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Classical and quantum periodically driven scattering in one dimension
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Irregular scattering at harmonically driven one-dimensional potential wells is studied both on the classical
and the quantum level. We show that an ac-driven single square well, and a smooth well with oscillating
bottom, are sufficient to generate chaotic scattering. For a square well with oscillating bottom, we introduce the
concept of pseudointegrable scattering. The quantum dynamics of these models is treated using Floquet scat-
tering theory, which is exact for arbitrary amplitude and frequency of the driving. In the deep quantum regime,
scattering is dominated by multiphoton exchanges with the driving field, leading to complex resonance struc-
tures in transmission and reflection. For strong and fast driving, the ac-driven square well develops an effective
double-well potential that introduces coherent tunneling in the scattering. We identify signatures of classical
chaotic scattering in a phase-space representation of the quantum dynamics.
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[. INTRODUCTION low frequency, approximatiori8]. They are clearly not suit-

A periodic driving represents the essence of most of theéble to access the nonlinear regime where a nontrivial clas-
experimental methods for supplying energy to a microscopiéical dynamics can be expected to affect the quantum-
system in a coherent, easily controllable manner: For extechanical behavior. .
ample, in quantum chemistry, molecules are steered through A" @dequate framework to treat quantum systems, subject
a predetermined reaction path by correspondingly design%? periodic driving without any restriction of amplitude or

laser pulse$1,2]. Similarly, in mesoscopic physics, an elec requency, is the Floquet formalisfa—11]. While it is more
Ser puisesl,4]. simifarly, | SOSCopIC PAYSICS, " well known in the context of bound systems, it can in fact be

f[ronic device can be irradiated direc.tly in the microwave'to'generalized to scattering problefi@. The enormous possi-
infrared range{3,4]. Control mechanisms closer to the rep- pjjities a time-dependent scattering theory, based on the Flo-
ertoire of electronics are the application of an oscillatingquet approach, offers, have barely been exploited. To be
potential via a back gate, or simply of an ac voltage betweesure, there exist a few recent works where it is employed to
the terminals of the device. elucidate the quantum signatures of classical chaotic scatter-
Both the chemical and the mesoscopic applications menng [12,13. There, however, the driving is chosen in the
tioned have in common that they are most adequately deform of kicks. This facilitates numerical studies but is far
scribed in the framework of scattering theory, with a spaSfrom experimental reality where the driving almost exclu-
tially localized, but periodically time-dependent scatteringSively is harmonic. Quantum scattering at harmonically os-
potential. For a molecule passing through a laser beam or &illating potentials, in turn, has been studied in the Floquet
electron passing through a device with an oscillating potenformalism[14] but without considering the possibility of ir-
tial, this is obvious. An ac voltage, while nonlocal in the régular scattering on the classical level and its quantum-
laboratory frame, can in fact be reduced to the same schenjB€chanical consequences. A purely classical study of scat-

by a transformation originally developped to treat atoms im-€fing at harmonically driven wells and barriers, on the other
mersed in a spatially homogeneous radiation f&l]. hand, has recently been presented in IRES]. A semiclas-

In atomic physics and in quantum chemistry, it is standardSical treatment of driven systems with emphasis on tunneling

: : : o can be found in Ref.16].
technology to drive _the intensity of the radiation to values In this work we sit[ud)]/ complex scattering at harmonically
Wwhere S”OT‘Q'Y n(_JnImear quantum effe_cts., such as a.bovedscillating potentials, both classically and quantum mechani-
threshold ionization, multiphoton excitation, and high-

h . ion. h be taken | q cally. We intend to demonstrate that also in mesoscopic
armonic generation, have to be taken into acc¢@htand  ysics a periodic driving allows one to see quantum irregu-

the corresponding classical dynamics is partially or totallyja;” scattering and other nonlinear phenomena in a surpris-
chaotic. This is usually not the case in mesoscopic physicgngly simple, one-dimensional setting. We devise a few mod-
where a periodic forcing is widespregg] but predominantly  e|s “that in their spatial structure are inspired by typical
remains within the regime of linear response, such as moshyered semiconductor nanostructures, single square or
experiments on photon-assisted tunneli8yor ac conduc-  smooth wells in the dimension across the layers, and which
tance through quantum ddi]. Accordingly, the theoretical have a harmonic driving in common. The driving can be
treatment typically resorts to perturbative or related, such akcalized in the scattering region or can be spatially homo-
geneous like an ac voltage. For these systems, we present a
) detailed analysis of the classical dynamics to show that they
*Present address: Departamento dgidey Universidad Nacional, indeed support irregular or at least pseudointegrable scatter-

Santafede Bogota Columbia. ing, and exhibit a rich scenario of mixed dynamics in the
Present address: Institutrfliheoretische Physik, UniversitRe-  transition regime.
gensburg, 93040 Regensburg, Germany. This implies that also on the quantum level, numerical
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work is indispensable. Besides the general advantages of the

Floquet approach also for numerics, thgt() method =————. 4)
[17,18 provides a well-suited tool for the treatment of a [coshix/L)]

harmonic driving. We are able to evaluate, in particular,

transmission and reflection probabilities for individual Flo- B. Systems with ac driving

guet channels. In the deep quantum regime, we thus see non- ) ]
linear effects in the form of complicated structures in trans- AS & model for transport experiments performed using ac

mission and reflection. They can be explained in terms o¥oltages, we consider systems in which the particle sees an

multiphoton excitations in the scattering region. Towards theddditional alternating field while moving in an otherwise

semiclassical regime, we identify signatures of classical irStatic scattering potential. For the sake of simplicity we as-

regular scattering in quantum phase-space distributions. ~Sume the driving field to be spatially homogenous. Choosing
We present our models in Sec. Il. Section Ill provides@ gauge in which all forces are gradients of a scalar potential,

details of the classical scattering in the three systems studietl€ total time-periodic potential is given by

The corresponding quantum dynamics is discussed, after a _ _

brief resume of classical and quantum time-dependent scat- VO, =Vof (x) ~gExcoset. ®)

tering theory, in Sec. IV. A synopsis of the various regimes ) . ) )
covered is given in Sec. V. A selection of more technical,A9@in, f(x) defines the shape of the static potential, with

nevertheless important material is contained in AppendiceStrengthVo. The charge of the particle & andE denotes the
A to E. amplitude of the ac field.

For the above potential, asymptotically free states cannot
be defined in an obvious manner and scattering theory appar-
ently does not apply directly. This difficulty is removed by

We focus on two different representative classes of onethe Kramers-Henneberger transformatifl. Consider a
dimensional time-periodic scattering systems: Systems igharged particle moving in the potenti@). Outside the in-
which the entire scattering potential is restricted to a compadg€raction region, the influence of the static poteriaf(x),
interaction region, and systems in which the time-dependenhich is assumed to decay sufficiently fast, can be neglected.

part of the potential is modeled after an ac driving. The particle only sees the ac field. Hence, the velocity of the
particle is given by a constant plus a harmonically oscillating

term. In a reference frame performing the same lateral oscil-
lation with respect to the laboratory frame, the particle
If the particle experiences a non-negligible force only in amoves with a constant velocity at large distances from the
finite region of space, the concepts of scattering theory cagcatterer, i.e., is asymptotically free. The originally static
be applied directly. On the quantum-mechanical level, the&somponent of the potential, however, now appears to oscil-
Floguet formalism allows for generalizing the Lippmann- |ate laterally.
Schwinger equations to the case of time-periodic potentials Another alternative is to use the gauge invariance of elec-
[12,19. For one-dimensional systems, in particular, transtromagnetism in order to replace the scalar potentialin
mission and reflection probabilities can be defined indepengq. (5) by a time-periodic, but spatially homogeneous vector

Il. MODELS

A. Systems with local driving

dently of the phase of the driving, see Sec. IV A. potential. To summarize, there are three different
We further restrict con3|dgrat|on to potentials where spacgepresentations—gauges—providing equivalent descriptions
and time dependence factorize, of the same dynamical system. The only gauge that allows

for asymptotically free states is the one that renders the static
scattering potential laterally oscillating. Its advantage is the
direct applicability of scattering theory. The disadvantage
lies in the more complicated dependence on time and posi-
tion of the potential which in general prevents a factorization
as in Eq.(1). The three gauges apply to the classical as well
as to the quantum-mechanical description. Further details are
found in Appendix A.

In the representation of a laterally oscillating potential,
Eq. (5) transforms to

V(x,t)=f(X)[Vo+V19(1)] 1)
and the time dependence is harmonic,
g(t)=g(t+T)=coswt, w=27/T. (2

The functionf(x) defines the shape of the vertically oscil-
lating potential. The parametek4 andV, denote, respec-
tively, the depth(or heighy of the time-independent part of
the potential and the amplitude of the oscillation. A verti-
cally oscillating potential provides a simple model of a ca-
pacitive coupling of an ac gate voltage to the time-
independent potentiaMyf(x). The factorization of the
potential enables considerable computational simplificationg}s @ specific static potential shapgx), we shall again con-

V(x,t)=Vof(x—\ cogwt)), A=qE/w’m.  (6)

Specifically, we shall choosEx) as a square well sider the square we(B).
All the potentials mentioned in this section, except Eq.
f(x)=6(L—|x|), (3) (6), are consistent with the general form
or a smooth well V(x,t)=V,fo(x)+V f1(x)g(t), @)
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with the spatial shapefs, ; depending orx only viax/L, and  motion within the interaction region. As a crude distinction,
g depending on time only viat. Scaling all variables ac- an exponential decay indicates a hyperbolic dynamics
cordingly, [26,27), while an algebraic behavior reflects integrable mo-
tion. Mixed systems typically show a crossover from expo-
p ~ E nential to algebraic deca28]. Pseudointegrable systems
t also exhibit a power-law decay of their dwell-time distribu-
tion, but for different reasons and with different exponents
(see Appendix B
0= , (8) In the following we apply the tools introduced above to
" Mma?L?2 the models described in Sec. II: scattering at a vertically and
laterally oscillating square well and at a smooth well.

5 A. Pseudointegrable scattering in the vertically oscillating
HOGP D =+ Vof o) + Vi1 (x)g(1) ) square well
Scaled as in Eq8), the vertically oscillating square well

with only two parametersy, andV, instead of five. takes the form

We shall mainly consider modelghoosingV, and V, V(1) = (Vo+ ¥, cosh) o(1— X)), (10)
accordingly with potentials that remain attractive over the
entire period of the driving. While oscillatinigarriers are of Lo~ ~ - . -
high general interest for mesoscopic physics, a single barrigfith Vo<0 andV,<[V,|. Despite the driving, the flat bot-

does not allow for a complex classical dynan{izé]. There- tO”? of the potgnpal does not allow for a change of the ki-
fore, in the conclusions we briefly address the case of fetic energy within the well. Therefore, changes of the mo-

double barrier. See also Réfl5] for chaotic scattering at mentum can occur only when a trajectory passes one of the
chainsof oscillating barriers. steps of the potential at= =1, and then are discontinuous
themselves. This enables us to formulate the entire scattering
dynamics as a discrete map, relating successive passages
across or reflections off the stef5]: The total energy in-

In the Hamiltonian formulation, time-dependent systemsside the well can differ by at most"\721, up or down, with
in one dimension are described by twonautonomousqua-  respect to its value upon entering the well. This may prevent
tions of motion. Alternatively, introducing a new ficticious an exit, resulting in specular reflection off either one of the
variablez= at and the energ¥ as its canonically conjugate potential steps. It can occur for an arbitrary number of times,
momentum([21,22, they transform into fourautonomous until a potential step is overcome again and the trajectory
equations of motion. Thus the time dependence amounts feaves without returning. Note, however, that the times of
one additional degree of freedafor at least one-half, iEis  touching or crossing the steps have no simple relation to the
not considered an extra freedprfulfilling a necessary con- periodT of the driving. Therefore, this map has nothing to do
dition for the occurrence of chaotic motion. with the Poincaresurfaces of section a;,=nT, underlying

Classical chaotic scattering can be identified on basis ofhe stroboscopic phase-space plots.

three principal diagnosticf23]: phase-space portraits, de-  Trajectories starting inside the well with an initial kinetic
flgctlon fynctlons,. and dwell-time _dls_tr|but|ons. Below, we energy52/2<|\~/o| _\71 can never acquire a positive total en-
give a brief description of these criteria for the case at handergy. T
one-dimensional time-periodic systems.

Stroboscopic phase-space portradtse taken at every in-
teger multiple of the period of the driving. They correspond
to defining thet=0 modT hyperplanes as Poincaserfaces
of section in the extended phase space. 1

Of the variougdeflection functionghat can be defined for Pi=—
one-dimensional time-periodic systems, the outgoing mo- '
mentump,,: as a function of the incoming momentupy,
proved the most suitable combination for an analysis of thend the initial phase, fulfills p,2/2+ (Vy+V;costy)<0
scattering process. It can be shown that selfsimilarity in théFig. 1). In these cases, the dynamics is identical to that
deflection function implies topological chaos in the dynami-inside a square well with infinitely high walls, and therefore
cal flow[24]. We therefore base our classification of scatter-integrable. By contrast, trajectories starting from one of the
ing on the presence or absence of selfsimilar regions invalls within the same time intervals, but with a momentum
Poud Pin) [25]. slightly different from those given in the resonance condition

Dwell-time distributionsare calculated averaging over a (11), will only stay a finite, if long, time in the interaction
small interval around a given incoming momentum, and overegion. Therefore, this part of phase space is accessible to
all phases of the driving. Also the nature of the decay of thescattering trajectories. A phase-space portrait is presented in
dwell-time distribution for long times reflects the type of Fig. 2.

Ill. CLASSICAL DYNAMICS

hey are trapped and inaccessible from outside. The
same is true of trajectories with a higher kinetic energy if the
time of flight from one wall of the well to the other is an
integer multiple of the period of the potential,

(11)

’
w
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FIG. 1. Schematic space-time representation of the firstl(
resonant momentum, E@11), in the vertically oscillating square
well Eg. (10). The zigzag band consists of bound trajectories re- \ ) ) \
flected between the walls of the well during closed windows of the 2T T 0 T 2T t
potential(light sections of the horizontal lines representing the po-
tential steps a second band related to this one by parity has been
omitted for clarity. The dark gray band signifies the complementary  FIG. 3. Pseudointegrable scattering at the vertically oscillating
set of initial conditions, with the same resonant momentum as thequare well in a schematic space-time representation. The space
trapped trajectories, but entering during an open window of thenside the well, with time as the horizontal coordinate, is depicted
potential (bold sections of the horizontal lineand leaving com-  as the white horizontal rectangle. Unfolding this “billiard” along
pletely through the next one. its walls (full lines) results in an infinite array of borderlinédot-

ted). The vertical light-shaded rectangles correspond to windows in
time during which, for some arbitrary fixed kinetic energy inside

This dynamics is locally integrable, i.e., restricted to athe well, trajectories can escape. Where these time windows inter-
torus. Along a manifold of measure zero, however, the toru§ect the borderlines of the we(short bold lines temporarily
is coupled to a different type of motion that itself is inte- raPped motion within the well is connected to free scattering tra-
grable again: asymptotically free scattering trajectoriesl.ecmr'es' A single replica of an equivalent barrier billiard is indi-
Were this second part of phase space anaotfigite) torus, cated by the dashed rectangle.
we dealt with bounded pseudointegrable motj@8]. This
justifies to speak opseudointegrable scattering/lore pre- ] ) S
cisely, unfolding configuration space inside the well along itsth® long-time asymptote of the dwell-time distribution is al-
walls and considering time as a second spatial coordichte 9ebraic, with an exponent 3 (Fig. 5), owing to the reso-
Fig. 3), the system can be related to the unfolded barrier of@nce mechanism explained above. It is typical for a dynam-
graveyard billiard(30], a prototype of pseudointegrable mo- IS dominated by parabolic pointg31] and has been
tion. observed in a wide variety of systems ranging from a driven

Incoming trajectories asymptotically approaching thesquargparner enclosed in a potential bd>82]_ and noncha-
trapped trajectories just described form borders, each sep8ti¢ billiard chains[33] through hydrodynamical flows4].
rating two topologically different types of scattering trajec- 1 hiS phenomenon becomes more pronounced if the time
tories. In the deflection functiofFig. 4), these borders are Windows during which nearly trapped trajectories can escape
visible as discontinuities. As can be seen from the resonand¥ertical shaded rectangles in Fig. &e short compared to
condition (11), they donot form a fractal set. This gives the period of the driving. That is the case, in turn, if the
additional evidence that scattering at the vertically oscillating?0ttom of the barrier, at its highest position during each
square wel(10) is not chaotic. We show in Appendix B that cycle, almost reaches the top of the well, i.e.|\f|—V;

0.05 — R B A e e ‘g‘o'oé i eIV
0.04 | NS ] oot . SRR ) )
A A et b 0.002 0.004 0.006 0008 0.01
0.03 | NN 1
0.02 | VS , 1 3 o Y /\/\ |
N ‘ : o NP N
0.01 | 1 -0.01 : ; .
0.00802 0.00805 0.00808
or | 0.01 . .
-0.01 } CE A, i g /’/—x
0
S e ol .
-0.02 . . . . . . . 1 0.008022 0.008028
2 45 1 05 0 05 1 15 2 Bin

FIG. 4. Outgoing vs incoming momentum for a vertically oscil-
FIG. 2. Stroboscopic phase-space plot for a vertically oscillatingating square well, Eq(10), with V,=—-10"* and V,=0.999
square well, Eq(10), with Vo= —10"* andV;=0.999< 10~*. x 1074,
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10000 T T T

Ve (Vo+V, cost) (12
1000 - b Xt)y=———
n (coshx)?

100 E -

10 f E Due to the continuous nature of the potential, trajectories
= 1t - have to be calculated here by numerical integration of the
g 04 L ] equations of motion. Stroboscopic phase-space portraits are

' again defined by Poincaurfaces of section d@f=nT.

0.01 ¢ 7 The nature of scattering in this case is most easily under-
0.001 1 stood by considering first the motion inside the well. Due to
0.0001 L ] its shape it forms an anharmonic oscillator. Switching on the
10.05 , , i, driving with a small amplitud&/,<|V,| leads to resonances
1000 10000 100000 whenever the period of undisturbed oscillation inside the
3 well coincides with an integer multiple of the driving period.

_ Each of them is characterized by a chain of alternating ellip-
FIG. 5. Dwell-ime distributionsP(t) (not normalizedl for a  tic and hyperbolic periodic points, embedded in a chaotic
vertically oscillating square well, Eq10), with Vo=—10 andV; layer. Since the potential is not binding, however, there must
=9 (open squarés V,;=9.5 (star$, V;=9.9 (diagonal cross¢s be an uppermost resonance, coupled to asymptotically free
V,=9.99 (vertical crosses The straight lines correspond to alge- trajectories. The generic global structure of phase space in
braic decayP(1)~1 3. this system therefore consists of three parts: Regular scatter-
ing trajectories at high energies, an intermediate region of
o chaotic scattering at low but positive energies, and a mixed
<|VO|, V;. All the data shown in the context of the vertically Kol'mogorov-Arnol'd-MosefKAM )-type region of bound
oscillating square well belong to this regime. The dwell-timemotion inside the well.
distributions in Fig. 5, in particular, demonstrate that the This generic structure is exemplified by the phase-space
agreement with the predicted power law improves upon apportraits in Fig. 6. Pane{a) shows the scattering part of

proaching this limit. The absolute values W, on the  phase space, with regular trajectories at Higlh and chaotic

other hand, have a minor influence. motion reaching into the asymptotic regions for small mo-
Scattering at the vertically oscillating square well is char-menta. The white area of bound motion inaccessible from

acterized by the absence, due to the trivial dynamics insidgutside is filled in panelb). It exhibits the typical KAM

the well, of any mechanism that could amplify small differ- structure of interspersed tori and chaotic layers.

ences in the incoming conditions to arbitrary deviations in  The conclusion that scattering at the potentid) is cha-

the outgoing conditions. This is different in the following otic already for small driving amplitudes is confirmed by the

example. deflection functions presented in Fig. 7. Two successive

magnifications clearly demonstrate their self-similarity.
Figures 8 and 9 are devoted to the extreme case that the

well disappears once per period of the driviig,=|V,|.

Foreseeably, the relative size of the region of chaotic scat-

After scaling as in Eq(8), the vertically oscillating well tering has increased dramaticalliig. 8@a)]. Still, a small

B. Weakly chaotic dynamics in the vertically oscillating
smooth well

with the smooth static shagéd) takes the form island of inaccessible regular motion remains near the bot-
1}
05 |
0
0 o
05 |
-1 " . L L - . L L L L
-10 -5 0 5 10 2 -1 0 9 2
a X b %

FIG. 6. Stroboscopic phase-space plots for a vertically oscillating smooth wel(;1Bq.with \~/0= —4/9 and\~/1=10’2|7/0|. Panela)
shows scattering trajectories, coming in from the left, pahgmostly bound trajectories starting%g=0 with phaséfo:vrlz.
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static and the oscillating components of the potential have

0.2 ;
l ‘;g °-(1) “:@’\p’\'/\-./\;/\/\ﬂ/\/j quite different interpretations: The oscillation amplitude now
-0.1 “E 1 is a length, the maximum lateral shift of the well with respect
0 0.05 0.1 0.15 to its value at rest. In dimensionless urlisee Eq.(8)] the
01 potential reads
= . R ~ o~ o~ ~ ~ o~ ~
s 0? V(x,t)=V (1—|x—\cost|). (13
00507 0.051 0.0513 .
In particular,
0.1
zé 0 ~ N ~ qE
o B AEL A= 5 (14)
0.05101 0.05106 mlLo

B . S
" denotes the amplitude of the lateral oscillation in terms of the
FIG. 7. Outgoing vs incoming momentum for a vertically oscil- electrical field strengthe, chargeq, frequencyw, and total

lating smooth well, Eq(12), with Vo=—4/9 andV,=10"2|V,|.  width 2L of the well in unscaled units. The interaction re-
Lower panels are successive magnifications of the uppermost ongjion is sharply defined here, given by the interﬁejlsl
+X.

. . . As in the case of the vertically oscillating square well,
tom of the well. Numerical evidence d~emogstrates that th'?here are here two independent ways of formulating the dy-
central island persists even for values\gf=|V,| orders of  namics as a discrete map, defining Poincargiaces of sec-
magnitude higher than the ones underlying the data showion ejther at equidistant times=nT or at the steps of the
The deflection functior{Fig. 8(b)] is less regular in the potential. The second option is better suited as a basis for a
small-scale details than in the case of weak driving, Fig. 7numerical calculation of trajectories. Due to the time depen-
but evidently remains self-similar. The dwell-time distribu- dence of the step position, the resulting map is quite elabo-
tion, Fig. 9, decays algebraically as expected for a systerpate here: we derive it in Appendix C.
with mixed, KAM-type dynamics. However, it exhibits @ A first image of the scattering at the laterally oscillating
very well-defined crossover, dt~2.5x10' from a slow square well is obtained again by considering time as a spatial
decay~t %32 to a faster decay-t 2L While it is clear ~coordinate. This system thus becomes a billiard with rippled
that, in order that the distribution be normalizable, the slowwalls (Tennyson billiard 35]), see Fig. 10. The rippled-wall
decay ~T~ 932 cannot persist to arbitrarily long times, the Pilliardis known to exhibit a mixed dynamics. It gives rise to
mechanism underlying this crossover remains open. an infinite set of unstable periodic orbits. The simplest and
most prominent of them that can be transferred to the present
case is the one connecting subsequeamvexextrema(inner
turning points of the walls on alternating sidésf. Fig. 10,
of scaled period 2. At the same time, there is a comple-
In the case of the laterally oscillating square well, as itmentary set of stable periodic orbits surrounded by regular
emerges by a Kramers-Henneberger transformation from aislands, inaccessible from outside. The simplest one of them
ac-driven well, the two respective strength parameters of theonnects subsequeabncaveextrema(outer turning points

C. Mixed (regular and chaotic) scattering in the laterally
oscillating square well

1.5

-1
0.34 0342 0344 0346 0348 035

AP P a— 0 5 0 15 0.3455 0.34555
a X b 5in

FIG. 8. Stroboscopic phase-space pgltand outgoing vs incoming momentugh), for a vertically oscillating smooth well, Eq12),
with 77/0:\71:4/9. In (b), lower panels are successive magnifications of the uppermost one.
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P(t)

FIG. 10. Scattering at the laterally oscillating square well, in a
schematic space-time representation. The white central “channel”
is the oscillating well, its walls being indicated by bold lines. The
3 ) ) leftmost trajectory(full line) exemplifies a process of transmission
10 10'8 10'° 1020 and subsequent recaptujast outside the lower wall The full line

¥ on the right-hand side is a stable periodic orbit connecting outer
turning points of the wall, the dashed line connecting inner turning

FIG. 9. Dwell-time distributiorP(t) (not normalizedifor a ver-  points is an unstable periodic orbit.
tically oscillating smooth well, Eq(12), with —V,=V,;=5. The
straight lines correspond to algebraic decBys) ~t %32 (full line) B
and~1~ 12 (dashegl parable (Vo|=1). It then further depends on the amplitude

X. For smallx, phase space is mixed. For sufficiently strong

driving X1, however, all the stable periodic orbits are de-

of the walls on alternating sidésf. Fig. 10. Taking a finite  stroyed since even the most stable ¢see Fig. 19 would
depth of the potential into account, the rippled-wall billiard intersect the moving walls at least once. Comparing to the
also serves as a model for a phenomenon that cannot occur fermi accelerator, this corresponds to the chaotic region
a vertically oscillating well: A trajectory that has already found at low energie$36]. It reaches out to beyond the
escaped from the well, but not from the interaction regionedges of the potential steps, where in the present case it
can be “overtaken” by the moving wall and thus be recap-couples to asymptotically free trajectories. In this limit, the
tured (see leftmost orbit in Fig. 10 scattering at the laterally oscillating square well becomes

Another closely related system is the Fermi acceleratopurely chaotic, except for high-energy scattering trajectories
[36,37. It arises as the limit of an infinitely deep well for the that pass over the well without feeling it.
present model. Also this comparison lets us expect a mixed |n the following, we illustrate some of these regimes by
dynamics in the laterally oscillating square well. Moreover itnumerical data. Figure 14) is a phase-space portrait at weak

suggests that, in contrast to the vertically oscillating SmOOtrUriving X=0.1. The dominating feature is a large regular
well, the motion will bemorechaotic near the bottom of the . ~ ~
island. Its center ak=0 and p~0.7 corresponds to the

well, i.e., at low energies. §table periodic orbit between the outer turning points of the
Various regimes can be distinguished, both with rESpecwalls, described above. A similar unstable orbit between the

to the amplitude and the frequency of the driving, that showInner turning. points. at a smaller. neaative momentum. is
different types of scattering: 9p ' » Neg '

The relevant characteristic time scales for the scattering eftén ?oendsdggnlsr;stfr:)ef tlrir'gi t;r?:s()ttlr?a?;?g irTahcieidsJi%(I:eerf]:orrTe]gouulir
oscillating potential wells are, on the one hand, the perioJ 9 J

o - . side and bounce between the walls of the well, as in the
T=2m/w of the driving, and on the other hand, a typical ; : :

. . . . . Fermi accelerator. The separatrices forming the boundary to-
time tpes Spent in the scattering region. A crude CI"’IS'S'(:alwards the scattering trajectories at high positive and negative
estimate of this time is the durationm./p of one round trip gty ghp 9

through the well, at the maximum kinetic energ/(2m) momenta are indicated by bold lines. At stronger driving,

_ ; ; _ ; : =1.6[Fig. 11(b)] [38], the low-energy part of the interaction
=|Vy| in the well, i.e.,t,,=4LMm/2|Vy|. In dimensionless ; ; .
Vol i W 1-8-1bpag Vol I I region has turned completely chaotic. The prominent regular

units[Eq. (8)], T=2m andtas= 2V 2/|Vo|. _island of the former case has disappeared, as have the sepa-
_ If these time scales are sufficiently different, the oscillat-yatrices between the chaotic region and the fast scattering
ing potential can be reduced to an effective static pOtem'altrajectories.
This is the case in the adiabatic limft>ty.s and in the The corresponding deflection functior(&ig. 12 and
diabatic limitT <ty In terms of the scaled parameters, they gwell-time distributiongFig. 13 allow for the same conclu-
correspond toVy>2/7? and V,<2/7?, respectively. The sions. Both deflection functions shown are self-similar, but
system is then essentially one dimensional again and thube one for stronger driving, Fig. 19, is less regular and
integrable. In the adiabatic case, the effective potential is thehows a larger measure of chaotic sections. The dwell-time
square well in its instantaneous position, in the diabatic casdistribution for the case with mixed dynamics, Fig(d3is
it is the time average of the oscillating well. The latter will characterized by a crossover from exponential to algebraic
be discussed below. decay, with exponent 2.24, while in the fully chaotic case,

A nontrivial dynamics arises only i andt,,sare com-  Fig. 13b) [38], it is purely exponential.
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FIG. 11. Stroboscopic phase-space plots for a laterally oscillating square well(184q.with VO=—O.75 andx=0.1 (a), VO
=—0.04 and\=1.6 (b). The bold lines in pane{a) are the separatrices between stable bound motion inside the well and scattering
trajectories.

In the diabatic limit,w—c or V0—>0 (in dimensionless tude of the driving is smaller than the width of the wall,
units), the effective static potential is given by the average<1,

over a period of the driving of the time-dependent one, ~ o~ ~ ~
arccof—(1=x)/N\], |xx1|=\,

1 (T TV <
Ver(X) =T f dtV(x,b), (19 Vog=—ox m X=1-a,
0 0, else,
o o . (16)
This time-averaged potential is different from any instanta- 5
neous shape of the potentidd). In particular, if the ampli-  while in the opposite casa,>1,
|
- [ arccof—(1+Xx)/X], [x*X|=<1,
V(x)=— — X arcco$— (1+Xx)/X]+arccof— (1+x)/x], [x|<\—1, 17

0, else.

See Appendix D for a derivation. In this latter case of strongenergy to the oscillating barrier walls that they remain
driving, the effective potential develops a centmaximum  trapped for an appreciable time. As long as they remain
The reason is that the oscillation ranges of the walls themvithin one of the three smooth sections of the effective po-
overlap near the origin. As a result, the potential there taketential, cf. Fig. 14, they are confined to some torus of the
on its higher value, zero, for a longer time within each periodcorresponding static system. At the cusps of the potential, at
than further outside. In effect, the potential assumes the forre=*=(A—1), however, the diabatic approximation is no
of a double well, cf. Fig. 14. This requires that the squardonger valid since there, a series of rapid collisions with the
well slows down near the turning points of its lateral oscil-walls may abruptly cease or set in. Thus, the jump onto a
lation as it does for a harmonic driving; by contrast, to aparticular torus on which the trajectory continues on the far
piecewise lineatsawtooth or impulsive(delta time depen-  side of the cusp, can be considered a random event that de-
dence, this does not apply. A situation converse to the ongends sensitively on the phase of the oscillation in the mo-
just described occurs for a laterally oscillating squamerier ~ ment of passing the cusp. A similar consideration applies to
(turn Fig. 14 upside down |t develops a centrahinimumif the events of entering or leaving the central phase-space re-
the amplitude of the oscillation exceeds the barrier widthgion atx= + (X +1).
[14]. As these erratic jumps maintain a rest of chaoticity of the
Figure 15 is a phase-space portrait of the laterally oscilmotion, the concept of pseudointegrability does not apply
lating square well in its diabatic limit. Apparently, there are here, either. The most closely related case to compare with is
no more chaotic areas present. The motion along the locallshe return to integrability, in the limit of strong field, of
regular-looking structures in the center is not integrable, eibilliards that are rendered chaotic by the presence of a mag-
ther: Some of the incoming trajectories may loose sufficienhetic field[39]. In that limit, the Larmor radius becomes so
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sma_ll that t_hey creep in an integrable manner along bogndafy | oud =S| ¥in).- (18

sections with small curvature, but pass through chaotic epi-

sodes where the radius is of the order of the Larmor radius or i - )

below, specifically at cusps of the boundary. The state vectors are taken in the .Smnger pl_cture and
The peculiar position of this type of motion between cha-T€fer to thesametime t,=0. The time evolution of the

otic and regular is further illustrated by the deflection func-2Symptotic  free  states is  governed  byUo(t)

tions, Fig. 16a), that exhibit accumulation points of singu- — &XP(iHgt/%), where H, denotes the time-independent,

larities but no true self-similarity, and by the dwell-time @Symptotic component of the Hamiltonian. T8enatrix, by

distribution, Fig. 16b). It falls off algebraically for long contrast, depends on the full, periodically driven Hamil-

times, but exceedingly rapidly, with an exponen?.64 for ~ tonian and in general, does not commute vidty(t). There-

this particular parameter set. fore, a shift in the reference timg in Eq. (18) generally
leads to adifferent Smatrix,

IV. QUANTUM DYNAMICS -
_ o S=Uo(to)SUj(to)- (19

A. Quantum scattering theory for time-periodic systems

Most textbooks on quantum mechanissch as Ref.40])
include an introduction to the theory of scattering at time- ~ N
independent potentials. Time-dependent scattering, howevetaeS=S, as follows fromUq(nT) = uo", with ug=Uo(T),
is not usually consideretsee, for example, Ref41]), even  and the conservation of quasienerfg,u,]=0. AsSandS
though it is relevant for numerous branches of physics. Aare related by a unitary transformation, they are isospectral,
few articles deal with the generalization of time-independent.e., have the same poles leading to the same resonances and
scattering theory to time-periodic systems. In Réf,, the  associated widths.
existence of wave operators in time-periodic scattering sys- The fact that time-periodic systems are described by a
tems was studied. The concept of an extended Hilbert spacgéiscrete dynamical group, generated by the Floquet operator,
(see, for example, Ref$21,22) is used in Ref[42] for  leads to the characteristics of the scattering process summa-
atoms in strong light fields and in R¢fL7] to describe mul- rized in Table I.
tiphoton ionization and dissociation. The Born series is gen- In one dimension, total and partial transmission and re-
eralized in Ref[43] to the case of time-periodic scattering flection probabilities can be defined by a straightforward
systems, the low- and high-frequency limits of this theorygeneralization of the corresponding concepts for time-
are considered in Reff44]. Another cornerstone of scattering independent potentials. We define thartial transmission
theory, the Lippmann-Schwinger equations, has been exF|(E) [reflection R(E)] to be the ratio of the transmitted
tended to periodicallkickedpotentialg 12]. It can be further  (reflected outgoing flux with energfe’ =E+ 1% w to the to-
generalized to potentials with a periodic, but otherwise arbital incoming flux (with energyE). The total transmission
trary time dependendd9,45. (reflection is given by the sum over all the corresponding

We assume in the following that the time dependence ofartial probabilities,
the potential is restricted to a compact scattering region. As
in the time-independent case, tBenatrix for a time-periodic o w
potentlal theq transforms an incoming asymptotic free state ToE)= D T(E), Rg(E)= s R(E), (20
into an outgoing one, | [t

Only for to=nT, whereT is the period of the driving, we

Pout
Pout

non-

0 010203040506 070809 1

05 T T T T T T T = _.
5 ol ! 1 3 TEFTET
o o5 b . . {\,/i . ,/I | = , i A xﬁ: Y
0.302 0.304 0.306 0.308 0.31 0.312 0.091 0.092 0.093 0.094
05F *I/’\! T \ / 2 . =
5 ol | AN
< osb= T ] .= 2 rﬁﬁf e
0.3083 0.30834 0.30838 0.093045 0.09305 0.093055 0.09306
a Bin b Bin

FIG. 12. Outgoing vs incoming momentum for a laterally oscillating square well(13j. at the same parameter values as in pa@I|s
and (b) of Fig. 11. Lower panels are successive magnifications of the respective uppermost ones.
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FIG. 13. Dwell-time distributiong(t) (not normalizedifor a laterally oscillating square well, E¢L3), at the same parameter values as

in panels(a) and (b) of Fig. 11. The straight line in pané®) corresponds to an algebraic dedagt)~t 224 and that in pane(b) to an
exponential decay.

where we sef|(E)=R|(E)=0 for E'=E+1#w<0. These Tn,nr(e+n’ﬁw)=|S:n,(e)|2, (24)
definitions and unitarity of th& matrix ensure thal(E) ‘
+Rii(E)=1 for all positive energieg.

Transmission and reflection probabilities can be expressed
in terms of the S matrix. It is defined with respect to flux-
normalized incoming and outgoing asymptotic plane wave
states of the form

Rn-n(e+n'fiw)=[S, (€)% (25)

Depending only on|S_ |2, they areindependentof the

n,n’
m 172 choice oft, in Eq. (19).
eiikn(e)x, (21)

X2 =| =5
"o\ 2@k, (e)

B. Computational procedure
where ky(e) =y2m(e+nfw)/% and e is the quasienergy. Ay the numerical results presented in the following are

case we are dealing wif#6]. The S matrix is given by

This insures unitarity of théS matrix in the multichannel based on the numerical solution of the time-dependent

Schralinger equation by propagation of wave packets, taking
0+ - - ) advantage of the enormous simplifications that result if the
(YenlS] Yern)=Syn(€) d(e—€). (22)  time evolution is only monitored stroboscopically at discrete
t,=nT. It then suffices to calculate the Floguet operator

For reflection-symmetric potential®/(—x,t)=V(x,t), the  U(T,0) once and apply it iteratively. We obtain(T,0) us-

four blocksS™~ of the S matrix reduce to two, ing the (t,t’) method[17], a formulation of Floquet theory
S (€)=S, (=S, (e). (23 002
The partial transmission and reflection probabilities are then 0.015 | e T
given by ' s
0.01 | J
s
0.005 R
W0
ot g
-0.005 R
001 L e ]
: s -0.015
-3 25-2-15-1 050 05 1 15 2 25 3
FIG. 14. Time-averaged potentiéull line) and instantaneous X
potential at the turning point&ashed of the laterally oscillating FIG. 15. Stroboscopic phase-space plot for a laterally oscillating
square well, Eq(13), for x>1. square well, Eq(13), with Vo= —4x10"% and\=1.6.
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FIG. 16. Outgoing vs incoming momentu¢@ and dwell-time distributiorP(t) [not normalized, paneb)] for a laterally oscillating
square well, Eq(13), at the same parameter values as in Fig. 15. The straight litl® itorresponds to an algebraic dedat)~t 784

that is particularly well adapted to harmonic forms of theis distinct from the Wigner delay time, but can be readily
driving. It is most efficient if the time-periodic Hamiltonian, obtained from the stroboscopic time evolution of wave pack-

ets.
2 =]

) — p_ _ imwt
H(pxit)= 2m +V(X’t)_m:2_x Hi(p,x)e™, ~(26) C. Effective potential and multiphoton processes

We begin the discussion of quantum scattering in our
has only a small number of nonvanishing Fourier compo-models with the deep quantum regime, dominated by iso-
nentsH,, [17,45. For systems with a locally confined driv- lated resonances with a mean separation larger than their
ing, Eq. (1), where the only nonzero components are thosevidth. In the context of driven scattering where no energy
with m=0, =1, the ¢,t’) method works optimally. spectrum proper exists, the concept of resonances ought to

In ac-driven systems described by the poter(Bala rep- be made more precise. It here refers to quasibound Floquet
resentation that allows for asymptotically free states isStates, i.e., states with a long life time within the scattering
reached by performing a Kramers-Henneberger transformaegion. It is easier to understand their existence returning for
tion, see Appendix A. The time-dependent scattering theorg moment to the more familiar view of a static potential plus
sketched in Sec. IV A then applies directly. The transforma-a driving field: The potential well accomodates a finite num-
tion, however, destroys the factorization of the potential intober of bound states—in the adiabatic and diabatic limits, they
separate space and time dependences, se@GEd\s a re- are approximately given by the eigenstates of the effective
sult, the discontinuities of the potential characterizing astatic potential—which become accessible from outside by a
square well carry over to the time dependence, leading to aless or gain of photons of the driving field. Resonances as-
exceedingly slow decalfH ||~ 1/m|, as shown in Appen- sociated with a Floquet state with quasienergyare thus
dix D (see also Ref.14]). This problem is circumvented by expected in the vicinity of incoming energies
calculating the Floquet operator in theomentum gaugasee
Appendix A 1, where the time dependence is deferred to a Ein(@,njn) = €, Niph o, (28)
vector poten_tial appearing only in _the_kinetic energy. In this TABLE |. Comparison of time-independent and time-periodic
gauge the eigenfunctions of the kinetic energy, and thus th?cattering systems
asymptotic states, are plane waves with a time-periodic

phase factor, known as Volkov statg$7]. In order to per- Time independent Time periodic
form the stroboscopic \_Nave-packet propagation, where time- scattering systems scattering systems
independent asymptotic states are required, one transforms
the Floguet operator from the momentum to the acceleration Energy conserved Quasienergy conserved
gauge, see Appendix A 2. n -
Besides the numerical calculation of transmission and re- S mat“)f' Suiv S matrix: ,S“’m?”‘
v: scattering channels M, v scattering channels

flection probabilitiesT|(E) andR,(E), it has proven useful #r

to consider a heuristic dwell time in units of the peridd m, n: Floguet channels

Incoming and Incoming and
* AR2 outgoing energies outgoing energies
W(E,w)NJZO f*A/ZdX| l;b(X1JT)|21 (27) Eout:Ein Eout: Ein+|ﬁw

I=m-n integer
w=27/T: driving frequency

whereA denotes the width of the scattering regitwE; )
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FIG. 17. Dwell timeW [Eq. (27), panel(a)], total transmissiofT,, (b), and transmission§, (c) and T, (d) into the elastic and the first
inelastic channel, respectively, as functions of the incoming enEfgyor a square well with oscillating bottom, E¢L0), with V=2,
vy=0.9,L=15,2=1, m=0.5, andV;=0 (static case, dotted lifnd/;=0.2 (full), 1 (dasheg, 2 (dot-dashell Resonant energids;,(a,n;,)
are marked by vertical lines far,=1 (full lines), 2 (dashed, and 3(dot-dashef

and outgoing energies specific values ofi,,. We have found resonances for a total
numbern;,+ ny,; of exchanged photons, up to six.
Eoull @, Now) = €4+ Noyfi o, (29 In a perturbative treatment of the driving, a multiphoton

process with a net exchange bfphotons with the field,
so thatm=ny,— Ny, is the net number of photons gained or would correspond to afi|th-order term. One therefore ex-
lost during the process. While thesaultiphoton processes pects a nonlinear dependence of the resonance strengths on
appear inelastic from the point of view of static scattering,
they do not violate quasienergy conservation and therefore
are perfectly elastic in the Floquet picture. At the same time,
the Floquet framework allows one to define multiphoton pro-
cesses without any approximation. It is indispensable, in par-
ticular, in the regime between the adiabatic and the diabatic
limit where the concept of an effective static potential does
not apply. We emphasize that the concept of multiphotonw
processes is by no means new, but has been introduced ¢
early as the 1960s, in the context of laser-atom interactions a
high laser intensitie¢for a review, see, e.g., Rd#48,49).

We found evidence for this picture in the data obtained
for all three models studied, in the transmission and reflec-
tion spectra as well as in the dwell ting27). Figure 17a)
shows the dwell time for the vertically oscillating well0O)
as a function of;, for various values of the driving ampli-
tude, compared to the static case. The vertical lines mark G, 18, Resonance positions in taeE plane (dimensionless
resonances according to E@8), for nj,;=1, 2, 3. They en-  ynits, full circleg for a square well with oscillating bottorfEg.
able us to interpret almost all of the visible peaks in terms of10), v=2, y=0.9, L=15, #=1, massm=0.5]. The bundles of
multiphoton processes. A global check of this interpretatiorparallel lines indicate resonant energiés e, +n,iw, with ny,
is given in Fig. 18. All the identifiable resonancéots in =1, 2, 3(from below), related to bound-state energieg in the
the w-E plane are located on lines given by E(R8) for  static well.
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nances and their association with multiphoton processes,
however, is difficult. The reasons are complicated line
shapes arising from interference of resonances with each
other or with the background.

Our numerical method allowed us to calculate transmis-
sions and reflections separately for the individual Floquet
channels. Figure 1@) is analogous to the previously dis-
cussed one, but refers to the “elastic’h;{=0) channel
only. It shows similar structures as the total transmission, but
a general reduction of the scattering into this channel with
increasing amplitude of the driving. The corresponding in-
crease of the flow into the other channels is demonstrated in
Fig. 17d) showing the case;,=1.

All the data depicted up to now have been obtained for

FIG. 19. Dwell timeWas a function of incoming enerdy, and  the square well with vertically oscillating bottom. Since the
amplitudeV, for a square well with oscillating bottom, E(LO),  jnterpretation in terms of multiphoton processes is quantum
with V=3, L=5, 0=1=#, andm=0.5. mechanical and does not refer to the classical dynamics,

qualitative differences to the results for the two other models
the driving amplitude. This is evidenced in Fig. 19. Theare not expected. Figure 20 shows data for the smooth well
dwell-time peak heights depend in a highly nonlinear andwith oscillating bottom, Eq(12), for a selection of the quan-
nonmonotonic manner on the oscillating psit of the po-  tities discussed above for the square well. The fact that one
tential. system supports pseudointegrable, the other chaotic classical

Signatures of resonances are also visible in the transmigtynamics, has no systematic consequences for the scattering
sion and reflection spectra. Data for the total transmission ari@ this regime.
presented in Fig. 1B) in a similar way as for the dwell time The third model, the laterally oscillating square well, Eq.
in Fig. 17a). The transmissions for sufficiently strong driv- (6), is different from the previous two cases in that here the
ing show a complicated energy dependence, totally differentime-averaged potential, E¢L5), never coincides with any
from the static case. The identification of individual reso-instantaneous one. As a consequence, the diabatic and the
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FIG. 20. Dwell timeW (a), total transmissiof; (b), transmissiond, (c), and T, (d) into the elastic and the first inelastic channel,
respectively, as functions of the incoming enekgy for a smooth well with oscillating bottom, Eql2), with V=2, y=0.9, L=15, %
=1, m=0.5, andV;=0.3(full line), 1.5(dashed 3 (dot-dasheld Resonant energids,(«,n;,) are marked by vertical lines far,,= 1 (full
lines), 2 (dashed, 3 (dot-dashef] and 4(dotted; dimensionless units used.
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FIG. 21. Dwell timeW as a function of the incoming energy
Ei,, for a laterally oscillating square well, E(), with dimension-
less unitsV=—-1, L=25,A=1, m=1=%, andw=0.1 (a), 0.3
(b), 0.6 (c), 1 (d). Resonant energies;,(a,n;,) for the adiabatic
and the diabatic limits are marked by dotted and dashed vertic
lines, respectively.

FIG. 22. (a) Effective potentialfull line), (b) total transmission
Tt (full line, along abscissavs energyE;, (along ordinatg (c)
aﬁartial transmission3 (full line) and T, (dotted, for the laterally
oscillating square well, Eq6), with X>1. In all three panels, the
bound-state energies of the diabatic effective potential, correspond-

adiabatic limits correspond to different potential shapes. Thid'd to resonant energie&,(«,n;y) (dimensionless units are
allows us to check the concept of multiphoton processeg'arked as horizontal dotted lines.

from a new perspective: In Fig. 21, the peaks in the dwell

time are compared to the positions of resonances at eigemaximum inT, (c). The different signature of the resonances
states of the effective potential in the adiabatic and the diin these quantities is readily understood, assuming that a
abatic limit for a number of driving frequencies spanning thelong dwell time decorrelates the outgoing from the incoming
transition from one limit to the other. The correspondingconditions and thus drives transmissions as well as reflec-

shift of the peak positions is clearly visible. tions towards intermediate values around 0.5.
A more surprising consequence of the diabatic effective In the time domain(Fig. 23, we observe exponentially
potential shape is discussed in the following section. decaying oscillations, with opposite phase, of the populations
of the left and right half of the scattering region, giving clear
D. Tunneling at strong diabatic driving evidence of a temporary tunneling of the scattering wave

(packet between the two wells. The observed period of the
oscillation (T,,e~42X27) is in reasonable agreement with
respectively, where s is the classical time for one round the valu_e predjcted on basis of the Splitﬁﬁ@ of the.cor-

i ’ pas . ) responding eigenstates of the effective potentidlgy(
trip through the well at an energy just below its edge. In:2 5 IAE~36% 2 - N

- : . ; T ), taking into account the frequency re

these limits, scattering occurs approximately at an effeCt'V%uction by the damping
static potential. In the adiabatic case, it is the instantaneous '
state of the time-dependent potential. In the diabatic case, it
is the potential averaged over a period of the driving,
Ver(X) =T 5dt V(x,t).

The shape of the diabatic potential does not coincide with
any instantaneous one. The laterally oscillating square well, 015 |
Eq. (6), may even develop a central barrier and thus assume
the form of a double well, see E¢L7) and Fig. 14. 5

In this limit, the eigenstates of the effective potential are 01|
good approximations to the Floquet states of the driven sys-
tem. For a sufficiently deep double well, qguantum mechanics
predicts the formation of tunnel doublets below the top of the
central barrier, with a splitting that depends exponentially on
the area below the barrier. In the present case, these state 0
are resonances, so a doublet structure in the spectrum an
corresponding tunneling in the time domain will occur only
if the full width of the resonances is smaller than their sepa-  F|G, 23. Overlap of a scattering wave packet with the rigit
ration. We demonstrate in Fig. 22 that this is indeed possibl@jne) and the left halfdashed of the scattering region, vs time. The
The spectrum of the effective potentigdanel a shows a  wave packet came in from the left with an energy near the center of
relatively wide doublet that appears as a double minimum ifhe tunneling doublet visible in Fig. 22. The scattering potential and
the total transmissiortb) and in Ty (c), and as a double its parameters are as in Fig. 22.

As discussed in Sec. lll C above, adiabatic and diabati
limits of the driving can be defined as>t . andw<t_,
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FIG. 24. Phase-space snap-
shots of the same tunneling wave
. E ] P packet as underlies Fig. 23, in
a b terms of the Wigner function, at
t/T=60(a), 70 (b), 80(c), and 90
(d). The interval spanned corre-
sponds roughly to a full tunneling
cycle. The scattering potential and
its parameters are as in Fig. 22.

-0.3 -0.3

A similar phenomenon has been studied in the context oéffects reported in Ref.51] would require to superpose a
strong laser irradiation of atomic hydrogen, likewise with asecond driving with a suitable frequency, much slower than
harmonic driving but with a Coulomb potential instead of athe diabatic one that produces the effective double-well po-
square wel[50]. There, however, a high-frequency approxi- tential shape.
mation was introduced that decouples the states within the
well from the continuum. This precludes to study how this
type of tunneling process manifests itself in scattering.

In the case of a |atera”y osci”ating Squdr&rrier, a dual Although we remain mal’ginally close to the classical limit
counterpart of the effect discussed above oc¢@: The in our numerical experiments, we still expect to see first
effective potential in the diabatic limit splits into a double indications of the intricate structures of the classical phase
barrier that accomodates quasibound Floquet states within igpace, shown in the previous sections, in the quantum scat-
central well, giving rise to transport via tunneling at the en-tering. While our data are not suitable to identify the finger-
ergies of these metastable states. prints of chaotic scattering in the spectral statistics of $he

Of course, the same interpretation in terms of tunnelingnatrix [52], we are able to compare wave packets within the
through an effective central barrier must also apply to thescattering region with the corresponding classical phase-
model with explicit ac-driving term, Eq5). There, it is the  space structure.
inertia of the system that prevents its passing through the Details of the definition of the Wigner function in a dis-
center of the well at high frequency and amplitude of thecrete phase space, as it is underlying all our numerical cal-
driving. In whatever “gauge,” the absence of energy conser-culations on the quantum level, are presented in Appendix E.
vation due to the driving implies that the concept of a static The same process as in Fig. 23 is shown in Figéa24
potential barrier is inadequate. In this sense, we are her@ terms of snapshots of the Wigner function at four equidis-
dealing with “dynamical tunneling.” tant times, separated roughly by a quarter tunneling cycle.

At the same time, the observed phenomenon should\n unexpected feature clearly visible in this sequence is the
clearly be distinguished from modifications of tunneling, in-return of the tunneling wave packet near zero momentum,
cluding its coherent suppression, due to a periodic drivinghus forming a cyclic motion in phase space. This finding is
[51]. There, thestatic potential already possesses a doubleconsistent with a general analysis of tunneling in terms of the
minimum giving rise to tunneling, which can then be further Wigner function[53]: The fraction of the Wigner function
modified by the driving. Here, in contrast, it is only the driv- that tunnels moves along classical trajectories higher in en-
ing that generates, in the first place, a central barrier in aergy than, i.e.putside the separatrix emanating from the top
otherwise purely attractive potential. To see the additionabf the tunneling barrier.

E. Quantum scattering in phase space
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MICHAEL HENSELER, THOMAS DITTRICH, AND KLAUS RICHTER PHYSICAL REVIEW BE64 046218

of classical and quantum irregular models, and to come as
close as possible tealistic experimental situations, specifi-
cally in mesoscopic physics. The key ingredient, in both re-
gards, is a harmonic driving. It allows to reduce the number
of spatial dimensions to one, and at the same time, captures
the essence of most of the driving mechanisms available in
the laboratory.

We have aimed at a comprehensive treatment of time-
dependent scattering in the regime of large amplitude of the
driving. In this respect, the Floquet approach used represents
both an efficient tool for numerical calculations of the scat-
tering matrix, transmission amplitudes, and dwell times, as
well as a suitable framework to understand multiphoton pro-
cesses at strong driving. Correspondingly, we used strobo-

FIG. 25. Gray-scale plotbrightness increases with amplitude SCOPIC phase-space plots, deflection functions and dwell-time
of the Wigner function averaged over a few periods of the strobodistributions as tools to visualize and classify the classical
scopic time evolution during scattering. Classical parameters are #rattering dynamics.
in Fig. 11, andf4="7%/(L?mw) = 1/49 (a dimensionless effective We have shown that ac-driven one-dimensional scattering
quantum of action The closed bold curve is the classical separatrixSystems cover a wide spectrum of nonlinear classical dynam-
shown in Fig. 11. ics, with properties ranging from pseudointegrable behavior
via mixed phase-space characteristics up to strong chaos. We

A representative example of classical-quantum correspor;, e identified features of the classical phase-space struc-

Sggcr?ai/ne ti[{gge?]f ﬂ;eramgtg?r\glz?sor\:vrl]se feh?;’]"en (':rl‘a;?éazlsdtqres in Wigner representations of propagating wave packets.
P 1 this respect, a more quantitative analysis of quantum-

namics(cf. Fig. 11 is characterized by the coexistence of a . 1 L . .
global chaotic scattering area with a large regular isIandCIaSS'Cal correspondence in time-periodic scattering is desir

inaccessible from the asymptotic regions, embedded in it. Ir‘?‘ble: It requires _further quantum calculations in the truly
the figure, the corresponding quantum phase space is repl%(_ammlassmal regimeLG]. . . .
sented in terms of the Wigner function for the wave packet, ©On the guantum-mechanical side, we have pointed out the
averaged over a few time steps while it is mainly Iocatedro!e_ of multiphoton processes for the trgnsmlssu_)n. A strong
within the scattering region. driving can alte_r the features of the static scz;ttermg potential
In the gray-scale presentation chosen, the incoming angompletely. This has become particularly evident when con-
the directly reflected components of the wave packet stangidering asingle quantum well that, upon harmonic driving,
out as exceedingly bright regions, to the left of the scatteringpehaves like an effectivdoublewell, with features of a di-
region, at positive and negative momentum. The interactiotomic molecule.
region itself can be discerned due to a population density As mentioned in the Introduction, mesoscopic electronic
generally higher inside than outside. Superposed, one distirttevices represent promising experimental tools for studying
guishes small-scale ripples, which give evidence of the coeriven quantum scattering and for observing the classical and
herence of the Wigner function and prove strongly parametefiuantum effects discussed throughout this work. High-
dependent, from oscillations of larger wavelength inside thenobility semiconductor microstructures have already proven
scattering region. A comparison with the classical phaseideal laboratories to investigate quantum-chaotic aspects of
space portrait, Fig. 11, suggests that these oscillations agg transporf54,55. Quantum charge transport through such
signatures of the classical tori limiting the chaotic area fromycrostructures, which can be devised as electron billiards,
below, and of the regular island inside it. This is confirmedegyhiits clear signatures of the underlying classical dynamics
by our repeating, as a bold closed line, the outline of theetermined by the confinement geometry. For instance, clas-
|slac|;_d n t?}e V\agn_erl-fu(rj]c.tpn plot. ble for classical sical dwell-time distributions directly influence correlations
iven that this island is inaccessible for classical scatter "o eq quantum conductance fluctuatits .

ing trajectories, it surprises that it nevertheless shows up in . . L .
the phase-space representation of a quantum scattering WaveAn experimental extension to the time-dependent domain

packet. Evidently, it can only be accessed by tunnelin ould enIar_ge the nl_meer .Of control parameters a_nd allow
across the mixed boundary region separating the island fro r addressing th.e.”Ch var]ety of comp!ex—scatterlng phe-
the chaotic sea. Indeed, we are here not yet far inside thgoMena an ac driving provides. Interesting effects are par-

semiclassical regime where such tunnel processes would Etpularly expected for strong driving with a period compa-

exponentially suppressed. A similar case of a classical regJaP!l® to the time of flight of an electron through the

lar island influencing the quantum scattering has been res_cayte.ring region. 'I_'his regime can nowa_days.be reached in
ported in Ref[13]. ballistic mesoscopic transport: The typical time of flight

through a micron-sized GaAs quantum well with electron
V. CONCLUSION densityns=5x10"1 m~2 is of the order of 10! s. This
corresponds t¢radioffrequenciesy in the range of some 100
With this work, we have pursued a twofold intention: to GHz that have been employed in recent transport measure-
provide particularlysimplemodels that qualify as prototypes ments[4].
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FIG. 26. Model of a quantum well with tunnel barriers.
. . . 0.25 0.5 0.75 1 1.25 1.5
Mesoscopic transport experiments often involve quantumy, £

wells or quantum dots weakly coupled to leads or reservoirs

via tunneling barriers. A simplified one-dimensional model FIG. 27. Total transmissiofi,,, (upper pangland dwell timeW

is sketched in Fig. 26. The conductance of such a devicdower pane) as functions of the incoming energyfor the laterally
usually depends sensitively on ttiEerm) energy and on oscillating double-barrier well, Fig. 26 and E¢30), with V,
additional gate voltages that may change the depth or effecs —1,Lo=5,V,1=0.5,1,=6, w=1, m=1=4, and different/at-
tive width of the quantum well. Charge transport is strongly€ra) driving amplitude\ =0 (static case, dotted lingk = 0.25(full
affected and mediated by resonant states inside the well. T#®), A=0.5 (dashed ling andA =0.75 (dashed-dotted line

give an idea how an ac driving can alter the quantum trans- o o o
mission through such a device, we have computed the trans- Effects arising at even stronger driving are shown in Fig.
mission and dwell times quantum mechanically for the28 for the dwell time. New groups of peaks appear at higher
model potential in Fig. 26. The potential with rectangularincoming energy(betweenE=1.5 and 2 and betweeR
tunnel barriers is obtained by superimposing a barrier of= 2.5 and 3, which reflect coupling to resonant states in the

width 2L, with a well of smaller width 2, oscillating well due to multiphoton processes at energies
Eun,, (28) with nj;=2 and 3. These peaks show up for a
V(X)=Vo0(Lo—|X|) +V16(Li—|X]). (30) driving strength\ = 1.

The models for scattering systems treated here rely on a

After the Kramers-Henneberger transformation the time_single-par_ticle picture._ A more realistic description of ac
periodic driving leads to a laterally oscillating potential transport in mesoscopic devices, however, has to account for

V(x— \ cos@t). A similar double-barrier potentialwithout felectron—el_ectron interac.tion effects. They are particularly
a well between the barrierdias been studied in Ref56] important if one deals with transport through quantum dots
using the transfer-matrix approach for piecewise constant pdpstead of vertical transport through quantum wells with con-
tentials[57].

The effect of the ac driving on the total transmission and
the effective dwell time, Eq(27), is depicted in Fig. 27. The
different curves in both panels show the evolution of trans-
mission and dwell time as a function of the incoming energy 15
for increasing driving strength up to intermediate values of
N. ForA=0, there is a maximum in the transmission and in 3
the effective dwell time aE~ 0.4, owing to resonant tunnel- 10
ing through the static double barrier. For finite driving this
maximum is suppressed. Instead, distinct structures arise thz
are particularly clearly visible in the dwell time. They result
from photonic coupling to quasibound states formed in the
time-varying scattering potentight energiesiw below the 0
energy of the dwell time peaksTherebye, the total trans- 0.5 1 15 2 25 3 35
mission can be changed considerably, turning for instance
the transmission maximum &t~0.85 into a sharp dipinthe  F|G. 28. Dwell timeW as a function of the incoming energy
presence of an ac field. This shows that it is possible to usgiimensionless unijsfor the laterally oscillating double barrier
an ac driving for the control of transmission through quan-well, Fig. 26, for the same parameters as in Fig. 27 but with differ-
tum wells. ent driving strengthh =0,0.5,1,1.5, and 2.

20

B
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finement only in one spatial direction. Still, even for a per- Fm(Xm 1) =XmPg(t) (A5)
turbative time-periodic driving our knowledge of the role of

interactions for the conductance is rather incomplete. Moreintroducing

over, interaction effects on transport in the regime of strong : 1t

driving remain an open field and their adequate treatment a ) =mx.(t :f dt’ a(t’ (1) = _f dt’ p(t’
challenge. Again, the Floquet approach may provide a con- Py(t) Xt to 9(t), xg(1) mJi, Py(t)-

venient framework to account for the time periodicity, and (AB)
interesting physics is expected from the interplay between ]

interactions and strong time-periodic driving. This defines thenomentum gaugevhere
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n(;anonically conjugate tg,,, one obtains the Hamiltonian

where the driving now appears as a magnetic-field term in
the kinetic energy. The equations of motion generated by the

APPENDIX A: CLASSICAL AND QUANTUM Lagrangian(A7) and the HamiltoniattA9), respectively, are
KRAMERS-HENNEBERGER TRANSFORMATIONS identical to Eq.(A4).
1. Classical transformations The acceleration gaugés reached by a transformation

. . . . _ generated by
Consider a charged particle in one dimension, subject to

the total potential 1 [t
P =Py 450 | AU ()% (AL0
Vil X,1) =V (X,t) +xg(t) (A1) to

(the generalization to higher dimensions is straightforward instead of Eq(A5). It leads to the Lagrangian

The scattering potentiaV (x,t) allows for the definition of m

asymptotlcall_y_free stqtes, but may be arbltrquly time depen- Lg(x,k,t):—[5(+5<g(t)]2—V(x,t). (A11)
dent. The drivingg(t) is also completely arbitrary here, in 2

particular, it need not be periodic. In the representation in . , ,
terms of a scalar potential or thength gaugethe Hamil-  BY an additional point transformation
tonian and the Lagrangian read, respectively,

Xa=X+Xg(1), (A12)
H|(x|,p|,t)=%+V(x,,t)+xlg(t), (A2) it takes the form
and '—a(Xa,*aJ):;Xi—v(xa—xg(t),t) (A13)
L|(X|,5<|,t)=g'x,2—V(x,,t)—X|g(t)_ (A3)  Which implies that
Pa=MX, (A14)

They lead to the equation of motion
is the corresponding momentum canonically conjugate, to

. 1 . .
X=— E(V,(XI H+g(t), (Ad) The transformed Hamiltonian thus reads
1
— 2
with V' (x,t) = aV(x,t)/dx. Ha(Xa,Pa ) =50 Pat VXa=Xg(1),0). (A1)

The driving term can be moved from the potential to the
kinetic energy, by a gauge transformation with the generatThe equation of motion in the present frame is now lacking
ing function an additive driving term,
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Xq=— %V’(Xa—xg(t),t). (A16)

Equation (6) is retained by settingV(x,t)=V,f(x) and
g(t)=—gEsin(wt).

2. Quantum transformation

Starting from the Hamiltonian(A2), the Schrdinger
equation in the length gauge reads

9 12 9P
|haz/;,(x,t) 2m +V(x t)+xg(t) | (x,1).
(A17)
By a shift in momentum, cf. Eq/A8),
[
'//I(X!t):eXF{ - gng(t)] Pm(X,1), (A18)

one arrives at the Schidinger equation in the momentum
gauge,

2

+V(x,t)}¢m(x,t),
(A19)

1 (A 9
S n(xt)= [Zm[l == Pg(0)

consistent with the classical HamiltoniéA9) in this gauge.

The quantum transformation leading from here to the ac-

celeration gauge,
Ym(X,1) = exp{ { f dt’ (pg(t'))?

Pa(X,1) (A20)

X7 &x’

comprises both a change in phase corresponding to the s
ond term in the generating functidA10), and a coordinate
shift, cf. Eq.(A12). The transformed wave functiaf,(x,t),
after replacingx—x,—X4(t), solves the Schdinger equa-
tion

1(h 9 2
tﬁa(xa.t) [2m[| e pg(t)]

+V(Xa_xg(t)1t) wa(xalt)v (A21)

in accordance with the classical Hamiltonigkil5s).

APPENDIX B: POWER-LAW DECAY OF THE
DWELL-TIME DISTRIBUTION FOR THE
VERTICALLY OSCILLATING SQUARE WELL

The resonance condition for trajectories in the vertically

oscillating square well that neddperiods of the driving to
cross the well, readgf. Eq. (10)]

PHYSICAL REVIEW E64 046218

~ 1
p|=|—,

w

1=1,2,.... (B1)

see Fig. 1 in Sec. lll A.

Whether a trajectory is trapped in the well depends further
on its kinetic energyl =p?%/2. If Vo—V;+T>0, it can leave
even at a minimum of the driving. If, on the other hand,
Vo+V;+T<0, it cannot even escape at a maximum. Only
in the intermediate regime-V,—V,;<T<—V,+V,, open
andclosed windowslternate in time, during which trajecto-
ries with kinetic energyl can leave or not. Their respective
durations are

At‘closed: 'y~|5, At‘open:(l_'}’)’ls’ (B2)
whereP =21 is the dimensionless period of the driving, and
the relative measure of the trapped initial conditions is

1 2|Vo|—p°
y=1— —arccos—

7 (B3)

The condition that there exist both open and closed windows
implies a lower bound on the resonant momerpa/2

—|Vo|+V,=0. Since the resonant momenta decrease with
orderl, this amounts to an upper bound Qn

1<l 0= int( (B4)

1 )
m\2(|Vo| = V)
Equation(B4) shows that in order to create a large number of

resonances, a1, |Vo| —V; should be small, that is, the
maximum of the oscillating potential should almost reach the
edges of the static well.

If trajectories with momentunp, inside the well have
entered during an open window, they will leave immediately
once they reach the other side of the wlig. 3). For a

ec-

Scattering trajectory, in order to remain trapped for a longer
time, a small deviation from the resonance condition is
needed,

p.=(1+e)p, (B5)

where e can have either sign, but must at least be so small
that the corresponding interval aroupg does not overlap

with the adjacente neighborhoods ofp,.;. This means
e<1/l.

Even forBLe, in particular ife<1, only a small fraction
of incoming trajectories will remain temporarily trapped
(Fig. 29. The seeked dwell-time distribution therefore de-
pends on two factors, the probabiliB(e) to take the long

sojourn and the distributionﬁ’(ﬂls) of dwell times for the
long sojourns, given the distribution ef They will be dis-
cussed in this order.

In order to head for a long sojourn, a trajectory that en-
tered within an open window must be in a closed window
once it hits the opposite side of the well for the first time,
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of the trajectories in the bundle. The remaining trajectories,
with weight 1-P(n, .), leave at the “next exit,” i.e., after
n'.=n ,+1 reflections.

It thus turns out that the number of reflections, and with it
the dwell time, is deterministically related to—up to the
choice betweem/ . andn/ . However, as only high values
I>1 andy=<1 are of interest, we replace those two reflec-
tion numbers, with small relative error, by a single value,
their weighted meaiinot necessarily integgr

! ! 4 n Y(1+8)
v =P(n/ Jn| .+ P(n,’g)nm;:—I£ , (B10)
to obtain the dwell time
FIG. 29. Schematic space-time representation of a bundle of - 2L 27y
tl,s: Ve~ = . (Bll)

almost trapped trajectories, with near resonant momeﬁgom see
Eq. (B5). While all of the incoming trajectories with resonant mo-
mentump; (light gray band leave at the next open windo(old

sections of the horizontal lingef the potential, part of those with we can assume the momentum inside the well to be Approxi
f)lﬁ (right darker banghead for a long sojourn. They leavieft pp

darker banglonly after, in this case, six or seven reflections at themate'y equidistributed if the distribution of the incoming

potential steps, respectively, represented stroboscopically within thE10mentum is smooth_ on a S_caﬂ?e— Pi+i- Equation(B_’S)
same period of the driving. then implies that alse is equidistributed, and we obtain the

dwell-time distribution for long sojourns
which in turn defines a time interval for the initial conditions,
see Fig. 29. Its duration coincides with the advance or delay,

after crossing the well once, of trajectories Wﬁha with
respect to the resonant trajectories wiih

pl,s &

Considering only narrow windows<1 around eacip, ,

-1
P(e)~

P(t|ls)= as 5 (B12

2777?
- - By means of Eq(B11), € is replaced byt also in Eq.(B7),
_ ol o 2dle y q(B11) P M 9.(B7)

l,e

= ———-—= . B6
pp. 1te (89 ~ 2wy

’ P(D)=le=—, (B13)

The relative measure of these initial conditions is thus t

1 e so that finally, for thdth resonance,
Pe(e)= = =1, (B7) |
P(1)= P(T|IS)P,S(T)~,f—3. (B14)

It cannot exceed unity since<1/.

In a stroboscopic representation, the narrow bundle of tra-
jectories on a long sojourn is advancétklayed with re- ~ Equation (B14) shows that higher resonances contribute
spect to the “trailing(leading edge” of the closed window, Stronger to the dwell-time distribution.
by 1, . per passage across the w@lig. 29. The minimum The unknownt-independent proportionality factor in Eq.
number of reflections necessary to reach the leadiaging) ~ (B14) depends on the distribution efand with it, on that of
edge of the precedingsubsequentopen window and to the incoming momenta. Since the respectiweneighbor-
leave the well therefore is hoods around the, have been defined so as to be disjunct,

5 their contributions to the total dwell-time distribution can be
P (tclosed)_. ('}’(1+8)
n =it ——|=int| ———.

superposed independently,
= (B9) perp p y

tl,s

_ _ PH=2 P(H)~173 T>1. (B15)
This occurs for a fraction [

v(l+eg) (7(1-1—8)
—Int
| le

The same reasoning, with only minor modifications, ap-
plies also to the distribution of dwell times in “domino bil-
liards,” i.e., zigzag chains of rectangular billiard33]. A
:1_( 7’(1+8)) mod 1 (Bg) More general derivation of thie 3 decay of the dwell-time

le distribution is presented in Ref31].

P(n/)=1-
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APPENDIX C: CLASSICAL MAP FOR SCATTERING AT V,, the well depth(or barrier height ifV,>0). In that refer-
A LATERALLY OSCILLATING SQUARE WELL OR

BARRIER ence frame, the momentum i, =p,— Py(tn+1), denoting

py(t)=—NXsint, the velocity of the well in the acceleration
We describe the scattering at the laterally oscillatinggauge. By going into the length gauge and defining the aux-
square well(6) in terms of a map from one encounter with jliary variable
either one of the moving walls to the next. It is thus based on
a Poincaresurface of section that depends on tiftiee two
walls can be conceptually merged into one by taking the
reflection symmetry of the system with respect to the center

of the well into account Accordingly, we denote by,,, p,,  the various cases reduce to two:

T,, the position, momentum, and time, respectively, at the Ti(Pin)<V,: reflection
nth collision, scaled as in Eq8). In addition, we introduce

- 1
in—sgnVo)— 5 ) (Co)

~ ~ (3
Vn:|V0| E_

the binary-valued auxiliary variableg . It takes the values 1 tn+1=1n, (€7
(0), if immediately after the collision, the trajectory contin- ~ ~
ues inside(outsidg the well. For completeness, we include Pin+1= ~Pn- (C8)

the case of a moving squabarrier.

The calculation ofX,.1, Pps1, tney @andiy., is per-
formed in three steps: ine1=1—ip, (C9

Calculation of t,, ;. We define

e Pins1=591P n) VPPt 2(2i— 1) V. C10
F* (%o, Pnotn ) =X, + Pa(T-T) +X* (1), (CY Pin+1=SORIn) Vpint 221~ Vo. (€10

Ti(py ) >V, : transmission

For a trajectory entering the interaction region from the left

where at phase¢ of the driving and with momenturp>0, the
%= ()= = 1+ Xcost (c2 initial conditions arety= g, Xo=x" (1), Po=p, andip
=0.
are the positions of the right and left wall, respectively, at
timet. The zeros of “ (X, ,p,.t,:t) are the times when a APPENDIX D: FOURIER EXPANSION OF THE

freely moving particle, starting at time, and positionx,, LATERALLY OSCILLATING SQUARE WELL

with momentump,, crosses the right or the left wall of the ~ The temporal Fourier series for the laterally oscillating
well. Therefore, possible candidates g, ; are determined ~Square well potential is defined by

by V(x,1)=V (L —|x—\ cog wt)|)

Fi(xnipnatn;t§+1):0’ (ox) ap(X) *
= + 2, [aj(x)cog wt)+bj(x)sinwt)].
so that 2 =1
T f T+ 7 (Dl)
ther= min (t 1 q,t,401)- (CH
The1>1n Due to time-reversal invarianc¥,(x,t) =V(x, —t), the sine

coefficientsb;(x) vanish and
The zeros:tril Eave to be calculated numerically. If the 5 1
in.equalitytnﬂ>tn cannot be fulfilled, no furthe( collision aj(x)= _f dt V(x,t)coqj wt), (D2)
with the walls of the well takes place and the trajectory con- TJo
tinues freely tox— sgn(,,)> with momentump,, .

, ~ o= for all positive integer$. The time average of the potential is
Calculation of x,,4,. Once the timet,,; of the n+1st

e ; , given by
collision is known, one has immediately,
~ -~ - ~ — a(x) 1 (T
Xne1=X"(then) if thi=to. (CH V(x)= 2 :ffo dtV(x,1). (D3

Calculation of .1 and i,; ;. The fate of a trajectory en- Introducing 7= wt and using 8(a—|8|)= 6(B8+ a)— 6(B
countering a moving potential step depends on whether it-4) one has

comes from the low or the high side of the step, and on its
momentum relative to the step. The first condition is encoded
in i,. The second refers, specifically, to the kinetic energy aj(x)=—(

Ti(p) = (p))?/2 in the reference frame moving with the well,
i.e., in the length gauge defined in Appendix A, compared tovhere

n
I

=1, (D4)

J
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2w
If=f d7 6(x*L—\ cost)cosjr=I(*L). (D5)
0

Hence it suffices to calculath*. The Heaviside function
restricts the integration range in E@5) to x+L>\ cosr.
There are three cases:

0, X+L=s-—\,

f 2drcosjr, —N<X+L<\,
= 71 (D6)
2

drcosjr=2765,, X+L=A\.
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As the potential, Fourier expanded in E§.1), has finite
discontinuities, one expects a slow algebraic decay of its
Fourier coefficients. Indeed, according to EQ13),

1
laj(x)|~~. (D14)

J

The same applies to the coefficient€.2y,(X)=am/(X)
Fibm(x) of V(x,t)=37__.cu(x)em™", ie., [cn(X)]
~1/lm|. Since in the Hamiltoniaii26), the kinetic energy is
time independent, one concludes for its Fourier coefficients,

1
IIHm(x,p)Il~m, m#0. (D15)

For the second option, the integration range is given by the

solutions ofx+L =N\ cost, namely

X+L
T4 =arccos———

X (D7)

, To=2mT—Tq.

Therefore in this case, using arccols€ 7— arccos(-Xx),

X+L N 2 | X+L
, I-=—j—5| JarccoT

lg =2 arcco$ — ——
o acco(s N

J

(D8)

wherej=1. All three cases can be summarized as

N X+ L
lg =2mO(x+L—N\)—26(\—|x+L|)arccos — )
(D9)

J

N 2 B X+L
I =—j—0()\—|x+L|)smjarcco /I (D10)

With Eq. (D5), this implies in particular

l§—lg=2m O(L+A—|x)=2>, 6(A—|L*x|)
+'_

L*Ex
) (D11

Xarcco$——|.
5

Finally, with the help of Egs(D3) and (D4), the time-
averaged potential is obtained @®e Fig. 14

V(x)=v( O(L+X\—|x|)

—% E_ 0()\—|Lix|)arcco%ﬂ)). (D12)

A

After scaling according to E(8), this is equivalent to Egs.
(16) and(17). Likewise, forj=1,

aj(x)=— 12—;/ Z O(N—|x= L|)sir{j arcco%%”.

(D13

APPENDIX E: DEFINITION OF THE WIGNER FUNCTION
FOR DISCRETE CONFIGURATION AND MOMENTUM
SPACE

The definition of quantum-mechanical phase-space repre-
sentations depends on the topology of phase space. This is
obvious for the Husimi distribution, through the dependence
on phase-space topology of the coherent states on which it is
based, but it is also true for the Wigner function. Consider
first the case of action-angle variablpsand 6, where @ is
cyclic so that the phase space assumes the topology of a
cylinder, implying discretization o, p,=7%I. A naive appli-
cation of the definition of the Wigner function for a plane
phase space,

1 * 1 A—ipllh % o o'
W(p,0)=m - dg’' e 'P W 0—? W 94‘?

(ED)

taking the periodicity of the wave functiony(60+2)
=(0), into account, results in

- h
W(p,0)= 2 w|<e)6(p—§|), (E2)

)

Wi(0)= 2 exp 2l 0)§5 1y, iz, (E3)

|'=—o
where ), = (27) " Y?[3"d g exp(—il 6) /() is the action rep-
resentation of/( ).

This Wigner function has support also at unphysical, half-
integer values of the action in units éf However, due to
the parity

Wi (6),
—W(0),

| even,

(E4

it exhibits alternating signs at alternating valuesl af the
region = #<<2sr. Any coarse graining of the action on the
scale off will essentially remove all structure there, while
all the relevant information is already contained in the other
half of angle space.
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The redundancy can be removed by an evaluation of th&he Wigner function now has support only at physical values
angle integral in Eq(E1), more appropriate to the cylindrical of p,
phase space, restricting the integration to a single periad of

oo

[58]. The choice of the limits of integration is then deter- _ _
mined by the requirement that the Wigner function be real W(p, 6) |:2_oc Wi(0)8(p—2mhl), (E6)
valued. It leads to the modified definition
where
W(p 0)=—1 " do e“p"”ﬁzp*(a— e—,)zp o+ ). -
27h ) 2 2 Wi(6)= > e”,ﬁRu'a (E7)
(E5 I'=—o
|
’IZT7|’/2T)0|+|’/21 I even,
Ri={1 & (-1"., - (E8)
’ — _ Yo in 19— (1" y | odd.
T |"+1/2wl7| 12— (I +1/2)'r/f|+l 2—(1"+1/2)
|
The removal of the spurious, half-integer values of the action (I"y= 8017 1) modN (m’'|m)= (' — m) modN »
and the rescaling of the relevant part of phase space have (E1D
been achieved at the expense of an additional summation in
the direction of the main diagonal of thgI(’) lattice. where 8, moan IS the N-periodic Kronecker delta. A useful

Another situation frequently encountered in the quantunproperty of this setup is that the transformation between
mechanics of classically chaotic systems requires to definthese two bases is identical to the discrete fast Fourier trans-
Wigner functions on a torus: the quantization of maps of thormation as defined in most numerical librar[€s].
square with periodic boundary conditions, for example, the In order to adapt the Wigner function to this doubly dis-
baker[59,6(] or the cat magd61]. Here, the periodicity of crete phase space, we start from the foib) found for
each variable entails the discretization of the eigenvalues dction-angle variables, substituting directy=7%1 and re-
the other, canonically conjugate one. A second, more practplacing the limits of integration by the corresponding range
cal application is the numerical treatment of spatially ex-of x,
tended systems, using alternately a box with equidistant, dis-
crete positions in configuration space and plane waves with 1 (Y2 i s )
periodic boundary conditions in this box for representation. Wi(X)= mﬁuzdx e #* ([x—x"/2] modL)
Independently of applications, discrete phase spaces may
also be considered a laboratory of quantum dynamics in its X ([ x+x"/12] modL). (E12
own right[62].

Specifically, we require periodicity in positiom(x+L) Discretizingx as well leads to
=(x) and in momentumg(p+M)="7(p). This implies, o1
respectively, discretization of momentum=2=#%l/L and 1 Im’ m
positionx,,= 2Am/M. Assuming the entire phase space of ~ Vim=5 = 2 ex _ZW'W) < m+ - ‘/’>
sizeL M to accomodat®& Planck cells, the quantization con- m=oNE

!

dition m’
LM=27NA (E9) . )
Under the sum, we switch to the momentum representation
restricts the quantum of action to the discrete valdies 1 N/2—1 m
=LM/(27N). If we place the origin in the center of the Wl’m:_ﬁ E ex;{ Zwi[l’—l”]—)
(x,p) “unit cell,” we find as admissible values of position 27hN = N N
and momentum, p;=IM/N and X,=mL/N, [|,m T m’
=—N/2,... N/2—1, respectively. The two corresponding Xexy{ zwi[T_@_)“ |1y,
baseq|l)}, {{m)} then obey the relations N
(E19
(I|m)=iex;{—2wi Iﬂ) (E10  and transform the momentum indicds=1"+1", —N=<k
N N <N-1, andk’=1"—1", —=N/2<k’<N/2—1,
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N-1 N/2-1

1 K'm By another renaming of indices it can be cast in the form
Wim=5 7N > > exp2mi——
27N «Z5N W ST N 1 Vet 'm
N2 1 kK m'|/k+k’ Won=5— 2 expg2mi W)
X z exp 2|z — || —|{ —%— m fadN/z
m'=—N/2 2 N 2 ©
' N—-1 1
< k—k > (E15 I+N/2-1 sin( N I”+§ ’77)
x 2
I"=1—-N/ : "
The inverse transformatiod, = (k+k’)/2, 1"=(k—k")/2, N2 sin N | ) 77)
shows thak andk’ must have the same parity in order that
I andl” be integer, a consequence of switching to diagonal I’ , 1 I’ , 1
coordinates in a square lattice. I+ 2 1"+ 2 g\ - 2 "+ 21/

If kandk’ are botheven them’ summation in Eq(E15
reduces to a Kronecker delta that restrigtgiving (E18

1 Mt 1'm This relation again shows a close similarity to the corre-
WI,m:2 % 2 exp 2l N |+ ¥ l_ 2 sponding(oddd) result for a cylindrical phase space, cf. Eq.
T = N2 : e -
even (E8), i.e., there appears an additional summation parallel to

(E16  the main diagonal of the momentum lattice, with an algebra-
ically decaying kernel. In contrast to E@8), however, here

: , 7 thel” summation need not be truncated in a practical evalu-
k:21.+1' the sum ovem’ no anger leads to a solution ation since it runs only over a single period of the momen-
'OC"?" ink. The result, after removing the remaining asymme-y, lattice (continued periodically, if requirgdIn the limit
try in the boundary terms, i64] N—oc, Eq. (E8) is recovered.

N—1 1 By the symplectic symmetry of the construction, see Eq.

N/2—1 11m sin(T{l i— E}w> (E1D), it is clear that an analogous derivation will yield ex-
2 ex Zwi[l —-j- _} m_) - _ pressions for the Wigner function in terms of the position-
m = N2 2| N sm( 1 1} ) representation state@m|y), essentially identical to Egs.

in complete analogy to EqES8). If they are bothodd, say

== (E16) and (E18. A generalization to nonpure states is
readily achieved by replacing)(| with the density opera-
(E17  tor.
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