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Generalized hydrodynamic theory of shock waves in rigid diatomic gases
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Generalized hydrodynamic theory of shock waves is phenomenologically developed for rigid diatomic
molecules. The generalized hydrodynamic equations developed are thermodynamically consistent, obeying the
laws of thermodynamics. They reduce to the Navier-Stokes-Fourier theory of the classical hydrodynamics in
the limit of low Mach number. The theory is applied to study the one-dimensional shock wave structure of
nitrogen gas, which is treated as a rigid molecule. An excellent agreement with experiment is obtained for the
inverse shock widths up to Mach number 10 reported in the literature. The theory is applicable to arbitrary
dimension. On the basis of direction field singularities of the velocity and temperature evolution equations of
the theory, it is possible to predict that the shock solutions exist for all Mach numbers in the case of one-
dimensional shock waves studied.
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I. INTRODUCTION

Shock wave structures of monatomic and molecular ga
are not only interesting and important from the technologi
viewpoint, but also serve as an important and sensi
touchstone for the ability of continuum hydrodynamic equ
tions to describe macroscopic phenomena in the substa
mentioned. It is well known that the Navier-Stokes-Four
~NSF! equations of the classical hydrodynamics are in
pable of accurately describing shock wave phenomena
both monatomic and molecular fluids in the hypersonic
gime and also flow phenomena in rarefied gases. It has
mained an outstanding problem in fluid dynamics to exte
@1–11# the classical theory so as to make the continu
mechanics approach serviceable to the shock wave phen
ena in the regime of hypersonic speed and also to rare
gas dynamics phenomena@12,13# in the large Knudsen num
ber regime. In fact, the voluminous literature in gas dyna
ics and fluid mechanics that deals with theories beyond
classical hydrodynamic method by using simulation meth
of one kind or another is in a sense the witness to the fai
of the classical hydrodynamics. The lacuna left by the un
swered challenges in the continuum mechanics approach
been mostly filled by computer simulation methods, notab
the direct simulation Monte Carlo~DSMC! method@14–16#.
However, this method like other simulation techniques is
only laborious and time consuming, but also expensive
not as enlightening as the continuum mechanics appro
with regard to the physical insights into the phenomena
interest. Furthermore, it cannot be used if the Knudsen n
ber is less than approximately 0.1 and the mean molec
spacing is much larger than the molecular diameter; see
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@15# for a discussion on this aspect. Nevertheless, the DS
method has been serving as a valuable theoretical too
investigation in the region of fluid dynamic conditions n
met by the NSF equations.

The generalized hydrodynamic equations@17–21# were
developed some years ago as a set of macroscopic evol
equations attendant to a theory of irreversible processe
matter. Being an integral part of such a thermodynam
theory of irreversible processes@22#, the generalized hydro
dynamic equations are manifestly consistent with the laws
thermodynamics. Therefore we now are presented with a
talizing prospect of studying in a thermodynamically cons
tent manner and in good accuracy various nonlinear fl
phenomena that were beyond the capability of description
the classical hydrodynamic equations, namely, the Nav
Stokes-Fourier equations. As an example of applications
the generalized hydrodynamic equations to nonlinear fl
phenomena occurring in fluids far removed from equil
rium, we have recently studied@23# shock wave phenomen
in monatomic gases in the case of one-dimensional flow c
figuration. The shock solutions not only have been found
exist for all Mach numbers, but also the numerical results
the shock structures have been found excellent in comp
son with experimental data available in the literature. W
thus have demonstrated that there are continuum mecha
equations for hydrodynamic field variables in the forms
generalized hydrodynamic equations that are capable of
scribing shock phenomena as well as other flow phenom
with sufficient numerical precision. The theory is relative
easy to implement numerically with a fraction of cost a
labor compared with the DSMC method. The theory h
been implemented for two- or three-dimensional sho
waves by Myong@24,25# with excellent numerical results fo
all Mach numbers studied. Myong and his collaborato
@26,27# also have successfully applied the theory to gas
namics problems, showing that it can treat the aspects
flow that cannot be handled by the Navier-Stokes theory

l,
y,
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yields results comparable with the DSMC method. The
fore, it is fair to say that we are now in possession o
continuum mechanical theory capable of describing fl
phenomena in monatomic fluids in the forms of generaliz
hydrodynamic equations. These equations are not only in
sive of the classical Navier-Stokes-Fourier theory in the l
Mach number regime but also thermodynamically consis
for all Mach numbers.

To study flow phenomena in molecular fluids the afo
mentioned generalized hydrodynamic equations for m
atomic gases must be suitably extended to such fluids.
recent work@28# on ultrasonic wave absorption and dispe
sion in diatomic gases such as nitrogen, hydrogen, de
rium, and deuterium hydride, thermodynamically consist
generalized hydrodynamic equations for molecular flu
have been derived from the Boltzmann-Curtiss equation@29#
for rigid molecules and applied to study ultrasonic wave
sorption and dispersion coefficients as functions of freque
and temperature. To implement the theory for sound w
phenomena a linearization of the equations was necess
required so that the usual Fourier transform method could
applied. Although such a linearization of the equations te
to reduce the numerical accuracy, the good results obta
for the ultrasonic absorption and dispersion coefficients
agree with experiment over a sufficiently wide range of f
quency were rather encouraging and indicative of the uti
of the generalized hydrodynamic equations for other fl
problems of the molecular gases studied.

In this work, by gleaning the generalized hydrodynam
equations derived from the Boltzmann-Curtiss kinetic eq
tion and used for the aforementioned study of ultrasonic
sorption and dispersion and by suitably fashioning them
the phenomenological grounds in a manner consistent
the laws of thermodynamics, we formulate a set of co
tinuum mechanical~hydrodynamic! equations that can be re
liably used for flow problems of molecular fluids. In th
paper we specifically propose such a set of generalized
drodynamic equations for flow problems for molecular ga
on the phenomenological grounds and, by applying them
study shock waves in nitrogen gas, investigate their utility
comparison of the theoretical results with experimental d
Thereforeour approach is phenomenological and deductiv;
there is no kinetic theory involved in the present theory; a
the proposition made for the evolution equations for mac
scopic variables is justifieda posteriori in comparison with
experiment. The capability of a shock wave theory can
succinctly symbolized by the Mach number dependence
shock width, which may be regarded as the touchstone
the veracity of a shock wave theory. In shock wave theor
is not sufficient to calculate and show shock profiles for o
a few cases of Mach number. We will show that the inve
shock widths@30# of nitrogen computed are in excellen
agreement with experiment up to Mach number 10 repo
in the literature@31–35#. The potential range of utility of the
theory, however, extends well beyond the range of Ma
number numerically investigated in this work, as sugges
by the analysis made of the singularities of the direction fi
of the evolution equations for velocity and temperature.

In Sec. II the generalized hydrodynamic equations for
04630
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atomic fluids are presented in general form. They are t
specialized to the case of one-dimensional shock waves.
one-dimensional equations are then reduced by using
able reference variables in Sec. III. The one-dimensio
shock waves can be described by two variables, velocity
temperature. The evolution equations for velocity and te
perature are presented in this section, where the boun
conditions are also discussed together with direction fie
and singularities of the direction field equation. From t
consideration of the nature of the singularities and the dir
tion field it is possible to conclude that the shock solutio
should exist for all Mach numbers in the case of on
dimensional generalized hydrodynamic equations form
lated. The numerical results obtained from the aforem
tioned evolution equations for velocity and temperature
used to calculate shock profiles for various field variab
and, most importantly, the inverse shock widths in Sec.
The latter results are in excellent agreement with the exp
mental data available in the literature. Section V is for d
cussion and concluding remarks.

II. GENERALIZED HYDRODYNAMIC
EVOLUTION EQUATIONS

A. Generalized hydrodynamic equations for three dimensions

In the case of molecular fluids the hydrodynamic fie
variables necessary for an appropriate description of flow
the fluids may consist of densityr, velocity u, internal en-
ergy E, heat fluxQ, and stress tensorP, which may be de-
composed into the shear stressP, the excess normal stres
D, and pressurep, in addition to the energy for the interna
degrees of freedom and rotational angular momentum.
internal degrees of freedom evolve on a faster time scale
the other hydrodynamic variables mentioned, unless their
laxation is inhibited for the reason of low temperature
other causes. We will assume that their relaxation is fa
than the hydrodynamic variables. This implies that the e
lution equations for the internal degrees of freedom may
suppressed in the present theory. Therefore in addition to
usual conservation laws of mass, momentum, and the in
nal energy, there are the constitutive equations for the h
flux and the stress tensor—nonconserved variables—to
scribe shock phenomena in the diatomic gas of interest.
the sake of generality we first present them in general fo
@20,21#:

r
dv
dt

5“•u ~v51/r!, ~1!

r
du

dt
52“•~P1Dd1pd !, ~2!

r
dE
dt

52“•Q2~P1Dd1pd !:“u, ~3!

where d/dt5]/]t1u•“ is the substantial time derivativ
and d is the unit second rank tensor. In these equations
stress tensorP is decomposed into three parts
3-2
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P5P1Dd1pd, ~4!

where P and D are, respectively, the traceless symmet
part and the excess normal stress part ofP and p is the
hydrostatic pressure. The excess normal stress part has
with the bulk viscosity of the fluid, which does not exist
the case of dilute monatomic gases. The pressure is desc
by a suitable equation of state, which in the case of dil
gases is the ideal gas equation of state. The nonconse
variablesP, D, andQ are described by their evolution equ
tions that we propose to have the forms@28#

r
dP̂

dt
522~p1D!@“u# (2)22@P•“u# (2)2

p

h0
Pq~k!,

~5!

r
dQ̂

dt
52~p1D!ĈpT“ ln T2P•“ĥ2Q•“u

1“•~pd1Dd1P!•~P̂1D̂d!2
pĈpT

l0
Qq~k!,

~6!

r
dD̂

dt
52

2

3

Ĉv
(r )

Ĉv

~Dd1P!:“u2
2

3

Ĉv
(r )

Ĉv

p“•u

2
2

3

Ĉv
(r )

Ĉv

p

hb
Dq~k!. ~7!

The set of field equations for the variables (r,u,E,P,Q,D)
presented above constitutes the generalized hydrodyn
equations for flows in rigid diatomic gases. The symb
@A# (2) stands for the traceless symmetric part of tensorA.
For example, in the case of the velocity gradient“u it means
@“u# (2)5@“u1(“u) t#/22d“•u/3. Other symbols are a
follows: P̂5P/r; D̂5D/r; Q̂5Q/r; Ĉp and Ĉv are the
specific heat per mass at constant pressure and at con
volume, respectively;Ĉv

(r ) is the rotational specific heat pe

mass of the molecule;ĥ5ĈpT is the enthalpy per mass;h0 ,
hb , andl0 are the shear viscosity, bulk viscosity, and th
mal conductivity~more precisely, the Fourier thermal co
ductivity times T) @36# of the molecular gas, respectively
and finallyq(k) is a nonlinear factor@17,20,21# defined by

q~k!5
sinhk

k
, ~8!

wherek2 is the Rayleigh dissipation function for the proce
in question

k5
~mkBT!1/4

A2pd
S 1

2h0
P:P1

Cv
(r )

Cv

1

hb
D21

1

l0
Q•QD 1/2

.

~9!

Hered denotes the size parameter of the molecule andm is
the molecular mass. In fact,d may be taken as the mea
diameter of the molecule in the case of a diatomic molec
04630
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It may be identified with the size parameter in the poten
energy model for the diatomic gas in practice. Theq(k) is
the factor much responsible for the nonlinear behavior of
material functions for the gas and also for the nonline
modes of energy dissipation in the gas. The calortropy p
duction is a local representation of the second law of th
modynamics and the system of evolution equations prese
is consistent with the second law of thermodynamics in
sense that the calortropy production given by

J5kBk sinhk>0 ~10!

is positive for all values of the nonconserved variables. In
sense that the first and second law of thermodynamics
satisfied by the generalized hydrodynamic equations p
sented, the latter are therefore thermodynamically consis
and so is the theory of shock waves developed here for
atomic fluids.

Although Eqs.~5!–~7! together with the Rayleigh dissipa
tion function k2 are assumed as phenomenological eq
tions, they can be shown to have some kinetic theory bas
the Boltzmann-Curtiss equation for rigid diatomic gases@29#
or a suitable kinetic equation for diatomic gases@37,38# is
used and if the closure is chosen such that the macrosc
variables are limited to only those elements in the
(r,u,E,P,Q,D). For the kinetic theory justification and ex
amination of the approximations necessary to obtain the e
lution equations postulated in this work, see Ref.@28# where
the method of obtaining the evolution equations for mac
scopic variables are given within the framework of the no
equilibrium ensemble method@20,21#. However, in the ref-
erence just quoted, only linearized versions of t
constitutive equations are presented and used. We h
shown in a number of studies@20,39–44# on nonlinear trans-
port coefficients that the constitutive equations~5! and ~6!
give rise to sufficiently accurate nonlinear transport coe
cients, and particularly non-Newtonian viscosities, in co
parison with experiments. The new addition to the gene
ized hydrodynamic equations, Eq.~7! for D, appears in a
linearized form in the ultrasonic wave study mentioned@28#;
it has to do with the bulk viscosity of the gas. With this ne
addition, the generalized hydrodynamic equations h
yielded rather encouraging results on absorption and dis
sion characteristics. On the strength of this finding, we h
postulated the evolution equations for the shock wave pr
lem presented. In this work, we are using a deductive
proach to the shock wave problem by making a postulate
the continuum hydrodynamic equations and justify their u
ity a posteriori in comparison with experiment.

The equations~5!–~7! generalize the constitutive equa
tions, namely, the evolution equations, for the nonconser
variables in the generalized hydrodynamics previously
ported for monatomic fluids@23#, because the transport co
efficients, the enthalpy density, and specific heats are all
diatomic gases, and furthermore there is the equation for
excess normal stressD together with the attendant bulk vis
cosity. In the event that in the domain of some physi
parameters, such as temperature or the frequency of an
ternal force, where the relaxation times of rotational ene
3-3
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MAZEN AL-GHOUL AND BYUNG CHAN EU PHYSICAL REVIEW E 64 046303
and angular momentum are comparable to the hydrodyna
relaxation times, the rotational energy and angular mom
tum evolution equations should be added to the set of e
lution equations presented earlier. These aspects will be
ferred to a later study, when the present approximation
ascertained of its validity.

B. One-dimensional shock wave equations

We assume that flow is in the direction of thex coordinate
in a fixed coordinate system and the flow may be appro
mated as one-dimensional, with the transversal compon
of the macroscopic variables in the set (r,u,E,P,Q,D) put
equal to zero. This, however, represents an approximatio
two- or three-dimensional shock wave phenomena exp
mentally or naturally observed. Since we are interested
steady shock wave in the flow configuration assumed,
conservation laws for mass, momentum, and energy are
independent and have the forms

d

dx
ru50, ~11!

d

dx
~ru21p1D1Pxx!50, ~12!

d

dx FruS E1
1

2
u2D1u~p1D1Pxx!1QxG50, ~13!

whereu is thex component of the fluid velocityu, namely,
u5(u,0,0), p is the pressure given by the ideal gas equat
of state,Pxx is thexx component of the shear stress, andQx
is the x component of the heat flux. We note that in t
one-dimensional flow configuration assumed for the pres
problem

@“u#xx
(2)5

2

3
]xu. ~14!

The balance equations~11!–~13! are supplemented by th
evolution equations forPxx andQx .

The nonconserved variables such asP and Q vary on a
faster time scale than the conserved variables such as
density, energy~or temperature!, and momentum~or fluid
velocity!. Therefore, on the time scale of variation in th
conserved variables the nonconserved variables have alr
reached their steady state, and it can be shown, by scalin
substantial time derivative terms in the constitutive equati
with the Deborah numberNDe5ts /th or theQ numberNQ
5tq /th wherets is the characteristic time of stress rela
ation,tq is the characteristic time for heat flow, andth is the
characteristic time of flow, that the following approxima
constitutive equations hold forP andQ:

22~p1D!@“u# (2)22@P•“u# (2)2
p

h0
Pq~k!50,

~15!
04630
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2~p1D!ĈpT“ ln T2P•“ĥ2~Dd1P!•
du

dt
2Q•“u

2
pĈpT

l0
Qq~k!50, ~16!

22
Ĉv

(r )

Ĉv

~Dd1P!:“u2
2

3

Ĉv
(r )

Ĉv

p“•u2
2

3

Ĉv
(r )

Ĉv

p

hb
Dq~k!

50. ~17!

This approximation is called the adiabatic approximatio
The adiabatic approximation is valid when the nonconser
variables relax at a much faster time scale than the conse
variables. It is discussed in Refs.@20# and@21# to which the
reader is referred for details. The aforementioned scaling
gument in essence enables us to neglect the substantial
derivative terms in the constitutive equations in the limits
largeNDe andNQ . The utility of this adiabatic approxima
tion has been successfully tested for a number of flow pr
lems @21,23#. We use these constitutive equations in t
present work on shock waves.

In the case of the aforementioned one-dimensional fl
configuration and the assumption on the vanishing trans
sal components of the macroscopic variables made for
present problem, the steady-state constitutive equations
Pxx , Qx , and D are obtained from Eqs.~15!–~17! as fol-
lows:

p

h0
Pxxq~k!1

4

3
Pxx]xu1

4

3
p]xu1

4

3
D]xu50, ~18!

ĥp

l0
Qxq~k!1Qx]xu1~Pxx1D!u]xu

1ĥ~p1D1Pxx!]x ln T50, ~19!

p

3hb
Dq~k!1S D1Pxx1

1

3
pD ]xu50. ~20!

Equations~18!–~20! are partial differential equations for ve
locity componentu and temperatureT. We emphasize tha
there do not appear partial derivatives ofPxx andQx in these
equations because of the adiabatic approximation.

C. Reduced equations for shock waves

Integration of the balance equations~11!–~13! yields

ru5M , ~21!

ru21p1D1Pxx5P, ~22!

2ruS E1
1

2
u2D12u~p1D1Pxx!12Qx5Q, ~23!

whereM, P, andQ are integration constants with the dime
sion of momentum per volume, momentum flux per volum
and energy flow per volume, respectively. These equati
3-4



c

ig
io

t

er

ri-

:

de-
nt.

the

GENERALIZED HYDRODYNAMIC THEORY OF SHOCK . . . PHYSICAL REVIEW E64 046303
are also supplemented by the equation of state and the
loric equation of state for the diatomic gas

p5rRT, E5
5

2
RT, ~24!

where R is the gas constant per mass. Because the r
diatomic gas is dilute, there is no contribution to the equat
of state from the internal degrees of freedom.

Let us define dimensionless variables

v5uM P21, u5RTM2P22, f5pP21, r 5rPM22,

~25!

s5PxxP
21, w5QxQ

21, c5DP21,a5MQP22.

The reduced distance is given byj5xl21 where the length
scale is provided by the mean free pathl defined by

l 5
h01

r1u1
. ~26!

In this expression and henceforth the subscript 1 refers to
upstream, whereas the downstream will be designated
subscript 2; thereforer1 is the upstream density andh01 is
the upstream Newtonian viscosity at the upstream temp
ture T1.

The transport coefficientsh0 , hb , and l0 are reduced
with respect to the upstream transport coefficientsh01 and
l01, respectively:

h* 5
h0

h01
, hb* 5

hb

h01
, l* 5

l0

l01
. ~27!

With the reduced variables defined in Eqs.~25!–~27! we cast
Eqs.~21!–~24! in the forms

f5ru,

rv51, ~28!

rv21f1s1c51,

rv317fv12sv12cv12aw5a.

On reducing constitutive equations~18!–~20! and using Eq.
~28! the following six equations can be obtained for six va
ablesf, u, v, s, w, andc:

fv5u, ~29!

v1f1s1c51, ~30!

v217u12sv12cv12aw5a, ~31!

1

h*
fsq~k!1

4

3
~s1c1f!]jv50, ~32!
04630
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l*
uwfq~k!1~aw1vs1vc!]jv

1
7

2
u~f1s1c!]j ln u50, ~33!

1

hb*
fcq~k!1S s1c1

1

3
f D ]jv50. ~34!

Here the new dimensionless parameterb is defined by

b5
NPr

u1
~35!

with u1 denoting the reduced upstream temperature, andNPr
the Prandtl number defined with the upstream quantities

NPr5S Cp

Cv
D f E

21 . ~36!

In this formula f E is the Eucken number@36# defined for a
diatomic gas as

f E5
5

2

Ctr

Cv
1

Crot

Cv
. ~37!

The Eucken number is usually temperature and density
pendent. However, we will assume that it is a consta
Therefore,NPr514/19 for a rigid diatomic gas.

The Rayleigh dissipation functionk2 is reduced as fol-
lows:

k5NMp1/4Ag0

2

u1/4

fAh* S s21
4

5

h*

hb*
c212«

h*

l*
w2D 1/2

,

~38!

where

«5
49

24
Apg0

2
NMF1225S NM

2 21

7NM
2 15

D 2G ~39!

and g0 is the polytropic ratio defined byg05Cp /Cv . We
note that the upstream Mach numberNM is defined by

NM5
u1

A7

5
RT1

5
u1

ur
, ~40!

where ur is the reference speed which is taken to be
sound speed in the upstream. Therefore the parametera is
related toNM as follows:

NM5A11 1
7 m

12 1
5 m

, ~41!

where
3-5
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m5A49224a. ~42!

The parameterm ranges from 0 to 5 at whichNM5`. There-
fore a51 at NM5`.

D. Boundary conditions

To determine the boundary conditions onv, f, andu, we
observe thats→0 andw→0 asj→6`. Equations~32! and
~33! are identically satisfied in the limits, ifv andu become
independent ofj at the boundaries. Therefore, asj→6`,

s,w,c→0, ~43!

u5fv, ~44!

v1f51, ~45!

v217u5a. ~46!

The solutions of Eqs.~44!–~46! are

v5
1

12
~76m!, ~47!

f5
1

12
~57m!, ~48!

u5
1

144
~76m!~57m!. ~49!

The upper sign is for the upstream and the lower sign is
the downstream. These solutions provide the boundary c
ditions at the upstream and downstream. They also im
that on account of the equation of state the reduced dens
given by

r 5
12

76m
. ~50!

E. Differential equations for reduced velocity and temperature

With the help of Eqs.~29!–~33!, we can calculate the
reduced excess normal stressc as a function ofv andu only

c5

S 12v2
2u

3v D S 12v2
u

v D
F4

3

h*

hb*
~12v !1S 12v2

2u

3v D G . ~51!

On elimination of variables other thanv andu the differen-
tial equations~32! and ~33! may be cast into the forms

dv
dj

5
3u

4h* v2~12v !
~v22v1u1vc!q~k!, ~52!
04630
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du

dj
52

u

7v2~12v !2 F3~a2v227u!~v22v1u!

4h*

1
buv~12v !~a1v225u22v !

l*

1
3~a2v227u!vc

4h*
Gq~k!. ~53!

These evolution equations for reduced velocity and temp
ture are solved for shock profiles, subject to the bound
conditions in Eqs.~47!–~49!. These equations generalize th
evolution equations forv andu in the Navier-Stokes-Fourie
theory as will be discussed presently, and also those in
generalized hydrodynamic theory of one-dimensional sh
waves for monatomic gases on which we have reported
viously @23#.

III. SHOCK SOLUTIONS OF THE EVOLUTION
EQUATIONS

The second term on the right-hand side of Eq.~53! stems
from the thermoviscous effect involving the second and th
terms as well as the termĥPxx]x ln T in Eq. ~19!. These,
together with the second term in Eq.~18!, are the terms tha
do not appear in the Navier-Stokes-Fourier theory@45# of the
classical hydrodynamics. To indicate the difference betw
the evolution equations in the classical Navier-Stok
Fourier theory and the present theory and also to facilit
the solution procedure for Eqs.~52! and~53!, we present the
evolution equations for one-dimensional shock waves in
Navier-Stokes-Fourier theory

dv
dj

5
~v22v1u!

S 4

3
h* 1hb* D v

, ~54!

du

dj
52

ub~a1v222v25u!

7l*
. ~55!

These equations follow from Eqs.~29!–~34! if q(k) is set
equal to unity and ifs, w, andc are set equal to zero in th
second term in Eq.~32!, in the second and third terms in Eq
~33!, and in the second term in Eq.~34! so that Eqs.~32!–
~34! become, respectively, the Newtonian law of viscosi
the Fourier law of heat conduction, and the bulk viscos
law. Since the full set of equations~29!–~34! gives rise to
Eqs. ~52! and ~53!, clearly Eqs.~54! and ~55! are special
cases of Eqs.~52! and~53!. If the bulk viscosity is set equa
to zero, Eqs.~54! and ~55! become the evolution equation
considered in the Navier-Stokes-Fourier theory for mo
atomic gases@45#.

We note that in the case of a rough hard sphere gas
reduced transport coefficientsh* andl* depend onu only
as follows@36#:
3-6
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h* 5S u

u1
D 1/2

, l* 5S u

u1
D 3/2

. ~56!

To facilitate comparison of the present evolution equatio
with the evolution equations in the literature, we note t
relation between the reduced distancej in the present work
with the reduced distancez in the literature:

z5
x

l 1
, ~57!

where l 1 is the upstream mean free path defined with
upstream velocity instead of the upstream sound speed.
relation is important to remember when the shock width
calculated and compared with the literature value.

The evolution equations~52! and ~53! are quite different
from the evolution equations fors and w appearing in the
moment equation approach of Grad@46#. The evolution
equations in the latter approach, which are differential eq
tions for the stress tensor and the heat flux, were found to
to produce shock solutions forNM>1.65. In the following
we examine the evolution equations~52! and ~53! and the
existence of shock solutions with the help of singularities
the direction field equation@47#.

Here in order to gain some insights into the evoluti
equations obtained for shock waves we will examine
evolution equations in the case of the transport coefficie
satisfying Eq.~56! for the relative simplicity of the equa
tions. For the Navier-Stokes-Fourier theory the direct
field equation is given by

dv
du

52
v~v22v1u!

v~a1v222v25u!
, ~58!

where

v5

S 4

3
h* 1hb* Dbu

7l*
. ~59!
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It is independent ofu for the transport coefficients obeyin
Eq. ~56!. The singularities of the direction field are given b

~v22v1u!50,

v~v222v25u1a!50, ~60!

which give rise to three singular pointsP0 , P1, andP2:

P0 : v5
1

12
~71m!, u5

1

144
~3522m2m2!,

P1 : v5
1

12
~72m!, u5

1

144
~3512m2m2!, ~61!

P2 : v50, u50.

Note thatP0 andP1 coincide with the boundary values give
in Eqs.~47! and~49!. We remark thatP0 andP1 are also the
singular points of the evolution equations~54! and ~55! for
the NSF theory where the derivativesdv/dj anddu/dj van-
ish. It can be shown, by calculating the eigenvalues of
linearized governing equations, thatP0 is a saddle point
whereasP1 is an unstable node andP2 is a spiral. The shock
solution is a curve connectingP0 and P1 as j→` from j
52`. It is possible to show that there exists a unique su
solution @45,46# for every value ofa since the aforemen
tioned nature ofP0 and P1 remains invariant for all Mach
numbers. Therefore, the NSF theory admits shock soluti
for all values of Mach number. The problem of the NS
theory is that it yields too narrow shock widths that inco
rectly behave with regard to the Mach number.

We now examine the evolution equations~52! and~53! by
using the direction field equation
du

dv
52

~a2v227u!~v22v1u1vc!1v8v~12v !~a1v225u22v !

7~12v !~v22v1u1vc!
, ~62!

where

v85
4h* bu

3l*
. ~63!

The right-hand side of this equation may be written as

4

3

h*

hb*
~a2v227u!~v22v1u!1v8v~a1v225u22v !F4

3

h*

hb*
~12v !1S 12v2

2u

3v D G
28

3

h*

hb*
~12v !~v22v1u!

.

3-7
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It is interesting to see that the nonlinear factorq(k) does not
appear in this equation and thus the singularities of the
rection field are not affected by the nonlinear factor. Fro
this point we gain the following insight: since the nature
the direction field singularities is the crucial deciding fac
for the existence of shock solutions, the fact thatq(k) does
not appear on the right-hand side of Eq.~62! suggests tha
the existence of shock solutions is not determined by
nonlinear manner in which energy dissipation occurs in
shock wave, for the nonlinear factorq(k) is intimately re-
lated to how energy is dissipated in the system. This non
ear factor appears to control the range over which the en
dissipation occurs in the shock wave. The singularities of
direction field are given by the equations

~12v !~v22v1u!50, ~64!

v8v~12v !~a1v225u22v !F12v1
3hb*

4h*
S 12v2

2u

3v D G
1~a2v227u!~v22v1u!50. ~65!

The second equation~65! can be written as a product of tw
factors as follows:

~Au1B1AB21AC!~Au1B2AB21AC!50, ~66!

where

A572
5hb*

2h*
v8~12v !, ~67!

2B57v~12v !1v22a1
hb*

2h*
v8~a1v222v !

15v8S 11
3hb*

4h*
D v~12v !2, ~68!

C5v~12v !~a2v2!1v8S 11
3hb*

4h*
D v~12v !2

3~a1v222v !. ~69!

Therefore, Eqs.~64! and ~66! indicate that the loci of the
infinite and zero slopes of the direction field are either
rabolas or ellipses~or closed curves! in the (u,v) plane. See
Fig. 1 whereP0 and P1 are indicated together with othe
singularitiesP2 , . . . ,P4.

The solutions of Eqs.~64! and ~65! are obtained as fol-
lows. If

12v50 ~70!

then

~a2127u!u50, ~71!

which means
04630
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u50, u5
1

7
~a21!. ~72!

If

v22v1u50, ~73!

then

v~12v !~a1v225u22v !F12v1
3hb*

4h*
S 12v2

2u

3v D G50.

~74!

This means

v50, u50 ~75!

or

~a1v225u22v !50 ~76!

or

12v1
3hb*

4h*
S 12v2

2u

3v D50. ~77!

Solving Eqs.~73! and ~76!, we find

FIG. 1. Loci of zero and infinite slopes in the direction field
the evolution equations for reduced velocity and temperature in
case ofNM55. The intersections of the curves areP0 , P1 , P2 , P3,
and P4. The shock solutions pass through the bounded region
tween P0 and P1. It can be readily verified that asNM→`, P1

tends toP1(v51,u50). This means that the shock solutions ex
for all Mach numbers.
3-8
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v5
76A49224a

12
, u5v2v2. ~78!

The other pair is Eqs.~73! and ~77! from which follows the
equation

~12v !1
hb*

4h*
~12v !50.

This equation is redundant, since it yields the solution t
was obtained earlier,

v51, u50.

Equations~64! and ~65! therefore yield the five singula
pointsP0 , . . . ,P4 given below:

P0 : v5
1

12
~71m!, u5

1

144
~3522m2m2!,

P1 : v5
1

12
~72m!, u5

1

144
~3512m2m2!,

P2 : v51, u50, ~79!

P3 : v50, u50,

P4 : v51, u5
1

7
~a21!5

1

168
~252m2!.

It is useful to compare these singular points with those of
shock wave evolution equation in the case of a vanish
bulk viscosity:

P0 : v5
1

8
~51m!, u5

1

64
~1522m2m2!,

P1 : v5
1

8
~52m!, u5

1

64
~1512m2m2!,

P2 : v51, u50, ~80!

P3 : v50, u50,

P4 : v51, u5
1

5
~a21!5

1

80
~92m2!.

The number of singularities and their structures and natu
are similar between the two cases, and the similarity in
cates that the present case will also admit shock soluti
The linear analysis of Eq.~62! reveals thatP0 is a saddle and
P1 is an unstable node for all Mach numbers. A shock so
tion exists whenever one of the singular points is a sad
and the other is an unstable node for a given Mach num
In this case, any trajectory that enters the saddle will s
toward the node, being confined between the curves betw
P1 andP0, and eventually pass through the node out of
confined region betweenP1 and P0. The situation is very
similar to a heteroclinic connection in the theory of nonline
04630
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differential equations@48#. In fact, sincem→5 asNM→`, it
follows that P0 ,P4→P2, whereasP1 tends to a point other
than P3. It is significant thatP0 tends towardP25(v51,u
50) asNM→`, because this means that the shock solut
exists for all Mach numbers. Therefore, the one-dimensio
generalized hydrodynamic equations presented desc
shock phenomena in one dimension for all Mach numbe
and there remains only the verification of the numerical
curacy of the shock solutions obtained from the differen
equations~52! and ~53!. It must be remembered that the e
istence of shock solutions does not guarantee the accura
the solutions. The verification is done in the followin
section.

IV. NUMERICAL SOLUTIONS AND COMPARISON
WITH EXPERIMENT

Although stiff, the differential equations~52! and~53! are
ordinary and straightforward to solve numerically by using
suitable integrator. They are integrated by starting with
boundary conditions specified by Eqs.~47!–~50! at various
Mach numbers. The solutions are obtained by using the t
perature dependence of reduced transport coefficients in
following forms:

h* 5S u

u1
D 0.78

, l* 5S u

u1
D 1.78

, hb* 5
2

3
h* . ~81!

These are patterned after the Sutherland model@49# used for
monatomic gases interacting through a nonhard sphere
tential such as the Lennard-Jones potential. These repre
tations of the temperature dependence of the transport c
ficients, generally used in the literature in connection w
shock structures, should be taken as empirical relations.
inverse shock width is defined by the usual formula used
shock wave studies

d5
n22n1

~dn/dz!max
, ~82!

whereni ( i 51,2) denote the number densities and the d
sity derivative is evaluated at the maximum. The transit
point z50 or j50 is defined by the inflection point of th
profile in this work. It is convenient to define the normalize
reduced density, velocity, and temperature by the formul

r n5
r 2r 1

r 22r 1
, vn5

v2v2

v12v2
, un5

u2u1

u22u1
. ~83!

In Figs. 2–4 the normalized reduced density, velocity, a
temperature profiles are plotted against the reduced dist
j. The various shock profiles are as follows: dotted curve
NM510; the dash-dotted curve forNM55; the broken curve
for NM52; and the solid curve forNM51.2. The same
meanings apply to all shock profiles in this work. In Fig
5–7 the shock profiles for the reduced stress tensor,
flux, and excess normal stress are plotted againstj. These
figures show that the nonconserved variables are confine
a narrow region around the transition point (j50) where
energy dissipates, causing the velocity rapidly diminished
3-9
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the downstream value. A measure of shock structure is g
by the inverse shock width, which is plotted as a function
NM in Fig. 8, where the filled circles (d) are the values
predicted by the present theory and other symbols are ex
mental values reported in the literature: (,) by Greene and
Hornig @31#; (n) by Linzer and Hornig@32#; (h) by Camac
@33#; (3) by Robben and Talbot@34#; and (s) by Alsmyer
@35#. The filled circles~theoretical values! are connected by
the solid curve to guide the eyes. The broken curve is c
necting the inverse shock widths calculated by the Nav
Stokes-Fourier theory. BeyondNM'1.6 the NSF theory
gives the inverse shock widths much too large compa
with experimental values. The theoretical values are co
puted up toNM510, which is the maximum Mach numbe
experimentally studied. As shown in the previous secti

FIG. 2. Normalized reduced densityr n profiles at various Mach
numbers.NM51.2 for the solid curve (2); NM52 for the broken
curve (222); NM55 for the dash-dotted curve (2•2); NM

510 for the dotted curve (•••).

FIG. 3. Normalized reduced velocityvn profiles at various
Mach numbers. The meanings of the curves are the same a
Fig. 2.
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the present theory is capable of giving shock solutions for
Mach numbers. The agreement between the theory and
periment is found to be excellent for the entire range
Mach numbers examined experimentally. The compari
presented strongly supports the validity and thus the utility
the phenomenological model based on the generalized
drodynamics for diatomic fluids. In Fig. 9 the reduced cal
tropy productionJ/kB

J/kB5k sinhk>0, ~84!

is plotted againstNM . The ordinateEP stands for the re-
duced calortropy production, which is evidently positiv
throughout the range examined, suggesting that the sec
law of thermodynamics is satisfied in the range studied. T
calortropy production is a measure of energy dissipat
from the useful form~a higher velocity! to a less useful form

in

FIG. 4. Normalized reduced temperature (un) profiles at various
Mach numbers. The meanings of the curves are the same a
Fig. 2.

FIG. 5. Reduced stress tensor profiles at various Mach numb
The meanings of the curves are the same as in Fig. 2.
3-10
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GENERALIZED HYDRODYNAMIC THEORY OF SHOCK . . . PHYSICAL REVIEW E64 046303
~a lower velocity!. Clearly, such energy dissipation occurs
a narrow region around the transition point.

V. DISCUSSION AND CONCLUDING REMARKS

In this paper we have presented a set of phenomeno
cal continuum hydrodynamic equations for shock waves
diatomic gases within the framework of generalized hyd
dynamics. The evolution equations are a generalization
the generalized hydrodynamic equations for monatomic
ids, which have been successfully applied to calculate sh
wave structures in monatomic gases in our previous pa
@23#. As is shown in the preceding section, the theory
successful in accounting for shock wave structures of ni
gen gas. It is emphasized that nitrogen is treated as a
rotator in this work unlike in some works in the literatu
where it is treated as if it is a spherical molecule. As
indicator of the robustness of the theory, the inverse sh
widths @30# are calculated over a wide range of Mach nu

FIG. 6. Reduced heat flux profiles at various Mach numbe
The meanings of the curves are the same as in Fig. 2.

FIG. 7. Reduced excess normal stress profiles at various M
numbers. The meanings of the curves are the same as in Fig.
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ber (1<NM<10). The values of the inverse shock wid
predicted by the theory are generally in excellent agreem
with those measured by a number of authors over a perio
many years in the range ofNM experimentally studied.

The generalized hydrodynamic equations presented
shock wave phenomena in diatomic gases have been gle
from the evolution equations derived in the study@28# made
by one of us with his collaborator to calculate ultrason
wave dispersion and absorption in diatomic gases. And
so constructed generalized hydrodynamic equations are

.

ch

FIG. 8. Inverse shock width vs Mach number. The symbols a
(,) by Greene and Hornig@31#; (n) by Linzer and Hornig@32#;
(h) by Camac@33#; (3) by Robben and Talbot@34#; and (s) by
Alsmyer @35#. The filled circles (d) are the values by the presen
theory and the solid curve connects the theoretical values to g
the eyes. The broken curve is connecting the inverse shock w
values calculated by the Navier-Stokes-Fourier theory. The pre
theory is capable of giving the shock solutions beyondNM510 and,
in fact, for all Mach numbers.

FIG. 9. Reduced calortropy production vs Mach number. T
meanings of the curves are the same as in Fig. 2. The ordinate i
reduced calortropy production.
3-11
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MAZEN AL-GHOUL AND BYUNG CHAN EU PHYSICAL REVIEW E 64 046303
posed as a phenomenological model for shock waves o
atomic gases. They may be generally used for various fl
problems of diatomic fluids. The original derivation of th
equations was made on the basis of the Boltzmann-Cu
kinetic equation in order to formulate the theory of irreve
ible processes in diatomic gases, which is consistent with
laws of thermodynamics. The generalized hydrodynam
equations employed in the present study are thermodyn
cally consistent in the sense thatJ>0 for all values of the
nonconserved variables chosen for the description of
flow problem in hand. The requirement of thermodynam
consistency for a theory of macroscopic irreversible p
cesses in matter has important consequences for the theo
accurately account for macroscopic observables. The diss
tion terms in the evolution equations for the nonconser
variables such asP, Q, and D, which are proportional to
Pq(k), Qq(k), and Dq(k) and give rise to the positive
calortropy productionJ defined in Eq.~10! and representing
the second law of thermodynamics, play a crucial role
properly describing the important energy dissipation mec
nism and thereby enhancing the precision of the theory.
basis for this statement is that if the nonlinear factorq(k) is
set equal to unity in the limit of lowk because the noncon
served variablesP, Q, andD are small in magnitude owing
to the fact that the fluid is near equilibrium, then in the ad
batic approximation and on linearization of the resulti
equations we recover from the generalized hydrodyna
equations the classical hydrodynamic theory, which pred
unacceptably poor shock structures beyondNM'1.6. There-
fore, in the case of diatomic gases, in addition to the con
bution from the excess normal stressD it is important to
have the nonlinear factorq(k) as well as nonlinear kine
matic terms—as in Eqs.~15!–~17!—as is for the case o
monatomic gases, if we would like to maintain the desir
accuracy. The argumentk in the nonlinear factorq(k) is
basically the square root of the Rayleigh dissipation functi
which gives a measure of energy dissipation in the system
the general scaling scheme thisk can be scaled by a com
posite fluid dynamic number@20,21# Nd proportional to
NMNKn , whereNKn is the Knudsen number. In the shoc
wave problems the Knudsen number does not explicitly
pear whenk is expressed in reduced variables defined ear
in the main text; recall Eq.~38! in which only the Mach
numberNM appears. The point we would like to emphasi
here is that the reduction scheme fork should carefully take
into consideration the flow problem in hand.

In the present theory of shock waves we have not exp
itly taken into account the rotational energy and rotatio
angular momentum relaxation mechanisms on the basis
in the thermodynamic conditions examined experimenta
the aforementioned degrees of freedom relax much fa
than the other hydrodynamic modes. These internal deg
of freedom, however, indirectly contribute to the appeara
of bulk viscosity in the theory. Therefore, it would be mi
leading to think that they are ignored completely. If the te
perature is sufficiently low or there is a mechanism that
tards sufficiently fast relaxations of such internal degrees
freedom, then their evolution equations should be explic
taken into account in the theory. Investigation of the effe
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of such evolution equations on flow problems is left for f
ture study. There is no theory that does not need impro
ment, and there are many aspects we would like to furt
examine in the present theory, but on the basis of the num
cal results presented in this work it is reasonable to ten
tively conclude that the generalized hydrodynamic equati
presented enable us to study shock wave structures in g
accuracy and thus we now have a phenomenological c
tinuum theory of shock wave phenomena on which to buil
more complete theory of shock waves of diatomic gases a
perhaps, of more complicated molecules in the future.

Grad’s 13-moment method@46# does not yield shock so
lutions for NM>1.65, and the presence of such a maximu
Mach number is clearly elucidated by the theorem of Ru
geri @50#, who examined the system of moment evoluti
equations in a general context to establish his theorem. R
geri’s system of moment evolution equations appears to
quire a Grad-like closure in which the neglected higher or
moments are expressed in terms of the lower order mom
retained for the description of the flow problem. Therefo
his system is a general form of the Grad’s 13-moment e
lution equations. Ruggeri’s theorem clearly shows thatNM
51.65 is the maximum Mach number beyond which t
shock solutions do not exist, given the system of mom
evolution equations in the Grad-like closure, and that it
useless to add more and more moments in an attemp
increase the critical Mach number.

The generalized hydrodynamic equations postulated in
present work do not contradict Ruggeri’s theorem, beca
they are not the same system of evolution equations as R
geri’s system of evolution equations owing to the fact th
first the fluxes of the nonconserved variables~e.g., the flux of
the stress tensor, the flux of the heat flux, etc.! do not appear
in the generalized hydrodynamic equations used and sec
the spatial derivatives of the nonconserved variables~e.g.,
the stress tensor and the heat flux! do not appear in the gen
eralized hydrodynamic equations in the adiabatic approxim
tion. These two features combine to produce a system
ordinary differential equations that are quite different fro
the system of evolution equations considered by Rugg
namely, the moment evolution equations in the Grad-l
closure. The present generalized hydrodynamic equat
consequently do not have a critical Mach number beyo
which there are no shock solutions.

We would like to close this section with some remarks
the Burnett equation approach that has been taken by a n
ber of authors in the literature@4–11#. Since these studies ar
made for monatomic gases, their relevance to the pre
work is somewhat remote, but we believe it worthwhile
make a remark. Since the Chapman-Enskog expansion is
known to be convergent, the Burnett order constitutive eq
tions used for the stress tensor and heat flux in the aforem
tioned references should be regarded as an empirical mo
just as the present generalized hydrodynamic equations
Consequently, their thermodynamic consistency must
checked appropriately; it is questionable that they are th
modynamically consistent according to the investigat
made in Ref.@21#. Such empirical constitutive equation
nevertheless, appear to improve the Mach number dep
3-12
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dence of the inverse shock width in comparison with
classical hydrodynamic theory, but still has a way to go
agree with experimental values within an acceptable ac
racy. It is not clear, and is yet to be seen, whether the Bur
order solution for the Boltzmann-Curtiss kinetic equati
will provide a similar improvement in the case of molecu
gases. To implement a theory in such a direction, first of
it is necessary to obtain the Burnett order solution for
Boltzmann-Curtiss equation, but it is not available at t
point. In any case, we believe that the generalized hydro
namic equations presented in this work appear to have
ys
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ready met the need for a continuum mechanical~hydrody-
namic! theory, albeit from a different standpoint.
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