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Quasiperiodic patterns in boundary-modulated excitable waves
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We investigate the impact of domain shape on wave propagation in excitable media. Channeled domains
with sinusoidal boundaries are considered. Trains of fronts generated periodically at an extreme of the channel
are found to adopt a quasiperiodic spatial configuration that repeats periodically in time. The phenomenon is
numerically studied in a model for a photosensitive Belousov-Zabotinsky reaction. Spatial return maps for the
height and position of the successive fronts are analytically obtained, and reveal the similarity between this
spatial quasiperiodicity and the temporal quasiperiodicity appearing in forced oscillators.
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I. INTRODUCTION

Excitable media display a very rich spatiotemporal beh
ior with regimes ranging from fairly well ordered structur
of propagating waves@1# to highly uncorrelated spatiotem
poral chaos. The study of all these features as well as t
mutual connections provides very useful insight to und
stand and eventually control phenomena of paramount
plied importance such as the deadly arisal of fibrillation
cardiac tissues@2# or the appearance of either ordered
turbulent patterns in extended chemical reactors opera
away from equilibrium conditions. In many of these applic
tions, a crucial but frequently ignored ingredient is the pr
ence of boundaries. For example, it has been shown
boundaries and obstacles in inhomogeneous media are
portant to either pin or repel spiral patterns@3# or even to
create them@4#; moving boundaries@5#, striped domains
@6,7#, and propagation through narrow channels@8# have also
been reported in the literature as nontrivial domain confi
rations.

Unfortunately, the current understanding of boundary
fects in nonlinear partial differential equations is rather
complete, and sometimes surprisingly nontrivial behav
lurk behind the apparent simplicity of some problems.
recent study@9#, for example, shows that relatively regul
boundary conditions such as Dirichlet’s on the banks o
sausage-shaped channel can elicit several types of sp
complexity such as frozen quasiperiodicity and chaos eve
very simple reaction diffusion equations. There, the ax
coordinate along the channel acts as a ‘‘time’’ in the eq
tions describing the time-independent spatial patterns and
undulated boundaries play the role of a periodic force ind
ing chaos in a dynamical system that is nonchaotic in
absence of driving.

Propagation of waves in excitable media has been stu
in a variety of contexts@1#. Due to their ubiquity in large
two-dimensional systems, much of this work deals with s
ral waves. In contrast, the propagation of front trains h
received much less attention. This may seem surprising s
the same spirals can be seen far from their cores as a per
train of two-dimensional traveling fronts. These train
though, are easily characterized by a dispersion rela
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c5c(l), giving a relation between the constant front tra
velocity and its uniform spacingl, and their dynamics is
very simple. However, much less trivial behavior appea
even, in one-dimensional systems if the excitable medi
recovers the rest state not monotonically but via dam
oscillations@10#. In this regime, propagating wave trains o
ten relax to irregularly spaced configurations of fronts th
can be seen as spatial chaos.

The purpose of this paper is to report a nontrivial spa
structure arising as a pure boundary-shape effect in excit
media, namely,spatial quasiperiodicity, and its understand
ing by tools borrowed from the study oftemporaldynamical
systems. We investigate the asymptotic propagation of ex
able wave trains generated by local time-periodic stimulat
at the extreme of a sinusoidally undulated channel. We fi
that the trains of fronts asymptotically accommodate in q
siperiodic spatial configurations, incommensurate with
boundaries but periodic in time and synchronized with
stimuli ~they may be calledstroboscopically frozen, since a
temporal stroboscopic observation will see a fixed structu!.
With the experiments on the photosensitive Belous
Zhabotinsky reaction in mind@5,7#, we demonstrate this phe
nomenon in the Oregonator model adapted to include
effect of light. Finally, we present a more general semia
lytic theory of the formation of the quasiperiodic, and pos
bly chaotic, structures referred above.

II. NUMERICAL MODEL

Photosensitive Ru(bpy)3
12-catalyzed Belousov-

Zhabotinsky reactive media can be modeled@11# by the fol-
lowing version of the Oregonator model:

]u

]t
5

1

« S u2u22~ f v1f!
u2q

u1qD1Du¹2u,

]v
]t

5~u2v !. ~1!

Hereu (v) describe HBrO2 ~catalyst! concentrations.Du is a
diffusion coefficient andf, q, «, andf are parameters relate
©2001 The American Physical Society08-1
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to the reaction kinetics. In our simulations we setf 53, q
50.002,«50.05, f50.002, andDu51 @12#.

Guided by previous results@9#, in which the longitudinal
coordinate along a channel was shown to behave as atime-
like coordinate, we simulate this reaction in a spatial dom
tailored as sausage-shaped channel along the longitudina
rection x ~given in grid points!, as shown in Fig. 1~a!. The
transversal coordinatey is bounded by two sinusoidal walls
y0(x) andy1(x)52s2y0(x), with

y0~x!5
d

2
@12 cos~kx!#. ~2!

The spatial frequency isk52p/lp , the undulation ampli-
tude d, the minimum separations, and the widthw(x)5s
1d2d cos(kx). On the sinusoidal boundaries we impose t
Dirichlet conditionu50.004, a value close to the fixed poi
of the local dynamics. This could be implemented in t
photochemical reaction by annihilating any excitation in t
exterior of the domain via strong enough illumination.
contrast, a physical barrier~such as the border of a Petri dis
or any obstacle in the medium! would imply zero-flux
boundary conditions.

An efficient way to solve numerically Eq.~1! is by map-
ping the region limited byy0(x) andy1(x) and byx50,L on
a rectangular region defined byỹ151, ỹ050, andx50,L,
whereỹ5(y2y0)/(y12y0) andL is the length of the chan
nel. Under this map, the diffusion term transforms as@9#:

¹2u→]xx
2 ũ1F~x!] ỹỹ

2
ũ1G~x!]xỹ

2
ũ1H~x!] ỹũ, ~3!

F(x), G(x) and H(x), given in @9#, are periodic functions
reflecting the undulations of the boundaries via modulati
measured by the productkd. In the limit kd→0 ~straight
channel!, Eq. ~3! becomes the standard Laplacian.

FIG. 1. In the upper panel, the white area limited by gray u
dulated boundaries is the excitable region where fronts originate
the left end propagate. The transverse features are the fronts tr
ing to the right. Darker fronts have a larger value ofu, as indicated
in the color bar. The lower panel displays the envelope of the m
mum amplitude of the fronts.
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III. RESULTS

Wave trains are generated stimulating the medium at
left end,x50, of the channel by pushingu above and below
the excitability threshold periodically in time. The opposi
end of the channel is set as a no-flux boundary. During
simulations we mainly varied the forcing parameterslp and
d, but also several wave train periods and channel wid
were investigated. After a transient, the fieldsu and v con-
verge to a configuration of propagating fronts that repe
itself periodically in time in synchrony with the wave gen
erator atx50. In other words, the train becomes a strob
scopically frozen pattern. We denote byxn andan the longi-
tudinal position and maximum height ofu at the channel
axis, respectively, for thenth front. A snapshot of a segmen
of the channel is plot in Fig. 1~a! where the different gray
levels of the fronts are proportional to their heights~maxi-
mum value ofu) in Fig. 1~b!.

As a comparison, in a straight channel (d50) of finite
width s the asymptotic configuration of the wave fronts
equally spaced by a lengthl and propagates with velocity
c5l/T if the forcing period isT. This velocity increases
with the channel width@7# starting from a critical valuesc of
the latter, below which the fronts cannot propagate~since the
unexcited boundary layers originated by the Dirichlet con
tions fill-up the whole width!. In Fig. 2 we plot the train
velocity and the maximum amplitude of the wave fronts a
function of the width of the straight channel.

In modulated domains withdÞ0 a wide range of new
spatial configurations incommensurated with the bounda
emerge. Typically, both the spacing and the amplitude of
fronts become spatially quasiperiodic. According to t
strength kd}d/lp , of the spatial forcing we distinguish
strong from weak modulations. Let us describe the ca
lp550 andlp51000, respectively, as an illustration.

The results for strong modulation are shown in Fig. 3. T
amplitude of the boundary undulation increases from top
bottom. The quasiperiodic behavior of the pulse height
comes evident asd increases. The second column in Fig.
also shows the maximuman of each front as a function of its
position modulolp . This plot provides information abou

-
at
el-

i-

FIG. 2. Wave train velocity and wave height~multiplied by a
factor 10! in straight channels of different widths. There is a critic
value,sc51.65 s.u., below which propagation becomes impossib
T55 t.u.
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the distribution of the front height maxima relative to th
elementary unit of the channel. Notice that the fronts do
always reach their minimal height at the narrowest chan
sections (x5mlp) as one would naively expect from th
behavior in straight channels depicted in Fig. 2. Moreov
the fronts can now propagate even when the channel is
rower (s51.1) in some places than the minimum widthsc

51.65 that allows propagation in straight channels. Last c
umn in Fig. 3 displays thereturn mapsof the (n11)th front
positionxn11 ~relative to the unit channel cell! as a function
of the positionxn of the previous front. The shapes of th
curves are similar to thosecircle mapsdescribing the tempo
ral dynamics of periodically forced self-oscillators, thus co
firming our aim when constructing the system: the analo
between spatial behavior along a longitudinal coordinate
channeled domain, and time evolution in dynamical syste
The analogy suggests that our system should exhibit
same richness of spatial behaviors as the circle map doe
time evolutions.

The weak forcing case is illustrated in Fig. 4. As in t
case of circle maps for very weak forcing, the front-positio
return map shows a very small deviation from linearity w
the given parameter values. This approximate linearity
plies that the front train wavelength is nearly constant a
the influence of the channel walls are negligible. This infl
ence is, however, more important on the front heigh
Minima of front height are situated at the narrowest chan
sections, in concordance with Fig. 2, while the maxima sa
rate ford large enough.

FIG. 3. Numerical results obtained from Eq.~1! for strong forc-
ing. First column: Maximum height of each front within the trai
as a function of positionx. Second column: Same as before but w
positionx folded modulolp550. Third column: Return map of the
front positions modulolp . Each row is for a different amplituded
~in s.u.!. Parameters:lp550, T55 t.u.,s51.1 s.u. Note that chan
nel lengthL515 000 is much larger than that in Fig. 1.
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IV. THEORETICAL ANALYSIS

Let us now derive a semianalytical expression for the
turn maps of successive wave fronts positions and max
heights. The approach will be based on rather general a
ments, not explicitly linked to the particular model~1!. In
view of the results for the weak forcing case we assume
the front velocity in the undulated channel at a positi
where the local width isw adapts quasiadiabatically to th
velocity c(w) ~Fig. 2! corresponding to a uniform channel o
the same width. Thus, the velocity of thenth front is

ẋn~ t !5c@w~xn!#. ~4!

In our channelw(x)5w02w1 cos(kx) with w05s1d and
w15d. In order to proceed analytically an approximation f
c(w) should be introduced. Ford small the width variation is
also small andc(w) can be replaced by a linear fita1bw of
an appropriate range of data in Fig. 2. Hence,c@w(xn)#
'c02c1 cos(kxn), wherec05a1bw0 and c15bw1. Equa-
tion ~4! can now be integrated during one periodT of the
front generator, to obtain:

2

kAc0
22c1

2 @arctanf ~xn!#xn(0)
xn11(0)

5T ~5!

with

zn5 f ~xn!5Ac01c1

c02c1
tanS kxn

2 D . ~6!

Here we have used the observed time periodicity of the w
train to write xn(T)5xn11(0). This is the crucial step to
convert the time-differential Eq.~4! into a map for space
positions. Definingw5arctanz and D50.5kTAc0

22c1
2 we

haveD5wn112wn , and the return map for the variablez is

FIG. 4. Weak forcing behavior atlp51000 ands52 s.u.
Above: Return map of the front positions modulolp . Below:
Maximum height of each front as a function of the front positi
modulolp . Solid lines are from Eqs.~8! and ~10!.
8-3
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zn115g~zn!5
zn1tanD

12tan~D!zn
. ~7!

In terms of the front positionx we finally have:

xn115 f 21$g@ f ~xn!#%. ~8!

For the maximum height of the wave fronts, the sa
adiabatic assumption leads toan5h@w02w1 cos(kxn)#, with
h(w) being the maximum height of the fronts in a straig
channel of widthw. We can go one step further toward
qualitatively describing the observed positional misma
between the minimal-height fronts and the narrowest chan
sections by considering a short adaptation timeta of the
front characteristics to the local width:

ȧn~ t !5
1

ta
$h@w~xn!#2an%. ~9!

As above, by linearly fitting the data from Fig. 2 in the ran
(s,s12d) we have h(w)'a81b8w for small d. Then,
h@w(x)#'h02h1 coskx, with h05a81b8w0, and h1
5b8w1. Integrating Eq.~9! for small d and kc0ta!1, so
that, we can setxn(t)5xn(0)1c0t1O(d), we get a relation-
ship linking the wave front heights and positions,

an115h02
h1

A11ta
2k2c0

2
sin@k~xn1c0T!1u#. ~10!

Here u5arccos@1/A11(tac0k)2#, describes the displace
ment of the minimal heights from the narrowest sections

Since the derivation of Eqs.~8! and~10! is formally valid
only in the weak forcing limit we first contrast the theo
against the numerical data in Fig. 4 ford50.5, to confirm the
good agreement@13#. More detailed numerical exploration
reassure us that both adiabaticity and smalld approximations
are justified and that the small deviations in Fig. 4 are o
due to the linear approximation onc(w). Moreover, a sys-
tematicd expansion in Eq.~8! leads precisely to a circle ma
supporting the observation that this model is relevant to
description of our boundary-induced patterns in a giv
limit. Finally, while the agreement between the theory a
the numerics is bound to worsen as forcing increases,
04620
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theory still describes qualitative features of the strong fo
ing regime. For instance, Fig. 5 shows how the maxima a
minima of an(xn) shift asd is increased.

V. CONCLUSIONS

In summary, we have shown that boundary conditions
domains with the form of undulated channels may indu
nontrivial longitudinal spatial configurations of excitatio
fronts generated by a local time-periodic stimulation
simple excitable media. In particular, stroboscopically froz
quasiperiodic arrays of fronts were found. These structu
were described in terms of spatial return maps that are v
similar to the circle maps whose iteration describe the te
poral dynamics of forced oscillators. This similarity allow
one to speculate about the existence of even more com
configurations representing the spatial realizations of
chaotic regimes of these maps. The phenomenon repo
here should be experimentally observable in the photose
tive Belusov-Zhabotinsky reaction with proper lighting co
ditions at the boundaries. Work along this line is currently
progress.
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FIG. 5. Change in the shape ofan(xn) from Eq.~10! by increas-
ing d ~s.u.! beyond the weak forcing limit,ta50.01.
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@12# Unless explicitly indicated, all variables are dimensionless
cept for those given in space and time units that are defin
respectively, as 1 s.u.5gridpoints3Ds and 1 t.u.
5t ime iterations3Dt, being Ds the grid size andDt the
04620
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d,

time step.Dt50.0005, horizontal axisDx50.15, vertical axis
Dy50.05.

@13# Fittings to Fig. 2 lead toc055.37, c150.25, h050.40, and
h150.052.
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