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Stabilizing unstable discrete systems
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A general method for stabilizing unstable discrete systems to a fixed point or high-period orbit is developed
analytically and numerically in this paper. It is shown that the method can be equally applied to the systems
with one or more positive Lyapunov exponents. Moreover, the method does not require a prior analytical
knowledge of the system under investigation, nor any additional control parameters.
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I INTRODUCTION X+ 1= F(Xi) + M (F(X) — X, 2

In recent years, the research of stabilizing unstable systefyhereM is annxn matrix that we are going to determine
to a fixed point or high-period orbit, i.e., controlling chaos, gefinitely in this paper. Equatiof2) takes the form of the
has attracted much attentions in nonlinear sciences and pagp-called adaptive adjustment mechanigAM ) introduced
ticularly in physics, chemistry, and biology. A large numberin Ref. [13]. However, the matrixV is restricted to be a
of control methods have been developed and are being agiagonal matrix there. This is not the case in our method. In
plied to real systemfsl—11]. Many of them are extensions or terms of the eigenvalue analy§is3], it is found that AAM
generalizations of the original work of Ott, Grebogi, and can be applied to some special types of the fixed points, and
York (OGY) [1]. The OGY method and its variants are basedeyen by using the so-called nonuniformly AAM. In this
on a parametric perturbation mechanism. And at least ongork, we take a similar idea as Yang, Liu, and Md®] to
accessible tuning parameter is required in advance for usingetermine the matris. Now let us define an infinitesimal
the OGY method or its variants. However, in many practicalgeviation ofx, from x; as dx,=x,— ;. Then from Eq.(2),
situations, such a parameter often cannot be found at all. Igne has
addition, most of the methods are designed(frrestricted
to) such unstable systems that have just one positive s 1~ I8+ M(I=1) 6% , 3)
Lyapunov exponent. Recently, Yang, Liu, and Mat_M )
[12] presented one new method. The YLM method can b, oo 3 (5r/4x,)|, _ is the Jacobian matrix of the origi-
successfully applied to control the unstable systems with K= . ) .
multiple positive Lyapunov exponents, i.e., the so-called hy@l systemF evaluated at the fixed poing and| is then
perchaos. On the other hand, the YLM method still makes< N identity matrix. In practice, the matrid is experimen-
use of a parametric perturbation as like the OGY method. tally accessible by taking the well-known embedding tech-

In this paper, we pursue to develop a method that can bgique [1,14]. The goal of controlling here is to make
applied to both chaos and hyperchaos. Furthermore, the préMk—.=| o/ —0 (which implies thatx,—x;, ask— ). For
posed method does not require any adjustable control pararfis aim, we require
eters of the system.

The paper is organized as follows. In Sec. Il, the mecha- OX+1= QX (4)
nism of the control method is analyzed in detail. In Sec. I,
we extend the method introduced in Sec. Il to the stabilizawhereQ is annXxXn matrix and takes the form
tion of higher-period orbit. Then several typical chaotic and

hyperchaotic systems are taken as numerical examples to il- g, O

lustrate the applicability of the proposed method in Sec. IV. Q=( 0 : )
At the end of the paper, some discussions and conclusions 92

are given.

where q;,0,(—1,1) are constants. Substituting E@t)
into Eq. (3) and eliminatingdx,, we have

Il. THE METHOD
Consider am-dimensional dynamical system defined by M=(Q-3)(J-NH4, (6)
Xt 1= F(Xy), ) where we have assumed that the inverse matdix I !

exists. One special form of the matrd is Q=q|l, i.e., by

where xe R" is an n-dimensional vectorF is a nonlinear Settingd;=a,=q. Then the matrixV becomes
vector valued function.

Let x; be the fixed point of the mafl). In order to sta- M=(ql—=J)(I-1)~1, (7)
bilize a chaotic orbit to this fixed point, we take a variable
feedback control described by whereq is a constant and e (—1,1) as mentioned above.
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Note that although it is just the discrete time systems that p
are discussed by now, the present approach can also be ap- J= H Ji, (11
plied to control the flows just by taking the corresponding =1
Poincaresections.

The control method as given by E() does not require where
any prior analytical knowledge of the system under investi- IE
gation, since the elements of matdxcan be obtained from Ji= <—> , i=1,...p.
experimental data by using the known embedding technique. IXi Xp=xi

As concerns the size of converging region, it is also under

investigation and will be reported elsewhere. In addition,The question now is how to locate the unstable period orbit.

similar to the YLM method, our method is also formulated In practice, there is lot of literature concerning this problem

for an n-dimensional system with being an integer. So our [15-18. In this work, we take the algorithm presented by

method can then be applied to any finite-dimensional systerfichmelcher and Diakong48].

in principle, including chaotic and hyperchaotic systems.

Furthermore, by choosing an appropriate valug between IV. NUMERICAL EXAMPLES

—1 and 1, one may have an optimal control through &g. )

In addition, it should be noted that the method proposed here The control method given by Ed6) or Eqg. (7) can be

cannot be applied to the cases in which one eigenvalik of applled to both chaotic and hyperchaotic systems. In_the fol-

equals 1 or even some eigenvalues are close to 1 from prat?Wing, we take two systems as examples. We first discuss a

tical point of view. chaotic map and then a hyperchaotic map to illustrate our
On comparing with the YLM method, first, our method Method.

does not require any adjustable controlling parameters in ad-

vance, and so it can be applied to much more extensive sys- A. Controlling chaos

tems. Second, once t_hg constgns phosen in the range of Consider the Fieon map[19] described by

(=1, 1), thenM is definitely determined and need not to be

changed with the discrete time. Therefore it is much simpler Xes1=a—Xo+byy,
to implement.
On the other hand, by comparison with the AAM, the Vi 1= Xk (12

main progress of our method is that it can be equally applied
to different types of the fixed points particularly to those wherea,b are the parameters, and we choasel.4 andb
ones to which AAM cannot be applied at all, as illustrated in=0.3 in this work. This map has two fixed pointxgl)

our examples. ~(0.88389,0.88389) anxt?)~(—1.58389;-1.58389). In

Ref.[12], they belong to two different types of fixed points

ll. HIGH-PERIOD ORBIT and require to be stabilized separately according to the

gimple and nonuniformly AAM. This is not the case in this
research. Two fixed points can be equally dealt with by using
%he method proposed above. Here we just take the second
one as an application. The Jacobian matrix corresponding the
fixed pointx{?) is

The method developed in Sec. Il can also be applied t
stabilize a high-period orbit. Assuming one want stabilize
periodyp orbit, i.e., the orbifx?,... xP}(p>1). By replacing
F(x,) with FP)(x,) in Eq. (2), one gets

Xi 1= F P (x4) + M (FP () —xy), 8 “2%, b
whereF(P)(x,) denotesp times iterations ofF(x,). Repeat- | 10 0'0)*
ing the process in Sec. I, we finally have equation analogous
to Eq.(6) or Eq.(7) as where x;=—1.58389 andb=0.3. Then from Eq(7), we

- ~ have
M=(Q-J)(J-1* 9

or y —2x—1+b —2x,—1+b

M=(ql =33~ (10) | a1 a@x+D)-b [

—2x;—1+b —2x;—1+b
where
) whereqe (—1,1) is a constant. Choosing the parameter
~ [ IFP0W) =0.5, one
J= ——> .9, gets
Xy X, =x1
K —1.20261 —0.0607

is the Jacobian matrix &f(P(x,) evaluated ax*,Q takes the M=\ _0.20261 —0.56078"
form of Eq. (5) andge(—1,1) is a constant as mentioned
previously. It is easy to know that Then the equation analogous to Ef) is
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04l@ . 1(c), three orbits starting from different initial points are sta-
o—g=-0.5 bilized to the desired fixed point.
06 ——g=03
o 08 L B. Controlling hyperchaos
o 10 \ In order to compare our method with the YLM method
S 2] and the AAM more definitely, let us discuss the following
5 Ll o\\.\ map[20] described by
ST S YA= | Xier1=1=206HY) +p,
_18 ] ] 1 1 1 L 1
0 5 10 15 20 25 30 Vir1= — 4% Y+ Q. (14
Discrete time & . . . . .
To be an illustrative example, this map can be investigated
08D | 4=-05 more analytically. In Ref[12], the parameterp and q are
- —e—g=03 taken to be the adjustable controlling parameters. And by
A0 adjustingp and g, the unstable orbit is stabilized to the de-
«-12} sired fixed point. However, we may take=qg=0 in this
™ ° work. Now, there exist four different fixed points for map
_% Adp o (14). Here we take only one of them, i.e., the paoirt0.25,
-g 16} :ﬁsﬂ-- 0.795, as an application. For this fixed point, the Jacobian
> r matrix is
-1.81
200 ( 1.0 —3.0)
L L L " i L 1 L L " L 1 J: .
0 5 10 15 20 25 30 -3.0 1.0

The two eigenvalues af areh ;= — 2.0 and\,=4.0, respec-

11 tively. According to Eq.(7), one knows that

12[@r
13}
14f ° o 02 -1.0 -— E
A5 ° o M= s
16} ¥ q-1 ’
S| A -3 - 1.0
1.8} °
1.9t whereq is a constant ande (—1,1). The two eigenvalues
20t o3 _ of M are —1+(q—1)/3 and—1—(q—1)/3, respectively.
-2.]20 TV _1'0 o8 Since the constant satisfigs= (—1,1), the eigenvalue-1
. ) | ) ) : : —(g—1)/3e(—1,1). That is, one of the unstable directions
* becomes stable under the control. Then the equation analo-

. o, gous to Eq(2) is
FIG. 1. Numerical results of controlling Hen map.(a) x
versusk for g=—0.5 and 0.3, respectively(p) y, versusk for Yoo i=1—2(x24+Vv2)—[1— 2(x2+ v2)— x
g=—0.5 and 0.3;(c) Three orbits starting from different initial K+l (it yid =1 (it ¥id) =
points are stabilized to the fixed poifit 1.583 89,—1.583 89, for g-1
q=0.5. - T(_4Xkyk_yk)y

Xes1=a—Xe+by,—1.202 61a—x2+by,—X)

gqg-1
Yir1= — XY™ T[l— 2(x5+Yik2) —Xi]
—0.060 78X, — ),

— (= 4XKYk—Yi)- (15
Yis1=X—0.202 61a—x2+ by, —x) — 0.560 78X, — yy).
The numerical results are shown in Fig. 2, fp=0.5. In
(13 Figs. 2a) and 2b), the curves ok, versusk andy, versusk
are plotted, respectively. And in Fig(@, three orbits start-
Evolving this controlling system from an arbitrary initial ing from different initial points are stabilized to the fixed
point in attracting basin, it is found that the orbit is stabilizedpoint (—0.25, 0.75. It is shown that the unstable orbit is
to the fixed pointx%z) monotonically. The numerical results stabilized to the desired fixed point monotonically.
are shown in Fig. 1. In Figs.(8 and Xb), x, versusk andy, Now, for an illustration, we show how a period-2 orbit
versusk are plotted for two different parametegs In Fig.  {x,x?} of system(14) is stabilized with the help of the ap-
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o 022} o NSL
=y \ = 02f Pt
S .9 < L
§ -0.24| 'E*’“ £ ol
02| ¢ >
! 02}
-0.28} )
0 10 20 30 40 04— ' : ' s
0 10 20 30 40 50
Discrete time & Discrete time &
0.8 ® fa FIG. 3. Stabilizing a unstable period-2 orbit of hyperchaotic
07L /" ;,o" system(14). Here we choosg=0.1 in the computation. When the
' s J difference between two neighboring iterations is smaller than
<06L (/ 1070, the control imposed on the system is removed.
a2 0.
% 05h / and
5 o4 / (123608 0.0
| — =05 2 00 1.23608

o
w
T

—0—q=_0,5
L . L L L Then in terms of Eq(10), one has

0 10 20 30 40
Discrete time & —0.29—-0.8 0.0
= , 16
1.0 0.0 -0.29—-0.8 (16
09 _(c) 1o
' . where—1<q<1 is a constant as mentioned previously. Af-
08 e ter making use of Eq8), it is found that the desired point is
07} §e successfully stabilized as shown in Fig. 3. In Fig. 3, the
06l . ° . control imposed on the system is removed and the system let
EN 05 evolve freely, when the error between the two near iterations
ST ° °3 is smaller than 10%.
041
0.3} o2 V. CONCLUSION
0.2 35 030 025 0.20 015 0.10 0.05 0.00 In this work, we show how an unstable system, with one
X or more positive Lyapunov exponents, is stabilized by using
k a different general method. It is found that the proposed

FIG. 2. Numerical results of controlling hyperchaotic system Method neither requires a prior analytical knowledge of the
(14). (8 x, versusk for q=0.5 and—0.5; (b) y, versusk for q underlying system nor any adjustf_;\ble control parameters in
=0.5 and—0.5; (c) Three orbits starting from different initial points advance. Therefore, it can be applied to a very large range of

are stabilized to the fixed poirft-0.25, 0.73, for q=0.5. systems, in particular, hyperchaotic systems.
proach described in Sec. Ill, heré~(0.80902,0.0) and ACKNOWLEDGMENTS
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