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Dynamical mean-field solution of coupled quantum wells: A bifurcation analysis

Jorge Gala´n and Emilio Freire
Departamento de Matema´tica Aplicada II, Escuela Superior de Ingenieros, Camino de los Descubrimientos s/n, 41092 Sevilla, S

~Received 18 May 2000; published 26 September 2001!

The time evolution of a discrete model of three quantum wells with a localized mean-field electrostatic
interaction has been analyzed making use of numerical simulation and bifurcation techniques. The discrete
Schrödinger equation can be written as a classical Hamiltonian system with two constants of motion. The
frequency spectrum and the Lyapunov exponents show that the system is chaotic as its continuum counterpart.
The organizing centers of the dynamical behavior are bifurcations of rotating periodic solutions whose simple
structure allows a thorough analytical investigation as the conserved quantities are varied. The global structure
of the periodic behavior is organized via subharmonic bifurcations at which tori of nonsymmetric periodic
solutions are born. We have found another kind of bifurcation when two pairs of characteristic multipliers split
from the unit circle. The chaotic behavior is related to the nonintegrability of the system.
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I. INTRODUCTION

The mean-field approximation is the starting point f
most of the theoretical calculations in which more than o
charged quantum particle is present: quantum statis
physics, electronic-structure calculations, strongly correla
systems, quantum transport, atomic and nuclear systems
The many-body electrostatic interaction is replaced by
average value of the field created by all the particles ac
on one of them@1#. For a one-dimensional and unforce
system, the Hamilton operator is time independent and
Schrödinger equation in the mean field approximation can
written as

i\Ċ~x,t !5Ĥmf„uC~x,t !u,x…C~x,t !, ~1!

whereC(x,t) is the wave function andHmf is the mean field
approximation of the Hamilton operator.

The usual way to analyze the problem is by separation
variables. The wave function is factorized as a product o
temporal and a spatial term,C(x,t)5e2 i\vtf(uCu,x)
5e2 i\vtf(ufu,x). The spatial partf is the solution of a
nonlinear integro-differential eigenvalue equation,

Ĥmf„uf~x!u,x…f~x!5\vf~x!, ~2!

which can be solved with an iterative self-consistent meth
The resulting wave function is the Hartree solution of t
system and it is known to have the lowest energy among
possible factorized trial functions@1#. The wave function
representing the whole system is finally constructed tak
into account the kind of particles involved~fermions or
bosons! ~Hartree-Fock solution!.

Within this approach, the dynamical behavior of the s
tem is frozen, because all the expectation values are
independent and, in particular, thestability of the mean field
solution is not directly available. However, there is anoth
possible approach to the time-dependent mean field prob
namely, to consider solutions in which the time and spa
dependence are not factorized in the wave function and s
of the expectation values are allowed to vary in time. Fr
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the variational point of view, the class of wave functions th
are considered is more general than the Hartree one.

This second dynamical mean field approach was used
the authors of Ref.@2# to investigate a specific example
namely the time evolution of a wave packet in a thre
quantum-well device including a mean field electrostatic
teraction in the middle well, as shown schematically in t
upper part of Figure 1. The physical image is easy to und
stand: an initially localized wave packet representing a clo
of electrons in a noninteracting well is diffused across
central barriers and reflected elastically back and forth by
outermost barriers. The central well is narrower and in it
electrostatic interaction is not negligible. Electrons in th
region have higher energy and are kicked out of it. T
problem is interesting from the fundamental point of vie
and because it is a toy model for actual semiconductor
vices such as quantum wells or quantum dots.

In @2# it was shown, bynumerical simulationsand appro-
priate values of the parameters, that the dynamical beha
of the total charge in the central well is chaotic after a tra
sient time. They called this effect ‘‘chaotic quantum ph
nomena without classical counterpart,’’ and characterized
chaotic dynamical behavior by statistical indicators~correla-
tion functions, power spectra, information dimension, a

FIG. 1. Schematic representation of the potential profile@V(x)
in Eq. ~4!# ~top!. B1 andB2 are infinite potential barriers that con
fine the particles into the well region. The wave packet represe
the initial condition andw2 is a narrow well separated by finit
barriers where the electrostatic interaction is non-negligible. T
bottom figure shows the discrete four site system of Eq.~5!.
©2001 The American Physical Society20-1
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JORGE GALÁN AND EMILIO FREIRE PHYSICAL REVIEW E64 046220
FIG. 2. Numerical results by simulation o
Eqs. ~4!, K51, and the same initial conditions
The upper row is the linear case (U50), the
middle row is forU54, and the lower one is for
U516. The left column is the temporal evolutio
of the charge on the third site;uc(t)u2. The central
column is the Fourier spectrum of the signal a
the right one shows the eight Lyapunov exp
nents. ForU50, the system is quasiperiodic
whereas forU54 andU516 it is chaotic.
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entropy!. In a subsequent publication@3#, the same authors
proposed a discrete three-site model representing the s
physical system that also exhibited chaotic behavior o
when the nonlinearity introduced by the mean field term
not homogeneousin space.

In this work, we derive an appropriate discrete model t
reproduces the chaotic behavior and allows a thorough
lytical investigation. We have focused on thegeometrical
andqualitativedescription of the dynamics performing a b
furcation analysis, in contrast to the above-mentioned
merical and statistical characterizations. We show that
dynamical behavior is rich and give an explanation of
importance of the position of the nonlinearity in the thre
site case.

The structure of the paper is the following. In Sec. II, w
introduce the continuum model and its reduction to a fin
dimensional tight-binding mean field model. In Sec. III, w
show by numerical simulation of the equations that this d
crete model retains the chaotic features of its continu
counterpart. The core of our work comes in Sec. IV. The
we show that by taking advantage of the Hamiltonian str
ture of the discrete equations and the role of the symm
and the associated conserved quantities, we can identify
furcations of families of periodic orbits as organizing cent
for the dynamical behavior of the system. Finally, in Sec
we summarize and discuss possible physical implication
our results.

II. MODEL AND EQUATIONS

The nonlinear one-dimensional Schro¨dinger equation@2#
in the mean field approximation describing the evolution
the electron wave function in a three-quantum-well system

i\
]C~x,t !

]t
52

\2

2m

]2C~x,t !

]x2

1@V~x!1aQ~ t !x~x!#C~x,t !, ~3!

whereV(x) is the potential profile shown in the upper part
Fig. 1,Q(t)5*w2

uC(x,t)u2dx is the electronic charge in th
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central well (w2), x is a characteristic function that is on
within well w2 and zero elsewhere, anda measures the elec
trostatic coupling.

Following the standard tight-binding approach@1#, we
simplify the partial differential equation and reduce it to
system of complex ordinary differential equations by reta
ing only a kinetic energy term and a local electrostatic rep
sion between electrons and parametrize them by2K andU,
respectively. As these contributions should have oppo
signs, we takeK and U real and positive. This reduction
process is similar to the derivation of the Hubbard or And
son model in condensed-matter physics@4#. The spin of the
electron has been ignored but could be included by doub
the dimension of the problem. The natural number of sites
use would be three and would include the nonlinear m
field term in the second site, but as we will show in Se
IV A, the resulting system isintegrableand unable to repro-
duce the chaotic behavior present in the continuum mode
this work, we consider a four-site system~lower part of Fig.
1!, with two sites at one side of the interacting one and j
one site on the other side. The nonlinear interaction
present only in the third site~marked byc in Fig. 1!. We get
the following discrete time-dependent Schro¨dinger equation:

ȧ5 iKb,

ḃ5 iKa1 iKc,

ċ5 iKb1 iKd2 iUc̄c2, ~4!

ḋ5 iKc,

wherea, b, c, andd are complex functions of time represen
ing the components of the wave function on each site. N
that the equations are linear apart from theU term and the
kinetic part is just the nearest-neighbor hopping matrix in
open one-dimensional four-site chain.

III. CHAOTIC BEHAVIOR: FOURIER SPECTRUM
AND LYAPUNOV EXPONENTS

A first approach to identify chaotic behavior in Eqs.~4! is
to integrate them numerically for given values of the para
etersU andK and an initial condition, in an analogous wa
to what was done in Ref.@2#. In Fig. 2, we plot different
0-2
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DYNAMICAL MEAN-FIELD SOLUTION OF COUPLED . . . PHYSICAL REVIEW E64 046220
magnitudes for three values of the on-site interactionU. The
upper row is for the noninteracting caseU50, the middle
row for U54, and the bottom one forU516. The first col-
umn is the temporal evolution of the charge in wellc in a
window of 60 units of time after a transient, the second o
is the power spectra of the previous column computed i
much broader time interval, and the last one is the eig
Lyapunov exponent@5#. In all cases, we fixedK51 and
started the simulation from the same initial condition:a(0)
51, b(0)5c(0)5d(0)50.

For the noninteracting case, the system is linear and
straightforward to show thatc(t) is a linear combination of
cos(ft) and cos(f

t ), wheref5(11A5)/2 is the golden mean
number. Therefore, inuc(t)u2 we find only contributions of
four incommensurate frequencies: 2f, 2/f, f11/f and f
21/f. Generically, the trajectories arequasiperiodic. The
position of the four peaks in the power spectra in the sec
column coincides with the predictions and, as expected,
Lyapunov exponents for a linear system are zero~note that
the vertical scale for this case is 10210).

For intermediate values of the interaction (U54), the
temporal signal does not show a quasiperiodic behavior
the Fourier spectra exhibit numerous peaks. The system
haves qualitatively different from the linear case. Th
Lyapunov exponents~one for each variable! appear always
in pairsl i ,2l i and at least two of them are zero. Note th
this fact is an outcome of our calculation because the a
rithm used@5# does not take advantage of the fact that
system is conservative.

In the strong interacting case (U516), the signal does no
seem to follow any pattern and the power spectra are r
tively broad and peaked. Two of the Lyapunov exponents
positive and we can affirm that the dynamical behavior
chaotic.

IV. BIFURCATION ANALYSIS

The previous analysis indicates that our discrete mode
able to describe the chaotic behavior present in the c
tinuum case. In this section, we will show that we can extr
additional information about our system by standard bifur
tion techniques.

We can render system~4! free of parameters by takin
K.0 as a time unit and rescaling each variable byAU/K.
Note thatU50 corresponds to the linear case andK50 is a
frozen system in which the particles are not allowed to ju
from one site to its neighbor. This scaling analysis shows
expected, that the interaction strength is equivalent to t
charge. The resulting system is

ȧ5 ib,

ḃ5 ia1 ic,

ċ5 ib1 id2 i c̄c2, ~5!

ḋ5 ic.
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The parameters in the problem are the energy and the
charge that are not present in the equations but are fixe
the initial condition. Equations~5! can be written as a clas
sical Hamiltonian system as

ż5 i
]H~z,z̄!

] z̄
, ~6!

H~z,z̄!5~ab̄1āb1bc̄1b̄c1cd̄1 c̄d!2
~cc̄!2

2
, ~7!

with z5(a,b,c,d). The Hamiltonian isautonomous, revers-
ible @H(z,z̄)5H( z̄,z)#, and invariant under diagonal rota-
tions in C 4 (z→zeiu).

A direct application of Noether’s theorem shows th
there are at least two independent conserved quantities in
problem associated to the symmetries: the energy whic
equal to the Hamiltonian and the total charge~norm of the
state vector!,

nt5zz̄5aā1bb̄1cc̄1dd̄. ~8!

This second constant of motion is related to the gauge inv
ance of Schro¨dinger’s equation or, equivalently, to the fa
that the system is closed. The time independence ofzz̄ can
be proven from the invariance condition as follows:

H~eiuz,e2 iuz̄!5H~z,z̄!, ;uPR. ~9!

Derivating with respect tou and using the chain rule,

]H

z
iz1

]H

z̄
~2 i !z̄50. ~10!

Substituting Eq.~6! and its complex conjugate,

ż̄z1 żz̄50⇒ d

dt
~zz̄!50. ~11!

A. Integrability of the three-site model

If we take three sites in the discrete model and consi
the nonlinear term in the middle one, then the first and th
equations have the same right-hand side, namelyȧ5 ib and
ċ5 ib. Therefore,a and c only differ in an initial value.
However, the system still has the two independent cons
of motion and the dynamical behavior is restricted to a
222252 dimensional space. In conclusion, for three si
and the nonlinear term in the central site, the discrete mo
exhibits only periodic or quasiperiodic solutions. One pos
bility to destroy the integrable character is to break the sy
metry between the first and third well. This approach w
followed in @3# by displacing the nonlinear term to one of th
end sites and calling it anonhomogeneousnonlinearity. An-
other straightforward solution is to increase the dimension
the system by adding more sites at one side of the nonlin
term. This is the approach chosen in the present work
explained above. The reason for this selection is to prese
the original structure of the quantum-well problem, but o
results can be readily translated to the nonhomogene
three-site case.
0-3
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From the results of Sec. III, we havenumerical evidence
that the four-site system isnonintegrable. The rest of our
work will be devoted to the bifurcation analysis of syste
~5!. We will see that the Hartree solutions mentioned in
Introduction play a central role in the understanding of
dynamical behavior of the system.

B. Equilibrium

The only equilibrium point of Eqs.~5! is the origin and
corresponds to the case of an empty system. Separatin
real and imaginary parts, the system is eight-dimensional
the spectrum of the linearization is

s5 i H f,2f,
1

f
,2

1

f
,2f,f,2

1

f
,

1

fJ ~12!

with f5(11A5)/2 and, because the Jacobian is symmet
the eigenvalues are semisimple.

By the Lyapunov center theorem@6#, we know that there
exists four one-parameter families of periodic orbits. Mo
over, when approaching the origin along the families,
periods tend to 2p/l i and the nontrivial characteristics mu
tipliers tend to exp(2plj /li) for j Þ i and i 51,2,3,4. It is
well known that for Hamiltonian systems the periodic orb
are densely distributed among all possible classical traje
ries and that they are the key to the overall behavior of
mechanical system. Periodic orbits form continuous fami
in phase space that can be investigated by varying eithe
energy of the system or some external parameter.

A classical theorem by Weinstein@7# ensures, under a
certain hypothesis, the existence of at leastN families of
periodic orbits in anN degrees of freedom Hamiltonian sy
tem. In our case and due to the presence of resonances
might expect more families of periodic orbits than those fo
born at the origin.

C. Perturbation theory: Hamiltonian normal form

A common approach for low values of the interaction
the original many-body system is to perform a perturbat
study inU/K in the unscaled equations~4!; the starting point
is the noninteracting case and the interaction is adiabatic
introduced. The mean field approximation corresponds to
first-order perturbative correction for low values ofU/K
@8,9#. Within this method, we can study the four families
a periodic orbit that are born in the origin. In the scal
system~5!, the perturbative analysis is equivalent to studyi
the neighborhood of the origin inR8.

In the classical Hamiltonian formalism, there is a syste
atic and powerful tool to study the dynamics in the neig
borhood of invariant objects such as equilibrium points,
riodic orbits, or invariant tori, namely the Hamiltonia
normal form. It provides a nonlinear approximation, usua
in the form of asymptotic series, that includes only t
higher-order terms that are essential for the bifurcat
analysis.

This method has the advantage of not only providing
correction to the invariant object and its stability, but also,
principle, detecting other families of solutions that may ex
04622
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close to the object@10#. They have been used to compu
invariant manifolds@11#, invariant tori @12#, or to produce
estimates on the diffusion time near linearly stable invari
objects@13–15#.

To compute the Hamiltonian normal form around the o
gin, we perform nonlinear changes of variables such that
transformed equation will be in the simplest possible for
so that the essential features of the flow near the critical p
become more evident. The desired simplification will be o
tained, up to terms of a specified order; by performing ind
tively a sequence of near identity change of coordinates@16#.

By a symplectic change of variables, we put the origin
Hamiltonian into the formH5H21Hk1H̃, whereH2 is the
quadratic part,Hk is of degree<k, andH̃ is of order.k.

The Birkhoff-normal form@16# up to order 4 contains
only the resonant monomialsxa,

(
i 51

4

l i~a i2a i 14!50,

wherea is a multi-index. Taking into account the symmet
and the reversibility, we get

H5f~aā2bb̄!1
1

f
~cc̄2dd̄!2

1

~412f!2
@f4~aā!2

1f4~bb̄!21~cc̄!21~dd̄!214f2~aābb̄1aācc̄

1aādd̄1bb̄cc̄1bb̄dd̄!14cc̄dd̄

14f2~abc̄d̄1āb̄cd!#, ~13!

where the state vector is in the diagonal basis of the line
ization ofH around the origin. The symmetry of the proble
imposes the same sign for all the quartic terms. Follow
the analysis of Sanders and Verhulst@10#, we have found
that the only periodic solutions that exist close to the eq
librium are the four families of periodic orbits predicted b
the Lyapunov center theorem.

A general approach to find periodic orbits in Hamiltonia
systems by continuation of periodic orbits of the lineariz
system around an elliptic point~nonlinear modes! and to
investigate its stability has recently been presented in@17#.

We can study the periodic orbits in a Hamiltonian syste
by continuation of the periodic orbits of the linearized sy
tem around an elliptic point~nonlinear modes! as follows: If
H is in Birkhoff-normal form, theS1 orbits of critical points
of Ht52p@2tH21Hk# near the equilibrium point are pe
riodic trajectories of the system with period 2p/@l i(11t)#
@17#. Moreover, the characteristic exponents can be co
puted by diagonalizing the linear part of theHt flow
JD2Ht„u(0)…; where J5(I O

O 2I), I and O are the identity
and zero matrices of order 4, respectively, andu(t) is the
periodic orbit close to the origin. The characteristic multip
ers are just the exponential of the exponents times the pe
of the orbit.

In Fig. 3, we present a comparison for the characteri
multipliers as a function ofnt computed from the norma
0-4
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DYNAMICAL MEAN-FIELD SOLUTION OF COUPLED . . . PHYSICAL REVIEW E64 046220
form ~dashed line! with the exact value~solid line! for one of
the branches of periodic orbits~see Sec. IV D!. Note that
both curves predict that a pair of characteristic multiplie
will meet and pass each other at21 on the unit circle~pe-
riod doubling bifurcation! for nt around 0.4. In the whole
range of the figure, the moduli of the characteristic multip
ers is 1, so that the periodic orbit is elliptic.

D. Symmetric periodic solutions: Stability and bifurcations

As the system is invariant under rotations, we change
coordinate system to a rotating one and write

z~ t !5„a~ t !,b~ t !,c~ t !,d~ t !…5eivt
„A~ t !,B~ t !,C~ t !,D~ t !…,

~14!

with vÞ0 being the angular velocity of the rotating frame
be determined. In these new coordinates the system is

Ȧ5 i ~B2vA!,

Ḃ5 i ~A1C2vB!,

Ċ5 i ~B1D2vC!2 i ~CC̄!C, ~15!

Ḋ5 i ~C2vD !.

The equilibrium points of Eqs.~15! are nowsymmetric
periodic orbitsof the original system~5!. These kind of so-
lutions are also calledrotating wavesor relative equilibria.
Recall from the Introduction that the factorization~14! is
exactly the separation of variables that leads to the s
consistent Hartree solution. At this point, it is worthwhile
highlight that the standard self-consistent Hartree app

FIG. 3. Comparison of the significant characteristic multiplie
(m i) as a function of the total charge (nt) computed from the nor-
mal form ~dashed line! and the exact ones~solid line!, for the sec-
ond branch of periodic solutions that emanates from the origin
the whole range, the periodic orbit is elliptic (um i u51) and fornt

;0.5 the exact results indicates that the orbit undergoes a pe
doubling bifurcation~marked byh).
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mation chooses a very particular trajectory from those
lowed by the vector field~5!, one in which the time and the
spatial dependence are factorized and it is invariant under
symmetry.

The stationary solutions of Eqs.~15! fulfill the following
equations:

A05
C0

v221
, B05

v

v221
C0 , D5

C0

v
,

uC0u252

~v22f2!S v22
1

f2D
v~v221!

ªg~v!. ~16!

For system ~15!, the Hamiltonian function isĤ5H
2vnt ; the remainder gives rise to extra contributions in t
equations that are usually called Coriolis forces. If we e

pressĤ in terms ofv, we getg(v)/2, which means that by
choosing a rotating frame whose angular velocity matc
the v of the rotating wave, we eliminate the kinetic contr
bution and the energy is just the potential term.

A plot of g(v) is shown in Fig. 4. The values ofv al-
lowed by Eqs.~16! are those corresponding to the positi
values ofg(v); the negative part would correspond to th
attractive case (U,0) in Eqs.~4!. For any value ofucu2 we
have always four solutions for Eqs.~16!, corresponding to
four different symmetric periodic solutions, and each of the
will have a different value ofnt andH. The branches ofv
.0 andv,0 correspond to periodic solutions with differe
orientations. The functiong(v) has interesting symmetry
properties, namelyg(1/v)52g(v) and g(2v)52g(v),
indicating that the attractive case can be mapped into
repulsive one.

The stability of system~15! has been analytically investi
gated by linearizing around the periodic solution~16!. Tak-
ing C05Ag(v)eik0 and changing the origin of the coord
nates to the equilibrium point,A5A2A0 , B5B2B0 , C
5C2C0, andD5D2D0, we get the following system:

n

od

FIG. 4. Plot of the functiong(v) @Eq. ~16!#. as a function of the
frequency of the periodic orbit. For a given value ofucu2, there are
always exactly four different frequencies that belong to the fo
families of periodic orbits~hollow circles!. Each of them will have
different values ofH and nt . Close to the empty-state vector (nt

→0), the four branches tend to the values of the linear ca
(2f,21/f,1/f,f).
0-5
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JORGE GALÁN AND EMILIO FREIRE PHYSICAL REVIEW E64 046220
Ȧ5 i ~B2vA!,

Ḃ5 i ~A1C2vB!,

Ċ5 i $B1D2@v12g~v!#C2g~v!e2ik0C̄2Ag~v!e2 ik0C 2

22Ag~v!eik0CC̄2 C̄C 2%, ~17!

Ḋ5 i ~C2vD!.

The dependence on the phasek0 can be eliminated by
scaling each variable byeik0. The linear part of Eqs.~17! can
be written as

Ż5 iLZ1 iM Z̄ ~18!

with L andM, 434 real matrices, andZ5(A,B,C,D),

L5S 2v 1 0 0

1 2v 1 0

0 1 2v22g~v! 1

0 0 1 2v

D ,

M5S 0 0 0 0

0 0 0 0

0 0 2g~v! 0

0 0 0 0

D . ~19!

Separating in real and imaginary parts (Z5ZR1 iZI ,)
the system is

S ŻR

ŻI
D 5S O M2L

M1L O D S ZR

ZI
D , ~20!

whereO is a 434 zero matrix. If (u2

u1) is an eigenvector of

the 838 matrix with eigenvaluel, then u1 and u2 satisfy
the following four-dimensional equations:

~M2L !u25lu1 , ~21!

~M1L !u15lu2 , ~22!

which can be folded into a single eigenvalue equation,

~M1L !~M2L !u25l2u2 . ~23!

Summarizing our analysis, the original system of eig
ordinary differential equations~5! has been rewritten in a
rotating frame with a constant angular velocity that depe
on the energy of the system; the linearization of the resul
system can be folded to a four-dimensional system that
flects the Hamiltonian structure of the original system. T
characteristic multipliers (m) of the symmetric periodic orbi
can be readily computed as the exponential of the chara
istic exponent times the period of the orbit and for ea
eigenvalue of the folded system (l2). We get one pair of
(6l) and the corresponding multipliers,
04622
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m i5e6Tl i5e62pl i /v. ~24!

The rank ofM2L is 3 and the rank ofM1L is 4, i.e.,
there is just one eigenvalue equal to zero, which leads to
exponents equal to zero and two characteristic multipli
equal to 1 for everyv. These two11 reflect, as expected
the Hamiltonian character and the fact that we are studyin
periodic orbit; the characteristic multiplier along the dire
tion of the orbit has to be 1 and the periodic orbits belong
a continuous family. Note that for the case of twoindepen-
dent constants of motion, a classical theorem by Poinc´
@18# ensuresfour characteristic multipliers equal to 1 and
our case we just findtwo. The explanation for our results i
that along therotating solutionsthe gradient of the Hamil-
tonian and the gradient of the total charge are linearly dep
dent and the above-mentioned theorem does not apply.
remaining three eigenvalues of the folded system can ei
all be real or one pair of complex conjugate and one rea

If the eigenvalues of Eq.~23! are real and positive, then
the periodic orbit is hyperbolic (l56s with sPR) and the
multipliers are inside and outside the unit circle, resp
tively. If they are real and negative, then the periodic orbi
elliptic (l56 im with mPR), the multipliers have moduli
equal to 1, and it is surrounded by quasiperiodic tori. If th
are with a nonzero imaginary part, then the characteri
exponents must appear in two conjugate pairs (l56s
6 im with m,sPR). The stable and unstable manifold a
both two dimensional, spiral around the periodic orbit, a
under certain conditions we might find entanglement. A s
cial case occurs forTm5kp with kPN. Then the two pairs
of multipliers cross the real axis and the orbit is hyperbo

In the linear case@U50⇒g(v)50# the matrix to be di-
agonalized in Eq.~23! is 2L2. L is real and symmetric and
its eigenvalues are real; therefore, the eigenvalues of2L2

are negative. As the eigenvalues are continuous function
v, the symmetric periodic orbits are alwayselliptic close to
the origin and this stability analysis agrees with the norm
form result of Sec. IV C.

According to our analysis, the symmetric periodic orb
undergoes three kinds of local bifurcations, as follows.

~i! One pair of multipliers coincides with aq root of unity
(qPN). Depending on the argument of the characteris
multipliers we have a double11 (q51), period doubling
(q52), or q-subharmonic bifurcation (q.2).

~ii ! Two pairs of multipliers meet on the unit circles an
pass each other.

~iii ! Two pairs of multipliers meet and split departing th
unit circle with the same argument~loxodromic bifurcation!.

We present our results in two figures. In Fig. 5, we p
the argument of the characteristic multipliers for the fo
branches ofg(v) ~or four families of symmetric periodic
orbits! computed by diagonalizing the 434 matrix. The ver-
tical axis run from2p to 1p and the horizontal axis are th
total charge in the system (nt), which we use as a continua
tion parameter. The double11 that is always present ha
been deleted for the sake of clarity in all the figures, i.e.,
display just the significant multipliers.
0-6
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FIG. 5. Argument of the characteristic mult
pliers for the four branches as a function of th
total charge (nt). The double11 are marked by
circles, the period doubling by squares, and t
loxodromic bifurcation is labeled asLX in
branch 2.
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In branches 1, 3, and 4, the symmetric periodic orbits
always elliptic but undergoq-subharmonic bifurcations asnt
is varied. The most interesting branch seems to be the se
one, which is plotted in Fig. 6 along with the moduli of th
multipliers in the upper panel. The orbit undergoes, in
range of the figure, two double11 bifurcations~marked by
squares!, four loxodromic bifurcations~marked byLX), and
three period-doubling bifurcations~squares!. Note that in
Fig. 6 the symmetric periodic orbit that has left the u
circle atnt;7 via a loxodromic bifurcation undergoes a su
sequent period doubling bifurcation and the symmetric p
odic orbit is hyperbolic fornt;9. The lower panel of tha
figure correspond to a test function of a numerical contin

FIG. 6. Moduli ~top! and arguments~middle! for the eight char-
acteristic multipliers for branch 2. Bottom panel is the bifurcati
function in the numerical continuation as a function ofnt . We have
marked the double11 bifurcation by hollow circles and the perio
doubling by squares.
04622
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tion analysis usingAUTO @19# that detects just the double11
bifurcation. At this bifurcation point, a branch of tori of non
symmetric orbits is born whose continuation is difficult a
will be discussed elsewhere@20#.

V. CONCLUSIONS

In this work, we have investigated a dynamical point
view of the mean field approximation in the specific exam
of a tight-binding four-site system with a nonlinear intera
tion in one of the sites. We have made use of the fact that
discrete mean field Schro¨dinger equation can be formulate
as a classical Hamiltonian and the conservation of charg
a closed system is associated with a rotation symmetry.
numerical and bifurcation analysis shows that the origin
the chaotic behavior in the continuum and discrete mode
related to the nonintegrability of the Hamiltonian problem
We have detected three kinds of local bifurcations of pe
odic orbits and identified theq-subharmonic and the loxodro
mic bifurcation as the organizing centers of the dynamics

The exact many-body problem is described by a lin
Schrödinger equation and cannot be chaotic for any fini
number of degrees of freedom. Chaotic behavior may app
in the thermodynamic limit@21,22#. Our analysis shows tha
the structure of the variational mean field approach is fail
to properly describe the correlation of the charged partic
in the many-body problem, and that the dynamical behav
has to be taken into account to improve the approximatio
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