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Phase locking in Josephson ladders and the discrete sine-Gordon equation: The effects of
boundary conditions and current-induced magnetic fields
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We report on the stability of phase-locked solutions to ladder arrays of underdamped Josephson junctions
under both periodic and open boundary conditions and in the presence of current-induced magnetic fields. We
calculate the Floguet exponents based on the resistively and capacitively shunted j(RE&&hmodel, as
well as on a simplified model of the ladder that leads to a discrete sine-GoR®B) equation for the
horizontal, current-biased junctions. In the case of zero induced magnetic fields, we find the DSG equation
(commonly applied to parallel arrayappreciably overestimates the exponents of the full ladder in the over-
damped regimécorresponding to the limit of small junction capacitan@g), and that difference physically
results from differing spectra for small-amplitude phase oscillations of the DSG and RCSJ equations. mutual
inductance between plaquettes is included we find there are ranges of values for the mutual inductance for
which the ladder is in fact unstable. To understand the cause of the observed instabilities, it is crucial to
consider the behavior of the vertical junctions.

DOI: 10.1103/PhysReVE.64.046205 PACS nuni)er05.45.Xt, 74.50+r, 02.40.Xx

[. INTRODUCTION The form of the DSG equation in which we are interested
is often described as representing a system of damped, driven
Ladder arrays of Josephson junctions are intriguing sysparticles that are connected to their nearest neighbors by
tems for a wealth of reasons: they offer rich dynamical be-simple springs and that experience an external potential that
havior, accessible to both theorists and experimentalists, iis a sinusoidal function of positiof24]. In such a situation
the field of coupled nonlinear oscillatdrs—10] (with recent  the DSG equation is also known as a variation of the well-
interest in the prediction and observation of discrete rotoknown Frenkel-Kontorova mod¢R5], which was proposed
breather§11-15); the possibility of phase locking a maxi- in the study of dislocations in crystals. It is important to note
mal subset of junctions suggests their use as microwavthat, because of the Hooke-like spring force in the DSG
sourceq 16—19; their complexity is between that of better equation, the interparticle interactions are described by a
understood one-dimensional serial and parallel arrays anconvexpotential energy function, i.eV(y)xy?, wherey is
full 2D arrays(e.g., square arraysand thus they offer a nice the displacement between neighboring particles. A descrip-
link between the two geometries; and ladder arrays can, urtion of the classical dynamics of underdamped Josephson
der circumstances that are partially understood, be modelgdnctions, however, often turns to the resistively and capaci-
by the discrete sine-GordoDSG) equation [6,20—23, tively shunted junctiofRCSJ model[26]. A key feature of
which is itself a source of research interest among manyhis model is that it leads to an interaction term between
[23]. In this paper we study the stability of phase-lockedneighboring horizontal junctions in a ladder arr@ge Fig.
junctions in underdamped ladder arrays biased with uniforni) that is asinusoidalfunction of the difference in the Jo-
dc bias currents greater than the critical currents of the juncsephson phases of the junctions. That is, the RCSJ model
tions. This means a subset of the junctions will be describedontains “interparticle” interactions described bynancon-
by a Josephson phase of the forbr= wt+f(t), wherew is  vexfunction, V(¢; . 1— ¢;) xcos(@;.1—¢;), where¢; is the
an angular frequency dependent on the bias currenf@)d Josephson phase for tiigh horizontal junction. Despite this
is a (usually small periodic correction. Such junctions are difference in the structure of the interaction terms between
often described as being in the whirling mode, in which thethe DSG equation and the RCSJ model, it has been argued
analogy between an individual Josephson junction and that the two should be dynamically equivalent in the limit of
damped, driven pendulum experiencing a gravitationasmall spatial variations of the Josephson phase differences
torque has been invoked. In the mechanical casgescribes along the ladder27], basically wheng; ;—¢;j<1 and
the angular displacement of the pendulum, ané the an- cos(¢>j+1—g{>j)~1—(¢>j+1—q/;j)2 [Refs. [6,20]]. Such a con-
gular speed of its rotational motion. straint on the phase differences is easily satisfied in the
We report on two aspects of phase locking in ladders: théaighly underdamped limit, corresponding to large McCum-
effects of boundary conditior(periodic versus opéras well  ber parametersg.=2el,R?C/#, wherel,, R, andC are a
as the effects of current-induced magnetic fields on the stgunction’s critical current, resistance, and capacitance, re-
bility of phase-locked solutions in the whirling regime. Also, spectively, and indeed much theoretical and experimental
in a refinement and continuation of work previously reportedwork comparing ladders and similéout not identical par-
[21], we have attempted to elucidate further the conditionsllel arrays of junctions to the DSG equation was performed
under which the ladder’s behavior is well described by thafor 8.=50 [2,6,28—31. Trees and Hussaif21] calculated
of the DSG equation. We use Floquet thesge Sec. llas  the Floquet exponents for phase-locked ladders numerically
the main tool towards these ends. for the RCSJ model and compared the results with an ana-
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Ig 1 2 fact, if one initializes the superconducting phases and/or
voltages at the nodes of the ladder randomly, it is easily
determined from the numerical output of our code that the
voltages, which are periodic in time, have indeed synchro-
nized, i.e., phase locked, within a relatively few periods. To
test the stability of phase-locking to mechanical perturba-

]— tions, we calculate the Floquet exponefgse Sec. )l for
+z these solutions. We do so both numerically for the RCSJ
model, and analytically. Frequently, our analytic results are

Ip +y

Ip based on simplifying the dynamics of the full ladder to that
I of a DSG equation. For both the periodic and open ladders,
in the absence of induced magnetic fielde are able to
T obtain analytic results for the Floquet exponents directly
. l from the RCSJ equations as well as from the DSG equation.
B

7 3 We find these two analytic results agree well in the laBge
limit (underdamped regimebut differ substantially in the
FIG. 1. Ladder array of Josephson junctions with cell size overdamped g.—0) regime. Furthermore, this difference is
The horizontal junctions, along the rungs of the ladder, are para”eéonsiderably more pronounced in the case of periodic lad-
to thex axis, while the vertical junctions are parallel to thexis.  gerg compared to open laddesee Fig. 2 Physically, we
This figure depicts a ladder witd= 3 cells and eight nodes, four of {jnq that differing spectra for small-amplitude phase oscilla-
which are explicitly labeled. A dc bias curreif is injected at each ;s between the two geometries accounts for this behavior.
npde on t.helleft side and extracted frgm the right side. We assume v have also studied the effects of induced magnetic
g:f?ﬁé Fl’ae(;';:r'c or open boundary conditions along the long direction) s e to currents flowing in the plaquettes on the stabil-
: ity of phase-locked solutions. We do so in a controlled man-
ner, first by considering only the self-inductance of a given
lytic result obtained from the DSG equation for much plaquette. This enables us, in essence, to extend Fig. 2 and
smaller values of3., namely, < 8,=<50. In comparing the map out the minimum Floguet exponent as a function of
Floquet exponents of smallest magnitude, which quantify thgunction capacitancend loop self-inductancésee Fig. 8.
lifetime of the longest-lived perturbations to the array, theywe are also able to calculate the exponents analytically
found excellent agreement between the two models down thased on the DSG equation, and we discuss the agreement
McCumber parameters of approximately fiiglepending on  between the numerical and analytical results in this case. We
ladder siz¢ For even smallep., the two results differed then include nearest-neighbor mutual inductance effects. Sur-
quantitatively, but qualitatively both showed a peak in theprisingly, for a given ladder size, we find ranges of values for
smallest exponent as a function gf [32]. the mutual inductance over which the ladder exhibits un-
The ladder geometry we have chosen to study is shown istable behavior, as evidenced by voltages and phases that
Fig. 1. The junctions parallel to the axis (the horizontal grow exponentially with time. This is a geometrical effect,
junctions have a critical currenit.,, while the vertical junc- depending on the number of plaguettes and the size of the
tions have a critical currert, . We have allowed for critical mutual inductance. Analytic work in this case, depending on
current anisotropy between the horizontal and vertical juncboth the DSG equation and the RCSJ equations, sheds light
tions so as to be able to tune the effective coupling betweeonto the cause of this instability. Last, we allow for long-
neighboring horizontal junctionsee Sec. )l For simplicity,  range mutual inductance between plaquejtasdk, by al-
however, all other junction parameters, e.g., resistdafte lowing the strength of the mutual inductance to fall off ex-
and capacitanceQ), are assumed identical. A possible re- ponentially with distance, i.e., we assume a mutual
finement of this work would be to allow for resistive and inductance of the fornMjk:Me*S“*k‘, where distances are
capacitive disorder, while satisfying the constraint that themeasured in units of the plaquette sizeand s tunes the
productsl ;R andl ./C for each junction be uniform through- range of the inductance. This is analogous to the inclusion of
out the arrayf33]. A spatially uniform, dc bias current; is  Kac-Baker long-range interactions in the DSG equaf8].
fed into the horizontal junctions on the left and extractedWe still find the instability regions as for the case of nearest-
from the right side. We typically allowed for a large dc bias neighbor inductance only, but even for those ranges of values
of 15/1.~10, thereby avoiding any instabilities between theof M for which phase locking still occurs, the degree of
whirling modes and the small-amplitude Josephson phase ostability of that phase locking iducedas the range o
cillations [29,30. The long direction of the laddefthe y s increasedi.e., ass—0. In general, we find the inclusion
direction) experiences either periodic or open boundary conof mutual inductance has a profound effect on the ability of
ditions. The number of cellg§plaquettes of the ladder is horizontal junctions in the ladder to phase lock.
denoted byN; typically we have studied ladders wikhrang- The remainder of this paper is organized as follows. In
ing from 5 to 25. Sec. Il we describe the numerical calculation of the Floquet
We consider phase-locked solutions for the horizontakxponents based on the RCSJ model and in the absence of
junctions, by which we mean a solution in which the hori- induced magnetic fields. We also compare the effects of pe-
zontal junctions have identical voltage versus time plots. Irriodic versus open boundary conditions on the exponents. We
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compare numerical results with two sets of analytic results, 040
one based on the RCSJ equations for the full ladder and th
other on a DSG equation. This comparison sheds light on the
differing dynamics of the two models. In Sec. Il we discuss 0.30 1
the Floguet exponents in the presence of self-induced mag__
netic fields. In this case our numerical work is based on the=Z
RCSJ model, and our analytic work is based mainly on ag 0.20 4
DSG equation for the horizontal junctions. We discuss theg
degree to which the numerical and analytical results agree. Ir *
Sec. IV we also include the contribution to the induced mag-  ¢.10 4
netic field in a given plaquette due to currents flowing in
neighboring plaquettes. It is at this point that we observe, for
the first time in our work, unstable behavior, in which the 0.00
Josephson phase differences across both the horizontal ar 0 5 10 15 20
vertical junctions grow exponentially with time. Section V B

discusses the effects of long-range mutual inductance, ir ¢
which the induced magnetic field in a given plaquette is af-  o.08
fected by currents flowing in all other plaquettes in the lad-

der. In Sec. VI we summarize our results.

(a)

- —

0.35 1

———
—

0.25 1

0.15 1

II. BOUNDARY CONDITIONS /NO INDUCED FIELDS

A. RCSJ model
0.04

-Re(?“mintc)

It is expedient to use a system of dimensionless variables
Let the characteristic time scale for a junction Ilbg
=h/2elR, so that we can define a dimensionless time vari- 4, |
able, 7=t/t.. The dimensionless dc bias current entering or
leaving nodg isigj=lg/l.x, where we are assuming uni-
form bias currents. Referring to Fig. 1, conservation of 0.00 . ' . .
charge at thgth node yields 0 10 20 30 40 50

Be

FIG. 2. Magnitude of the minimum Floquet exponent vs the
dimensionless junction capacitance for four different ladder sizes.
The bias current was fixed gf= 10, and the critical-current anisot-
=0. (1) ropy factor wasa=1. The solid lines are the result of an analytic
calculation[Eqg. (14)] based on the full RCSJ equations. The dashed
lines demonstrate, foN=10, the analytic result based on a DSG

Here 0; is the Josephson phase abde j and icjx  equation for the horizontal junction) Periodic boundary condi-
=l jk/lcx is the dimensionless critical current of the junc- tions. (b) Open boundary conditions.

tion between nodegandk. The sum runs over all nearest-
neighbor nodes tp. We allow for critical current anisotropy
in thatl ., andl., need not be equal. In fact we will define a
measure of the critical current anisotropycs |, /1.,. The
McCumber paramete8, was defined in Sec. I. The array is
not subjected to angxternalmagnetic field. Equatioiil) is
combined with the standard Josephson voltage expression for

i . d
IC,jk S||'( 0J_ Hk)-i- E'(aj_ ﬁk)

iB,j+%

2
+ﬂcﬁ(0j_9k)

Suppose that;(7) is a solution to Eqs(1) and(2). We
perturb the phase at nodleby an amounty;(7) so that the
new phase i®;(7) = 6y;(7) + 7;(7). Linearizing Eq(1) with
respect ton;, we arrive at the following:

nodej, V;=(#/2e)(d#;/dt), which if we define a character- d
istic voltageV.=1,R, can be written in dimensionless form 2 {ic 1k €08 60, — O ) (7, — 7lk)+d—( 7= M)
(. T
Vv, do, @ ,
Uj == d
Ve dr +Be 5 (m= 70| =0. 3
T

We have solved Eqgs(l) and (2) numerically using the

fourth-order Runge-Kutta method, witdimensionlesstime

steps ofA 7=0.001. Typically, the code was run for at least aBecause the coefficients of thg are periodic in time, with
time of 7415 =500000 to allow the horizontal junctions to period T/t. in dimensionless units, we can apply Floquet's
phase lock. Then the Floquéstability) analysis was per- theorem[34], which tells us that there exist solutions to Eq.
formed, which we now describe. 3 of the form
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0.6

LT
T tc

7] =un;(7), (4)

where u is a (possibly complexnumber called the Floquet

multiplier. We are interested in the case wHan<1, which v
corresponds to perturbations that diminish with time. Of E
course,| u|>1 denotes instability in that perturbations grow <
over time, and the special case |@f|=1 is called neutral él’

stability. There is a corresponding Floquet exponant
which is related to the Floquet multiplier by

n= eAT: e()\tc)(T/tc)_ (5)

The condition|u|<1 corresponds to Re(j<0. We can
think physically of the exponent®r multipliers as describ-
ing the stability of the characteristic modes of the arvaty.
least one of these exponents must equal zero, which is &
result of the invariance of Eq1) to a time translation. Ex-
cluding the exponent of zero, we are interested in the remain
ing exponent ofmallest magnitude\ ,i,|, as that tells us by
what factor the longest-lived mode of the array decays
grows in one period after a perturbatigB85].

We have performed a linear stability analysis for Iadders§,
of sizeN=10, 15, 20, and 25 with £ 8.=<50 andizg=10. -
Consider Fig. £a) that shows— Re(\ minto) VS B for a=1 in
a ladder withperiodic boundary conditions. The behavior
observed here has been previously repof&d, so we will
only summarize the key results. There is a general trend fol
decreasingB, of increasing stabilityas demonstrated by a
growing magnitude of the Floquet exponemown to a
crossover value of the McCumber parames&i(N), which o

is dependent upon ladder size. For decreagihgbelow FIG. 3. Minimum Floguet exponent for overdamped ladders
Bt (N), the phase locking takes increasingly longer to re{g,=1) vs the critical-current anisotropy for two different ladder
cover from a mechanical perturbation. As is seen from thesizes. The exponent equaisl/2g3, independent oN and « for «
figure, this crossover behavior of the stability is a sharp funcgreater than some crossover vala&,(N), which is dependent on
tion of B.. Furthermore, above the crossoy@.> B:(N)]a ladder size. The solid lines are the result of an analytic calculation
the Floquet exponent has a simple form, namely \Rgf.) [Eq. (14)] based on the full RCSJ equations. The dashed line dem-
=—1/28,, which holds for all ladder sizes and bias currentsonstrates, foN=10, the analytic result based on a DSG equation
we have looked atas long as the ladder is in the whirling for the horizontal ]unf:yons(a) Periodic boundary conditiongb)
regime, of course For reasons discussed previougy], we  OPen boundary conditions.
find it convenient to describe the ladder’s behavior as over-
damped forB.<B% (N) and underdamped fg8.> B5 (N). Figures 3a) and 3b) compare the exponents for both pe-
Physically, the sharp change in stability & (N) is due to  riodic and open ladders as a function of the critical current
one of the small-amplitude, oscillatory modes of the laddernisotropya for N=10 and 15 and foB.=1.0. In this case,
becoming less efficient at damping out perturbations. asa is decreased, there is a crossover vailti¢N) that is a
Figure 2b) shows the minimum Floquet exponents for afunction of ladder size. Fotw> a* (N) the minimum expo-
ladder withopenboundary conditions. A comparison of Figs. nent is constant at 1/28., while for a<a*(N) the expo-
2(a) and Zb) shows two important differences. The position nent decreases towards zerasaapproaches zero. A Floquet
of the crossover valu@g (N) for a given ladder size is in- exponent of zerdor a Floquetmultiplier of unity) denotes
creased in the open ladder relative to the periodic laddeneutral stability. We would expect the array to exhibit a high
[note the different horizontal scales in Figga)2and 2b)],  degree of neutral stability in the limit in which the horizontal
i.e., less damping per junction is needed, for a given laddejunctions were decoupled. This is just what-0 represents.
size, in the open ladder before the crossover to overdampegbo the behavior of the exponents o<1, is as expected.
behavior results. Also, in the overdamped regimeAs was the case in Figs(&@& and 2b), we see that forw
|Re(\ minto)| is smaller by approximately a factor of 0.25 in <a*(N) the open ladder is less stable than the periodic
the open ladder than in its periodic counterpart. That is, théadder. Further insight into the behavior exhibited in both
phase-locked solutions for the open ladder in the overFigs. 2 and 3 is gained by considering the analytic calcula-
damped regime aress stablehan for the periodic ladder. tion of the exponents, which we now discuss.

-
&
-
=
o
£
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B. Analytic results result from these equations. A previous calculation of the
exponents for Eq(9) based on periodic boundary conditions
has been discussed elsewhg?d]. We shall merely quote
the result,

We find it convenient at this point to introduce a change in
notation. Let¢; represent the Josephson phase for jte
horizontal junction. For example, based on Fig.¢,= 6,

— 0. Also, letif;(i,;) be the Josephson phase for a vertical 1
junction corresponding te=0(x=a), i.e., ;;= 6, — 63 and Re(\ (P59t )= — +-—ReJ1-48] wP597?,
1= 0,— 0,. We shall take advantage of the well-known 2B 2B¢

symmetry of the array that results ify; = — ¢, , as can be (10
verified from the RCSJ equatiofi36], to simplify the analy-  \yhere [0P3912=24 si(ma/N)(m=0,1, ... N—1) is a
sis. Applying conservation of charge to the left node of thege of characteristic, or normal-mode, frequencies fpaa

—+

jth horizontal junction results in allel array ofN junctions. That isw°S® describe the fre-
du, a2y o, quencies of the small—am.plitud.e phase_ osqillatiqns of the un-

ig—aSing_1— —— — Bo— " —sing — —— derdamped ladder array in which thertical junctions have

. dr dr? Iodr been shorted. The agreement of EtD) with the numerical

exponents for thdull RCSJ ladder is good in the under-
damped regimgB.> Bz (N)], but there is a quantitative dif-
ference in the overdamped regime, as observed in Kaj. 2
for N=10.[The dashed line represents the prediction of Eq.
In addition, we include the constraint that in the absence 0f10).] Some physics, that becomes increasingly important in
any external or induced magnetic flux through a giventhe overdamped limit, was discarded in simplifying E8)
plaguette, the sum of the gauge-invariant phase differencee get to Eq.(9). That physics is the spatial variation of the
around a plaquette must vani$87]. In our case, for the ¢;, and their time derivatives, along the ladder.

d?¢, . di; d?y;
— Be 02 +asinyg;+ F+ECF

=0. (6)

plaquette consisting of the horizontal junctionsnd j+1 We have calculated the Floquet exponents analytically for
and the corresponding vertical junctions we have Eq. (8) directly. As described in Sec. Il and in R¢21], we
let ¢j=¢o;+ »; and linearize with respect to thg;. We
b= bj+1t24=0, (7)  also assume that the unperturbed phases are growing linearly

with time at a common rate, i.e;= w7, as is characteris-

where we have made the definitiohj=—i,;=¢;. We , - ; X . ) .
then solve Eq(7) for ¢; and substitute into Ec(6). Simi- H(]:eo;_thies whirling regime. The resulting equation, linear in
] 1

larly, we can write the phase constraint for the plaquette

consisting of horizontal junctiorisandj — 1, solve fory; 4, 2 _ 2 _
and substitute into Ed6). The result is an equation depend- BCVZ(M) 1 2(%) — CM—%—COS(M) 7j
ing on phase differences for only the horizontal junctions, dr? 2 dr dr? T

Be | d®¢;) 1 _,(dg d’¢; de¢; _5V277:0 (11)

i 2 — = 1 ) j .

2 v dr2 +2V dr “dr2 dr sin¢; 2

b1 b1 b Based on the assumption of periodic boundary conditions,
+a sin(% +sin(% +ig=0, we expand they; in an appropriate Fourier series
N—1
(8) m:mzzo A, (7)e2mmiN (12)

where we have introduced the discrete Laplacian notation

szjsfj+l—2fj+fj,l for a functionf; defined on the ar- and substitute back into Eq11). After some algebra and

ray. using the fact that the Fourier modes are independent of each
Note that a DSG equation results from E8). by ignoring  other we arrive at a differential equation for the Fourier co-

the Laplacians of the time derivatives and also by linearizingfficients

the sine terms in the square brackets. Such a simplification is

based on the assumption that the Josephson phase differences C[mm\ ]| d?A, 1 dA,

for the horizontal junctions are only weak functions of posi- 1+2sirf| - > "o dr

. . e N dr B dr

tion as one moves along the ladder. Such simplifications re-

sult in 1 mar

5 2asin2(W +cofw) |Ap=0. (13
—d2¢j+d¢j+ i v2p —ig=0 9 C
Pe d2 dr sm¢>,——§ ¢~ 18=0. © This is a Mathieu’s equation with damping and is almost

identical in form to that studied in Reff21] for the periodic
It is worthwhile to understand better under what conditionsDSG equation. A key difference with this new result, how-
Egs. (8) and (9) are indeed dynamically equivalent. One ever, is the presence of thedependent sine terms multiply-
probe of such conditions is the set of Floquet exponents thahg the time derivatives of thé,,. It turns out that these
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terms play an important role in determining the Floquet ex-set of normal-mode frequencies. In effect, the spatial varia-
ponents for smalB.. An analysis of Eq(13) similar to that  tion of the time derivatives has renormalized the frequencies

described in Ref[21] yields the result for a parallel array by a factor of 1+ 2 sirf(mm/N)] L. It is
. Eq. (14) that we now compare with the numerical results for
(RCSJ:t y_ _ — (RCSJ2 the exponents, as shown in Figs. 2 anf8].
ReAm ~te) 28. iZ,BCRe\/l ABclom T Consider the set of all possible exponents resulting from

(14 Eqg. (14) when the normal mode index runs over its range,
. . . O=m=N-1. For them=0 mode, we see that the two pos-
where now the characteristic frequencies are given by sible values are Ragt.)=0, —1/8., where, in fact,
mar —1/B; is the largest possible magnitude exponent one can
2a sinZ(—> obtain from Eq.(14) and represents the fastest decaying
N (15) mode of the array. For all modes>0, the possible expo-
nents can be divided into two categories, depending on
whether the argument of the square root in Eg)) is less
than or greater than zero. We shall refer to the case of when
We see that the inclusion of the Laplaciaﬂ%(dznj /d7?) the argument of the square root is légseatey than zero as
andVv?(d »;/d7) in Eq. (11) has resulted in a new, effective the “overdamped”(“underdamped’) regime. Thus we have

[ofy “]?=

oM
1+2 sw?(W

- % if 48] wRCSI12>1
Re(A(RCSIt )= ¢ (16)

g 11480 ST i 4B Lo @<L,

Figures 2a) and 3a) offer a comparison of the numerical _ mm
and analytic results for the Floquet exponents for several 2asin? 2[N+1]
periodic ladder sizes and zero external field. The analytic [w(RCSIopen 2 (19
results, shown as line plots, were obtained by plotting, for a : .
; . 1+ 2 sirf
given B;, «, andN, the exponent from Eq(16) with the 2[N+1]

smallest magnitudé/Ne see that the agreement is excellent. . . o ]

For further comparison we also shafor N=10) the ana- These fr(_equenmes result in the_sol_ld lines of Figd) 2nd
lytic result, Eq.(10), based on the DSG equation. It is clear 3(D). As in the case of the periodic ladder, the agreement
that the DSG result overestimates the exponents in the ovepetween this new analytic result and the numerical results is
damped regime. This difference is due to neglecthe DSG ~ €xcellent. _ _

equation of the Laplacian terms of the time derivatives as Further observation of Fig.(8) shows that(for N=10)
mentioned in the previous paragraph. Clearly, the spatia{flheDSagaM'C result based on the DSG equation, with
variation represented by these terms and the appropriatet 1°=2asif(ma/2[N+1]), and the analytic result

spectrum for small amplitude phase oscillationg{°>? vs ~ based on Eq(18) do not differ significantly. This is in con-
»(PS9) are important in understanding the dynamics in thelrast to the periodic ladder of the same size. In effect, the

overdamped regime. difference in boundary conditions has led to different renor-
A similar analytic analysis can be performed for the Openmalization factors for the characteristic frequencies, with dif-

ladder. The key difference is the form of the Fourier seried€rent sine terms in the denominatof€ompare Eqs(15)
used to represent the perturbatigBg]: and (18).] In the open ladder, the extra factor of 2 that ap-

pears in the denominator of the argument of the sine sup-
presses its importance for all but the smallest ladders. In fact,

o1 a quantitative way to gauge the importance of the renormal-
N—-1' mm| | —5 P . . . .
ization of the characteristic frequencies and in turn the im-
7= 20 An(T)CO§ — 7 | (170 portance of the Laplacian terms in H@1) is to calculate the
m=

relative difference between the minimum exponents based on

Eqgs.(14) and(10) (both analytic resulisfor several different
where the prime on the summation means there is a factor ofalues ofN and 8. and for both periodic and open ladders.
one-half in front of the sum for then=0 mode only. The That is, we plot|Re(\ &St )—Re(\ 8%t |/|[Re( K5ty
same method applied to the periodic ladder leads to an equas 3. for N=10, 15, 20, and 2%ee Fig. 4 We see that the
tion of the same form as Eq14) but with the following two sets of analytic results for periodic ladders can differ by
characteristic frequencies as much 50% in the overdamped regime. For open ladders,
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> os .
= Periodic Ladder (a) .
< 05 - -1
na:) .5 Ig +y
> 04
_E P1,4-1 I P21 +x
2 031
= &
= J
& o02- s [
55 0.1 Y14 ‘ I Y, a
(]
T o001 v &j1 l
0 2 4 6 8 10 12 14 Ip
Be :
— 0.5 FIG. 5. Two plaquettes in a ladder array withplaquettes il
f open ladder (b) _>2). b; _represents the _Josephson phase _for]t_hdﬂorlzontal junc-
T 020 tion, which also comprises the top junction in tiea plaquette.
o N=10 yn; (4;) represents the Josephson phase for the vertical junction
> on the left(right) side of thejth plaquettel; is the mesh current
_E 0157 circulating in thejth plaquette.
§ N=15
< 010 N=20 . .
E =25 tion arrays[36,39—43. It is natural then to ask about the
I effects of such induced magnetic fields on the stability of
= 0051 phase-locked solutions. We address this issue in Secs. IlI-V
< —] of the paper. We start by considering each plaquette in a
@ 0001 ; ; ; periodic ladder to be described by some self-inductahce
0 10 20 30 40 We also adopt a mesh current appro&dh], in which we
Be assume that thgth plaquette is described by a well-defined

circulating mesh currerit; (see Fig. $. Applying conserva-
FIG. 4. Relative difference between the two analytic resultstion of charge to the upper left node of theh plaquette
[Egs.(10) and(14)] for the minimum Floquet exponent as a func- gjves, in dimensionless units,
tion of the dimensionless capacitance of the junctidibe results

correspond toa=1.) Re(\pito) represents the resul€q. (14)] do, dqu-

based on the full RCSJ equations, while REE%t,) represents the igtij—ij_1=sing;+ d—J + B 2J , (19
result[Eq. (10)] based on a DSG equation for the horizontal junc- T dr

tions. (a) Periodic boundary conditiongb) Open boundary condi-

tions. where ij=I;/l., is the dimensionless mesh current in

_ o _ plaquettg. Similarly, the vertical junction on the left side of
the maximum relative difference is at most roughly half thatp|aquettej is described by

of their periodic counterparts. Furthermore, for a given value

of N, the open ladders yield a sharp peak in the relative

difference as a function g8., whereas the periodic ladders ) ] di; dzwj

experience a broader range @f values over which the dif- lj=asing;+ F*’ﬁcﬁ* (20)
ference is sizeable. The upshot is that the geometry, i.e., T

boundary conditions, of the array has a significant effect

upon the stability of phase-locked solutions in the over-where as beforee=l.,/I., measures the critical-current an-
damped regime. In addition, an analysis of the ladder base@otropy in the ladder. Finally, the constraint on the Joseph-
on the DSG equation will overestimate the Floguet exposon phases yieldgor plaquettej) [37]

nents at smalB. . This is because the DSG equation neglects

spatial variations of the derivativesp; /d7 and d?¢; /d7?

2
along the ladder. b= i1t 2¢=——,

(I)() ] (21)

ll. SELF-INDUCTANCE

where®,=h/2e is the magnetic flux quantum, ade is the

total magnetic flux passing through plaquejttdn the ab-
Several groups over the last decade have discussed tisence of any external flux, and considering only the self-

importance of including current-induced magnetic fields in ainductance of a given plaquette means What=L1;. So Eqg.

study of the static and dynamic properties of Josephson jun¢21) can be written as

A. Numerical results
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27l
D, I’

b= i1t 2¢=—

and introducing a dimensionless loop inductangk
=27Ll./®y gives us the following useful form of the
phase constraint equation:

b= b1t 2¢=— BLij.

The next step is to solve E¢22) for i; and substitute into
Eq. (19). Also, by making the change of notatipa-j—1 in
Eq. (22) we obtain a constraint equation fgr , in terms of
phase differences that can also be substituted into(E3).

(22

The resultant equation is independent of the mesh currents

and takes the form

d?¢;

do;
Pe d7?

ar

1
BL

(V2¢i—2[¢hj— thj—1])—ig=0.
(23)

+sing;—

Eliminating the mesh currenf from Eq. (20) yields

d?y;

d+?

di;
ar

1
—(j—pj+11+2¢;)=0.

+asing;+ 3
(24

c

Equations (23) and (24) were solved numerically for
o, ¢j, d¢j/d7, andd;/d7. Next, to find the Floquet ex-
ponents we perform a linear stability analysis. ldgt= ¢

+ 77; and ;= io; + 6;, where ¢g; and i; are solutions to
Egs. (23) and (24). Substituting these perturbed phases int
Egs.(23) and(24) and linearizing with respect tg; and §;
gives

Be 92 +E+(COS¢OJ)7H—E(V 7;—2[ 6= 6;-1])
=0 (25
and
d?s; dg, 1
C_de +E‘Fa(coswoj)éj‘f'E(?]j—ﬂj+l+25j):0.

(26)

(0)
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FIG. 6. Minimum Floquet exponent vs dimensionless self-
inductance of a plaquette fog=10 and three different values of
the critical-current anisotropy in a ladder with=10 andperiodic
boundary conditions. The solid line represents an analytic result
[Eqg. (28)] based on a DSG equation for the horizontal junctions.
The dashed line is the largg, limit of the analytic result, where
w(lL) is one of the normal-mode frequencies of a parallel array of
junctions.(a) B.=10. (b) B.=30.

tance affect the size of the exponent. Also note that the ex-
ponents exhibit a dependence on the valuexdbr 15< 3,

=30 andB.=10. Specifically, forB, values in this range, as

a is decreased the degree of stability is reduced, as is evi-
denced by a smaller exponent. Figuréh)6shows similar
behavior forB.=30. Figure 7 shows the results of the same
calculations for open ladders as opposed to periodic ladders.

The resulting minimum Floquet exponents, calculated nuA comparison of Figs. 6 and 7 in the inductive regime shows

merically based on Eqg23)—(26) as a function of the di-
mensionless loop inductang® , are shown in Fig. 6 for
periodic ladders. Figure(é) corresponds to a ten-cell ladder

that the exponents are larger in magnitude for the periodic
ladder, demonstratin@s in Sec. Il that, generally speaking,
the periodic ladder is more stable than the open ladder. It is

with B.=10 and three different values of the critical-currentworth noting that for3,=10 andB.= 30 both types of lad-
anisotropy, . (All the numerical values of the exponents ders, periodic and open, show1/23. behavior in the ca-
shown in Fig. 6 were calculated by initializing the phases topacitive regime. Although we have not checked explicitly,

zero and the voltages randomlyVe would roughly catego-

we would expect that for small enough capacitangk (

rize the results as belonging to one of three different regimes=2), the periodic and open ladders would have differing

in the capacitive regimévalid for 8.= B,) we find the mini-
mum Floquet exponent equal to1/28, independent of3, ;

in the inductive regimévalid for 8, > B.) we find the expo-
nent is proportional te- 1/83, , independent of3;; and then

exponents even in the capacitance regime, with the periodic
ladder more stable.

To help the reader visualize the dependence of the Floquet
exponent on both the junction capacitance and the loop in-

for B~ B, both the junction capacitance and loop induc-ductance, consider Fig. 8, which represents the minimum
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0.06

@ B,=10

-Re(Amintc)

-Re(Amintc)

0.018

0.016 - B. =30

0.014

— 0.012 e =1 FIG. 8. Minimum Floquet exponent vs dimensionless junction
< 0010 " a=15 capacitance and dimensionless loop self-inductancéesferlO and
€ T o= N=5 in a ladder with periodic boundary conditions. The crossover
? 0.008 - ridge demarking the border between the capacitive and inductive
% oo0s . regimes is visible roughly through the middle of tBg-B, plane.

0.004 4 . - This plot was produced by nur_neri_cally evaluating the minimum

000z LI i exponent for hundreds of combinations @f and 8, values.

0.000 T T d2¢ d¢ 1

0 10 20 30 j j . 2 L
b, Be 0 + P +sin ¢ BLV ¢j—ig=0. (27

FIG. 7. Minimum Floguet exponent vs dimensionless self- . e
inductance of a plaquette fog=10 and three different values of Note that in contrast to Sec. Il, where the critical-current

the critical-current anisotropy in a ladder with=10 andopen anisotropy controlled the coupling strength of nearest-

boundary conditions. The solid line represents an analytic resul'f'eighbor hprizontal junctions,_in this case of a sglf-inductive
[Eq. (28)] based on a DSG equation for the horizontal juncti¢as. ladder the inverse of the loop inductance determines the cou-

B.=10. (b) B.=30. _pIing strength. Also, it is important to remember that. EYy)
is only an adequate reflection of the of the dynamics of the
] o ladder in the case whep,— 0, i.e., the vertical junctions are
exponent as a function of botB, and . for a periodic  jnactive.
ladder withN=5. This plot was produced _by qalculating the  pecause Eq(27) has the form of a DSG equation for the
exponents for hundreds of different combinations of the tw: hasesp; we can calculate analytically a corresponding set

parameters. Our plotting program then interpolated betweegs Floquet exponents in a manner identical to that described
the data points to produce the surface shown in the figurg, sec. |1. The result is

Inspection reveals that the behavior represented in Figs. 6
and 7 is obtained by merely taking an appropriate cross-
1 1 D)2 Be
Re\/1- 4[] ,

sectional slice through Fig. 8. Re\Mt )= — + L
R TR T A

(28)
B. Analytical results
where the characteristic frequencies argw(-)]?
d =4 sirf(ma/N) (m=0,1, ... N—1) for a periodic ladder.
Equation(28) yields the solid lines in Figs. 6 and 7. For the

First-order versions of Eq9423) and (24) in the over-
damped limit 3.—0) have been studied by Filatrella an
Wiesenfeld 36] via an iterative approach. We employ a simi-

. i (L,openq2
lar method here. To make analytic progress towards undePen _ ladder — the  frequencies — are[wpy ]

standing the behavior of Figs. 6 and 7, we start by neglecting” 4 S|r12(m77/2[[\l+ 1]). With the aid of Eq(28) we can iden-
the phase differences associated withwgicaljunctions in Uty more precisely the capacitive and inductive regimes for
Eq. (23). As partial justification for this step, we check nu- the ladder. In the capacitive regimef&y)128./8,>1 or
merically that over a wide range of values Nf 8., and  Bc> B4 (1% such that Re({)t;) = —1/28., indepen-
B, and for random initial values of all the phases, the ver-dent of 8, . In the inductive regime, 4o{-)128./8, <1 or
tical phase differenceg);, do indeed approach zero. In this BL>4[w§nL)]2BC such that theminimum Floquet exponent
limit, Eq. (23) reduces to a DSG equation for tifg, follows from Eq.(28)
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[w{M]? B, (7) =e’c". The resulting quadratic equation for the expo-
Re(\{idte)~— B (29 nentsA can be solved to give
L
independent of3;. Note that Fig. 6 includes a graph of this 1 2
limiting result[Eq. (29)] for the inductive regimgsee the At =— + \/1_436( @ COSYy+ _)
dashed ling 2Be 2P P

A comparison of the numerical and analytical results in (33

Figs. 6 and 7 show good agreement in the capacitive and
inductive regimes, but fog.~ g, there is a noticeable dis- Note that the solutions for thB,, will exponentially grow

crepancy. It is important to note that our analytic result iswith time and hence represent an instability in the ladder, if
independent of the critical-current anisotropysince that A(+)tc>0_ This can occur if
affects thee; only through coupling with they;. Presum-
ably, then, the difference between the analytical and numeri-
cal results is due to our neglecting the vertical junctions en- < — 2 (34)
tirely. Thus we turn to Eq(26). BLcosyy’

We now assume that the perturbations to the vertical

phase differences; can be expanded in a Fourier series ] ) )
where we remind the reader thé is the phase difference

N1 o across a vertical junction just prior to the perturbation. Once
8j= 2 Bp(7)e?mmiN, (30)  again, numerical evidence suggests that if the phases are ini-
m=0 tialized to zero, thenyy,~0 mod(27). Thus we can say

cosyp~1in Eq.(34). It is clear that the inequality can never
be satisfied sinc@, and « are non-negative quantities, and

Secf'f.lb. tot Véme Edqtr(122) aSA? tg!ﬁerept;al equlatlotn l:or_ t?e the solution to the homogeneous part of E8{l) describes
COETICIENtSEy, and €A, . IS point, we aiso take into exponentiallydecayingfunctions of time.

account that when running our code that calculates the expo- It remains to find a particular solution to E@1). Unfor-
ﬁz]ntts numerlt(r:]altly we always_lnltla[|z§d thedphtases(ltqo Zerotunately, this is not possible since the full functional form of
at means that we expegh, = yo, independent of. (Re- the A, is unknown. We can guess, however, that any particu-
call, that as part .Of the numerical process for calculating th?ar solution will have the same general form as that of the
g)ég%rg%nt_s, we mte;)grfate Eq(s|21_%) aﬂd (24) fgr _at least A, hamely, a decaying exponential function of time multi-
time steps €fore app ying t e pertu'r a“@?-re.p' plying a periodic function of timdsee EQq.(32)]. The full
_resents the phase dlffere_nce acros_snﬂhlev_ertlcal Junction solution to Eq.(31) is thus a sum of the homogeneous and
Just _before the perturpgt!onNumer!cal evidence suggests particular solutions, i.e., a sum of exponentially decaying
that if the phases are initialized uniformly, they remain uni- <o 1utions where the set of all possible “decay rates” is given

form along the laddefmodulo 27). Also, recall that the by Egs. (28 and (33). The upshot is that an analytic result

\{ol_tagegacross all the junction_s through(_)ut the array are ini'for the Floguet exponents for the fulbupledEgs. (25) and
tialized randomly. The resulting equation describing the (26) has yet to be attained. Such a solution is required to

Fourier modes of the vertical junctions is explain thea dependence of the numerical results seen in

and we also use our previous Fourier series for #hésee

2B dB 5 Figs. 6 and 7. . '
B m,Z°om, @ cospo+ —|B _ Or_1e useful che(_:k of our a_nalytlc work on the vertical
¢ dr2 dr B " junctions is to see if the analytic exponents obtained for the
homogeneous version of E(B1) describeany of the set of
=i(e2”‘m’N—1)A 31) 4N (for periodic laddersexponents calculated numerically
BL m: directly from Egs.(25) and(26). For example, Table | gives
the exponents for a five-cell periodic ladder wiga=1, 8,
Now according to Floquet theor}34], the A,(7), which =50, anda=0.1, corresponding to a region where the nu-
describe the perturbed horizontal junctions, can be written imerical and analytical results for,,, differ. We can easily
the form identify the exponents with approximate values of zero and
" —1/8.. These would be expected based on §) for the
Ap(T)=e'm %"p (7), (320 m=0 mode. A quick check of the remaining values in Table

| shows that all but twdmarked by an asteriskare doubly
where in our caspy,(7) is an unknown, periodic function of degenerate. It turns out that these two nondegenerate expo-
time. That is, although we have been able to solve for thenents are well described by E(B3). (Note that neither of
Floquet exponents‘»,fn” [Eq. (28)], we do not know the form these exponents appear in Figs. 6 and 7, since they are not
of the p,,,, and so the right side of Eq31) is not a com- the exponents of minimum absolute va)u€his is demon-
pletely known function of time. With the hope of learning strated by Fig. 9, which shows excellent agreement, as a
somethingabout the behavior of the vertical junctions we canfunction of @, between this particular subset of the numerical
solve the homogeneous version of Eg1). That is, we set exponents and the analytic result based on the vertical junc-
the right side to zero and assume a solution of the formions. So Eq(33) describes some aspects of the dynamics of
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TABLE I. The Floquet exponents obtained from a numerical 1.00
solution of Eqs.(25) and(26) for a periodic ladder wittiN=5, ig
=10, B.=50, B.=1, anda=0.1. There are 4N =20 characteris-
tic modes of such an array, each mode having a corresponding 0.75 1
Floguet exponent. The extremal exponents have values of eeo
good approximationand — 1/8. . All other exponents, except the

-Re(\t,)

two marked by an asterisk, are doubly degenerate. 0.50 1 * * 1
Re(\te) 025 -
2.6x10°*
—0.01864 000
—0.01864 Y 0:1 oiz 0:3 0:4 0.5
—0.04439
~0.04439 *
—0.16824 (*) FIG. 9. Agreement between twout of the set of M) numeri-
—0.18223 cal Floquet exponents for a five-cell periodic ladder and an analytic
—0.18223 result(solid line) for the exponents based on thertical junctions
—0.21646 [Eqg. (33)]. This plot demonstrates that the vertical junctions are
—0.21646 responsible for some of the stability of the ladder. These results
_ 0l78298 correspond tog=10, 8, =50 andB.=1.
—0.78298 )
—0.81721 A - > T -
Z-op+2¢y=——L-1, 36
—0.81721 ¢ v D, (36)
—0.83120 (*)
—0.95505 hereZ andL areNx N matrices, the f fwhich can b
095505 whereZ andL are matrices, t e forms of which can be
70.98080 deduced from Eq(35). Note thatL is just the inductance
_0'98080 matrix with the self-inductancke along the diagonal, and the
—0l99969 mutual inductance- M on either side of the diagonélong

with the constraint of periodic boundary conditipns
We can write Eq(36) in a dimensionless form as follows.

F r from the in nce matrix, an fin imen-
the array; the decay rates represented in that result, howeveraCtO out. from the inductance matrix, and define a dime

merely do not describe the longest-lived mode of the arrays'Onless mutual inductance =M/L. Then write [=LX
and we now have

IV. NEAREST-NEIGHBOR MUTUAL INDUCTANCE
A. Numerical results Z-p+2¢ D,

In this section we study the effects of nearest-neighbor
mutual inductance on the stability of phase-locked solutiongyefine the dimensionless mesh current matrael/l
in periodic ladders. Let each loop have a positive self-1nen
inductancel as in Sec. lll and a negative nearest-neighbor
mutual inductance;- M, whereM >0 andM <L [43]. The
mesh current analysis of Sec. Ill can be extended in a 2.$+2 _ ZWLICX“ P
straightforward way to handle mutual inductance. In fact, @,
Egs. (19 and (20) are unchanged. Equatid21), however,

must now account for the fact that the total flux thrOUghWe can also write Eq:{lg) and (20) in matrix form. Define
plaquettej depends on the mesh curremfsandl;.;: TBE FB/ICX to be the dimensionless bias current matrix, and

=—BLX-T. 37

<

2 let simZ;(sin zZ) be the notation denoting the matrix whose
b= D1+ 2¢=— (FO(— MIj_1+LI;=MIj,q). elements are si(siny;). Then we have
(39
Tr. 7 d¢ dZ(Z_
It is useful to introduce a matrix notation to represent the ip+2Z '_5'”¢_ dr _ﬁcﬁ_oy (38)

equations compactly. Leb be anN-component column ma-
trix composed of thep; . Similarly, IetJ/ represent the phase

- 2
differences across the vertical junctions, dnepresents the i — asin (z_ dij - Cd_"/’ =0, (39)
N mesh currents. Equatiqi35) can now be written as dr d?
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FIG. 10. Minimum Floquet exponent for periodic ladders vs the dimensionless, nearest-neighbor mutual ind(Etencesults
correspond tog= 10, B8.= 10, andB, = 100) The symbols correspond to exponents, for a given valye, gfthat were averaged over many
different values of the run time of the code as well as several different random configurations of initial voltages. The error bars represent the
standard deviation of the average exponent. The solid line represents an analyti&ggdh) | based on a DSG equation for the horizontal
junctions.(a) N=5. The analytic result predicts stable phase-locked solutions€gu,0<1. The numerical results exhibit an instability,
however, foru{Y< u, <u(® whereu{"=0.5 (solid vertical ling and »{®) (dotted vertical lingis dependent on the starting configuration
of phases and voltages, as well as on the valug af This instability originates with the vertical junctiond) N=7. In this case, the
geometry of the ladder leads to a second instability regionufor 0.8 (marked by a solid vertical linethat originates with the horizontal
junctions. The instability neg, = 0.5 still exists but is narrower than for the five-cell laddey.N=9. The instability due to the horizontal
junctions exists fop, >0.67. The instability near, =0.5 is also still present.

whereZ™ is the transpose d. As in Sec. Ill we can elimi- Equations(40) and (41) were solved numerically fo& and
nate the mesh current from Eq&8) and (39). Solve Eq. i as a function of time for random initial values d/d+

(37) for i and substitute into Eq¢38) and(39). The resultis  anddg/dr and initial values ofp and ¢ of zero.
A stability analysis analogous to that in Sec. Il yields

2
d°¢ d¢ 1. Tr 1.(9. 7 TN i 22
d¢ 1 . i &7 d7
Bo ot gy TN+ g2 K712 ¢+ 29) ~15=0, o Z+d—+cos¢o 77+B T2 7+ 28)=0,
(40) )
d2¢+d"ll+ g+ —%1 1(Z-d+24)=0 Be d25+d5+ PR o (Z-p+28)=0.
— t = Sin —_— =0. - cos —
Poge " dr TS g, v a7 "y acost ot g R 2
(41) 43)

046205-12



PHASE LOCKING IN JOSEPHSON LADDERS AND TH. . . PHYSICAL REVIEW E 64 046205

Equations(40)—(43) allow a numerical calculation of the 0.80
Floquet exponents as functions f iz, B., BL, andu, . . .
Figure 1@a) shows the minimum Floquet exponent as a 0731 N=31=10,5,=10
function of u, for 0=y, <1 for a five-cell periodic ladder. 0.70 |
As a theoretical exploration of the behavior of the RCSJ ¢
equations we are content to allqey to vary over this range. €2 065 .
Physically, we know that in a simple ladder array with only .
nearest-neighbor mutual inductance, the maximum value of 0.60 1 ¢ .
this ratio is one-half43]. It may be of interest for experi- 055 - *
mentalists to attempt ways to enhance the mutual inductance ’
over the self-inductance in order to see if a broader range of 0.50 -
u values can be sampled. 40 60 80 100 120 140 160 180 200 220
The small error bars visible in Fig. 10 deserve explana- B,

tion. In order to produce plots that displayed an interesting _ ) _
dependence of the Floquet exponents on the mutual induc- FIG- 11. Evidence that the upper boundaaf”, of the insta-
tance, we found a rather large value 8f was necessary bility region due to the vertical Jur(u:)tlons is a function of the loop
1 -. 2 . . .
(B.=100). A consequence of such a large self-inductanc self-inductanceB, . The value ofu;*’ was determined by finding,

Iso found I d d f th et’or a fixed starting configuration of voltages and phase differences,
We aiso found, was some small dependence of the numerp., largest value of the mutual inductance that resulted in an expo-
cally calculated exponents on the run time of the code aggpiial growth of the phases and voltages.

well as the values of the initial voltages across the horizontal

junctions. We therefore calculated, for each different value ofjyced by integrating Eq€40) and (41) for 10° time steps

the mutual inductancg, , the exponents for many different 4,9 recording the ending value of the mesh currents based as
values of the run time and several different random configuppy the matrix equation

rations of initial voltages. The symbols in Fig. 10 represent
an average, for a given value pf_ , over these sets of re- . 1. R
sults, and the error bars represent the standard deviation of i=- B—X_l'(z' d+2¢). (44)
the average. The relatively small size of the error bars shows -
that the variations in the numerically calculated exponents is
small. The behavior has been discussed elsewHé&ie

In Fig. 1Q(@), which corresponds to a periodic ladder with
N=5, we checked that the data fpr, =0 are to a good

Note that the mesh currents switch sense of circuldtsn
represented by the sign changes w, is increased. In the
instability region the mesh currents essentially diverge as the

X ; . . equations are integrated numerically, and just before the in-
approximation given by EJ28), as expected. Interestingly, stqability is reacheg, for 0.4§,u,_s0.3f/9, theJ mesh currents

then, asu, is _incr_eased from Zero _towards 0.5, the_ Stabilit.yare zero. This instability in the vicinity oft, =0.5 also oc-
of phase locking increases, while it decreases for increasing | . ¢ periodic ladders withi=6, 7, 8, and 9, all the lad-

u greater than approximately 0.6. Even more interesting is
the behavior of the ladder in the range €4, <0.6. For 06
these values of the mutual inductance the ladder is actually
unstable. This is evidenced by very rapidly growing phases,
voltages, and mesh currents with time as Eg¢§) and (41)

are numerically integrated. F&f=5, the lower limit of this
instability region isu{"=0.5 independent of other circuit
parameters such g8, and B8, . The upper limit of this re-
gion, which we denote by.?), depends on such quantities .

as the value of the starting voltages as well as on the value of Se.,

B . For example, for a fixed set of starting voltages, we find 021 * o
that,uf_z) is a decreasing function ¢, as shown in Fig. 11.
Also, it is interesting to note that this instability region does 04
not appear at all if both the phasesd the voltages are

initialized to zero.(See discussion below for the reason for M

this Eeh_awltl)l)._ hat this | bility is d FIG. 12. Spatially averageaheshcurrents vs the dimensionless
Physically, it appears that this instability is due to Compe'nearest-neighbor mutual inductance fo=5 in a periodic ladder.

tition between the self-inductance of a given oSy, I00P  (The results correspond t@,=10, 5, =100) These quantities
J), which wishes to have a mesh current with a given sens@ere obtained by starting with a random configuration of phases
of circulation, and the mutual inductance of the two neigh-gnq voltages and numerically integrating E¢#0) and (41) for a
boring loops (£ 1), which wish to have the mesh current in |ong time. Each of the five mesh currents were calculated from Eq.
loop j flow in the opposite sense. Figure 12 shows the spag4) at the end of this time, and then the five values were arithmeti-
tially averaged mesh currents for a five-cell ladder as a funceally averaged. All results shown in the figure were obtained by
tion of u, for B.=10 andpB, =100. The values were pro- initializing to the same set of random phases and voltages.
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instability region that the five-cell ladder does not exhibit.
These second instability regions have an onset at a value of
w®> (2 that is dependent on ladder size. These new in-
stability regions extend up te, =1 and are marked by a
vertical line at the value of{*). We now turn to an analytic

_ calculation of the Floquet exponents, which helps us under-
] stand the source of these instabilities.

/ B. Analytical results

[ .

i We proceed basically the same as for the case of the self-
— L inductive ladder with periodic boundary conditions, except
00 o1 02 03 o4 05 08 07 08 05 10 now we have matrices to manipulate. We start with @&

My, and ignore the effects of the vertical junctions, i.e., &t
. The results for the Fl t exponents in that r
FIG. 13. Plot of the functiom{", the effective normal-mode —0. The results for the Floguet exponents at case are

frequency of the inductively coupled horizontal junctions, versus 1 B
the dimensionless nearest-neighbor mutual inductance for three dif- Re()\fn'v')tc) =— + Re 1—4afT’]\') ==,
ferent sized ladders with periodic boundary conditions. Unstable 2Bc 2B BL
phase-locked solutions occurdf™) is negative.

-20

(45

where we can think of ther!)) as effectivenormal-mode

ders we have in fact studied. Indeed, one would expect thig\?eq?iﬁgc'es of the inductively coupled horizontal junctions.

competition-induced instability to be independent of ladder
size for the case of nearest-neighbor mutual inductance in

. . 1 2mm
tfat the onset of the instability should always occuruat a&?): 2 [_2+2(1_ML)C0{ )
=0.5. (ui—pL—1) N
Although, as mentioned above, the seven-cell and nine-
cell ladders exhibit the instability near, =0.5 just like N L2 co 4mm (46)
=5 [see Figs. 1) and 1Qc)], they both also have second s N /|
) ) 2m7m 4mm ) 6mm
2(u—1)—2(pu+u—1)co N —2u (u—21)co N +2ug co N
aly)= 32 , (47)
mLt2pi—p—1
and
) 3 ) 2mm 5 47m
2(1-2p0) —2(uL—2u—pmL+1)co N~ +2p (ug+pL—1)co N
afy) = 4 3 2
ML= 2p—3uitpt1
) 6m 3 8mm
2ui(pm—1)co§ ———| —2u CO§ ——
N N
N . (49)

4 3 2
mL—2p = 3uitutl

These analytic results were used to produce the solid curve&ﬁy)(m)<o for any values ofs, , that is, when aeffective
in Figs. 1Ga), 10(b), and 1Qc). _ normal-mode frequency goes negative. Plotsx§P vs s,

In contrast to Sec. Il where only loop self-inductance wassq, N=5, 7, and 9 are shown in Fig. 13. We now see the
included, the argument inside the square root of &%  reason for the second instability region in the seven- and
could, for particular values ah, «{\, B, andg, , be posi-  nine-cell ladders; then=1 normal-mode frequency has in-
tive and larger than one. If this happens, at least one of thdeed gone negative. We have checked thgf)=0 and
Floquet exponents will be positive, signaling unstable phasea{)>0 for m#1 for N=5, 7, and 9. Also notice that{>
locked solutions. In fact, such an instability will occur if >0 for 0<u, <1. Figure 13 does not, however, explain the
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100 < <u® where it is clear thap("=0.5. Then, based on
Eq. (51) and Fig. 14, we see that the value af? will
50 depend on the value af, B, , and cos),. For example, as
B increases we expect thaf? will decrease, i.e., approach
a value of 0.5. This conclusion is indeed in accordance with
the behavior of the numerical exponents, as shown in Fig. 11.
Also, Eq. (51) suggests that the value @f? should also
depend on the value of cgg. This is relevant to the numeri-
cal results in Fig. 10, where we explained that the upper
boundary of the instability region nea, =0.5 depends on
-100 — — the choice of the starting configuration of phases and volt-
00 01 0z 03 04 05 06 07 08 05 10 ages. In general, then, it is clear that the instability near
M =0.5 originates with thevertical junctions and would thus
FIG. 14. A plot of the geometry-dependent functigf? vs the be missed by an analysis that was based on a DSG equation

dimensionless nearest-neighbor mutual inductance for a ladder wit_W'r the_ .horlzontal phase dlfferences. Itis also clear why this
N=5 and periodic boundary conditions. This function conveys in-instability does not appear numerically wheoth the Jo-
formation about the stability of theertical junctions[Eq. (49)]. A Sephson phases and the voltages across the junctions are ini-
solution for the phase differences across the vertical junctions thdialized to zero. In such a scenario, although the horizontal
exponentially grows with time occurs §{>)< —ap, cosyy2 for  junctions will be active, the only possible solution for the
any m. If we assume that cog>0, then we expect an instability vertical junctions is to keep zero voltages and Josephson
for a range of values of_that causes/;) to be negative and to phases for all times. Since we know this instability is trig-
satisfy this inequality. gered by the vertical junctions, the vertical junctions have no
change to “go unstable” and thus instability never appears.

5)
Yo( )
=)

instability nearu, =0.5, becauser"N) is clearly positive in
this region. For an appreciation of the cause of this instability
we must look at the behavior of the vertical junctions.

We return to Eq.(43), let ;720 and calculate a set of _
effective Floquet exponents for the vertical junctions: A. Numerical results

To allow for mutual inductances of extended range in a

V. LONG-RANGE INTERACTIONS

11 2y iodic ladd induct trix of the fol-
M _ B m periodic ladder, we assume an inductance matrix of the fo
Ay te= ZBciZBc\/l 4P| a cospot B |’ lowing form:
(49 .
L j=k
where, forN=5, the geometric factoy{)V) is Lig={ —M j=k=1 (52
4 oo —~Me si=K otherwise.
NOR pL—3putl
m

1-5uf+5uf—2up
The formalism of Sec. IV can be applied to this case with the
+2u? cos( 477_m) only change being the use of the full inductance matrix. Note
N that s controls the range of the inductance. R+ 0, we
have “infinite-range” inductance, meaning that the mutual
inductance between cellandk(j #k) is —M for all k. For
(50 s—oo we return to the case of only nearest-neighbor mutual
inductances. For €s<«, the inductance has a value of
—M for nearest-neighbor cells and then falls off exponen-
tially with distance for more distant cells.
a8, CoSi; _ Our numerical_results for Fhe_Fquuet exponents asa f_unc-
ZPL T (51)  tion of u for a five-cell periodic ladder are shown in Fig.
2 15. All exponents were calculated for the same random start-
) _ o ing configuration of voltages, while all phases were initial-
Now a plot of vy vs w| is shown in Fig. 14. We see that the jzed to zero. A range of values was studied. Note that the
function abruptly becomes negative at =0.5. (We have inclusion of long-range inductance has not removed the in-
checked thaty(?)>0 for m#0. Also, we see similar behav- stability that was apparent in the nearest-neighbor case. This
ior for the seven- and nine-cell ladder$. we assume that is noticeable in the figure by a gap in the numerical results
cosyp>0, then the vertical junctions will be unstable for for a range ofu, values. Observation also shows that the
y{V<0. Based on Fig. 14 foN=5 we see then that an exponents fos= 10 in the figure are essentially the same as
instability region will exist for a range ofi, vaIues,,u(Ll) those in Fig. 10a), which would correspond ts—c. The

2mm
2p (1= p)co N

+

2ui—3uf—p +1

In this case, the vertical junctions will exhibit an exponen-
tially growing phase difference if

Yo <
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range of inductances over which the instability occur§; B. Analytical results
<m =<u?, is dependent os. As we decreass from s
=10 to s=0, therebyincreasingthe effective range of the
mutual inductance, the value pf® shifts fromu{"=0.5 to
wM=0.25. That is, as the range of the inductance increas
(s—0), the overall strengtiM does not have to be as large
(compared to case &f—o) to cause the instability. Recall
that, physically, this instability can be thought of as due to a

competition between the mutual and self-inductance in the Re(AR )= — 1 1 /1—4a(5’LR)(&) 53)
ladder to configure the mesh currents so as to flow in a par- moe 2Bc 20. m B’
ticular sense. Also note that fqr, outside the range.:,(Ll)

< =<u? increasing the range of the inductance generally

reduces the stability of the phase-locked solutions. where

Our analysis here is essentially identical to that of the Sec.
IV. By neglecting the vertical junctions entirely, we arrive at
a version of the DSG equation that includes long-range in-
Sractions of the Kac-Baker for23]. The result for the
Floguet exponents is

N T 2lpu— ,U«Lezs]COS( T)

(5LR) _ (59
o .
" pi(1-3e B +e %) —p (1+e -1

2mm 4m
_2(1+ML8723)+2[1+/.L|_(2€725_ 1)]004—

Equations(53) and (54) were used to produce the solid der is unstable. Analytic work, based on a DSG for the hori-
curves in Fig. 15. The agreement is quite good, except for theontal junctions, agrees reasonably well with the numerical
instability regions. As in the previous section, the analyticresults for those values of inductance that yield stable phase
treatment here is based on a DSG equation that ignores thecking. However, to understand the cause of all the ob-
effects of the vertical junctions. Over much of the region Oserved instabilities, it is crucial in the analytic work to con-
<u =<1 this approximation works very well, but there are sider the behavior of the vertical junctions.
obviously values of the inductance where ignoring the effects This work has made a comparison of some aspects of the
of the vertical junctions has catastrophic effects. dynamics of two different nonlinear models: the RCSJ model
for a ladder geometry, which leads to nonconvex interparticle
couplings, and the DSG equation, which has convex inter-
VI. CONCLUSIONS

We have studied the stability of phase-locked solutions to 0.030
ladder arrays of Josephson junctions under both periodic and
open boundary conditions and also in the presence of 0.025 1
current-induced magnetic fields. We calculate the Floquet ex-
ponents numerically, based on the RCSJ model, and also 2 ¢.02 -
analytically. In the case of zero induced magnetic fields, we
calculate the exponents analytically based directly on the
RCSJ equations, as well as based on a simplified model of
the ladder that leads to a DSG equation for the horizontal
junctions only. We find the DSG equation appreciably over-
estimates the exponents in the overdampsdall 3. re-
gime) due to the neglect of spatial variations in the deriva- 0.005
tives of the Josephson phases across the horizontal junctions,
dej/dr anddzqu/drz. M

The mal_o”ty of our .analy.tlc work in the case c_)f induced FIG. 15. Minimum Floquet exponents vs the dimensionless mu-
magnetlc ﬂ.eld e_ffects is limited to a DSG equaﬂqn for _thetual inductance for a periodic ladder witd=5 and for several
horizontal Junct.|ons. .In the case of °”'Y self-inductive different values of the effective rangeof the inductancésee Eq.
plaquettgs, we find th|§ analytic approach yields good agre€sy)). (These results correspond tg=10, B.= 10, B, =100) s
ment with the numerical exponents f@.<B_ and BL =0 corresponds to infinite-range inductance, aeo corre-
<. For B.~p the DSG equation differs from the nu- sponds to the limit of only nearest-neighbor inductance. The solid
merical results. Presumably this is from ignoring the effectsine represents an analytic res{iig. (53)] based on a DSG equa-
of the vertical junctions. When mutual inductance is includedion for the horizontal junctions. The instability that occurs near
between plaquettes we find, interestingly, that there arg, =0.5 for s—o still exists for finites but is shifted to smaller
ranges of values of the mutual inductance for which the ladvalues ofu, .
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particle couplings. We have used Floquet theory as the probadder can be thought of as building block of such a larger
by which these two models have been compared. There @rray.
still more analysis that could be performed here, including a
more detailed study of the behavior of the Floquet exponents
throughout theg, B., B, 1L, ands parameter space, as

well as a comparison of open and periodic boundary condi- The authors wish to thank Barbara Andereck, Tom
tions for the case of mutually inductive ladders. A more de-Dillman, Steve Herbert, Mark Jarrell, and David Stroud for
tailed analytic analysis of the behavior of the vertical junc-useful discussions. This research was funded by the Howard
tions could also be informative. In general, the more weHughes Medical Institute Undergraduate Biological Sciences
learn about the dynamics of the ladder array, the better w&ducation Program Grant No. 71196-529503 to Ohio Wes-
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