencéhe molecular diffusion can be derived by the analysis of Eq.
the name of “geometrical optics” regin{d.6]. We will pro- (1) when the production term has been switched off. For a
vide a detailed analysis of these two regimes, highlightingcellular flow, we have the resubq 4~+ULD,, [14,13,
their differences. In the context of the thin front regime wewhereas for a shear flowd 4~ (UL)%/D, [29]. Inserting
can mention, among the many contributions, the works orthese latter expressions in E@l) we obtain the behavior
the G-equation approximation and its relation with the “geo- V¢<U¥* for the cellular flow—also obtained byB0]—and
metrical optics” regimg 17,18, the work on turbulent flows V;xU for the shear flow, remarkably close to the observed
[10,11], and the numerical study of front propagat{d®,20 ones for Da 1. Furthermore, the upper bou is sharp in
in synthetic turbulencg21]. the regime where homogenization techniques afgag Sec.

A hint to the effect of an underlying flow on front propa- 1l and Appendix G. In other words, for fast advection the
gation is given by the observation that the front speed ineffect of the underlying flow can be compactly expressed in
creases with the square-root of molecular diffusivity. It isthe renormalization of the diffusion coefficient. On the con-
well-known that diffusive transport is always enhanced bytrary, for slow advection in a cellular flow, the front speed
incompressible flow, resulting in an effective diffusion coef- departs significantly from the upper bound, with an increase
ficient Dgg>Dg [22—26. Therefore, it is reasonable to ex- in front speed less prominent than in the fast advection re-
pect that the front speed will be enhanced too. This physicagime [31]. We will see in Sec. IV B that the main physical
argument can be upgraded to a mathematically rigoroumechanism accounting for this depletion is the appearance of
statement in the case of a “slow” reaction, that is, for Da an effective reaction term as a consequence of the joint effect
<1 (see Sec. ) of advection and reaction.

From the mathematical viewpoint, there exist lower These observations lead us to argue that the effect of a
bounds to the speed of the front, which confirm the expectastirring velocity on front propagation can be in general sum-
tion that the flow enhances front propagat[@7,28. These marized in the renormalization of the two relevant param-
bounds take different forms according to the topologicaleters:(i) an effective diffusivity, which is always larger than

whereas for a generif{ ) one has the bound4,5,7]
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the molecular one for an incompressible flow, &gl an  For FKPP production terms the maximum occurs et 0,
effective production term, which is slower than the micro-that is, we havec(6)<c(0)=f'(0)/7,=1/7,, therefore
scopic one for slow advection. Cmax=1/7, . In the inequality(7), the term in angular brackets
The remainder of the paper is organized as follows. Indenotes the probability that the trajectory endingkavas
Sec. Il, we derive some general results validdbradvective initially located at the left of the front interface. Under very
flows. Section Ill presents the algorithm employed for thebroad conditions, i.e., nonzero molecular diffusivity and fi-
numerical solution of Eq(1). In Sec. IV we discuss the nite variance of the velocity vector potent[&2,25,28, it is
results of numerical simulations. Section V is devoted topossible to show that asymptotically the particles undergo a
conclusions and discussion. Technical and numerical detailsormal diffusion process with an effective diffusion coeffi-

are treated in the appendices. cientDy4, always larger than the molecular valDg. This
is the rigorous and most general version of a statement origi-
Il. UPPER BOUNDS TO FRONT SPEED nally due to Taylof34]. The issue of single particle diffu-

sion, and the problem of finding the effective diffusivity,

In this section we show how to establish the upper boungjiven a velocity field and a molecular diffusivity, has been
(4) for the speed of front propagation in a generic incom-the subject matter of a huge amount of wéske, e.g.[35]

pressible flow and a generic production term. This result iSor a recent review In the presence of an asymptotic normal
the consequence of the deeply rooted link existing betweegiffusion, we can substitute the tert@(0,r(0))) with the
front propagation and advective transport. In other words, WQyayssian result 4 2erfc(— /2D gt) = exf —x2/(4Dgst) 1/

will exploit the relationship of the solutions of E@L) with J27D t, where the latter approximation holds with expo-
the solutions of the same equations in the absence of produganiial accuracy. We thus obtaind(t,x)<exgcut

tion terms. This will yield the constrain#@) involving the —X2/(4D gt ; :

X cep _ ofit) /27 Dgt. It is therefore clear that at the point
front speed\_/f ' the effective diffusion coef_ﬂueriDt?ﬁ, gnd x the field 6 is exponentially small until a timeof the order
the production time scale, . In general this relation is an f %/ 4D oG We therefore obtain the upper bound for
inequality and not a sharp functional relation. In a graphica he front \E/’el(')“é‘i’f[yvfs 4D ., as anticipated in Eq4).
form, th's.' amounts to say _thaf f_ron_t_ propagation The analytic determination of the effective diffusivity
# (advectionr diffusion) +production.” A significant excep- from the knowledge of the advective field and the value of

tion to this general rule is given by the limit of very slow e L .
: : the molecular diffusivity is, in general, a daunting task. Nev-
reaction(or very fast advection where the bound4) be- : . .
ertheless there is an exact result valid for all flows in the

comes sharp. In this case, homogenization techniques, d?o'rm of an upper bound for the effective diffusivi o

tailed in Appendix A, allow to show that the problem of the . .
determination of the front speed reduces to the problem 0T<“D°(1+a P€), wherea is a numerical constant that de-

determiningD . This is essentially due to the large separa-pend.S on the details of the ﬂ.OWZ’ZS'ZQ' Plugging this
tion of typical time scales. relation into Eq.(4) we can derive a general upper bound
We start our proof of the inequaliti) by recalling the
fundamental relation among the solution of the PQEand =yl
the trajectories of particlegs advected by a velocity field VilVo=\1+aPe, ®
u(x,t) and subject to molecular diffusidrd32,33
where any dependence on the flow details has been summa-
> 5) rized in the numerical constamt. For large Pe we recover
' the boundV;<constX U already discussed in Rdi27]. In
K the limit of small Pe, i.e., for small stirring intensity, this
bound is in agreement with the Clavin-Williams relation

0(x,t)=< 0(r(0),0)exp{ fotc( 0(r(s),s))ds

where (Vi—Vo)/Vo=(U/Vy)? [10]. On the contrary, in the same
11(0) limit, an asymptotic behavior like\;—Vq)/Vo~ (U/Vo)*3,

c()=—— proposed in Ref[11], is ruled out since the rate of conver-
T 0 gence toV,, for vanishingU has to be faster or equal & in

) . order to fulfill the bound8).
is the growth rate ob. The average is performed over the  ag anicipated above, there is a situation where the bound
trajectories evolving according to the Langevin equation 4y hecomes sharp, and that is the limit of very slow reaction.
dr(t) It is easy to understand the physical reasons for this effect. If
W o 7, is the slowest time scale under consideration, advection

dt v(r(t),H)++2Dom(t) © and molecular diffusion act jointly to build an effective dif-

fusion process, unaffected by reaction. Diffusion decreases
with final conditions r(t)=x. The white noise term the value of concentration to lower levels before the onset of

V2D n(t) accounts for molecular diffusion. production, which then takes place at the maximal fatg.,
Since the growth rate is always bounded from abovefor FKPP, atd=0). In the limit of very slow reaction, basi-
c(0)<cna=sup,c(6), Eq. (5) yields the inequality cally one has that Eq1), at large scale and long time, be-
haves as a reaction-diffusion equati¢ne., with u=0),
0(t,x)<(0(0,r(0)))eXpCmat)- (7)  whereDy is replaced byD 4. Therefore, for FKPP nonlin-
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earity, using Eq(2) one hasV;=2/D.4/,. For a detailed °c
derivation of this statement, the reader is referred to Appen- u(x,t)= _Zx V(X) 8(t—nAt). (12
dix A. "~
The effects of a nonzero diffusivity are taken into account by
Ill. A DISCRETE-TIME APPROACH adding a noise term
Let us now briefly discuss the general idea of our numeri- X(t+ At = Fo (X(1)) + V2D gAtw(t), (13)

cal approach to the study of front dynamics in terms of
discrete-time maps.

The physical meaning of E¢5) is made clear by the limit
Dy=0. In that case, introducing the Lagrangian time deriva-

wherew(t) are standard independent Gaussian variables.
If the production term also is zero apart frafrimpulses,

tive %
g f(0)=n;m g(6) 8(t—nAt), (14)
—=—+u-V,
dt ot . .

one can introduce a reaction map

Eq. (1) reduces to B(t+ At =G (0(1)). (15)
19: if(a)_ (99  Now we are ready to write the dependence of the ftelak
dt Ty timet+ At on the field at time in terms of the advection and

_ ) _ reaction mapsk,; andGy,,,
Denoting byF! the formal evolution operator of E(G) with-

out noise Dy=0), i.e.,x(t)=F'x(0), and byG' the evolu- O(X,t+ At) = (G 5 (O(F L (X— V2D oAtW(1)), 1))y
tion operator of (/dt)o=(1/7,)f(6), i.e., 6(t)=G'6(0), (16)
one can write the solution of E¢9) in the form
Equation(16) is exactly equivalent to Eq5) for maps(for
0(x,t)=G'0(F~'x,0). (100 velocity field and reaction given by periodi&impulses.
The concentration field just after the kick(x,t+0), can
Equation(10) is nothing but Eq(5) in the absence of mo- pe written as
lecular diffusivity, i.e., when only one path endsxrat time
t _ , _ _ 6(x,t+0) =G (8(Fy (X),1)). (17)
In the following, we will concentrate on laminar velocity
fields and we will develop a suitable framework to computeThe concentration fieldd(x,t+At—0) is obtained from
some essential properties for these systems. In time-periodig(x,t+0) solving the bare diffusion equatioh6=D,V?26
velocity fieldsu(x,t+At)=u(x,t), whereAt is the period  with the initial condition given by Eq(17),
and forDy=0 the Lagrangian motion can be described by a
discrete-time dynamical system. In other words, the position 0(x,t+At—0)
x(t+At) is univoquely determined by(t); in addition, be- L
cause of the time periodicity, the maqt) —x(t+ At) does B w22 —
not depend on. We remind that a periodic time dependence B (Zw)dlzf € 0(X—V2DoAtw,t+0)dw,
is sufficient to induce Lagrangian chal&6].
With these considerations in mind, we can write a La- (18
grangian map for the position

which is nothing but Eq(16), andd is the dimension of the
X(t+At) = Fa(X(1)). (1) spacexeR’ _

From an algorithmic point of view, the whole process
If u is incompressible, the mafi1) is volume preserving, Petweent andt+At can be thus divided into three steps, a
i.e., its Jacobian matrix has unit determinant. In the follow-diffusive, an advective, and a reactive one. The first two
ing we will limit our analysis to the 2D case. In that situation Stéps determine the origin of the Lagrangian trajectory end-
the map(11) is symplectic, and the dynamics is described byind in x and accordingly have to evolve backwards in time
a discrete-time version of a Hamiltonian system. Of course i#Vith & given noise realizatiow. In the third step, the reac-
is not simple at all to find explicitlyF,,(x) for a generic tion at the pointx for the advected/diffused passive scafar
velocity field. On the contrary, it is not difficult to builf,, IS computed(1) backward diffusionx—Xx—y2DoAtw; (2)
in such a way that the qualitative features of a given flow ardackward advection via the Lagrangian map; y2D,Atw
well modeled, as we will show below. —F Y(x—2DyAtw); (3) forward reaction, 6(t+ At)

Another situation, in which one obtains exactly a discrete-=G,;(6(t)).

time map (11) for the Lagrangian motion, is the case of Let us remark that Eq.16) is exact if both the velocity
velocity field, which is always zero apart frothimpulses at  field and the reaction aré-pulsed processes. However one
timest=0,= At,*=2At, = 3At, ..., can also use the formuld6) as a practical method for the
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FIG. 1. Two examples of reaction maps. On the left, FKPP type; on the right Arrhenius type.

numerical integration of Eq1) if one assumes small enough

It is easy to verify that Eq(19) is symplectic for any choice

At, so that the Lagrangian and reaction maps are given at th&f pai(-) and qu(-). If pai(y) =kAtsiny and gu:(X)

lowest order by

At
Fai(X)=Xx+u(x)At, GM:0+—T f(0).
r

A. The choice of the reaction map

We now introduce a reaction mdp,;(6) corresponding

=kAt sinx one has the so-called Harper modeften stud-
ied in the quantum chaos contgrbrresponding to a chaotic
transport in spatially periodic cellular structures. The case
da:(X)=0 gives a nonchaotic shear flow in tledirection.
The celebrated standard mgp7], which is a paradigmatic
model for chaotic behavior in low dimensional Hamiltonian
systems, is obtained with,(y) =kAt siny and g, (X) =X.

In the following we will study two limit cases that give

to FKPP nonlinearity. The map is characterized by an unhonchaotic transport, i.e., the role of the molecular diffusiv-

stable fixed point ih=0, a stable one i#=1, and a convex
shape,

Ga(0)=(1+aAt)6+O(At6?) for 6=0,

Ga(6)=1—BAt(1—0)+O(At(1—6)?) for 6=1.

Similarly, for the Arrhenius case we define

Ga(0)=06+0(Ate %'%  for 6=0,

Ga(6)=1—BAt(1—0)+O(At(1—6)?) for 6=1,

(see Fig. 1L We expect from known resul{&] for the time-
continuous PDHE1) that at a qualitative level, the details in
the shape ofG,(#) are not very relevant, within a given
class of nonlinearitiege.g., FKPP. This expectation is con-

firmed by numerical simulations. Naturally, if one is inter-
ested in the details of some specific combustion processes,

one has to work with a precise shape®f; .

B. The choice of the Lagrangian map

If we limit our study to the two-dimensiondRD) case,
the incompressibility of the velocity field implies symplec-
ticity of the map(11). A rather general class of symplectic
maps is the following:

X(t+At) =x(t) + par(y(t)),

y(t+A)=y(t) +oa(X(t+At)). 19

ity is very important:(a) open flow field(shear flowy where
all the streamlines are opefly) convective rolls where all
the streamlines are closed.

For the shear flow, we sey(x)=0 in Eq.(19), as men-
tioned above. For the cellular flows we have built the La-
grangian map in the following way: consider a 2D incom-

pressible steady velocity field  u(x,y)
=(—ady¥(x,y),d¢(X,y)) generated by the stream function

UL 2wx\ [ 2wy 20

Y(xy)=5_sin ——|sin —/—/, (20)

with L-periodic conditions iry and infinite extent along the
axis. The Lagrangian map,;(X) is given by the exact inte-
gration of the equationd/dt)x=u(x) on an intervalAt. The
shape off,;(X), i.e., the expression of(t+ At) as a func-
tion of x(t) is found explicitly in terms of elliptic functions.
In addition to the case$a) and (b) we will study the
relevance of a “transversal” perturbation to the shear flow.

IV. NUMERICAL RESULTS

Since we are interested in the front propagation in one
direction, say the direction, we applied in our simulations
periodic boundary conditions in direction,

o(x,y,t)=0(x,y+Ly,1), (21
whereas inx direction we have
lim 6(x,y,t)=0, (22

X—s00
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lim 6(x,y,t)=1. (23
X——00 T
P s
In this way the front propagates from left to right. ~ \"‘*\\i
The instantaneous front spe¥{t) is defined by TF }}%1 T
V(t)= HJ’ j dx dyf 6(x,y,t+At)— 6(x,y,t)]. sy
y g
24
(24 ol
SinceV(t) in general shows some oscillations in time, one . . .
can define the mean front spe¥dby the time average over 0.1 1 10
a sufficiently long time after the transient. ¢!

The numerical implementation of the formul&6) is de- ) .
scribed in detail in Appendix C. We have first checked the  F'G- 2. Front speed for the standard ni@) with reaction map

numerical code to confirm the known resuilts for the front2™=1 ?Syf§?§£2§)oar;ﬂésl(2\;vzf :g:(ciiolnoogh'zo;?tgj”:gs e
speedV; in the case of FKPP nonlinearity. o _—

(i) Only molecular diffusion is present, i.&5(x)=x. In homogenization curves\D o In(1.0+c). The diffusion coefficient

. . . . D« depends oK and has been computed numerically.
this case, equivalent to=0, one has the discrete-time ver- —°" P P y

sion of the FKPP formuld2),
) where 6* =(c+2—\/c?+4)/ and a=(c+2

2 —\JcZ+4)/(c—2+ Ja+c?).
szﬂ\/DoAt IN[G4(0)]. (25 By varying c one can change the ratio between the advec-
tion time t,~O(1) and the reaction timer,=1/InG’(0)
=1/In(1+c), i.e., the Damkbler number. Figure 2 shows;
vs 1k for K=1 andK=3. At large 7,, i.e., largec™ ! the
homogenization limit is recovered.

We now move to the description of the numerical results
in three case studies.

See Appendix B for its derivation.

(i) The reaction is very slow, i.e.q,=At/In(G,(0))
>t, (wheret, is the advection time In this case homogeni-
zation techniques can be applieske, e.g.[27] and Appen-
dix A) and one finds

2 - Desf A. Shear flow
Vi= 5 VDerdtIN[GL(0)]=2\—.  (26) . . .
At Ty The shear flow is the simplest case to study and it will be

presented here shortly. For our simulations we use the sys-
The effective diffusion coefficienD o in the x direction is  tem (19) with q=0,
defined by

, X(t+1)=x(t)+Usin27y(t)/L,],
L Ax()=x(0)]%)
Per= M 2t @0 y(t+1)=y(1), (31)

and in general must be computed numerically iterating thgynd a reaction ma@(6) of the shape$29) and (30), where

map (13). N ~ forthe sake of simplicity we us&t=1. While keeping fixed
In order to show the validity of the homogenization limit the diffusivity we investigate the different regimes in the

(26) we consider a system where the lagrangian motion i3y 7,y space. Among all the possible combinations of diffu-

given by the standard map sion, advection, and reaction time scales, we assume in this
_ paper always that diffusion is the slowest one.
X(t+1)=x(1)+Ksiny()], The front velocity in the homogenization regime, i.e.,
very slow reaction, i%;=2+/D ¢/ 7,, whereD 4 can be eas-
y(t+1)=y(t)+x(t+1) (mod 2m), (28 ily computed for the shear floyi29]: De— Do~ U?/Dy,.
) . Therefore for slow reaction one has a linear behaXer
and the reaction ma@(6) is in the FKPP class, ~U. The bounds discussed in the introduction suggest that

in generalV{=aU+b wherea andb may depend on, and

Dy, as confirmed by recent numerical resyiBs].

. _ ) In Fig. 3 we show two snapshots of the concentration field

In the case o€>1, in order to avoid an unbounded reaction ¢y, sjow and fast reaction. In Fig. 4 the front velocity is

map, we use displayed in dependence on the advection velddifipr dif-
9+co(1—0) for o=06* ferent reaction times. Homogenization holds for slow reac-

G(6)= ( = (30) tion rates; decreasing, , the front speed increases until for

1-a(l—60) for 6>06*, high reaction rates the geometrical optics regime is reached.

G(9)=0+co(1—0) if c<1. (29)
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' . 1 1 B
—— O Da g0 O O PO (2
— The effect of velocity is taenormalizethe values of diffu-
sivity, Dg—Des(Dg,U,L), and reaction time-scales,

—71ex(7,U,L), and therefore the advective term does not
FIG. 3. Snapshots of the fieli(x,y) for the shear maf81) and  appear any longer in the effective dynamics given by Eq.
the reaction map&9) and(30). U=0.5,D,=0.01,c=0.2, andc  (32) The assumption thdd and 7 are independently renor-
_=2.0 for the upper and lower image, respectively. The system Siz§yalized by advection is consistent in the regirdg/U
is Ly=2m andL=20m. =(Da/Pe}?<1. The renormalized diffusivityD . accounts
) . ] ) for the process of diffusion from cell to cell resulting from
Our results obtained with the discrete-time map approackhe nontrivial interaction of advection and molecular diffu-

are in perfect agreement with the direct numerical simulasjon. The renormalized reaction timg; amounts to the time
tions presented in Ref38], where the dynamical equations that it takes for a single cell to be completely burned, and

are solved in the Eulerian framework. depends on the interaction of advection and production. In
that context, the limiting speed of the front in the moving
B. Cellular flow medium will beV;=2D /e The goal is now to derive

) _ _ i the expressions for the renormalized parameters from physi-
The numerical simulations have been performed using thgy| considerations.
velocity field u(x,y) = (= dy¢(x,y), dxh(x,y)) generated by  Renormalization of diffusivityTo obtain the value of
the stream function defined in ERO) andG(6) given by  p_. it is sufficient to neglect the reaction term in Ed),

Egs.(29) and(30) with c=At/7, andAt<7,. In Fig. 5we  je  consider a passive scalar in a cellular flow. The solution
show a snapshot of the concentration field for two values ofs known[12-14),

Ty .
The key to the understanding of the different regimes of Dest p

front propagation stands in the description of front dynamics D—~Pe1 , Pe>1l. (33
in terms of effective macroscopic equations, which we intro- 0

duce hereafter, following Ref30]. The dynamics off is £ |arge Pe D, small the cell-to-cell diffusion mechanism

characterized by the length scale of the cell slzeVe can 5, e qualitatively understood in the following way: the
therefore perform a space discretization, which reduces ea':gTobability for a particle of the scalar to jump across the
cell C; to a pointi mapping the domain—a two-dimensional ,, nqary of the cell in a circulation time/U, by virtue of
infinite strip—to a one-dimensional 'atﬁgey and the fiélto 5 1ecylar diffusion, can be estimated as the ratio of the dif-
a function defined on the lattic®; =L "“fc ddx dy. Inte- v motion across the streamlin€(\DoL/U), to advec-
grating Eq.(1) over the cellC; we obtain®;=Ji,;—J;  tive motion along streamlinesO(L), leading to p
+xi, where Ji=L"2[,xDodyfdy is the flux of matter _rp /(UL)]¥2 hence the effective diffusivit g~ pUL
through the left boundary of theith cell, and i —p pé?2

=L"?[¢ 7 'f(#)dxdy is the rate of change d®; due to Renormalization of reaction timét small Da, where re-
reaction taking place within the cell. We will show that it is action is significantly slower than advection, the cell is first
possible to model the dynamics with a space-discretizethvaded by a mixture of reactants and produgtgh a low
macroscopic reaction-diffusion equation, content of products®);<1) on the fast advective time scale,

homogeneization X
16 geometrical optics -------

R FIG. 4. Front speed for the shear mégi)
> o e ] and the reaction map®9) and (30) as function
08 - . of U for various reaction times, = 1/In(1+c),
X N e Do=0.04.
06 o e - i
E B L . . .
0 0.2 04 0.6 08 1
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FIG. 5. Snapshots of the fielé{x,y) for cellular flow given by
the stream functiorf20) and the reaction map@9) and (30), U
=2.0,Dy=0.01, ,=5.0, andr,=0.5 for the upper and lower im-
age, respectively. The system size is=27 andL,=10m7.

and complete reaction(;=1) is then achieved on the slow FIG. 7. Cellular flow: six snapshots of the fieltl within the
time scalerg= 7, (Fig. 6). The area where the reaction takes same cell at six successive times with a delajl()/6 (left to right,
place extends over several cells, i.e., the front is “distrib-top to bottom. Here Da=4, Pe=315. A spiral wave invades the

uted.” interior of the cell with a speed comparableWo
At large Da, the ratio of time scales reverses, and in a
(now shorj time 7, two well-separated phases emerge inside V¢ P4 Da<l1, Pe-1
the cell. The interface has a deptih~\Dg7, V_o~ P&Da 12 Da>1, Pe-1. (39

=L Pe ¥2Da 2 j.e., it is thin compared to the cell size.

Here the process is characterized by an inward spiral motiofynere we restricted ourselves to the most interesting case
of the outer, stable phagsee Fig. 7 at a speed proportional pes. 1. At small Da the front propagates with an effective
to U as it usually happens for a front in a shear flow at largee|ocity, which scales as the upper bound derived above, that
Da. Indeed it is easy to show that, inside a cell, the problerri)s, as P&% At large Da front speed is less enhanced than at

can be mapped to a front propagation in a shear flow iy o1 Da: according to Ea(35). we haveV./« 4D /7
“action-angle” variableg15]. Therefore th@=1 phase fills -1 for Das1. ?n termqs( of)’the typical vfelocityef(f)thrhe

the whole cell on the advective time scale, giving cellular flow, we haveV;=UY for “fast” advection (U
=L/U. ) i >L/7,, or equivalently, D&1) whereas V;xU%* for
In summary, we have the following behavior for the g4, advection (U<L/7, or Da>1). The numerical re-
renormalized reaction time sults are shown in Fig. 8. The case of “fast” advection cor-
7 (1, Da<l responds to the one with slow reaction, for which the homog-
—~ (34  enization limit holds.
Tr Da, De>1. In the geometrical optics limit Dal, Pe>1 the effective
Now, we have all the information to derive the effective speed of the front is proportional to the area of the interface
speed of front propagation for a cellular flow. Recalling thatthat separates the two phases. In two dimensions, the inter-
Vi~ \Deit/ Tetr, We have for the front velocity the final result

oF 1 T e

FIG. 8. Cellular flow: the front speed; as a function olJ, the
typical flow velocity withDy=0.04. The lower curve shows data at
7,=20.0 (fast advection The upper curve shows data at=0.2

FIG. 6. Cellular flow: six snapshots of the fielwithin the  (slow advectioh For comparison, the scaling* and U%®* are
same cell at six successive times with a det&/(from left to right, shown as dotted and dashed lines, respectively. The horizontal line
top to bottom, as a result of the numerical integration of Eg). indicatesV, (the front speed without advection, i.&l=0) for 7,

Here Da=0.4, Pe=315. Black stands fo#=1, white for =0. =0.2.
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0.25 I C. Percolating flow
In the previous sections we discussed pure cellular and
0.2 - T pure shear flows. Now we investigate the transition between
these two limiting cases. To this aim, we will use for the
@’: 0.15 - _ Lagrangian motion the generalized Harper map,
= 0.
= o X(t+1)=x(t)+ U siny(t),
£ 01 r % .
l-) 2 o .
g y(t+21)=y(t) +Ussinx(t+1) (mod 27). (36)
0.05 - —
The caseU;=0 corresponds to shear flow, wherelds
0 I I L I =U gives a chaotic cellular flow.
0 0.2 04 0.6 0.8 1 In order to give an idea of the Lagrangian behavior of the

flow generated by Eq.36) we show in Fig. 10 some trajec-
tories at different value ofJ;. For U;#0 the map(36)

FIG. 9. Cellular flow: the renormalized reaction term exhibits chaotic behavior in some regions. At small value of
7. 1 74F (®) vs O for three different parameters: Bat(0J), Da Ut one has basically a ballistic transport in thelirection
=2(0O), and Da=0.4(X). The continuous line i§(9). The dotted  apart from small recirculation regions. For~U a typical
and dash-dotted lines have the slopes (0.2 and 0.4) proportional tat's eye” pattern appears with percolating channels
Da ' in the region of slow advection. among the recirculation regions. A chaotic cellular flow,

rather similar to the case of convective cells discussed in

face is characterized by its lengthand its deptf\. We have  gec. |V B (apart from a rotation ofr/4) is obtained fotU
the rela’[iOI’lShip\/f’VA//(LTr), which entails the result that =U (U |arge enough see F|g 10. The behavior fd]j_l_
the ratio of the length of the interface in a moving medium, sy can be understood by a simple statistical argument valid
/, to the length in a medium at rest,is //L~V¢/Vgandis  or large K [37]: at very large values of)7, y(t) changes
therefore larger than unity. The structure responsible for this;,ery rapidly, therefore the oscillatory term Bj(t)] can be
elongation of the front edge is the spiral wave shown in Fig¢onsidered as a zero mean random process and the variable

7. ) o ) x(t) is well approximated by a diffusive process withy
Finally, it is interesting to look at the shape of the effec- —j2/4.
tive reaction termr,'F(©) appearing in the renormalized  |n Fig. 11 we show snapshots of the concentration field

equation(32). As shown in Fig. 9, for small Da the effective for different reaction times. The natural question is how the
production term is indistinguishable from the “bare” one. transition from pure shear to percolation and from cellular
Increasing Da, the reaction rate tends to reduce progrestow to percolation, respectively, changes the front speed. On
sively, inducing the slow down of the front speed. The ef-an intuitive basis we expect the front propagation to be
fective potential shows a small region where the productiorsiower in the cellular case than in the shear case. In Fig. 12
term is essentially the microscopic one, followed by an in-we plot the front speed in dependence of the sidewlndor
termediate regime characterized by a linear dependence gjifferent reaction time scales. The diffusion coefficient of the
the cell-averaged concentration, with a slope directly proporsystem(36) has been calculated in separate runs for the com-
tional to Da ®. That is in agreement with a typical effective parison with the homogenization expectations.
reaction timereq~ 7, Da [cf. Eq. (34)]. Let us discuss the figure going from left to right, aug-
We conclude the discussion on cellular flows by notingmenting the sidewind. For zero sidewind, we recover the
that the scaling behavioké; vs U are in agreement with the pure shear result, at the valler=U, we recover the pure
rigorous bounds/;=C,UY5+C, and V;=C,UY?+C, for  cellular flow result and if we go even beyond, for a very
slow and fast reaction8|. large sidewind, the reaction becomes relatively small and

FIG. 10. Lagrangian dynamics of test par-
ticles evolving according to the Harper's map
(36) for different values ofU; with U=1.5.
From top left moving clockwiselU;=0.2, Ut
=0.8, Ur=1.5, andU;=3.0.
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FIG. 11. Snapshots of the field(x,y) for
percolating flow given by Eq36). The reaction
map is given by Eq(29) and(30). U=1.5, Ut
=0.8, Dy=0.01,¢c=0.2, andc=2.0 for the up-
per and lower image, respectively. The system
size isLy=2m andL,=20.

thus we enter the homogenization regime. This transitioomaterial, the values o¥; in the case of Arrhenius nonlinear-
pure shear-pure cells is smooth as confirmed by the figurdty are very similar to the ones obtained using the FKPP
The three horizontal lines show the asymptotic values ohonlinearity. In Fig. 13 we show; as a function obJ for the
2\Deg/ 7, (the value ofD . does not change significantly as cellular flow introduced in Sec. IV B in the case of Arrhenius
a function ofU+ if U+ is large enough nonlinearity. The scaling law¥;~UY* and V;~U%* for
slow and fast reaction hold also in this case. Also for shear
and percolating flow we do not observe qualitative changes
) ) when varying the shape df 6).

In the precedlng sections we have shown thg results for Although the qualitative behavior of; as a function of
the behavior ofVy as function ofU and 7, for different  the system parameters does not change for different reaction
laminar flows discussing in detail the FKPP nonlinearity. Itterms, there are differences in the front speed relaxation to its
is natural to ask about the effects of the shap&(@) on the asymptotic value. In the case of FKPP nonlinearitg.,
front speedV;. In particular, it is interesting to know “pulled” fronts), without advection ¢=0), it is known[9]
whether the choice of an Arrhenius nonlinearity changes sigat the front velocity relaxes algebraically slow to its
nificantly the scenario presented in the previous sections. asymptotic value. Therefore one can expect some numerical

It is known that for ignition nonlinearity, i.ef,(6) =0 for  gjfficulties to find out the value 0¥, in particular, for the
6< 0., and expectedly also in the Arrhenius case, the flowsiow reaction case in which the front may interest a very
can suppress front propagation. This effect, called flamgarge spatial region. With this “caveat” in mind, in our
quenching, is absent for FKKP production terms. This obsersjmylations we varied the system size to carefully check the
vation may lead to the assumption that the front eV0|Uti0rbonvergence ofV. Using Arrhenius nonlinearity(.e.,
could depend on the shape fdft) in a dramatic way. How-  «pyshed” front) in the case without advection, it is known
ever, flame quenching takes place only if initial conditions Ofthat the convergence to the asymptotic value is exponentially
the field ¢ are localized, i.e.¢ is different from zero only in  fast. Also in presence of a velocity field we observe that the

that we use her¢Egs. (22)], the front propagates always

[27,28, also in _the Arrhenius case. For thgt reason, we do V. SUMMARY AND CONCLUSIONS

not expect major differences in the scaling properties of

propagation speeds. Indeed, in the particular geometry we Enhancement of front propagation by an underlying flow
use, i.e., an open flow with an infinite reservoir of burnedis a generic phenomenon for advection-reaction-diffusion

D. Final remarks

25 T T T T T T T

FIG. 12. V; vs Uy, the La-
grangian map is given by E(36),
the reaction mags(0) is given by
Egs. (29 and (30). The three
curves  correspond to ¢
=0.1,1.0,10.0 (from bottom to
top), the “horizontal” velocity
has been fixed t&J=1.5 for all
curves. The asymptotic value of
2+/DegIn(1+c) (for the horizontal
direction is shown by the three
horizontal lines, the corresponding
value of D¢ has been calculated
numerically for largeU .
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FIG. 13. Cellular flow: the front speed; as a function otJ, the
typical flow velocity in the case of Arrhenius production type:
f(6)=(1— 6)exp(—6./6). The lower curve shows data at=2.0
and .= 0.5 (fast advectioh The intermediate curve at=2.0 and
6.= 0.2 shows the crossover from fggght side to slow advection
(left sidg. The upper curve shows datamt= 0.2 andd.= 0.2 (slow
advection. For comparison, the scalirg** andU%* are shown as
dotted and dashed lines, respectively.

systems. A relevant question is how the front sp¥edie-
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APPENDIX A: HOMOGENIZATION REGIME

In this appendix we present briefly the application of ho-
mogenization technique$42] to the reaction-advection-
diffusion equation(1). We are interested in the large-time,
large-scale asymptotic for slow reaction time scales. Intro-
ducing the small parameter, we consider reaction times

=7 2, and look at the solutions of Ed1) for times
O(e ?) and scaleD(e 1). The separation in time scales
allows a multi-scale treatment. Slow variabkés- ex and T

= €%t are introduced along with the fast variabbesand t.

Slow and fast variables are considered as being independent.
As a consequence space derivatives acd,asedy and the

time derivative as);+ €29r. The concentration field is ex-
panded in a power series ine as 6(x,t,X,T)

pends on the detailed properties of the advective velocity= gO(x,t, X, T) +e6(x,t,X,T)+-- -, and this expression

field, in particular, on the typical velocity. For an arbitrary
flow, it is extremely difficult to derive this dependence ana-
lytically. Here, we have shown that for all incompressible

is plugged in Eq(1). At zeroth order ine the equation reads

3,0+ u-V,0=Dv2g).

flows there exists an upper bound to the front speed that links

it to a single global property of the flow, its effective diffu-

sion coefficient. The analytic derivation of the effective dif-
fusivity for a given velocity field is itself a daunting task, but
several generic properties are known and some exact resu

are available for simple flows. In the special case of fast

advection, as compared to the reaction timesealethe up-
per bound is sharp, and therefore it is possible to obtain th
dependence of; on U. When molecular diffusivity is small
we haveV;~U for flows with open streamlines such as the
shear flow, and/;~U%Y*for cellular flows. For slow advec-
tion, the bound ceases to be effective and one has to resort

numerical simulations in order to determine the front speed.

We find that for open-streamline flows there is still a linear
dependenceVi~U whereas cellular flows display &;

~U%* dependence. Within the class of initial/boundary con-
ditions for which no flame-quenching effect ever takes place

Due to the dissipative nature of the latter equation, the solu-
tion at zeroth order will decay to its average value on fast
time scales,
Its
0 (x,t,X,T)=6O(X,T).
At order €, we obtain the linear equation
0.0 +u-V, 00 -DVieW=—u. V9O,
\%hich allows the solution
OD(x,t,X,T)= 0D (X, T)+w(x,t)- Vi 8O(X,T),
provided that the auxiliary fieldv obeys the equation

AW+ u- V,w=DyV2w—u.

those scaling laws appear to be universal with respect to the

details of the reaction mechanism.
Which lessons can we draw from the present results fo

Note that the production term has not yet shown up. It is at
brder € that it enters the scene,

the open, challenging problem of front propagation in turbu-

lent flows? The main point that we want to emphasize is the

0,6 +u-V, 02 —-DVZe

central role played by the effective diffusion process in de-

termining the front speed. That is a reflection of the deep-

rooted link between front propagation and transport proper
ties. The knowledge of turbulent transport has experienced
significant progress in the past few yeésse, e.g., Ref$39]
and[40]). We believe that those results will reveal helpful to
shed light on the issue of front propagation in turbulent flow
(for a similar point of view, see Ref41)).

— 39100 —u- V40V + DV

1
a +2DVy- Vi 0B+ =f (),

Ty

The solvability condition for the equation at second order
requires that
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F(X%)
/’Jﬁ\ Ngm
/ \X‘v\
""""" I nfx FIG. 14. Pictorial scheme of the numerical al-
__________ Thn gorithm, as discussed in Appendix C. Herg!
Xom ={2DAtW¢, whereW* is a standard Gaussian
................................... Variable.
S 1 _a(b) __ D,
91600=D V26 —(u- VW) + = £(6©)), Vf=m|nT=2 ?f (0). (B4)
Tr b r

where the brackets denote the average over the fast variablé@onsider now the discrete-time reaction case, i.e.,
Plugging the expression fa#!) into the solvability condi-
tion yields the effective, large-scale equation

o

%0= DoV26+ _2 g(6)8(t—n), (BS)

’ 1
9710 =, D% 0@+ =1(6°),
1]

Ty

where for sake of simplicity we adogtt=1 [see Eq(14)].
B Indicating withG(6) the reaction mapsee Eq(15)] one
where D¢y is in general a tensor with components);  has

=Dyd" — 3(u'W +u'w'). Considering the propagation in

the x direction only, we recover an effective equation, which 6(x,t+0)=G(0(x,t—0)).

is equivalent to Eq(1) with an effective diffusivity. There-
fore the front propagates at a maximal spéedimputed in
the original, fast variables given by V;
<2\(Dey/ 7,)[SUp,{f(6)/6}], for FKPP nonlinearity one

Integrating the diffusion equation,#=DyV26 betweent
+0 andt+1—0 one has

1
hasV;= 2D/ 7;, whereDgs= Dy O(x,t+1-0)= J?j e "2G(9(x— 2Dy w,t+0))dw.
ar
APPENDIX B: FRONT SPEED FOR DISCRETE TIME (B6)
MAPS

Assuming the shapé2) and linearizing around=0, i.e.,
The front speed?25) for discrete maps can be obtained by G(8)=G’(0)6, a simple Gaussian integration gives
simple considerations just following the standard way used a(t+1)—bx ) 5
for the derivation ofV; in the continuous time limit, e ~exdInG’(0) +Dob“—bx+at].

9 1 The above result implies
0= DoV26+ T—f(e). (B1)

r a=InG’(0)+ Dyb?,
Let us consider a front propagating from left to right. For the
sake of simplicity we discuss a FKPP nonlinearity for the
one-dimensional case. Fer—x, 6(x,t) has an exponential

shape V;=2DyInG'(0). (B7)

6(x,t)=edt=bx (B2)

this is nothing but Eq(B3) now with InG'(0) instead of
(1/7,)f'(0). Thesame selection criterion gives

. . . . APPENDIX C: NUMERICAL METHOD
up to exponentially subleading terms. Inserting E8R) in

Eq. (B1) and linearizing around=0 one has Since we are interested in propagation along xhexis,
we consider a slab with sidés>L,. The boundary condi-
tions are periodic in they direction, 6(x,y,t)=0(x,y
+Ly,t). To fulfill the conditions(22), lim,_,.. 6(X,y,t)=0
and lim_, . 6(x,y,t)=1 numerically, we se®(0y,t)=1

A saddle point argument gives a selection criterion, whichand (L, ,y,t)=0, which is a good approximation as long as
allows for the determination of the front spef, the front leading edge has not reacigd We introduce a

1
a=Dob?+ 7f'(0). (B3)
r
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lattice of step sizeAx and Ay (for sake of simplicity we compute the valué(ry ,,t) using linear interpolation from
assumeAx=Ay) so that the field)(x,y,t) is defined on the 6, (t). Therefore we have

points X, m=(NAX,mAy). The numerical code computes
Onm(t+At)=6(nAx,mAy,t+ At) in terms ofé,, ,(t) using
Eq. (16). For each grid poink, ,, one introducedN inde-

pendent standard Gaussian variablgs, «=1,... N, N Tvpicall h q fo=50. To si
< o _ e hwa . ypically one has a good convergence . To simu-
>1, and computes, »=Xnm— v2Do At and finally late the diffusion process we have to impose a relation be-

from this ry ,=F (X} ). For 6, m(t+At) one needs the tweenD,, Ax, andAt to insure that the diffusion transports
values off at timet in the positiong ;... In general the, ,  a particle over distances larger than the grid-size,
are not on the grid pointsnAx,mAy), nevertheless we can 2DyAt/Ax>1 (see Fig 14
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