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Generalized hydrodynamic theory of shock waves in rigid diatomic gases
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Generalized hydrodynamic theory of shock waves is phenomenologically developed for rigid diatomic
molecules. The generalized hydrodynamic equations developed are thermodynamically consistent, obeying the
laws of thermodynamics. They reduce to the Navier-Stokes-Fourier theory of the classical hydrodynamics in
the limit of low Mach number. The theory is applied to study the one-dimensional shock wave structure of
nitrogen gas, which is treated as a rigid molecule. An excellent agreement with experiment is obtained for the
inverse shock widths up to Mach number 10 reported in the literature. The theory is applicable to arbitrary
dimension. On the basis of direction field singularities of the velocity and temperature evolution equations of
the theory, it is possible to predict that the shock solutions exist for all Mach numbers in the case of one-
dimensional shock waves studied.
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[. INTRODUCTION [15] for a discussion on this aspect. Nevertheless, the DSMC
method has been serving as a valuable theoretical tool of
Shock wave structures of monatomic and molecular gasasvestigation in the region of fluid dynamic conditions not
are not only interesting and important from the technologicaimet by the NSF equations.
viewpoint, but also serve as an important and sensitive The generalized hydrodynamic equatidis¥—21 were
touchstone for the ability of continuum hydrodynamic equa-developed some years ago as a set of macroscopic evolution
tions to describe macroscopic phenomena in the substancegquations attendant to a theory of irreversible processes in
mentioned. It is well known that the Navier-Stokes-Fouriermatter. Being an integral part of such a thermodynamic
(NSP equations of the classical hydrodynamics are incatheory of irreversible process¢g2], the generalized hydro-
pable of accurately describing shock wave phenomena iflynamic equations are manifestly consistent with the laws of
both monatomic and molecular fluids in the hypersonic rethermodynamics. Therefore we now are presented with a tan-
gime and also flow phenomena in rarefied gases. It has réalizing prospect of studying in a thermodynamically consis-
mained an outstanding problem in fluid dynamics to extendent manner and in good accuracy various nonlinear flow
[1-11] the classical theory so as to make the continuuniPhenomena that were beyond the capability of description by
mechanics approach serviceable to the shock wave phenorthe classical hydrodynamic equations, namely, the Navier-
ena in the regime of hypersonic speed and also to rarefiegtokes-Fourier equations. As an example of applications for
gas dynamics phenomefis2,13 in the large Knudsen num- the generalized hydrodynamic equations to nonlinear flow
ber regime. In fact, the voluminous literature in gas dynam{fhenomena occurring in fluids far removed from equilib-
ics and fluid mechanics that deals with theories beyond th&um, we have recently studig@3] shock wave phenomena
classical hydrodynamic method by using simulation method$ monatomic gases in the case of one-dimensional flow con-
of one kind or another is in a sense the witness to the failuréiguration. The shock solutions not only have been found to
of the classical hydrodynamics. The lacuna left by the unaneXist for all Mach numbers, but also the numerical results for
swered challenges in the continuum mechanics approach h#e shock structures have been found excellent in compari-
been mostly filled by computer simulation methods, notablyson with experimental data available in the literature. We
the direct simulation Monte Carld®SMC) method[14—186. thus have demonstrated that there are continuum mechanical
However, this method like other simulation techniques is nogduations for hydrodynamic field variables in the forms of
only laborious and time consuming, but also expensive angeneralized hydrodynamic equations that are capable of de-
not as enlightening as the continuum mechanics approac$fribing shock phenomena as well as other flow phenomena
with regard to the physical insights into the phenomena ofvith sufficient numerical precision. The theory is relatively
interest. Furthermore, it cannot be used if the Knudsen nurreasy to implement numerically with a fraction of cost and
ber is less than approximately 0.1 and the mean moleculd@bor compared with the DSMC method. The theory has

spacing is much larger than the molecular diameter; see Repeen implemented for two- or three-dimensional shock
waves by Myond 24,25 with excellent numerical results for

all Mach numbers studied. Myong and his collaborators

*Also at the Asia Pacific Center for Theoretical Physics, Seoul[26,27] also have successfully applied the theory to gas dy-
Korea and School of Physics, Korea Institute for Advanced Studynamics problems, showing that it can treat the aspects of
Seoul, Korea. Email address: Byung.Eu@McGill.Ca flow that cannot be handled by the Navier-Stokes theory and

1063-651X/2001/6(44)/04630313)/$20.00 64 046303-1 ©2001 The American Physical Society



MAZEN AL-GHOUL AND BYUNG CHAN EU PHYSICAL REVIEW E 64 046303

yields results comparable with the DSMC method. There-atomic fluids are presented in general form. They are then
fore, it is fair to say that we are now in possession of aspecialized to the case of one-dimensional shock waves. The
continuum mechanical theory capable of describing flowone-dimensional equations are then reduced by using suit-
phenomena in monatomic fluids in the forms of generalizedible reference variables in Sec. Ill. The one-dimensional
hydrodynamic equations. These equations are not only inclushock waves can be described by two variables, velocity and
sive of the classical Navier-Stokes-Fourier theory in the lowtemperature. The evolution equations for velocity and tem-
Mach number regime but also thermodynamically consistenerature are presented in this section, where the boundary
for all Mach numbers. conditions are also discussed together with direction fields
To study flow phenomena in molecular fluids the afore-and 'singul'arities of the direction f_ield quation. From 'the
mentioned generalized hydrodynamic equations for mongony_dera_ﬂqn of th_e nature of the singularities and the d_lrec-
atomic gases must be suitably extended to such fluids. In tion field it is possible to conclude tha_t the shock solutions
recent work[28] on ultrasonic wave absorption and disper-Should exist for all Mach numbers in the case of one-
sion in diatomic gases such as nitrogen, hydrogen, deutf_lmensmnal generalized hydrodynamic equations formu-
rium, and deuterium hydride, thermodynamically consistent2€d- The numerical results obtained from the aforemen-
generalized hydrodynamic equations for molecular fluiddioned evolution equations for velocity and temperature are
have been derived from the Boltzmann-Curtiss equdth used to calculate shock profiles for various field variables

for rigid molecules and applied to study ultrasonic wave aband, most importantly, the inverse shock widths in Sec. IV.

sorption and dispersion coefficients as functions of frequency N€ latter results are in excellent agreement with the experi-
ental data available in the literature. Section V is for dis-

and temperature. To implement the theory for sound wav X ;
phenomena a linearization of the equations was necessarif/SSion and concluding remarks.

required so that the usual Fourier transform method could be

applied. Although such a linearization of the equations tends Il. GENERALIZED HYDRODYNAMIC
to reduce the numerical accuracy, the good results obtained EVOLUTION EQUATIONS

for the ultrasonic absorption and dispersion coefficients tha
agree with experiment over a sufficiently wide range of fre-
quency were rather encouraging and indicative of the utility In the case of molecular fluids the hydrodynamic field
of the generalized hydrodynamic equations for other flowvariables necessary for an appropriate description of flow in
problems of the molecular gases studied. the fluids may consist of densify, velocity u, internal en-

In this work, by gleaning the generalized hydrodynamicergy &, heat fluxQ, and stress tensd?, which may be de-
equations derived from the Boltzmann-Curtiss kinetic equacomposed into the shear streélds the excess normal stress
tion and used for the aforementioned study of ultrasonic abA, and pressure, in addition to the energy for the internal
sorption and dispersion and by suitably fashioning them ordegrees of freedom and rotational angular momentum. The
the phenomenological grounds in a manner consistent witinternal degrees of freedom evolve on a faster time scale than
the laws of thermodynamics, we formulate a set of conthe other hydrodynamic variables mentioned, unless their re-
tinuum mechanicalhydrodynami¢ equations that can be re- laxation is inhibited for the reason of low temperature or
liably used for flow problems of molecular fluids. In this other causes. We will assume that their relaxation is faster
paper we specifically propose such a set of generalized hyhan the hydrodynamic variables. This implies that the evo-
drodynamic equations for flow problems for molecular gasedution equations for the internal degrees of freedom may be
on the phenomenological grounds and, by applying them tsuppressed in the present theory. Therefore in addition to the
study shock waves in nitrogen gas, investigate their utility inusual conservation laws of mass, momentum, and the inter-
comparison of the theoretical results with experimental datanal energy, there are the constitutive equations for the heat
Thereforeour approach is phenomenological and dedugtive flux and the stress tensor—nonconserved variables—to de-
there is no kinetic theory involved in the present theory; andscribe shock phenomena in the diatomic gas of interest. For
the proposition made for the evolution equations for macrothe sake of generality we first present them in general form
scopic variables is justified posterioriin comparison with  [20,21]:
experiment. The capability of a shock wave theory can be
succinctly symbolized by the Mach number dependence of d—v=V.u (v="1/p) )
shock width, which may be regarded as the touchstone for P at v=ap)
the veracity of a shock wave theory. In shock wave theory it
is not sufficient to calculate and show shock profiles for only u
a few cases of Mach number. We will show that the inverse pg =V (II+A6+pd), 2
shock widths[30] of nitrogen computed are in excellent
agreement with experiment up to Mach number 10 reported
in the literaturg31—-35. The potential range of utility of the 2 _v.n_ .
theory, however, extends well beyond the range of Mach par =V QT+ As+pa):vu, @
number numerically investigated in this work, as suggested
by the analysis made of the singularities of the direction fieldvhere d/dt=d/dt+u-V is the substantial time derivative
of the evolution equations for velocity and temperature.  and é is the unit second rank tensor. In these equations the

In Sec. Il the generalized hydrodynamic equations for di-stress tensoP is decomposed into three parts

tA. Generalized hydrodynamic equations for three dimensions
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P=II+A&+pé, (4) It may be identified with the size parameter in the potential
energy model for the diatomic gas in practice. Td{e) is

where Il and A are, respectively, the traceless symmetricthe factor much responsible for the nonlinear behavior of the
part and the excess normal stress partPoand p is the  material functions for the gas and also for the nonlinear
hydrostatic pressure. The excess normal stress part has to fbdes of energy dissipation in the gas. The calortropy pro-
with the bulk viscosity of the fluid, which does not exist in duction is a local representation of the second law of ther-
the case of dilute monatomic gases. The pressure is describatbdynamics and the system of evolution equations presented
by a suitable equation of state, which in the case of dilutds consistent with the second law of thermodynamics in the
gases is the ideal gas equation of state. The nonconservednse that the calortropy production given by
variablesll, A, andQ are described by their evolution equa-

tions that we propose to have the forii28] = =kgk sinhk=0 (10)
pd_H __ 2(p+A)[Vu](2)—2[H~ Vu](z)— BHQ(K) is positive for all values of the nonconserved variables. In the
d o ’ sense that the first and second law of thermodynamics are

) satisfied by the generalized hydrodynamic equations pre-
sented, the latter are therefore thermodynamically consistent,
and so is the theory of shock waves developed here for di-
atomic fluids.
. Although Eqgs.(5)—(7) together with the Rayleigh dissipa-
pC,T tion function x?> are assumed as phenomenological equa-
No Qa(x), tions, they can be shown to have some kinetic theory basis if
the Boltzmann-Curtiss equation for rigid diatomic gasz3
)  or a suitable kinetic equation for diatomic ga$8g,3§ is
. (1) (1) used and if the closure is chosen such that the macroscopic
dA 2C, AS+HID):Vu— 2 C_u v variables are limited to only those elements in the set
( VUT3 c pv-u (p,u,&1I1,Q,A). For the kinetic theory justification and ex-
’ amination of the approximations necessary to obtain the evo-
2C p lution equations postulated in this work, see R&8] where
— 2 = —Ad(x). (7)  the method of obtaining the evolution equations for macro-
scopic variables are given within the framework of the non-

The set of field equations for the variablgs ,&,11,Q,A) equilibrium ensemble methd®0,21]. However, in the ref-

presented above constitutes the generalized hydrodynam?(fenc.e .jUSt quojted, only linearized versions of the
equations for flows in rigid diatomic gases. The Symbo|const|tut|ve equations are presented and used. We have

[A]®) stands for the traceless symmetric part of tensor shown in a pumber of studiéﬁo,.39_—44 on no'nlinear trans-
For example, in the case of the velocity gradi®nt it means p_ort c_oeff|C|ents_ t_hat the constitutive _equatldlti& and (6) .
[Vu]@=[Vu+(Vu)]/2— 6V -u/3. Other symbols are as give rise to suff!mently accurate nor_wllnea_lr transport coeffi-
s oA oA oA A cients, and particularly non-Newtonian viscosities, in com-
follows: II=11/p; A=Alp; Q=Q/p; C, and C, are the  ,arison with experiments. The new addition to the general-
specific heat per mass at constant pressure and at constanf | hydrodynamic equations, E¢7) for A, appears in a
volume, respectivelyC!") is the rotational specific heat per |inearized form in the ultrasonic wave study mentiof2d;
mass of the moleculdy= CpT is the enthalpy per massy, it has to do with the bulk viscosity of the gas. With this new
7y, and\, are the shear viscosity, bulk viscosity, and ther-addition, the generalized hydrodynamic equations have
mal conductivity(more precisely, the Fourier thermal con- yielded rather encouraging results on absorption and disper-
ductivity timesT) [36] of the molecular gas, respectively; sion characteristics. On the strength of this finding, we have
and finallyq(«x) is a nonlinear factof17,20,2] defined by  postulated the evolution equations for the shock wave prob-
lem presented. In this work, we are using a deductive ap-
sinhx proach to the shock wave problem by making a postulate for
(k)= P (8) the continuum hydrodynamic equations and justify their util-
ity a posterioriin comparison with experiment.
wherex? is the Rayleigh dissipation function for the process The equations5)—(7) generalize the constitutive equa-
in question tions, namely, the evolution equations, for the nonconserved
variables in the generalized hydrodynamics previously re-
C(mkgY* 1 c 1 A2 1 ported for monatomic fluid§23], because the transport co-
K= J2pd 2—7701].11+ C, o + )\_OQ'Q : efficients, the enthalpy density, and specific heats are all for
(9)  diatomic gases, and furthermore there is the equation for the
excess normal stregs together with the attendant bulk vis-
Hered denotes the size parameter of the moleculemrid  cosity. In the event that in the domain of some physical
the molecular mass. In factl may be taken as the mean parameters, such as temperature or the frequency of an ex-
diameter of the molecule in the case of a diatomic moleculeternal force, where the relaxation times of rotational energy

dé . -
pd_?:_(erA)CpTV INT—II-Vh—Q-Vu

+V-(pé+AS+ID) - (M+A ) -

Pat~ 3¢

U

1/2
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and angular momentum are comparable to the hydrodynamic . . du
relaxation times, the rotational energy and angular momen- —(p+4)C,TVInT—II. Vh—(A&+1D)- ;= —Q-Vu
tum evolution equations should be added to the set of evo-

lution equations presented earlier. These aspects will be de- pC,T
ferred to a later study, when the present approximation is - )\p Qq(x)=0, (16
ascertained of its validity. 0
Q) o &M 2E0 p
B. One-dimensional shock wave equations —2——(A6+I):Vu— = —pV-u— = — —Aq(«x)
» 3 C, 3C, ™

We assume that flow is in the direction of theoordinate
in a fixed coordinate system and the flow may be approxi- =0. a7
mated as one-dimensional, with the transversal components o ) ] o
of the macroscopic variables in the set§,&,I1,Q,A) put This approximation is called the adiabatic approximation.
equal to zero. This, however, represents an approximation dfne adiabatic approximation is valid when the nonconserved
two- or three_dimensiona| Shock wave phenomena experi\[anables relaX ata mUCh faster time Scale than the Conserved
mentally or naturally observed. Since we are interested in ¥ariables. It is discussed in Ref20] and[21] to which the
steady shock wave in the flow configuration assumed, théeader is referred for details. The aforementioned scaling ar-

independent and have the forms derivative terms in the constitutive equations in the limits of

large Npe andNg . The utility of this adiabatic approxima-
tion has been successfully tested for a number of flow prob-
lems [21,23. We use these constitutive equations in the
present work on shock waves.
d In the case of the aforementioned one-dimensional flow
—(pu2+p+A+11,,)=0, (120  configuration and the assumption on the vanishing transver-
dx sal components of the macroscopic variables made for the
present problem, the steady-state constitutive equations for

I1,,, Q«, andA are obtained from Eqg15—(17) as fol-
+u(p+A+Hxx)+Qx =0, (13) lows:

d
axPu=o (11

dxpu

1
E+ EUZ

p 4 4 4
whereu is the x component of the fluid velocity, namely, —I1,,q(k)+ §Hxxaxu+ §pﬁxu+ §Aaxu=0, (18
u=(u,0,0), p is the pressure given by the ideal gas equation
of state I1,, is thexx component of the shear stress, &d ~

is the x component of the heat flux. We note that in the h_pQ q(k) + Qudu+ (I, + A)ud,u
one-dimensional flow configuration assumed for the present Ao *F o XX )
problem -
+h(p+A+II,,)dInT=0, (19
2
(€ — 1
[Vulic=g . (149 %AQ(K)+(A+HXX+ 3P| axu=0. (20

The balance equationd1)—(13) are supplemented by the Equations(18)—(20) are partial differential equations for ve-
evolution equations fofl,, andQ, . locity componentu and temperaturd. We emphasize that
The nonconserved variables suchlasandQ vary on a  there do not appear partial derivativeslbf, andQ, in these
faster time scale than the conserved variables such as tlkeguations because of the adiabatic approximation.

density, energyor temperaturg and momentunior fluid
velocity). Therefore, on the time scale of variation in the C. Reduced equations for shock waves
conserved variables the nonconserved variables have already

reached their steady state, and it can be shown, by scaling the Ntégration of the balance equatiofisl)~(13) yields

substantial time derivative terms in the constitutive equations pu=M (21)
with the Deborah numbeNp= 74/ 7, or the Q numberNg ’
=14/, where 74 is the characteristic time of stress relax- pu2+p+A+T1,,=P, (22)

ation, 7, is the characteristic time for heat flow, anglis the
characteristic time of flow, that the following approximate

1
constitutive equations hold fdl and Q: 2pu(£+ =u?

5 +2u(p+A+IlL,,)+2Q,=Q, (23

whereM, P, andQ are integration constants with the dimen-
sion of momentum per volume, momentum flux per volume,
(15 and energy flow per volume, respectively. These equations

—2(p+A)[Vu]®@-2[II- Vu]® - nﬂnq(x):o,
0
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are also supplemented by the equation of state and the ca-

o
loric equation of state for the diatomic gas —fago¢q(:<)+(a<p+va+vzp)o"§v
A

5
= = = 7
p=pRT, &=3RT, (24) + 5 0(d+ o+ ) deIn 6=0, (33

where R is the gas constant per mass. Because the rigid 1
diatomic gas is dilute, there is no contribution to the equation
g q — piha(k) +
b

1
O'+lﬂ+§(b

of state from the internal degrees of freedom. 9¢0=0. (39

Let us define dimensionless variables
Here the new dimensionless paramegeis defined by
v=uMP™ !  4=RTM?P 2, ¢=pP 1, r=pPM 2

N
(25 == (35
1
_ -1 _ -1 _ -1 -2
o=1LuP % e=QQ " ¢Y=AP T,a=MQP" with ¢, denoting the reduced upstream temperature,Ny»d

the Prandtl number defined with the upstream quantities:
The reduced distance is given y=x|I~* where the length . I W up quanti

scale is provided by the mean free pétiefined by C
N =«£%‘3 (36)
Pr C E
|= oL 26) U
piUy’ In this formulafg is the Eucken numbdi36] defined for a
diatomic gas as

In this expression and henceforth the subscript 1 refers to the
upstream, whereas the downstream will be designated by 5Cy  Crot
subscript 2; thereforg, is the upstream density angh, is fE:§ C_u+ C_u (37)
the upstream Newtonian viscosity at the upstream tempera-
ture T,. The Eucken number is usually temperature and density de-

The transport coefficients,, 7,, and Ao are reduced pendent. However, we will assume that it is a constant.
with respect to the upstream transport coefficiengg and  Therefore Np,=14/19 for a rigid diatomic gas.

No1, respectively: The Rayleigh dissipation functior? is reduced as fol-
lows:
. "0 «_ . Mo
— T — T )\ -5 - (27) 12
mor P o Nog _ va. |0 o+ 2 A7 7,
k=Nym R +§—*¢// +28)\—*(p ,
With the reduced variables defined in E¢&5)—(27) we cast N7 o (39)
Egs.(21)—(24) in the forms
where
d=ré,
2 49 [mro |y e Nu~t 2 39
rU—l, ( 8) 8_24 2 M 7N§/|+5 ( )

2 —
o+ ¢toty=1, and v, is the polytropic ratio defined by,=C,/C,. We

F034 T + 200 + 29 + 2a 0= 0, note that the upstream Mach numbéy; is defined by

On reducing constitutive equatio$8)—(20) and using Eq. NM:L: ﬂ (40)
(28) the following six equations can be obtained for six vari- 7 Ur
ables¢, 0, v, o, ¢, andy: \V gRTl
Pv="0, @9 where u, is the reference speed which is taken to be the
sound speed in the upstream. Therefore the paranaetsr
vtototy=1, (B0 related toNy, as follows:
02+ 70+20v+2pv+2ap=a, (31 1+ 1
NM = 1 ' (41)
1 4 1=s5n
—¢oq(k)+ §(0+ Y+ ¢)dv=0, (32
7 where
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n=49—24a. (42
The parameten ranges from 0 to 5 at whicNy,=<. There-
fore a=1 atN,, =,

D. Boundary conditions

To determine the boundary conditions wn¢, andé, we
observe thatr— 0 ande—0 asé— =+ . Equationg32) and
(33) are identically satisfied in the limits, if and # become
independent ot at the boundaries. Therefore, &s» + o,

o,¢,—0, (43
0= v, (44
v+o=1, (45)
v2+76=a. (46)
The solutions of Eqsi44)—(46) are

1
v=15(TEw), (47)

1
¢=15(5% ), (48)

1o

0= 1227 m)(B5Fw). (49

PHYSICAL REVIEW E 64 046303

dé 0

dé 7p%(1-0p)?

3(a—v2-76)(v?>—v+0)
4n*

BOv(1—v)(a+v?—560—2v)
+ X

N 3(a—v2=T70)vy

*

]Q(K)- (53

4n

These evolution equations for reduced velocity and tempera-
ture are solved for shock profiles, subject to the boundary
conditions in Eqs(47)—(49). These equations generalize the
evolution equations fos and @ in the Navier-Stokes-Fourier
theory as will be discussed presently, and also those in the
generalized hydrodynamic theory of one-dimensional shock
waves for monatomic gases on which we have reported pre-
viously [23].

IIl. SHOCK SOLUTIONS OF THE EVOLUTION
EQUATIONS

The second term on the right-hand side of ExB) stems
from the thermoviscous effect involving the second and third

terms as well as the terlIl,d,InT in Eq. (19). These,
together with the second term in E{.8), are the terms that
do not appear in the Navier-Stokes-Fourier thdd] of the
classical hydrodynamics. To indicate the difference between
the evolution equations in the classical Navier-Stokes-
Fourier theory and the present theory and also to facilitate
the solution procedure for Eq&2) and(53), we present the
evolution equations for one-dimensional shock waves in the

The upper sign is for the upstream and the lower sign is foNavier-Stokes-Fourier theory
the downstream. These solutions provide the boundary con-

ditions at the upstream and downstream. They also imply dv  (v¥-v+0)
that on account of the equation of state the reduced density is d_g =72\ (54
given by (577*+17,’§ v
12 (50
r=—
7 do  0B(a+v?—2v—50
M _ 0B ) . (55

E. Differential equations for reduced velocity and temperature

dé 7\

With the help of Egs.(29—(33), we can calculate the These equations follow from Eq#29)—(34) if q(«) is set

reduced excess normal stregsis a function ot and 4 only

26 )
1-v——||1-0v—~—

Y= 3 ° (51)
4 n* 1 <1 26
3 ,,;( v) "7 3y

On elimination of variables other thanand ¢ the differen-
tial equationg32) and (33) may be cast into the forms

dv 360

T (2
dz 47]*v2(1—v)(v v+0+tvi)g(x),

(52

equal to unity and i, ¢, and are set equal to zero in the
second term in Eq.32), in the second and third terms in Eq.
(33), and in the second term in E(B4) so that Eqs(32)—
(34) become, respectively, the Newtonian law of viscosity,
the Fourier law of heat conduction, and the bulk viscosity
law. Since the full set of equation9)—(34) gives rise to
Egs. (52) and (53), clearly Egs.(54) and (55) are special
cases of Eq952) and(53). If the bulk viscosity is set equal
to zero, Eqs(54) and (55 become the evolution equations
considered in the Navier-Stokes-Fourier theory for mon-
atomic gase$45].

We note that in the case of a rough hard sphere gas the
reduced transport coefficienig® and\* depend org only
as follows[36]:
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g\ 12 g\ 32 It is independent of for the transport coefficients obeying
7t = AR A* = o (56)  Eq.(56). The singularities of the direction field are given by
To facilitate comparison of the present evolution equations (v2—v+0)=0,

with the evolution equations in the literature, we note the
relation between the reduced distaricen the present work
with the reduced distancein the literature: v(v2-2v-56+a)=0, (60)

X
= I’ (57 which give rise to three singular poink,, P, andPy:

wherel, is the upstream mean free path defined with the
upstream velocity instead of the upstream sound speed. This
relation is important to remember when the shock width is
calculated and compared with the literature value.

The evolution equation&?2) and (53) are quite different
from the evolution equations far and ¢ appearing in the
moment equation approach of Gr4d6]. The evolution
equations in the latter approach, which are differential equa-
tions for the stress tensor and the heat flux, were found to fail
to produce shock solutions fod,,=1.65. In the following P2t v=0, 6=0.
we examine the evolution equatios2) and (53) and the
existence of shock solutions with the help of singularities of
the direction field equatiof47].

Here in order to gain some insights into the evolution
equations obtained for shock waves we will examine th
evolution equations in the case of the transport coefficient

L : L h. It can be shown, by calculating the eigenvalues of the
satisfying Eq.(56) for the relative simplicity of the equa- ISh. 1t . . . ;
tions. For the Navier-Stokes-Fourier theory the direction"ne"’mzed goveming equations, th% IS a saddle point
field equation is given by whereadP, is an unstable node arR}, is a spiral. The shock

solution is a curve connecting, and P, as é—o from &

1 1
. _ = T aE_ 5,2
Po: U—12(7+,LL), 0 144(35 2u—p),

1 1
) 2
Py: v——12(7—,u), 0= 144(35+2,u une), (61

Note thatP, andP; coincide with the boundary values given
in Egs.(47) and(49). We remark thaP, andP, are also the
singular points of the evolution equatiof&4) and (55) for
he NSF theory where the derivativds/d¢ andd 6/d¢ van-

do w(v2=v+0) = —oo. It is possible to show that there exists a unique such
d0- 5 , (58 solution [45,44| for every value ofa since the aforemen-
v(atv—2v—-50) tioned nature ofP, and P, remains invariant for all Mach
here numbers. Therefore, the NSF theory admits shock solutions
w for all values of Mach number. The problem of the NSF
4 theory is that it yields too narrow shock widths that incor-
(57;* +np | BO rectly behave with regard to the Mach number.
0= (59 We now examine the evolution equatidia®) and(53) by
T\* using the direction field equation
|
do  (a—v?=70)(v*—v+6+vY)+o'v(l-v)(atv’—56—2v) 62
dv 7(1-v)(v?—v+60+v) ’
where
4n* B0
o= 2T BY (63
3\*

The right-hand side of this equation may be written as

4 5* ) 5 5 4 5* 20
——(a—v°"=70)(v°—v+0)+w'v(a+tv—50—2v)|z—(1—v)+|1-v— 5
3t 3 F 3v
b )
28 p*
gn—*(l—v)(vz—lﬁ—ﬁ)
b
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It is interesting to see that the nonlinear faaidk) does not 0.51
appear in this equation and thus the singularities of the di-
rection field are not affected by the nonlinear factor. From
this point we gain the following insight: since the nature of
the direction field singularities is the crucial deciding factor
for the existence of shock solutions, the fact thék) does

not appear on the right-hand side of E§2) suggests that
the existence of shock solutions is not determined by the
nonlinear manner in which energy dissipation occurs in the
shock wave, for the nonlinear factg( «) is intimately re-
lated to how energy is dissipated in the system. This nonlin-
ear factor appears to control the range over which the energ)
dissipation occurs in the shock wave. The singularities of the
direction field are given by the equations

(1-v)(v*~v+6)=0, (64)
) 3 20
o'v(l-v)(a+v=50—-2v)|1-v+—|1-v— =
4p* 3v
+(a—v2—T0)(v2—v+6)=0. 65) FIG. 1. Loci of zero and infinite slopes in the direction field of

the evolution equations for reduced velocity and temperature in the
case ofN,,=5. The intersections of the curves &g, P, P,, P,
and P,. The shock solutions pass through the bounded region be-
tween Py and P;. It can be readily verified that ady—o, P,

tends toP;(v=1,0=0). This means that the shock solutions exist
(A6+B+B*+AC)(A0+B~VB*+AC)=0, (66) (. MaéE\ numbers?

The second equatioi®5) can be written as a product of two
factors as follows:

where L
5ot , =0, 0=7(a—1). (72
A=7—2—*w (1-v), (67)
Y
If
*
Y
28=7v(1—v)+vz—a+2—b*w’(a+vz—20) v2—v+6=0, (73
Y
3In* then
+50’ 1+4ii v(1-v)?, (69)
Y
39 20
3 v(l-v)(a+v?—560—2v) 1—v+4l:(1—v—§)l=0.
7
C=v(l-v)(a—v)+w’ 1+$>v(1—v)2 7 (74)

X(a+v2—2v). (690  This means

Therefore, Eqs(64) and (66) indicate that the loci of the

infinite and zero slopes of the direction field are either pa- v=0, 6=0 (79)
rabolas or ellipsegor closed curvesin the (0,v) plane. See
Fig. 1 whereP, and P, are indicated together with other Of
singularitiesP,, . .. ,P4.
The solutions of Eqs(64) and (65) are obtained as fol- (a+v?-560—2v)=0 (76)
lows. If
1-v=0 70
then 37y 26
1-v+— 1—0—3— =0. (77)
(a—1-76)6=0, (70) 47 ’
which means Solving Eqgs.(73) and(76), we find
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7+ /49— 24q differential equation$48]. In fact, sinceu—5 asNy— o, it
VE—— 6=v—v2 (78  follows thatP,,P,— P,, whereasP, tends to a point other
than P5. It is significant thatP, tends towardP,=(v=1,0
The other pair is Eq973) and(77) from which follows the ~ =0) asNy—, because this means that the shock solution
equation exists for all Mach numbers. Therefore, the one-dimensional
generalized hydrodynamic equations presented describe
e shock phenomena in one dimension for all Mach numbers,
(1-v)+ ﬁ(l—v)zo- and there remains only the verification of the numerical ac-

curacy of the shock solutions obtained from the differential

This equation is redundant, since it yields the solution tha{aquatlons(SZ) and(53)_. It must be remembered that the ex-
was obtained earlier Istence of_ shock solutlon§ do_es not guarantee the accuracy of

' the solutions. The verification is done in the following

v=1, 6=0. section.
Equations(64) and (65) therefore yield the five singular IV. NUMERICAL SOLUTIONS AND COMPARISON
points Py, ... ,P, given below: WITH EXPERIMENT

) Although stiff, the differential equation$2) and(53) are
= m(35_ 2p—p), ordinary and straightforward to solve numerically by using a
suitable integrator. They are integrated by starting with the

1
Po. U:1_2(7+/-L)! 0

1 1 boundary conditions specified by Eqg4.7)—(50) at various
Pii v=5(T—p), 0= ,,(35F 2p— ), Mach numbers. The solutions are obtained by using the tem-
perature dependence of reduced transport coefficients in the
P,: v=1 6=0, (79 following forms:
7] 0.78 7] 1.78 2
P;: v=0, 6=0, *—| *=| *—_ %
3 7 01) , (01) . Mo=z7 - (8D
P,: v=1, 6= ;(a— 1)= 1%8(25— u?). These are patterned after the Sutherland mpti#lused for

monatomic gases interacting through a nonhard sphere po-

It is useful to compare these singular points with those of thientlal such as the Lennard-Jones potential. These represen-

shock wave evolution equation in the case of a vanishin
bulk viscosity:

ations of the temperature dependence of the transport coef-
icients, generally used in the literature in connection with
shock structures, should be taken as empirical relations. The

1 1 inverse shock width is defined by the usual formula used in
Po: v= §(5+M), 0= a(15— 2p— ), shock wave studies
Np—nNy
1 1 0= ——F77, 82
Pii v=g(5-p), 0= (15+2u—p?), (dn/dz)max (82
wheren; (i=1,2) denote the number densities and the den-
P,: v=1, 6=0, (80)  sity derivative is evaluated at the maximum. The transition
point z=0 or £=0 is defined by the inflection point of the
Ps: v=0, 6=0, profile in this work. It is convenient to define the normalized
L 1 reduced density, velocity, and temperature by the formulas
Py v=1, 925(04_1):%(9_#2)- . =r—r1 . _UTUp 0 =0—01 83
Yooyt T vamuy’ N =6y

The number of singularities and their structures and natures

are similar between the two cases, and the similarity indidn Figs. 2—4 the normalized reduced density, velocity, and
cates that the present case will also admit shock solutionsemperature profiles are plotted against the reduced distance
The linear analysis of Eq62) reveals thaP is a saddle and ¢. The various shock profiles are as follows: dotted curve for
P, is an unstable node for all Mach numbers. A shock soluNy,=10; the dash-dotted curve fbly,=5; the broken curve
tion exists whenever one of the singular points is a saddléor Ny,=2; and the solid curve foNy,=1.2. The same
and the other is an unstable node for a given Mach numbemeanings apply to all shock profiles in this work. In Figs.
In this case, any trajectory that enters the saddle will slid&s—7 the shock profiles for the reduced stress tensor, heat
toward the node, being confined between the curves betwediux, and excess normal stress are plotted agajn3these

P, and Py, and eventually pass through the node out of thefigures show that the nonconserved variables are confined to
confined region betweeR; and Py. The situation is very a narrow region around the transition poirg=(0) where
similar to a heteroclinic connection in the theory of nonlinearenergy dissipates, causing the velocity rapidly diminished to
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i @C 0.5}

- 0.251

0 e | "
40 80 -80 -40 40 80

FIG. 2. Normalized reduced density profiles at various Mach FIG. 4. Normalized reduced temperatusgX profiles at various
numbersNy,= 1.2 for the solid curve {); Ny, =2 for the broken

Mach numbers. The meanings of the curves are the same as in
curve (———); Ny=5 for the dash-dotted curve—-—); Ny Fig. 2.
=10 for the dotted curve-( -).

the present theory is capable of giving shock solutions for all
the downstream value. A measure of shock structure is giveMach numbers. The agreement between the theory and ex-

by the inverse shock width, which is plotted as a function ofP€riment is found to be excellent for the entire range of
Ny in Fig. 8, where the filled circles®) are the values Mach numbers examined experimentally. The comparison
predicted by the present theory and other symbols are expefésented strongly supports the validity and thus the utility of
mental values reported in the literaturé7 by Greene and the phenomenological model based on the generalized hy-
Hornig[31]; (A) by Linzer and Hornig32]; (CJ) by Camac drodynamics forglatom|c fluids. In Fig. 9 the reduced calor-
[33]; (X) by Robben and TalbdB4]; and (O) by Alsmyer  ropy production=/kg

[35]. The filled circles(theoretical valuesare connected by _

the solid curve to guide the eyes. The broken curve is con- Elkg=k sinhx=0, (84)
necting the inverse shock widths calculated by the Navier-

Stokes-Fourier theory. Beyontl,,~1.6 the NSF theory is plotted againsiy,. The ordinateEP stands for the re-
gives the inverse shock widths much too large compareduced calortropy production, which is evidently positive
with experimental values. The theoretical values are comthroughout the range examined, suggesting that the second
puted up toNy, =10, which is the maximum Mach number law of thermodynamics is satisfied in the range studied. This
experimentally studied. As shown in the previous sectioncalortropy production is a measure of energy dissipation

from the useful forma higher velocity to a less useful form
24
0.75f _
1.8F ]
'\
Y
?
=S 05 1 P
©1.2 i H 4
! [
; \
7 /\ 2
LA
0.25} . A
0.6} oo .
R 7 i '
: / ' vt
1
/ / ‘E
. ’ 1 1
a . K ’ [
-80 40 80 ol LS~ .
-80 -40 g 40 80
FIG. 3. Normalized reduced velocity,, profiles at various

Mach numbers. The meanings of the curves are the same as in FIG. 5. Reduced stress tensor profiles at various Mach numbers.
Fig. 2.

The meanings of the curves are the same as in Fig. 2.
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FIG. 6. Reduced heat flux profiles at various Mach numbers.
The meanings of the curves are the same as in Fig. 2. FIG. 8. Inverse shock width vs Mach number. The symbols are:
(V) by Greene and HornifB31]; (A) by Linzer and Hornig32];
(a lower velocity. Clearly, such energy dissipation occurs in () by Camad33]; (X) by Robben and TalbdB4]; and ©) by
a narrow region around the transition point. Alsmyer [35]. The filled circles @) are the values by the present
theory and the solid curve connects the theoretical values to guide

V. DISCUSSION AND CONCLUDING REMARKS the eyes. The broken curve is connecting the inverse shock width
values calculated by the Navier-Stokes-Fourier theory. The present

In this paper we have presented a set of phenomenologibeory is capable of giving the shock solutions beyblg= 10 and,
cal continuum hydrodynamic equations for shock waves irin fact, for all Mach numbers.
diatomic gases within the framework of generalized hydro-
dynamics. The evolution equations are a generalization dber (1=N,,;<10). The values of the inverse shock width
the generalized hydrodynamic equations for monatomic flupredicted by the theory are generally in excellent agreement
ids, which have been successfully applied to calculate shocWith those measured by a number of authors over a period of
wave structures in monatomic gases in our previous papenany years in the range &fy experimentally studied.
[23]. As is shown in the preceding section, the theory is The generalized hydrodynamic equations presented for
successful in accounting for shock wave structures of nitroshock wave phenomena in diatomic gases have been gleaned
gen gas. It is emphasized that nitrogen is treated as a rigiflom the evolution equations derived in the sty@@] made
rotator in this work unlike in some works in the literature by one of us with his collaborator to calculate ultrasonic
where it is treated as if it is a spherical molecule. As anwave dispersion and absorption in diatomic gases. And the
indicator of the robustness of the theory, the inverse shocko constructed generalized hydrodynamic equations are pro-
widths[30] are calculated over a wide range of Mach num-
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0.84 T T T
: 246} _
0.63F ] ;
s : s
Y
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A Q4 el Y 1
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FIG. 9. Reduced calortropy production vs Mach number. The
FIG. 7. Reduced excess normal stress profiles at various Macimeanings of the curves are the same as in Fig. 2. The ordinate is the
numbers. The meanings of the curves are the same as in Fig. 2. reduced calortropy production.
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posed as a phenomenological model for shock waves of dief such evolution equations on flow problems is left for fu-
atomic gases. They may be generally used for various flowure study. There is no theory that does not need improve-
problems of diatomic fluids. The original derivation of the ment, and there are many aspects we would like to further
equations was made on the basis of the Boltzmann-Curtissxamine in the present theory, but on the basis of the numeri-
kinetic equation in order to formulate the theory of irrevers-cal results presented in this work it is reasonable to tenta-
ible processes in diatomic gases, which is consistent with théively conclude that the generalized hydrodynamic equations
laws of thermodynamics. The generalized hydrodynamigresented enable us to study shock wave structures in good
equations employed in the present study are thermodynamjiccuracy and thus we now have a phenomenological con-
cally consistent in the sense that=0 for all values of the  tinuum theory of shock wave phenomena on which to build a
nonconserved variables chosen for the description of thengre complete theory of shock waves of diatomic gases and,
flow problem in hand. The requirement of thermodynamicperhaps, of more complicated molecules in the future.
consistency for a theory of macroscopic irreversible pro- Grad’s 13-moment methodl6] does not yield shock so-
cesses in matter has important consequences for the theory|igions for N,,=1.65, and the presence of such a maximum
accurately account for macroscopic observables. The dissip&tach number is clearly elucidated by the theorem of Rug-
tion terms in the evolution equations for the nonconserve(beri [50]’ who examined the system of moment evolution
variables such a$l, Q, andA, which are proportional to  equations in a general context to establish his theorem. Rug-
IIq(x), Qq(x), and Aq(x) and give rise to the positive geri's system of moment evolution equations appears to re-
calortropy productiork defined in Eq(10) and representing quire a Grad-like closure in which the neglected higher order
the second law of thermodynamics, play a crucial role inmoments are expressed in terms of the lower order moments
properly describing the important energy dissipation mecharetained for the description of the flow problem. Therefore
nism and thereby enhancing the precision of the theory. Thejs system is a general form of the Grad’'s 13-moment evo-
basis for this statement is that if the nonlinear facifx) is lution equations. Ruggeri’s theorem clearly shows thgt
set equal to unity in the limit of lowk because the noncon- =165 is the maximum Mach number beyond which the
served variable$l, Q, andA are small in magnitude owing shock solutions do not exist, given the system of moment
to the fact that the fluid is near equilibrium, then in the adia-evolution equations in the Grad-like closure, and that it is
batic approximation and on linearization of the resultingyseless to add more and more moments in an attempt to
equations we recover from the generalized hydrodynami¢ncrease the critical Mach number.
equations the classical hydrodynamic theory, which predicts The generalized hydrodynamic equations postulated in the
unacceptably poor shock structures beydhg~1.6. There-  present work do not contradict Ruggeri’s theorem, because
fore, in the case of diatomic gases, in addition to the contrithey are not the same system of evolution equations as Rug-
bution from the excess normal stredsit is important to  geri’s system of evolution equations owing to the fact that
have the nonlinear factog(x) as well as nonlinear kine- first the fluxes of the nonconserved variablesy., the flux of
matic terms—as in Eqs(15)—(17)—as is for the case of the stress tensor, the flux of the heat flux, Jedim not appear
monatomic gases, if we would like to maintain the desiredn the generalized hydrodynamic equations used and second
accuracy. The argument in the nonlinear factoq(x) is the spatial derivatives of the nonconserved varialfteg.,
basically the square root of the Rayleigh dissipation functionthe stress tensor and the heat fldeo not appear in the gen-
which gives a measure of energy dissipation in the system. lgralized hydrodynamic equations in the adiabatic approxima-
the general scaling scheme thiscan be scaled by a com- tion. These two features combine to produce a system of
posite fluid dynamic numbef20,21 N proportional to ordinary differential equations that are quite different from
NuNkn, whereNy, is the Knudsen number. In the shock the system of evolution equations considered by Ruggeri,
wave problems the Knudsen number does not explicitly appamely, the moment evolution equations in the Grad-like
pear whernx is expressed in reduced variables defined earlieclosure. The present generalized hydrodynamic equations
in the main text; recall Eq(38) in which only the Mach consequently do not have a critical Mach number beyond
numberN,, appears. The point we would like to emphasizewhich there are no shock solutions.
here is that the reduction scheme foshould carefully take We would like to close this section with some remarks on
into consideration the flow problem in hand. the Burnett equation approach that has been taken by a num-
In the present theory of shock waves we have not explicher of authors in the literatufd—11]. Since these studies are
itly taken into account the rotational energy and rotationalmade for monatomic gases, their relevance to the present
angular momentum relaxation mechanisms on the basis thatork is somewhat remote, but we believe it worthwhile to
in the thermodynamic conditions examined experimentallynake a remark. Since the Chapman-Enskog expansion is not
the aforementioned degrees of freedom relax much fasté&nown to be convergent, the Burnett order constitutive equa-
than the other hydrodynamic modes. These internal degreg®ns used for the stress tensor and heat flux in the aforemen-
of freedom, however, indirectly contribute to the appearancéioned references should be regarded as an empirical model,
of bulk viscosity in the theory. Therefore, it would be mis- just as the present generalized hydrodynamic equations are.
leading to think that they are ignored completely. If the tem-Consequently, their thermodynamic consistency must be
perature is sufficiently low or there is a mechanism that rechecked appropriately; it is questionable that they are ther-
tards sufficiently fast relaxations of such internal degrees ofmodynamically consistent according to the investigation
freedom, then their evolution equations should be explicitymade in Ref.[21]. Such empirical constitutive equations,
taken into account in the theory. Investigation of the effectmevertheless, appear to improve the Mach number depen-
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dence of the inverse shock width in comparison with theready met the need for a continuum mechanitsidrody-
classical hydrodynamic theory, but still has a way to go tonamig theory, albeit from a different standpoint.

agree with experimental values within an acceptable accu-

racy. It is not clear, and is yet to be seen, whether the Burnett

order solution for the Boltzmann-Curtiss kinetic equation ACKNOWLEDGMENTS
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