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Phase mixing, induced relaxation, and chaos in one-dimensional dynamical systems
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This paper investigates the mechanism of induced phase mixing, which leads to effective dissipation in
classical nonlinear dynamical systems with a fast modulation of the potential. The suggested model can be
applied to a classical dynamical description of cold atomic clouds in optical traps. We show that the parametric
nonadiabatic modulation of the laser intensity can provide a tool for dynamical control of the effective
relaxation in such systems.
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[. INTRODUCTION traps, occurring due to the partial reverse of dephasing in
anharmonic potentials. The echo effect was achieved by a
This paper explores the effect of induced dissipafib®]  parametric modulation of the potential by sufficiently short
occurring in nonlinear dynamical systems subjected to @ulses. As we show below, a complex time structure of the
nonadiabatic time-dependent external field. A particular apmodulation of the potential may cause effective dissipation
plication of this effect is the coherent control of atomic sys-in an atomic system depending on the parameters of the
tems in off-resonant dipole optical traps. We show that thenodulation.
phase-space density, the effective relaxation rate, and the en- We show that the relaxation rates and effective energy
ergy diffusion Coefficients can be Contro”ed by means Of théjiffusion coefficients associated with this mechanism can be
nonstationary external potential. controlled by adjusting the time profile of the laser intensity.
Our previous papdrs] addressed the effect of increasing One Should note that the dISCUSSQd effeCt Should genera"y
the phase_space dens@egeneracy degrkéor an atomic O.CCl:Ir in. any dynamical system with a SUfﬁCiently low initial
system in the nonadiabatic regime. In this regime, a specifi€issipation.
mechanism of relaxation of the average atomic distribution
has to be considered, since the dynamical time scale may not Il. MODEL

be much longer than the relaxation time. We showed that in Following the experimental situation described eaflr

the nonadiabatic case the phase-space density can be (fa assume that after an initial cooling to temperafTiréhe
creased by the nonlinear effects of atomic breathing oscillagiomg are transferred into an optical trap with a large detun-
tions due to the instability of such oscillations with respect toing and that they are located near the minimum of the opti-
the initial conditions. This relaxation mechanism is related to.5 'potential. The temperatufieis assumed to be higher than

the phenomgnon '."?OW” as “phase mixing,” and doefs Nothe Bose-Einstein condensation transition temperalyre
require atomic collisions. This effect opens up the p055|b|I|tySinCe the detuning is large, the dissipation effects are small

of achieving fast nonadiabatic control of the onset of Bose 4 will be disregarded. We consider the case of tempera-

tI?(l:r{:jtttil;pcondensat|on in an atomic cloud loaded into an opg,resT much larger than the energyw, of the atomic os-

. . . cillations at the bottom of the potential. Consequently, no
The experiment of Ref.4] reported the optical trapping ¢,antum dynamical effects are taken into account. On the
of a Bose-Einstein condensate. An important experiment

Sl ) X ther hand, the temperature should be low enough to insure
observation in Refl4] was that condensation occurred in the hat the atoms do not escape from the potential well. The
optical trap even when it was loaded with noncondense '

. ffective potential is approximated as a one-dimensional os-
magnetically trapped atoms. The authors suggested that thigaior with weak anharmonicity and time-dependent fre-
phenomenon is related to the effect of increasing the phas%fuency given by

space density of the atomic system with the adiabatically
changing shape of the confining potentiél]. We showed mo(t)2x?  my(t)x*
that a similar effect of phase compression should also take U(x,t)~ 2 4 @
place for a parametric modulation of the anharmonic optical
potential[3]. One needs to take into account some relaxatiorwith harmonic frequencyw(t), anharmonicity parameter
mechanism in order to circumvent the conservation of phase(t), and atomic massn. Note that nonlinear dynamical
volume imposed by the Liouville theorem. In RES), it was  systems with dimensionalitp>1 can exhibit a chaotic be-
assumed that this relaxation mechanism was provided blgavior even in time-independent fields. In the cBsel and
atomic collisions. with static external fields, the chaotic behavior is absent due
In this paper, we show that an induced dissipation mechato the complete integrability of one-dimension@lD) dy-
nism should exist in nonlinear dynamical systems subject tmamics systemg8]. However, chaotic behavior can occur in
a suitable time-dependent external field. This effect is relatedD systems with time-dependent external potentials, also re-
to the recently experimentally observig] and theoretically ferred to as 3/2D dynamical systellg. The 3/2D situation
predicted[7] echo effect of squeezing oscillations in optical is a limiting case when the chaotic regime may exist for
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certain parameters of the dynamical system and a certawith the Fourier componenjs, obeying equations of motion
time modulation of the potential. However, this case is anain a form familiar from time-dependent perturbation theory
lytically more tractable. in quantum mechanics,

The time evolution of the distribution function is de-

scribed by the Liouville equation Ip A
g q =2 (KLo+ i, ®)
dp P dp
—+ — ——(mw’x+mnx3) —=0 2 i oLV i
gt ' m ox p where the matrix elements of the Liouville operator are given

by (k|L|n)=(1/27)[3"d® exp(—ik®)L exp(n®). Expand-
We introduce the phase space polar coordinbisd ® by ing the non-adiabatic contribution as

2 + o

;—m=lwsin2®, V(1,0,H)= 2, Vi(l,t)expin®), 9
n=—o
)
mw?x?  myx* we obtain the matrix elements of the Liouville operator in
+ =|lwcog 0. the form

2

In terms of the coordinates given by E®), the equations of (n[Lolk) =N,
motion are (10

LK = (n—K)Vy (1)~ oD
)= 5= le®]sin20),
@ Note that the matrix elements of the Liouville operator with
a1 d (4) respect to the angle variables are still operators with respect
-2 to the action variablegl]. Introducing the new variableg
T dt[w(t)]l c0g20), as n
In the limit of small anharmonicity the approximation pn(l,t)y=¢, (1, t)explin®d),
11
Oh~w| 14> 7 @(t)—Jtdt’Q(t’)
(D~o 4 Mw? 0 ’
is valid. the equations of motion given by E) reduce to
In terms of the action-angle variables, the Liouville equa- »
tion takes the form2,1] i &tn =k;n (kIL1|n) g exy —i(n—k)®]. (12
dp . .
- =(LotL1p, (5)  Substituting the expression for the nonadiabatic perturbation
operatorV from Eg.(6) into Eq.(10), we obtain
where the Hermitian operatots, andL, are given by A P No(1)
(n|L1In+2)=2V,(l) =——(n+2) ,
g al al
Lo=iQ(1t) -5, . (13
R J V5 (1)
(nLaln=2)==2V5 (1) -~ (n=2) ——,
fo( ( N 9 IV I ) 5
1=(=1 a0 adl  al 90 )’ © with V,=V* ,=—i[1/dw(t)](d/dt)w(t). Making use of
Egs.(12) and(13), we obtain a set of dynamical equations
1 d ) for the distribution function with appropriate initial condi-
V('@)-m&(w(t))' sin(20). tions.
Following Ref.[2], we expand the distribution function in a ll. INDUCED RELAXATION IN 3 /2D DYNAMICAL
Fourier series in the angl®. Due to the periodicity of the SYSTEMS
d:\s/g:]btl;tlon function with respect t®, the expansion is We analyze the nonequilibrium energy distribution in the
9 y case when fast squeezing oscillations are present. As shown
+oo in Refs.[3,5], the average phase-space volume is not con-
|.®t)= | H)exp(in®), 7 served for adiabatic modulation of the optical potential. This
g ) nzz—oo poll.Dexin®) @ effect is due to relaxation which does not have to be speci-
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fied in this regime. In the nonadiabatic regime, a similar t

effect is expected, but in this case a specific relaxation (exr[in(b])~exp[in(d>)]exr< - ;), (16)

mechanism must be present. We consider a collisionless gas '

of atoms in an anharmonic optical trap with a fast parametriGyith 7%= 1/2r.n%e2 (512). To estimate a lower bound of

modulation of the optical potential, and show that there eXyhe relaxation time, we assume that= 7, and obtain

ists a relaxation mechanism arising from instabilities of the

atomic trajectories with respect to the initial conditions. Such 1

a mechanism is related to phase mix|ig. 7 t=—ne (4l 7). a7
As shown above, in a potential with quartic anharmonic- V2

ity the Liouville equation for the nonequilibrium distribution The estimatd 5 2)%(1/w2)<5E2>=T2/w2 yields

function can be presented in action-angle variables in the

form of coupled dynamical equations for the different order 11

Fourier components of the distribution function or coher- P oK

ences. In order to solve the equations of motion, the infinite @n

chain given by Eq(12) has to be broken at some point. This \yhereK = 7T/mw*, according to our previous results].

is analogous to the procedure of breaking the high-order cor- |y order to simplify the calculations, we will break this

relations which is necessary to obtain closed-form kineticchajn at the fourth order Fourier component or coherency in

(18

equationd 2]. _ _ _ Eq. (12). Then we obtain

We are interested in the time evolution of the coherences
averaged over a sufficiently long time interval. Due to the i d N .
nonadiabatic terms, the action acquires small but rapidly os- ==~ 57 (2U2¢2—2U23),
cillating contributions ad =(1)+ 8l. Correspondingly, the
phase also acquires such contributions das (®)+ 5P. A

J J Jd
This leads to a dephasing and decay of the high-order corre- =2Uq ot 2U§(9—| ¢4—4(7—|(U§ W), (19

"t

lations averaged over the ensemble. The dephasing origi-
nates from the rapidly oscillating phases on the right-hand o P 9
side of Eq.(11), which lead to a decay after averaging as i o"_t4~4UZE lﬂz—za—l(Uzlﬂz),

t whereU,_=V,cexd —i(n—K)®]. In the last expression of
exdin((®)+ 5‘D)]>“<exp< inj dt' [1+e((l) Egs.(19), we have neglected the coupling of the fourth co-
0 herency to higher-order coherences, and thus obtained a
closed set of equations for the first four coherences. Note that
+ 4l (t'))]) > (14 the truncation procedure is stand4g], and is necessary in
order to obtain a closed set of equations for the lower corr-
elators. Essentially, it is justified by the assumption that
where £ =3/4(p/mw?)=const, and the averaging is per- higher-order correlations decay faster than the lower-order
formed over fast fluctuations of the action. It is knopd] ~ ones. Expressing, in terms of ¢, and substituting back
that if the distribution in phase space is sufficiently smoothjnto Eq.(19), we obtain a closed set of equations fy and
the correlationg 61 (t) 61 (t+ 7)) decay rapidly in7 due to ¥, in the forms
the dephasing. This condition is naturally satisfied in our

quasiequilibrium systerf3,7]. In the limit 7> 7., wherer, ‘9_%2 i(D (Uil// )

is the typical correlation time, the correlators can be approxi- gt g\~ arop

mated as({4l(t)dl(t"))~(s1?)r.5(t—t"). Note that the (20)
dephasing can be partially reversed by means of a short- 3_’#2_

9 ] 9
——2IUZEI//0+E Dz(l)ﬁwz)_rzlpb

pulse modulation of the potential, leading to an echo effect ot
[7]. As we show below, a more complex time dependence of
the modulation leads to an effective dissipation. After averwhere

aging over a time interval greater than the correlation time,

we obtain Do=87|U,[%
D,=47,|Uy/%, (2D

<ex+nefdt’ﬁl(t’)}> aU,|2

0 I',=8r, -
%ex;{— %”zszfotdt'fot dt’( 5'“’)5'“"))}' (19 Note that the relaxation time, enters Eq.(21) due to the

exponential decay of the phase given by E2f)). From Eq.
(20), it follows that the second-order coherengy(t) decays
which leads to with a ratel’, given by Eq.(21). The higher-order coher-
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ences decay even faster, since they depend on higher powers V. CONCLUSION
of the relative phase, as shown above. Due to this behavior

the angular dependence of the distribution function decaysIh -Ir;zlrflirﬁggrer d'”&’:;ti'g;tid sttheemiﬁ(saﬁtb% fclgguf:dngrliascli?;tt)gt?c
and the average distribution function becomes only a func:. y Y 10Je ) )
tll{ne-dependent external fields. Applications of interest might

tion of energy. This is analogous to what happens as a S to coherent control of atomic systems in off-resonant di-
of virtually any relaxation mechanism in the adiabatic re- : . y
pole optical traps. This work showed that the phase-space

gime (but for a nonaveraged distributiprirherefore, the av- nsity. the effective relaxation rate. and the enerav diffu-
erage phase-space distribution experiences relaxation due ‘?8 y, the ’ 9y
sion coefficients can be controll¢fl] by means of a nonsta-

the non-adiabatic phase-mixing effects considered above. tionary external botential

The relaxation rate and the effective diffusion coefficient y P '
for zero-order coherency are determined by the time-
dependent external potential acting on the dynamical system.
Therefore, the relaxation process depends on the time profile
of the external potential acting on the dynamical system, and The authors acknowledge support from the Department of
can be effectively manipulated by changing this time profile.Defense and the National Science Foundation.
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