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Quasiperiodic patterns in boundary-modulated excitable waves
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We investigate the impact of domain shape on wave propagation in excitable media. Channeled domains
with sinusoidal boundaries are considered. Trains of fronts generated periodically at an extreme of the channel
are found to adopt a quasiperiodic spatial configuration that repeats periodically in time. The phenomenon is
numerically studied in a model for a photosensitive Belousov-Zabotinsky reaction. Spatial return maps for the
height and position of the successive fronts are analytically obtained, and reveal the similarity between this
spatial quasiperiodicity and the temporal quasiperiodicity appearing in forced oscillators.

DOI: 10.1103/PhysReVE.64.046208 PACS nuner05.45—-a, 82.40.Ck, 47.20.Ky

[. INTRODUCTION c=c(\), giving a relation between the constant front train
velocity and its uniform spacing, and their dynamics is

Excitable media display a very rich spatiotemporal behavvery simple. However, much less trivial behavior appears,
ior with regimes ranging from fairly well ordered structures even, in one-dimensional systems if the excitable medium
of propagating wave§l] to highly uncorrelated spatiotem- recovers the rest state not monotonically but via damped
poral chaos. The study of all these features as well as thefscillations[10]. In this regime, propagating wave trains of-
mutual connections provides very useful insight to underien relax to irregularly spaced configurations of fronts that
stand and eventually control phenomena of paramount ag-an be seen as spatial chaos.
plied importance such as the deadly arisal of fibrillation in ~ The purpose of this paper is to report a nontrivial spatial
cardiac tissue$2] or the appearance of either ordered orstructure arising as a pure boundary-shape effect in excitable
turbulent patterns in extended chemical reactors operatingiedia, namelyspatial quasiperiodicity, and its understand-
away from equilibrium conditions. In many of these applica-iNg by tools borrowed from the study eémporaldynamical
tions, a crucial but frequently ignored ingredient is the pressSystems. We investigate the asymptotic propagation of excit-
ence of boundaries. For example, it has been shown thable wave trains generated by local time-periodic stimulation
boundaries and obstacles in inhomogeneous media are irat the extreme of a sinusoidally undulated channel. We find
portant to either pin or repel spiral patterfg] or even to that the trains of fronts asymptotically accommodate in qua-
create them[4]; moving boundaried5], striped domains Siperiodic spatial configurations, incommensurate with the
[6,7], and propagation through narrow chanri@khave also  boundaries but periodic in time and synchronized with the
been reported in the literature as nontrivial domain configustimuli (they may be calledtroboscopically frozensince a
rations. temporal stroboscopic observation will see a fixed strugture

Unfortunately, the current understanding of boundary efWith the experiments on the photosensitive Belousov-
fects in nonlinear partial differential equations is rather in-Zhabotinsky reaction in mingb,7], we demonstrate this phe-
complete, and sometimes surprisingly nontrivial behaviomomenon in the Oregonator model adapted to include the
lurk behind the apparent simplicity of some problems. Aeéffect of light. Finally, we present a more general semiana-
recent study[9], for example, shows that relatively regular Iytic theory of the formation of the quasiperiodic, and possi-
boundary conditions such as Dirichlet's on the banks of &ly chaotic, structures referred above.
sausage-shaped channel can elicit several types of spatial

complexity such as frozen quasiperiodicity and chaos even in Il. NUMERICAL MODEL
very simple reaction diffusion equations. There, the axial - .
coordinate along the channel acts as a “time” in the equa- Photosensitive  Ru(bpy); “-catalyzed Belousov-

tions describing the time-independent spatial patterns and théhabotinsky reactive media can be mode]i&dl] by the fol-
undulated boundaries play the role of a periodic force induclowing version of the Oregonator model:
ing chaos in a dynamical system that is nonchaotic in the

absence of driving. Ju 1 ) u—q 5
Propagation of waves in excitable media has been studied s (fo+¢) uTq +D,V-u,

in a variety of context§1]. Due to their ubiquity in large

two-dimensional systems, much of this work deals with spi- 2

ral waves. In contrast, the propagation of front trains has _Uz(u_v)_ (1)

received much less attention. This may seem surprising since ot

the same spirals can be seen far from their cores as a periodic
train of two-dimensional traveling fronts. These trains,Hereu (v) describe HBrQ (catalysi concentrationsD , is a
though, are easily characterized by a dispersion relatiodiffusion coefficient and, g, €, and¢ are parameters related
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factor 10 in straight channels of different widths. There is a critical
value,s;=1.65 s.u., below which propagation becomes impossible,

FIG. 1. In the upper panel, the white area limited by gray un- 5ty

dulated boundaries is the excitable region where fronts originated é'E:
the left end propagate. The transverse features are the fronts travel-

ing to the right. Darker fronts have a larger valueupfs indicated . RESULTS
in the color bar. The lower panel displays the envelope of the maxi-

mum amplitude of the fronts. Wave trains are generated stimulating the medium at the

left end,x=0, of the channel by pushingabove and below
the excitability threshold periodically in time. The opposite
end of the channel is set as a no-flux boundary. During the
simulations we mainly varied the forcing parametegsand

Guided by previous result9)], in which the longitudinal d, but also several wave train periods and channel widths
coordinate along a channel was shown to behave tane ’ . . P :
were investigated. After a transient, the fieldeandv con-

like coordinate, we simulate this reaction in a spatial domain

tailored as sausage-shaped channel along the longitudinal ai_erge o a ponﬂg_ura_tmn .Of propagatlng_fronts that repeats
rection x (given in grid points, as shown in Fig. (). The itself periodically in time in synchrony with the wave gen-

transversal coordinatgis bounded by two sinusoidal walls, gg%toi:: :I:X?rgielg O:tir':teerrr\:vc\)/r\zasag]qi tteram;nedc;)nlﬁz ]5(1) r?tri(_)bo-
Yo(x) andy;(x) = s yo(x), with pically patiern. kyanday the long

tudinal position and maximum height af at the channel
axis, respectively, for thath front. A snapshot of a segment
Yo(X)= g[l_ cogkx)]. (2)  of the channel is plot in Fig. (& where the different gray
levels of the fronts are proportional to their heigltsaxi-
mum value ofu) in Fig. 1(b).
The spatial frequency ik=27/\,, the undulation ampli- As a comparison, in a straight channel<0) of finite
tude d, the minimum separatios, and the widthw(x)=s  width s the asymptotic configuration of the wave fronts is
+d—d coskx). On the sinusoidal boundaries we impose theequally spaced by a length and propagates with velocity
Dirichlet conditionu=0.004, a value close to the fixed point c=\/T if the forcing period isT. This velocity increases
of the local dynamics. This could be implemented in thewith the channel widtli7] starting from a critical valus, of
photochemical reaction by annihilating any excitation in thethe latter, below which the fronts cannot propagatace the
exterior of the domain via strong enough illumination. In unexcited boundary layers originated by the Dirichlet condi-
contrast, a physical barriésuch as the border of a Petri dish tions fill-up the whole width In Fig. 2 we plot the train
or any obstacle in the mediymwould imply zero-flux velocity and the maximum amplitude of the wave fronts as a
boundary conditions. function of the width of the straight channel.

An efficient way to solve numerically Eql) is by map- In modulated domains witll#0 a wide range of new
ping the region limited byy(x) andy,(x) and byx=0,L on  spatial configurations incommensurated with the boundaries
a rectangular region defined =1, y,=0, andx=0L, emerge. Typically, both the spacing and the amplitude of the
wherey = (y—yo)/(y1—Yo) andL is the length of the chan- fronts become spatially quasiperiodic. According to the

nel. Under this map, the diffusion term transformd @k strengthkdcd/hp, of the ;patial forcing we .distinguish
strong from weak modulations. Let us describe the cases

) 5~ 5~ 5~ ~ A\ p=50 and\ ,= 1000, respectively, as an illustration.
VU= dut+ F(X)asu+G(x)dput+H(x)ayu,  (3) The results for strong modulation are shown in Fig. 3. The
amplitude of the boundary undulation increases from top to
F(x), G(x) andH(x), given in[9], are periodic functions bottom. The quasiperiodic behavior of the pulse height be-
reflecting the undulations of the boundaries via modulationsomes evident ad increases. The second column in Fig. 3
measured by the produgtd. In the limit kd—0 (straight also shows the maximumy, of each front as a function of its
channel, Eqg. (3) becomes the standard Laplacian. position modulo\,. This plot provides information about

to the reaction kinetics. In our simulations we $et3, q
=0.002,£=0.05, »=0.002, andD ,=1 [12].
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FIG. 3. Numerical results obtained from E4) for strong forc-
ing. First column: Maximum height of each front within the train, IV. THEORETICAL ANALYSIS
as a function of position. Second column: Same as before but with
positionx folded modulo\ ,=50. Third column: Return map of the
front positions modulo.,. Each row is for a different amplituds
(in s.u). Parametersk ,=50, T=5 t.u.,s=1.1 s.u. Note that chan-
nel lengthL =15 000 is much larger than that in Fig. 1.

Let us now derive a semianalytical expression for the re-
turn maps of successive wave fronts positions and maxima
heights. The approach will be based on rather general argu-
ments, not explicitly linked to the particular modé). In
view of the results for the weak forcing case we assume that
the front velocity in the undulated channel at a position
the distribution of the front height maxima relative to the where the local width isv adapts quasiadiabatically to the
elementary unit of the channel. Notice that the fronts do nOt/elocity c(w) (Fig. 2 corresponding to a uniform channel of
always reach their minimal height at the narrowest channethe same width. Thus, the velocity of th¢h front is
sections k=mA\ ) as one would naively expect from the
behavior in straight channels depicted in Fig. 2. Moreover, Xa(t)=c[W(X,)]. (4)
the fronts can now propagate even when the channel is nar-
rower (s=1.1) in some places than the minimum width  In our channelw(x) =wy—w; coskx) with wo=s+d and
=1.65 that allows propagation in straight channels. Last colw, =d. In order to proceed analytically an approximation for
umn in Fig. 3 displays thesturn mapsof the (n+1)th front  c(w) should be introduced. Farsmall the width variation is
positionx, . 1 (relative to the unit channel cglas a function  also small anat(w) can be replaced by a linear &t- bw of
of the positionx,, of the previous front. The shapes of the an appropriate range of data in Fig. 2. Hencpw(x,)]
curves are similar to thosgircle mapsdescribing the tempo- ~Co— ¢, coskx,), whereco=a+bw, andc,;=bw;. Equa-
ral dynamics of periodically forced self-oscillators, thus con-tion (4) can now be integrated during one periddf the
firming our aim when constructing the system: the analogyffont generator, to obtain:
between spatial behavior along a longitudinal coordinate in a

channeled domain, and time evolution in dynamical systems. 2 of Xn1(0)_ 7 5
The analogy suggests that our system should exhibit the k\/ﬁ[arcta )10y = (5)
same richness of spatial behaviors as the circle map does in o ™
time evolutions. with

The weak forcing case is illustrated in Fig. 4. As in the
case of circle maps for very weak forcing, the front-positions =y kx
return map shows a very small deviation from linearity with z,=f(X,) = [Z0 ltar( _“) (6)
the given parameter values. This approximate linearity im- Co—C1 2

plies that the front train wavelength is nearly constant and

the influence of the channel walls are negligible. This influ-Here we have used the observed time periodicity of the wave
ence is, however, more important on the front heightstrain to write X,(T) =X,,1(0). This is the crucial step to
Minima of front height are situated at the narrowest channefonvert the time-differential Eq(4) into a map for space
sections, in concordance with Fig. 2, while the maxima satupositions. Defininge=arctarz and A=0.5T./c;—c] we

rate ford large enough. haveA= ¢, . 1— ¢,, and the return map for the varialdés
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z,+tanA
2,:1=9(2) = T—@nA)z,” (7
n
In terms of the front positiox we finally have:
Xn+1=fHOLF(xn) 1} (€S)

For the maximum height of the wave fronts, the same

adiabatic assumption leads &aq=h[wy—w; coskx,)], with
h(w) being the maximum height of the fronts in a straight
channel of widthw. We can go one step further towards

qualitatively describing the observed positional mismatch
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between the minimal-height fronts and the narrowest channel g\ 5. change in the shape af(x,) from Eq.(10) by increas-

sections by considering a short adaptation timeof the
front characteristics to the local width:

. 1
an(t)= —{h[w(xy)]—an}. 9

As above, by linearly fitting the data from Fig. 2 in the range

(s,s+2d) we have h(w)~a’'+b’w for small d. Then,
h[w(x)]~hg—hycoskx, with hy=a’'+b'wy, and h;

=b’'w,. Integrating Eq.(9) for small d and kcg7,<1, so
that, we can set, (t) =x,(0)+ cot + O(d), we get a relation-
ship linking the wave front heights and positions,

sink(x,+coT)+6]. (10

hy
a . 1=hg— ———
nelro 1+ Tisz(Z)

Here #=arccofl/y1+ (7,cok)?], describes the displace-
ment of the minimal heights from the narrowest sections.
Since the derivation of Eq$8) and(10) is formally valid
only in the weak forcing limit we first contrast the theory
against the numerical data in Fig. 4 fib+= 0.5, to confirm the
good agreemer|tl3]. More detailed numerical explorations
reassure us that both adiabaticity and srdapproximations

are justified and that the small deviations in Fig. 4 are only

due to the linear approximation ar{w). Moreover, a sys-
tematicd expansion in Eq(8) leads precisely to a circle map

ing d (s.u) beyond the weak forcing limitr,=0.01.

theory still describes qualitative features of the strong forc-
ing regime. For instance, Fig. 5 shows how the maxima and
minima of a,(x,) shift asd is increased.

V. CONCLUSIONS

In summary, we have shown that boundary conditions in
domains with the form of undulated channels may induce
nontrivial longitudinal spatial configurations of excitation
fronts generated by a local time-periodic stimulation in
simple excitable media. In particular, stroboscopically frozen
quasiperiodic arrays of fronts were found. These structures
were described in terms of spatial return maps that are very
similar to the circle maps whose iteration describe the tem-
poral dynamics of forced oscillators. This similarity allows
one to speculate about the existence of even more complex
configurations representing the spatial realizations of the
chaotic regimes of these maps. The phenomenon reported
here should be experimentally observable in the photosensi-
tive Belusov-Zhabotinsky reaction with proper lighting con-
ditions at the boundaries. Work along this line is currently in
progress.
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