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Phase synchronization and suppression of chaos through intermittency
in forcing of an electrochemical oscillator
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External periodic forcing was applied to a chaotic chemical oscillator in experiments on the electrodissolu-
tion of Ni in sulfuric acid solution. The amplitude and the frequen&) (of the forcing signal were varied in
a region around) = wy, Wherewy is the frequency of the unforced signal. Phase synchronization occurred with
increase in the amplitude of the forcing. R@fw, near 1 the signal remained chaotic after the transition to the
phase-locked state; fd2/w, somewhat farther from 1 the transition was to a periodic state via intermittency.
The experimental results are supported by numerical simulations using a general model for electrochemical

oscillations.
DOI: 10.1103/PhysRevE.64.046215 PACS nuni)er05.45.Xt, 82.40.Bj
I. INTRODUCTION harmonic entrainmeriB8]. The chaotic electrodissolution of

copper was suppressed by periodic modulation of the circuit
Synchronization in dynamical systems has received conpotential, and period-1 and period-2 oscillations were ob-
siderable interest in various fields of science involving physi-served[39].
cal, chemical, and biological systems. Several types of syn- In this paper we present experimental results on the ef-
chronization have been investigated including completdects of periodic forcing of a chaotic chemical oscillator, the
[1-3], phasd4], lag[5], and generalizefb] synchronization electrodissolution of Ni in sulfuric acid solution. The dynam-
and they can be treated in a unified framewprk ics of the system are investigated over a range of forcing
Periodic forcing of a chaotic system is a type of unidirec-frequency and amplitude of the applied potential. The phase
tional coupling that can produce phase synchronizgi8in  of the chaotic current is compared to that of the forcing.
For phase synchronization only the locking of the phases ophase synchronization is shown to occur at low amplitudes
the chaotic and driving signals is significant, while no re-of forcing. At higher amplitudes the transition through inter-
striction on the amplitudes is imposed. The determination Ofnittency from chaotic to periodic motion is analyzed. The

the phaseand amplitudg of a chaotic system is nontrivial oy nerimental findings are supported by numerical studies us-
[9,10]; nevertheless, the different approaches allow the de

! . . ing a general electrochemical model.
scription of phase-locking phenomena in a reasonable way.
Phase synchronization can be defih@¢las the appearance

of a certain relation between the phase of a system and that

of an external force, while the amplitude can remain chaotic. IIl. EXPERIMENTAL SETUP

Phase s_yntho_nization has been experimentally_ verified in A standard electrochemical cell consisting of a nickel
electronic circuit§11-14), laserd 15—17, plasma discharge working electrode(Aldrich, 99.99%¢, 2 mm diameter a

[18], and biological sy_stem[i[9,2(]. , Hg/Hg,SO,/K,SO, reference electrode, and a platinum
The study of chaotic systems under the action of a wea esh counterelectrode was used. The electrode is embedded

forcing signal has also been motivated by the developmentq epoxy and reaction takes place only at the end. The elec-

resonant chaos control methofl2l] or parametric desto- . . i
chastizatior{22,23; the chaos is suppressed by a small har-trOde is held at the applied potent[afa,dt)] with a poten-

monic perturbation of a parameter. Transitions from chaotic“osu"t(EG&G PAR 2_73' The applied potential 'S the sum of
to periodic behavior are often realized via intermittency® Constant potential o) and a perturbation[ 5V(t)
(type 1[24] or type 11[25]). Parametric destochastization was = A sin 27Qt] due to forcing. In all the experiments reported
experimentally observed, e.g., in lasée6—2§, discharge Nere Vo=1.300 V (vs Hg/H®SO,/K,SOy). The forcing
plasma[29], a periodically driven pendulurf80], a micro- signal was obtained from a HP-33120A function generator.
wave driven spin-wave systef81], a magnetoelastic beam A Zero resistance ammeter was u_s:ed to measure the current
experimen{32], and a homogeneous chemical reac{idal. of the_ electrode and d_ata acq_wsmon was done_ at 200 Hz.
Several electrochemical systems give rise to periodic curEXperiments were carried out in 46H,S0;, solution at a
rent oscillations under potentiostatic contf8#]. Harmonic ~ temperature of 11 °C. The reproducibility of the experiment
forcing of periodic electrochemical oscillators resulted inWas greatly enhanced by slowly stirring the solution with a
transitions to chaof35], entrainment, spike generation, and magnetic stirrer resulting in the continuous removal of some

quasiperiodicity36,37], harmonic, subharmonic, and super- Oz formed during the experiments. Before each experiment
the electrode was polished with a series of emery paper and

polarized atv=1.270 V (region of periodic oscillationsto
* Author to whom correspondence should be addressed. Email agprovide a reproducible surface filtmitial condition) for the
dress: hudson@virginia.edu system.
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IIl. EXPERIMENTAL RESULTS do
={—=). 3
A. Unforced chaotic oscillator @ < dt> ®

As reported in previous studi¢40,41] the potentiostatic

dissolution of Ni exhibits chaotic dynamics if an appropriate

series resistanceR() is added to the circuit. The recon-

A fundamental requirement in the implementation of this
phase definition is the proper rotation of the analytical signal

structed chaotic attractor from the current time series datg(t), that is, there should be a definite directi@ither clock-
along with the corresponding power spectrum of the unwise or counterclockwigeand a unique center of rotation.

forced system wittRs=170() are shown in Figs. (& and
1(b), respectively.

To meet this requirement the scalar can be decomposed into

a small number of modes of proper rotation, and the phase of

The chaotic attractor is low dimensional; the informationthe original signal is a vector quantity corresponding to the

dimension is 2.440]. The presence of a sharp peakfat

phases of the different modp43]. We applied the following

=1.323 Hz in the power spectrum implies strong phase cosimplified version of the technique: two smooth splines con-
herence indicating the possibility of phase synchronizatiomecting all maxima and minima of the currdirt), respec-

[8].

B. Phase of the unforced system

tively, were constructed and their average was subtracted
from the original signal. The resulting signal is the first mode

1(t), while the subtracted signal is the second mode of the

We applied the analytical signal approach introduced byoriginal signal. TheH (I (t)) vs I (t) plot in Fig. 1(c) reveals

Gabor [42] to define the instantaneous phagg) and am-
plitudea(t) for the current time series datét) (other meth-
ods are also available; s¢8] for detaily. The analytical
signal{(t) is a complex function of time defined as

JO=1(+jH(t)=a(t)e D, (1)

where

= 1(7)
=07

H(|(t))=w*1f )

is the Hilbert transform of (t). With the phases(t) known
from Eq. (1) the frequency ¢) of the chaotic signal is ob-
tained as

that the first mode has proper rotation. The frequency of the
chaotic oscillations ¢y) obtained from the linear least-
squares fit tap(t) is wy=1.325 Hz[see Fig. 1d)]. Note that
althoughg is monotonically increasing there are some slight
deviations from the fitted lin¢Fig. 1(d), insef. The devia-
tions arise because the instantaneous frequéde(t)/dt]
depends in general on the amplitude. Theoretical analysis of
this deviation can be found in the review by Pikovsiyal.

[9].

The second mode of the current possessed an amplitude
of 5% or less at a frequency about half that of the first mode.
Therefore, we neglect the low-frequency, low-amplitude sec-
ond mode and study the phase synchronization of the first
mode of the experimental signal. The conditioning procedure
makes the phase analysis more robust against noise and some
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2.00 - the values of those two minima are indistinguishable because
' L of noise. The P4-P2 and P2-P1 transitions are inverse
175, :'.Ig;g.{ B period-doubling bifurcations. The experimental data cannot
| Ej!:iigh troo. reveal the nature of the chaed?4 transition. One possible
Pt . A scenario might be an experimentally not resolvable period-
~ 1504 : NH t ' doubling sequence. However, we cannot exclude the possi-
é i ;,,;, L . bility of intermittency, which was observed with # w, (see
= 1.25-| ||||Il:|: i P laten).
Pl '
1.00 . L, . U D. Forcing with Q# w,
) C P4 P2 ° Pl When the forcing frequency is different from, phase
0751 ' ' ' ' ' _ ' locking occurs only forA=A., whereA, is the critical am-
0 10 20 30 40 S0 60 70 plitude of the forcing signal. The phase differentes(t)
= ¢(t) — (t) between the chaotic oscillations and the driv-
A (mV) ing signal is shown in Fig. 3 with increasing for Q

FIG. 2. Bifurcation diagram of the forced system showing thezlA:i7A|jZé ge"\‘;'“ghtl)é(hlg?ﬁr tfha@o. is K to affect

minima of the oscillationsl(,,) as a function of the amplitude of =33 mv[ 9. f"‘)] e forcing Is too weak o aftect |

the forcing (). The forcing frequency2=1.32 Hz is within the the phase characteristics of .the chao_tlc .behaw.or signifi-

experimental error ofo,. The chaotioC), period-4(P4), period-2  cantly; A¢ decreases almost linearly with increasingn-

(P2, and period-1P1) regions are also shown. creasingA to 6.0 mV[Fig. 3(b)] still does not result in phase

synchronization; however) ¢(t) exhibits a steplike varia-

unavoidable low-frequency variations while keeping thetion consisting of.almost horizontal phase-locked regions and

phase information of the original signal. vertical phase slips. The phenomenon of phase slipping has
During the experiments the frequency of the unforced sysbeen observed and analyzeth,45. IncreasingA further to

tem was repeatedly calculated and was found toape 7.3 MV[Fig. 3(c)] results in a state very close to phase syn-

=1.33+0.015 Hz. This deviation is probably due to experi- chronization: during the experiment only one phase slip oc-

mental error, e.g., slow modification of the surface or O curs. AtA=8.6 mV [Fig. 3d)] phase synchronization takes
evolution. place: the chaotic signal takes on the frequency of the forcing

(0=Q) and the oscillations have an approximately fixed,
C. Forcing with Q= e, nonzero A p=2) phase difference. The phase synchronized

) ] chaotic attractor shown in Fig. 4 resembles the unforced one
For forcing experiments the phases of the chajodi¢t) | [Fig. 1a)].

and the periodic drivind #(t)] signals were determined. ~ Some aspects of phase synchronization can also be seen
Phase synchronization is defingd] as the phase locking of in the power spectrunfinsets in Fig. 3 In the forced sys-
the signal and forcing: tems a new peak emerges close fig,=1.32 Hz corre-
B sponding to the frequency of the driving signal)
[N (t)—my(t)| <const, @ =1.37 Hz. With increasiné\ the new peak increases, and at
wheren andm are integers. A weaker condition can also bePhase synchronizatidirig. 3(d)] only this peak correspond-

given (often referred to as frequency locking ing to the forcing can be seen. _
Forcing experiments have been carried out for a range of

forcing frequencies between 1.21 Hz and 1.45 Hz. The
—w Vs () plots are presented in Fig. 5.

At A=0 [without forcing, Fig. %a)] the points lie ap-
where () is the frequency of the forcing. In this paper we proximately on a line with a slope of unity; deviations are
only haven=m=1 sinceQ/w=1. due to the small variations aby. For a small amplitud¢A

Results are first presented with a forcing frequencylof =6.6 mV, Fig. §b)] phase synchronization occurs only for
=1.32 Hz, which is within the experimental error . A frequencies close te,. As the amplitude is made larger, the
bifurcation diagram showing the minima of the oscillations phase synchronized frequency region increases as can be
as a function of the forcing amplitude is presented in Fig. 2seen in Figs. &) and 3d). At the smallest 0 =1.21 Hz)

At small amplitude the frequency of the oscillations locksand the largest( =1.45 Hz) frequencies phase synchroni-
on ) although the chaotic dynamics are only slightly af- zation occurs at larger values of forcing amplitudd (
fected. Even at small amplitudes the small variationwof =25 mV). Figure 6 shows the critical forcing amplitude
(*£0.015 Hz) that had been observed in the unforced systemt which phase synchronization is observed.
diminishes to+ 0.001 Hz. Therefore all the dynamical states This figure is analogous to the phase diagram of the
shown in Fig. 2 have exactly the same frequency regardledsrced periodic oscillators showing the “Arnold tongues” of
of the characteristics of the state. With increasing amplitudefrequency-locked regiong6,47). The experimentally deter-
chaos—P4— P2—P1 transitions are observed. Note that themined synchronization tongue is approximately symmetric
lowest branch of the P4 oscillations is actually two points;aroundwy.

m
w:FQ, (5)
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The bifurcation diagrams at the different frequencies wererigures 7a) and 1b) are for a forcing amplitude A
found to be similar to the one presented in Fig. 2 wh@re =23.1 mV) just below critical.
=wo. For 1.21 Hz=(<1.40 Hz the transitions are chaos  The long P2 sequence is interrupted by short chaotic one.
—P4—P2—P1. For{)=1.45 Hz no P4 state was seen andThe periodic region is phase synchronized, while during the
the transitions were chaesP2—P1. For larger forcing fre- chaotic region there is a phase slip. The current and phase
quencies =1.40 Hz) the transition into the phase-locked difference are shown for amplitude close to the critical in
region was qualitatively different; instead of a chaotic phaserigs. 7c) and 7d) (A=24.7 mV); phase synchronization
synchronization there is an intermittent transition from chaosind period-2 oscillations are seen. FAr=1.40 Hz, i.e.,
to a periodic state; the periodic state is P2 d=1.45 Hz  closer tow,, a similar intermittent transition was observed;
and P4 for{)=1.40 Hz. The time series of the current and however, the chaoti¢not phase synchronizgdstate was
the phase difference are shown in Fig. 7 f0.=1.45 Hz.  transformed to a Pgphase synchroniz¢dtate.

IV. NUMERICAL RESULTS

To support the experimental findings some numerical
simulations have been carried out with a general dimension-
less electrochemical oscillator model proposed by Koper and

< Gaspard 48]:
§ de_Vape_ 120k 6
&4 dt= R (e)u, ®)
<
= du
= a=—1.251°'5k(e)u+2d(w—u), (7)
dw
m=1.6d(2*3w+u), (8)
Q) wheree is the double-layer potential} andw are the con-
1224) X . . . . ~ « _
) R\ centrations of electroactive species in the so-called ‘“sur
face” and “diffusion” layers, d is the rotation rate of the
FIG. 4. The phase synchronized chaotic attractor. The experielectrode characterizing the mass transfer, lafe) is de-
mental conditions are given in Fig(d. fined as follows:
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FIG. 5. The frequency differ-
ence () —w) as a function of the
forcing frequency ) for (a) A
=0 mV, (b) A=6.6 mV, (c) A
=13.2 mV, and(d) A=16.5 mV.
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k(e)=2.56+0.01 exp0.5e—30)],

where 6 is related to the surface coverage by sainéibit-
ing) chemical species. The value 6éfis approximated by a

sigmoidal function

1

For an appropriate parameter skt 0.119 13,R;=0.02 the

for e<35
o= exd —0.5e—35)?] for e>35.

Q (Hz)
9 until complete phase synchronization takes placeAat
=2.4x10"°. Note that the phase difference is not zero dur-
ing phase synchronization but rather has a finite value as in
the experimental findings.

The phase synchronized region in thess () parameter
space is shown in Fig. 9. In the frequency range of 0.470
<((=<0.479 the tongue is symmetriinsed around w
=0.475, while out of the region some asymmetry develops.
In the symmetric range chaotic phase synchronization takes
place. Outside this range destochastization occurs via an in-
termittent phase synchronization. Fd2<0.470, chaos

(10

model exhibits a cascade of period-doubling bifurcations.p2 (0.4.0<0.460) and chaesP4 transitions Q

with increasingVo. The chaotic attractor reconstructed from =0.465) occur. Similar transitions were found in the experi-
the dimensionless current= (V,,,—€)/Rs, is shown in Fig.

8(a) at V(=36.7395.

There is a sharp peak in the power spectftiig. 8b)] at
fmax=0.475 Hz. We analyzed the phase of the simulated
data as was done with the experiments except that no condi
tioning was required. The frequency of the chaotic oscilla-
tions was found to bevy=0.475, the same af,,. The
effect of periodic forcing [V, {t) =V,+sin2mt, V,
=36.7395 on the dynamics is shown in Fig(@ with €
= wq. The bifurcation diagram is qualitatively similar to that
obtained in the experiments in the low-forcing-amplitude re-
gion (A<5x10 %) in which the phase synchronization oc-
curs. Above this period-2 region the behavior is more com-
plicated than that for the experiments but eventually
doesgive period-1 oscillations through a series of periodic
and chaotic states. Here we study phase synchronization i
the low-amplitude-forcing region where there is qualitative
agreement between experiment and simulation.

Chaotic phase synchronization is shown in Fi¢d)8at
0 =0.471. With increasingd phase slips occur more often

304
| e
25 . °
20 .
| ) Phase locked region -
~ ‘ K
> 154 R ®
g | . '
N’ N .
o 104 ™
| . [
54 '
o *
0_ 1 1 1 ‘:." T T T
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FIG. 6. The phase-locked region &) parameter space.
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FIG. 7. Current time series and
phase differences()=1.45 Hz.
(a,b Intermittent periodic and
chaotic oscillations with phase
slips. A=23.1mV, A<Ag;-
(c,d Phase synchronized period
state,A=24.7.

ments. For()>0.479 transitions from chaos to P3, from average lengtq 7) of the phase synchronized periodic re-
chaos to P2, and from chaos to P1 took place at the criticajions (laminar phasesincreases. It was found thdtr)
«(As—A) " 4indicating type-I intermittency and a saddle-

amplitude where phase synchronization occurs.

In Fig. 10 the chaos:P2 transition is shown foK)

node bifurcation of periodic orbif19] at A,=2.015< 10 4,

=0.450. AtA=2.0x 10" the long intermittent P2 sequence Above A., e.g., atA=2.2x10"* [Figs. 10c) and 1Qd)],

is interrupted by chaotic phase slips. With increasithe

©

I(t+0.4)

max
wn
<

1o 2 3
A=1.6x10"
A=22x10"
A=24x10"
5 10 15 20 25
t
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phase synchronized P2 behavior occurs.

FIG. 8. Numerical simulations.
(a) The unforced chaotic attractor.
(b) The corresponding power
spectrum.(c) The bifurcation dia-
gram of the forced system()X
=0.475) showing the maxima of
the oscillations [,5,) as a func-
tion of the forcing amplitudeA).
(d) The phase difference between
the current and the forcing signal
(2=0.471) as a function of time
with increasing amplitudéshown
next to the curves
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4x107 - 20410° —— zero phase difference. Phase differences can occur in elec-
trochemistry due to double-layer chargif@apacitive imped-
s ance and transport effect8Varburg impedangd50]. These
3107 "a._. B are routinely investigated with periodic forcing of a steady
» W S state(impedance spectroscopy
- 0.0 The bifurcations responsible for phase synchronization of

047 0.48

chaotic oscillators have been described theoreti¢dHy, the
~ Phase locked region role of phase locking of the unstable periodic orbits embed-
= ded in the chaotic attractor was emphasized. Phase locking
] . of periodic oscillators is known to take place through saddle-
1x10* - e node bifurcations of periodic orbifg16,47. In our experi-
ments when the forcing frequency was sufficiently removed

2x10™ 4

from wy an intermittent transition took place resulting in a

V' periodic phase synchronized state. The phase synchronized
T —TT— P2 (P4) state goes through an inverse period-doubling bifur-

042 044 046 048 0-50 0.52 cation (sequenceresulting in a phase-locked P1 state.

Q We have carried out numerical simulations of a model of

FIG. 9. Numerical simulation. The phase-locked region of the@ forced chaotic electrochemical oscillator to support the ex-

forced model in the forcing frequency)) — forcing amplitudgs) ~ Perimental findings. Although the model captures only some
parameter space. The inset shows the magnified region around tg€neral features of an electrochemical oscillator, it was

frequency of the unforced systemv=0.475). found to be capable of describing the chaotic phase synchro-
nization and the intermittent transitions from chaotic to peri-
V. DISCUSSION odic behaviors. Numerical calculations imply type-I intermit-

tency, i.e., stable and unstable periodic orbits emerge
through a saddle-node bifurcation. A related behavior was
Phase synchronization was experimentally observed duebserved in a driven Rayleigh oscillatp24]. Since the
ing periodic forcing of the chaotic electrodissolution of Ni in model provides a general mechanism for electrochemical os-
sulfuric acid solution. Unsynchronized, intermittently syn- cillators it is probable that similar transitions can be observed
chronized(with phase slips and phase synchronized statesin other electrochemical systems having a phase coherent
were observed with increases in the forcing amplitude. In thehaotic attractor. Such systems are the reduction of indium
phase synchronized region the phases are locked with nofHl) ions on hanging mercury electrofigl] the electrodis-

A¢ (rad)

FIG. 10. Current time series
. . . . and phase differences from nu-
0 100 200 300 400 merical simulation (3 =1.45 Hz).
P (a,b. Intermittent periodic and
d chaotic oscillations with phase
161 slips. A=2.0x107% A<A;.
144 (c,d Phase synchronized period
12 state, A=2.2x10"*.

A¢ (rad)

] A

0 l(l)O 2OIO 300 400 0 100 200 300 400

t 1
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solution of copper in phosphoric ac[®#2] and acetic acid namics, and stable and intermittent clustering have been
electrolyteg53]. shown to occuf55].

The observed rich dynamics makes the system also suit-
able for studying the effect of forcing on a population of AU LS SIS
chaotic oscillator§54]. In this case the forcing, by changing  This work was supported by the National Science Foun-
dynamics of the individual elements, alters the collective dy-dation and the Office of Naval Research.
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