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Dynamical mean-field solution of coupled quantum wells: A bifurcation analysis
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The time evolution of a discrete model of three quantum wells with a localized mean-field electrostatic
interaction has been analyzed making use of numerical simulation and bifurcation techniques. The discrete
Schralinger equation can be written as a classical Hamiltonian system with two constants of motion. The
frequency spectrum and the Lyapunov exponents show that the system is chaotic as its continuum counterpart.
The organizing centers of the dynamical behavior are bifurcations of rotating periodic solutions whose simple
structure allows a thorough analytical investigation as the conserved quantities are varied. The global structure
of the periodic behavior is organized via subharmonic bifurcations at which tori of honsymmetric periodic
solutions are born. We have found another kind of bifurcation when two pairs of characteristic multipliers split
from the unit circle. The chaotic behavior is related to the nonintegrability of the system.
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I. INTRODUCTION the variational point of view, the class of wave functions that
are considered is more general than the Hartree one.

The mean-field approximation is the starting point for This second dynamical mean field approach was used by
most of the theoretical calculations in which more than onehe authors of Ref[2] to investigate a specific example,
charged quantum particle is present: quantum statisticalamely the time evolution of a wave packet in a three-
physics, electronic-structure calculations, strongly correlateguantum-well device including a mean field electrostatic in-
systems, quantum transport, atomic and nuclear systems, etgraction in the middle well, as shown schematically in the
The many-body electrostatic interaction is replaced by anpper part of Figure 1. The physical image is easy to under-
average value of the field created by all the particles actingtand: an initially localized wave packet representing a cloud
on one of them[1]. For a one-dimensional and unforced of electrons in a noninteracting well is diffused across the
system, the Hamilton operator is time independent and thgentral barriers and reflected elastically back and forth by the
Schradinger equation in the mean field approximation can beutermost barriers. The central well is narrower and in it the
written as electrostatic interaction is not negligible. Electrons in this

) ~ region have higher energy and are kicked out of it. This
iAW (X,t) =Hpe| ¥ (x,1) |, )P (1), (1) problem is interesting from the fundamental point of view
and because it is a toy model for actual semiconductor de-
whereW (x,t) is the wave function antll ¢ is the mean field  vices such as quantum wells or quantum dots.
approximation of the Hamilton operator. In [2] it was shown, bynumerical simulationgind appro-

The usual way to analyze the problem is by separation ofyriate values of the parameters, that the dynamical behavior
variables. The wave function is factorized as a product of &f the total charge in the central well is chaotic after a tran-
temporal and a spatial termV(x,t)=e "“'¢(|¥|,x)  sient time. They called this effect “chaotic quantum phe-
=e "'g(]¢|,x). The spatial partp is the solution of a nomena without classical counterpart,” and characterized the
nonlinear integro-differential eigenvalue equation, chaotic dynamical behavior by statistical indicattrsrrela-

tion functions, power spectra, information dimension, and

Huni(| ()], x)(X) =Frw p(x), 2

which can be solved with an iterative self-consistent method. B B2
The resulting wave function is the Hartree solution of the 1 jﬁv
system and it is known to have the lowest energy among all
possible factorized trial functiongl]. The wave function Wi Wa W3
representing the whole system is finally constructed taking
into account the kind of particles involvefermions or K K U K
boson$ (Hartree-Fock solution o—0—90o o

Within this approach, the dynamical behavior of the sys-
tem is frozen, because all the expectation values are time a b ¢ d
independent and, in particular, tB&bility of the mean field FIG. 1. Schematic representation of the potential prgfiéx)

solution is not directly available. However, there is anothefin gq. (4)] (top). B, andB, are infinite potential barriers that con-

possible approach to the time-dependent mean field problemne the particles into the well region. The wave packet represents
namely, to consider solutions in which the time and spatiathe initial condition andw, is a narrow well separated by finite
dependence are not factorized in the wave function and sontsarriers where the electrostatic interaction is non-negligible. The

of the expectation values are allowed to vary in time. Frombottom figure shows the discrete four site system of (By.
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entropy. In a subsequent publicatid8], the same authors central well (v,), x is a characteristic function that is one

proposed a discrete three-site model representing the saméthin well w, and zero elsewhere, amdmeasures the elec-

physical system that also exhibited chaotic behavior onltrostatic coupling.

when the nonlinearity introduced by the mean field term is Following the standard tight-binding approa¢h|, we

not homogeneoLis space. simplify the partial differential equation and reduce it to a
In this work, we derive an appropriate discrete model thasystem of complex ordinary differential equations by retain-

reproduces the chaotic behavior and allows a thorough an&?9 only a kinetic energy term and a local electrostatic repul-

lytical investigation. We have focused on tgeometrical ~ Sion between electrons and parametrize them-by andU,

andqualitative description of the dynamics performing a bi- respectively. As these contributions should have opposite

furcation analysis, in contrast to the above-mentioned nuSigNs, we takeK and U real and positive. This reduction

merical and statistical characterizations. We show that th'0C€SS IS similar to the derivation of the Hubbard or Ander-

dynamical behavior is rich and give an explanation of the>O model in condensed-matter physi¢g The spin of the

) . . e “electron has been ignored but could be included by doubling
;r::gog;asréce of the position of the nonlinearity in the three the dimension of the problem. The natural number of sites to

: . use would be three and would include the nonlinear mean

The structure of the paper is the following. In Sec. Il, We g4 torm in the second site, but as we will show in Sec.
introduce the continuum model and its reduction to a finite, A, the resulting system iint’egrableand unable to repro-
dimensional tight-binding mean field model. In Sec. Ill, we q,ce the chaotic behavior present in the continuum model. In
show by numerical simulation of the equations that this disthjs work, we consider a four-site systdfawer part of Fig.
crete model retains the chaotic features of its continuunl), with two sites at one side of the interacting one and just
counterpart. The core of our work comes in Sec. IV. Theregne site on the other side. The nonlinear interaction is
we show that by taking advantage of the Hamiltonian strucpresent only in the third sitémarked byc in Fig. 1). We get
ture of the discrete equations and the role of the symmetryhe following discrete time-dependent Satirmer equation:
and the associated conserved quantities, we can identify bi-

furcations of families of periodic orbits as organizing centers a=iKb,
for the dynamical behavior of the system. Finally, in Sec. V . )
we summarize and discuss possible physical implications of b=iKa+iKc,
our results. . —
c=iKb+iKd—iUcc? (4
Il. MODEL AND EQUATIONS d=iKc,

The nonlinear one-dimensional ScHinger equatiof2] ~ Wherea, b, ¢, andd are complex functions of time represent-
in the mean field approximation describing the evolution ofing the components of the wave function on each site. Note

the electron wave function in a three-quantum-well system ighat the equations are linear apart from the¢erm and the
kinetic part is just the nearest-neighbor hopping matrix in an

open one-dimensional four-site chain.
. JW(x,t) kP PV
gt 2m g2

HVO)+aQ(t)x() ]V (x,t), ()

IIl. CHAOTIC BEHAVIOR: FOURIER SPECTRUM
AND LYAPUNOV EXPONENTS

A first approach to identify chaotic behavior in E¢4) is
to integrate them numerically for given values of the param-
whereV(x) is the potential profile shown in the upper part of etersU andK and an initial condition, in an analogous way
Fig. 1,Q(t)=fW2|\If(x,t)|2dx is the electronic charge in the to what was done in Ref2]. In Fig. 2, we plot different
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magnitudes for three values of the on-site interactiomhe The parameters in the problem are the energy and the total
upper row is for the noninteracting cake=0, the middle charge that are not present in the equations but are fixed by
row for U=4, and the bottom one fdd = 16. The first col- the initial condition. Equation$5) can be written as a clas-
umn is the temporal evolution of the charge in welin a  sical Hamiltonian system as
window of 60 units of time after a transient, the second one —
is the power spectra of the previous column computed in a 7=i aH(iZ)
much broader time interval, and the last one is the eighth Jz
Lyapunov exponenf5]. In all cases, we fixe/k=1 and o
started the simulation from the same initial conditi@go) — — —  _— _—  _— _ (cop?
=1, b(0)=c(0)=d(0)=0. H(z,z)=(ab+ab+bc+bc+cd+cd)— 5 (7

For the noninteracting case, the system is linear and it is
straightforward to show that(t) is a linear combination of With z=(a,b,c,d). The Hamiltonian isautonomousrevers-
cos(#t) and Cos%), where¢=(1+ \/E)lz is the golden mean ible [H(z,z)=H(z,z)], andinvariant under diagonal rota-
number. Therefore, ifc(t)|? we find only contributions of ~ tionsin C* (z—z€?).
four incommensurate frequencies$22/¢, ¢+ 1/¢ and ¢ A direct applicatiqn of Noether’'s theorem shoyys t_hat
—1/¢. Generically, the trajectories aguasiperiodic The there are at least two independent conserved quantities in the

position of the four peaks in the power spectra in the secon@roblem associated to the symmetries: the energy which is

column coincides with the predictions and, as expected, th§dual to the Hamiltonian and the total chargerm of the

Lyapunov exponents for a linear system are z@rate that state vector,
the vert.ical scalg for this case is 13(9_). . = 77=aa+bb+cc+dd. @)

For intermediate values of the interactio€4), the
temporal signal does not show a quasiperiodic behavior andhis second constant of motion is related to the gauge invari-
the Fourier spectra exhibit numerous peaks. The system b@nce of Schrdinger's equation or, equivalently, to the fact
haves qualitatively different from the linear case. The that the system is closed. The time independencezafan
Lyapunov exponentgone for each variab)eappear always be proven from the invariance condition as follows:
in pairsk;,—\; and at least two of them are zero. Note that _ R _
this fact is an outcome of our calculation because the algo- H(e'ze ""2)=H(z,2), V0eR. €)
rithm used[5] does not take advantage of the fact that the
system is conservative.

In the strong interacting cas& & 16), the signal does not JH JH o
seem to follow any pattern and the power spectra are rela- Tiz+:(—i)z=0. (10
tively broad and peaked. Two of the Lyapunov exponents are z

positive and we can affirm that the dynamical behavior isSubstituting Eq(6) and its complex conjugate
chaotic )

: (6)

Derivating with respect t@ and using the chain rule,

PR d _—
zz+2722=0=—(z22)=0. (11
IV. BIFURCATION ANALYSIS dt

The previous analysis indicates that our discrete model is A. Integrability of the three-site model
able to describe the chaotic behavior present in the con- It ke th ites in the di del and id
tinuum case. In this section, we will show that we can extract, | W€ take three sites in the discrete model and consider

additional information about our system by standard bifurca-the nonlinear term in the middie one, then the first and third

tion techniques. equations have the same right-hand side, naraelyb and
We can render systerf#) free of parameters by taking c=ib. Therefore,a and ¢ only differ in an initial value.
K>0 as a time unit and rescaling each variable /K. However, the system still has the two independent constant
Note thatU =0 corresponds to the linear case ahe0 isa  of motion and the dynamical behavior is restricted to a 6
frozen system in which the particles are not allowed to jump—2—2=2 dimensional space. In conclusion, for three sites
from one site to its neighbor. This scaling analysis shows, aand the nonlinear term in the central site, the discrete model
expected, that the interaction strength is equivalent to totatxhibits only periodic or quasiperiodic solutions. One possi-
charge. The resulting system is bility to destroy the integrable character is to break the sym-
metry between the first and third well. This approach was
followed in[3] by displacing the nonlinear term to one of the
end sites and calling it aEonhomogeneousonlinearity. An-
) other straightforward solution is to increase the dimension of
b=ia+ic, the system by adding more sites at one side of the nonlinear
term. This is the approach chosen in the present work, as
c=ib+id—icc? (5) explained above. The reason for this selection is to preserve
' the original structure of the quantum-well problem, but our
_ results can be readily translated to the nonhomogeneous
d=ic. three-site case.

a=ib,
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From the results of Sec. Ill, we haveimerical evidence close to the objecfl10]. They have been used to compute
that the four-site system isonintegrable The rest of our invariant manifolds[11], invariant tori[12], or to produce
work will be devoted to the bifurcation analysis of systemestimates on the diffusion time near linearly stable invariant
(5). We will see that the Hartree solutions mentioned in theobjects[13-15.

Introduction play a central role in the understanding of the To compute the Hamiltonian normal form around the ori-

dynamical behavior of the system. gin, we perform nonlinear changes of variables such that the
transformed equation will be in the simplest possible form,
B. Equilibrium so that the essential features of the flow near the critical point

Th | iibri int of Eqs(5) is th - d become more evident. The desired simplification will be ob-
e only equilibrium point of Egst5) is the origin an tained, up to terms of a specified order; by performing induc-

correspo_nds to the case of an empty system. Sep_arating fR/er a sequence of near identity change of coordingté}
real and imaginary parts, the system is eight-dimensional and By a symplectic change of variables, we put the original

the spectrum of the linearization is T ~ .
Hamiltonian into the forrH=H,+H,+H, whereH, is the

1 1 11 quadratic partH, is of degree<k, andH is of order>k.
b P b The Birkhoff-normal form[16] up to order 4 contains

only the resonant monomials’,
with ¢=(1+/5)/2 and, because the Jacobian is symmetric,
the eigenvalues are semisimple.

By the Lyapunov center theoreff], we know that there
exists four one-parameter families of periodic orbits. More-
over, when approaching the origin along the families, thayhereq is a multi-index. Taking into account the symmetry
periods tend to Z/\; and the nontrivial characteristics mul- and the reversibility, we get
tipliers tend to exp(a\;/\) for j#i andi=1,2,3,4. It is
well known that for Hamiltonian systems the periodic orbits

o=i ¢!_¢v ¢!¢1 (12)

4
,21 Ni(ai—aj+4)=0,

o : ; . - -1 - 1 —
are densely distributed among all possible classical trajecto- H=¢(aa—bb)+ —(cc—dd)————[ ¢*(aa)?
ries and that they are the key to the overall behavior of any ¢ 4+2¢)?
mechanical system. Periodic orbits form continuous families _ — — -
in phase space that can be investigated by varying either the +¢*(bb)?+(cc)®+(dd)*+4¢p*(aabb+aacc

energy of the system or some external parameter.

A classical theorem by WeinsteifY] ensures, under a
certain hypothesis, the existence of at lebsfamilies of
periodic orbits in arN degrees of freedom Hamiltonian sys-
tem. In our case and due to the presence of resonances, w% the stat tor is in the di | basis of the li s
might expect more families of periodic orbits than those four/nere the state vector s in the diagonal basis ot the finear
born at the origin. ization ofH around th_e origin. The symmetry of the proble_m

imposes the same sign for all the quartic terms. Following
. o the analysis of Sanders and Verhdy40], we have found
C. Perturbation theory: Hamiltonian normal form that the only periodic solutions that exist close to the equi-

A common approach for low values of the interaction inlibrium are the four families of periodic orbits predicted by
the original many-body system is to perform a perturbativethe Lyapunov center theorem.
study inU/K in the unscaled equatiord); the starting point A general approach to find periodic orbits in Hamiltonian
is the noninteracting case and the interaction is adiabaticallgystems by continuation of periodic orbits of the linearized
introduced. The mean field approximation corresponds to théystem around an elliptic poinnonlinear modesand to
first-order perturbative correction for low values bffK  investigate its stability has recently been presenteld .

[8,9]. Within this method, we can study the four families of ~We can study the periodic orbits in a Hamiltonian system
a periodic orbit that are born in the origin. In the scaledby continuation of the periodic orbits of the linearized sys-
system(5), the perturbative analysis is equivalent to studyingtem around an elliptic pointnonlinear modesas follows: If
the neighborhood of the origin iR®. H is in Birkhoff-normal form, theS! orbits of critical points

In the classical Hamiltonian formalism, there is a system-0f H,=27[ —7H,+H,] near the equilibrium point are pe-
atic and powerful tool to study the dynamics in the neigh-riodic trajectories of the system with periodrZ \;(1+ 7)]
borhood of invariant objects such as equilibrium points, pe{17]. Moreover, the characteristic exponents can be com-
riodic orbits, or invariant tori, namely the Hamiltonian puted by diagonalizing the linear part of the, flow
normal form. It provides a nonlinear approximation, usuallyJD?H (u(0)); where J=(% ;%), Z and O are the identity
in the form of asymptotic series, that includes only theand zero matrices of order 4, respectively, ar(d) is the
higher-order terms that are essential for the bifurcatiorperiodic orbit close to the origin. The characteristic multipli-
analysis. ers are just the exponential of the exponents times the period

This method has the advantage of not only providing theof the orbit.
correction to the invariant object and its stability, but also, in  In Fig. 3, we present a comparison for the characteristic
principle, detecting other families of solutions that may existmultipliers as a function oh; computed from the normal

+aadd+bbcc+bbdd) +4ccdd
+4¢%(abcd+abed)], (13)
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1P FIG. 4. Plot of the functiom(w) [Eq. (16)]. as a function of the
L frequency of the periodic orbit. For a given value|of?, there are
______________ always exactly four different frequencies that belong to the four
-t TTTTTREITme=nld families of periodic orbitghollow circleg. Each of them will have
‘ ‘ , different values ofH andn,. Close to the empty-state vectan,(
0.0 0.2 0.4 0.6 —0), the four branches tend to the values of the linear case
nt (— b~ 1,1, $).

FIG. 3. Comparison of the significant characteristic multipliers mation chooses a very particular trajectory from those al-
(wi) as a function of the total chargej computed from the nor-  |owed by the vector field5), one in which the time and the
mal form (dashed lineand the exact onesolid line), for the sec-  gpatia| dependence are factorized and it is invariant under the
ond branch of periodic solutions that emanates from the origin. lnSymmetry

the whole range, the periodic orbit is elliptitu;|=1) and forn, Th ionar lutions of E fulfill the followin
~0.5 the exact results indicates that the orbit undergoes a periogquatieorsw?to ary solutions of EqeL5) fulfill the following

doubling bifurcation(marked by(1).

form (dashed lingwith the exact valuésolid line) for one of Co )
the branches of periodic orbitsee Sec. IV ). Note that Ao= > Bo=
both curves predict that a pair of characteristic multipliers
will meet and pass each other atl on the unit circle(pe-

riod doubling bifurcation for n, around 0.4. In the whole 1
range of the figure, the moduli of the characteristic multipli- (w?— ¢2)( w2——)
ers is 1, so that the periodic orbit is elliptic. ICof2= — ¢°

ol?=

=g(w). (16)
o(w?—1)
D. Symmetric periodic solutions: Stability and bifurcations

As the system is invariant under rotations, we change our .. system (15)

. i > the Hamiltonian function isH=H
coordinate system to a rotating one and write

— wny; the remainder gives rise to extra contributions in the
2(t)=(a(t),b(t),c(t),d(t)) =€ “'(A(t),B(1),C(t),D(1)), equatiAons that are usually called Coriolis forces. If we ex-
(14) pressH in terms ofw, we getg(w)/2, which means that by
choosing a rotating frame whose angular velocity matches
with w# 0 being the angular velocity of the rotating frame to the o of the rotating wave, we eliminate the kinetic contri-
be determined. In these new coordinates the system is  bution and the energy is just the potential term.
A plot of g(w) is shown in Fig. 4. The values @b al-

A=i(B—wA), lowed by Egs.(16) are those corresponding to the positive
values ofg(w); the negative part would correspond to the
B=i(A+C—wB) attractive caseld<0) in Egs.(4). For any value ofc|? we
' have always four solutions for EgélL6), corresponding to
. o four different symmetric periodic solutions, and each of them
C=i(B+D-wC)-i(CC)C, (159  will have a different value ofi, andH. The branches o
>0 andw< 0 correspond to periodic solutions with different
D=i(C—wD). orientations. The functiog(w) has interesting symmetry

properties, namely(1l/w)=—g(w) and g(— w)=—g(w),
The equilibrium points of Eqs(15) are nowsymmetric indicating that the attractive case can be mapped into the

periodic orbitsof the original systent5). These kind of so- repulsive one.
lutions are also calledotating wavesor relative equilibria The stability of systent15) has been analytically investi-
Recall from the Introduction that the factorizatioh4) is  gated by linearizing around the periodic solutidr6). Tak-
exactly the separation of variables that leads to the selfing Co=\/g(w)e'*0 and changing the origin of the coordi-
consistent Hartree solution. At this point, it is worthwhile to nates to the equilibrium pointd=A—A,, B=B—Bg, C
highlight that the standard self-consistent Hartree approxiC—Cy, andD=D —D,, we get the following system:
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A:i(B— LL)A), Mi:etT)\i:eiZW)\i/w. (24)
B=i(A+C—wB),
The rank ofM—L is 3 and the rank oM +L is 4, i.e.,
C=i{B+D-[w+2g(w)]C—g(w)e?*C— Jg(w)e *oCc? there is just one eigenvalue equal to zero, which leads to two
o exponents equal to zero and two characteristic multipliers
—2\g(w)e*ocCc—cc?y, (170 equal to 1 for everyw. These two+ 1 reflect, as expected,
the Hamiltonian character and the fact that we are studying a
D=i(C— D). periodic orbit; the characteristic multiplier along the direc-

tion of the orbit has to be 1 and the periodic orbits belong to
The dependence on the phasgcan be eliminated by 3 continuous family. Note that for the case of timolepen-
scaling each variable by/o. The linear part of Eq417) can  gent constants of motion, a classical theorem by Poincare
be written as [18] ensuredour characteristic multipliers equal to 1 and in
our case we just fintwo. The explanation for our results is

Z=iL2+IM 2 (18 that along therotating solutionsthe gradient of the Hamil-
with L andM, 4x 4 real matrices, an€=(A,B,C,D), tonian and the gradient of_the total charge are linearly depen-
dent and the above-mentioned theorem does not apply. The
—w 1 0 0 remaining three eigenvalues of the folded system can either
1 —w 1 0 all be real or one pair of complex conjugate and one real.
L= If the eigenvalues of Eq.23) are real and positive, then
1 —o-29(w) 1 [ the periodic orbit is hyperbolic= * o with o € R) and the
0 0 1 —w multipliers are inside and outside the unit circle, respec-
tively. If they are real and negative, then the periodic orbit is
00 0 0 elliptic (A= *iu with weR), the multipliers have moduli
0 0 0 0 equal to 1,anditis s_urrou_nded by quasiperiodic tori. If they
M = _ (19)  are with a nonzero imaginary part, then the characteristic
0 0 —g(w) O exponents must appear in two conjugate paixs=(-o
0 0 0 0 *iu with u,0eR). The stable and unstable manifold are

both two dimensional, spiral around the periodic orbit, and
Separating in real and imaginary part§€=Zz+iZz,) under certain conditions we might find entanglement. A spe-

the system is cial case occurs fof u =k with ke . Then the two pairs
_ of multipliers cross the real axis and the orbit is hyperbolic.
Zr @) M—L\ [ Zr In the linear cas¢U =0=g(w) =0] the matrix to be di-
z “lmeL o 2| (200 agonalized in Eq(23) is —L2. L is real and symmetric and

its eigenvalues are real; therefore, the eigenvalues bf

are negative. As the eigenvalues are continuous functions of
w, the symmetric periodic orbits are alwagHiptic close to

the 8x8 matrix with eigenvalue\, thenu, andu, satisfy  the origin and this stability analysis agrees with the normal
the following four-dimensional equations: form result of Sec. IV C.

According to our analysis, the symmetric periodic orbit
undergoes three kinds of local bifurcations, as follows.

(i) One pair of multipliers coincides with @root of unity
(geN). Depending on the argument of the characteristic
multipliers we have a double-1 (g=1), period doubling
(g=2), or g-subharmonic bifurcationg>2).

(M+L)(M—L)u,=\32u,. (23 (i) Two pairs of multipliers meet on the unit circles and
pass each other.

Summarizing our analysis, the original system of eight (iii) Two pairs of multipliers meet and split departing the
ordinary differential equation$5) has been rewritten in a unit circle with the same argumetibxodromic bifurcation.
rotating frame with a constant angular velocity that depends We present our results in two figures. In Fig. 5, we plot
on the energy of the system; the linearization of the resultinghe argument of the characteristic multipliers for the four
system can be folded to a four-dimensional system that rebranches ofg(w) (or four families of symmetric periodic
flects the Hamiltonian structure of the original system. Theorbits) computed by diagonalizing thexd4 matrix. The ver-
characteristic multipliersg) of the symmetric periodic orbit tical axis run from— 7r to + 7 and the horizontal axis are the
can be readily computed as the exponential of the charactetetal charge in the systemm{), which we use as a continua-
istic exponent times the period of the orbit and for eachtion parameter. The doublé 1 that is always present has
eigenvalue of the folded system?). We get one pair of  been deleted for the sake of clarity in all the figures, i.e., we
(=) and the corresponding multipliers, display just the significant multipliers.

whereO is a 4x4 zero matrix. If Ci) is an eigenvector of

(M=L)u,=\uy, (21
(M+L)u;=\us,, (22

which can be folded into a single eigenvalue equation,

046220-6



DYNAMICAL MEAN-FIELD SOLUTION OF COUPLED... PHYSICAL REVIEW E64 046220

=1

branch 1

FIG. 5. Argument of the characteristic multi-
M 5 pliers for the four branches as a function of the
branch 4 total charge ;). The double+1 are marked by
' ' circles, the period doubling by squares, and the
loxodromic bifurcation is labeled as X in
7 branch 2.

In branches 1, 3, and 4, the symmetric periodic orbits argion analysis usinguTto [19] that detects just the doubtel
always elliptic but undergg-subharmonic bifurcations ag  bifurcation. At this bifurcation point, a branch of tori of non-
is varied. The most interesting branch seems to be the secosgmmetric orbits is born whose continuation is difficult and
one, which is plotted in Fig. 6 along with the moduli of the will be discussed elsewhef&0].
multipliers in the upper panel. The orbit undergoes, in the
range of the figure, two doublée 1 bifurcations(marked by V. CONCLUSIONS
squarey four loxodromic bifurcationgmarked byl X), and
three period-doubling bifurcationésquares Note that in
Fig. 6 the symmetric periodic orbit that has left the unit
circle atn,~7 via a loxodromic bifurcation undergoes a sub-
sequent period doubling bifurcation and the symmetric peri
odic orbit is hyperbolic fom;~9. The lower panel of that
figure correspond to a test function of a numerical continua

In this work, we have investigated a dynamical point of
view of the mean field approximation in the specific example
of a tight-binding four-site system with a nonlinear interac-
tion in one of the sites. We have made use of the fact that the
discrete mean field Schidinger equation can be formulated
as a classical Hamiltonian and the conservation of charge in
a closed system is associated with a rotation symmetry. The
numerical and bifurcation analysis shows that the origin of
6 . the chaotic behavior in the continuum and discrete model is
_ related to the nonintegrability of the Hamiltonian problem.
We have detected three kinds of local bifurcations of peri-
S— odic orbits and identified thg-subharmonic and the loxodro-
mic bifurcation as the organizing centers of the dynamics.

The exact many-body problem is described by a linear
Schralinger equation and cannot be chaotic for any finite-
. number of degrees of freedom. Chaotic behavior may appear
. . in the thermodynamic limif21,22. Our analysis shows that
] the structure of the variational mean field approach is failing
to properly describe the correlation of the charged particles
in the many-body problem, and that the dynamical behavior
] has to be taken into account to improve the approximation.
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