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Search in power-law networks
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Many communication and social networks have power-law link distributions, containing a few nodes that
have a very high degree and many with low degree. The high connectivity nodes play the important role of
hubs in communication and networking, a fact that can be exploited when designing efficient search algo-
rithms. We introduce a number of local search strategies that utilize high degree nodes in power-law graphs
and that have costs scaling sublinearly with the size of the graph. We also demonstrate the utility of these
strategies on theNUTELLA peer-to-peer network.
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[. INTRODUCTION by the recent emergence of peer-to-peer networks, which
have gained enormous popularity with users wanting to share
A number of large distributed systems, ranging from so-their computer files. In such networks, the name of the target
cial [1] to communicatior2] to biological networkg3] dis-  file may be known, but due to the networldsl hocnature,
play a power-law distribution in their node degree. This dis-the node holding the file is not known until a real-time search
tribution reflects the existence of a few nodes with very highis performed. In contrast to the scenario considered by Klein-
degree and many with low degree, a feature not found irberg, there is no global information about the position of the
standard random grapp4). A large-scale illustration of such target, and hence it is not possible to determine whether a
a network is given by the AT&T call graph. A call graph is Step is a move towards or away from the target. One simple
a graph representation of telephone traffic on a given day iM/ay to locate files, implemented byAPSTER is to use a
which nodes represent pe0p|e and links the phone Ca||§entra| server that contains an index of all the files every
among them. As shown Hii], the out-link degree distribu- node is sharing as they join the network. This is the equiva-
tion for a massive graph of telephone calls between individulent of having a giant white pages for the entire United
als has a clean power-'aw form with an exponent of approxi.states. Such direCtOI’ieS now eXiSt On”ne, and ha.Ve in a sense
mately 2.1. The same distribution is obtained for the case ofeduced the need to find people by passing messages. But for
in links. This power law in the link distribution reflects the various reasons, including privacy and copyright issues, in a
presence of central individuals who interact with many oth-Peer-to-peer network it is not always desirable to have a

ers on a daily basis and play a key role in relayingcentral server. _
information. File-sharing systems that do not have a central server in-

While recent work has concentrated on the properties oflUd€GNUTELLA andFREENET Files are found by forwarding
these power-law networks and how they are dynamica")queries to one’s neighbors until the target is found. Recent
generated5-7], there remains the interesting problem of Measurements oGNUTELLA networks [9] and simulated
finding efficient algorithms for searching within these par-FREENET networks[10] show that they have power-law de-
ticular kinds of graphs. Recently, Kleinbef@] studied gree distributions. In this paper, we propose a number of
search algorithms in a graph where nodes are placed on'€ssage-passing algorithms that can be efficiently used to
two-dimensional2D) lattice and each node has a fixed num- séarch through power-law networks suctGas/TELLA. Like
ber of links whose placement is correlated with lattice dis-the networks that they are designed for, these algorithms are
tance to the other nodes. Under a specific form of the correcompletely decentralized and exploit the power-law link dis-
lation, an algorithm with knowledge of the target’s location tribution in the node degree. The algorithms use local infor-
can find the target in polylogarithmic time. mation such as the identities and connectedness of a node’s

In the most general distributed search context however)eighbors, and its neighbors’ neighbors, but not the target's
one may have very little information about the location of global position. We demonstrate that our search algorithms
the target. Increasingly a number of pervasive electronic netv’ork well on real GNUTELLA networks, scale sublinearly
works, both wired and wireless, make geographic locatiovith the number of nodes, and may help reduce the network

less relevant. A particularly interesting example is providedsearch traffic that tends to cripple such networks.
The paper is organized as follows. In Sec. Il, we present

_— analytical results on message passing in power-law graphs,
*Email address: ladamic@hpl.hp.com followed by simulation results in Sec. lll. Section IV com-

"Email address: lukose@hpl.hp.com pares the results with Poisson random graphs. In Sec. V we
*Email address: amit8@stanford.edu consider the application of our algorithmsaeUTELLA, and
$Email address: huberman@hpl.hp.com Sec. VI concludes.
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Il. SEARCH IN POWER-LAW RANDOM GRAPHS In real social networks, it is reasonable that one one
would have at least some knowledge of one’s friends’
Mtriends. Hence, we now compute the distribution of second
neighbors. The probability that any of the second neighbors
%onnect to any of the first neighbors or to one another goes

asN~! and can be ignored in the limit of lardé Therefore,
the distribution of the second neighbors of the original ran-
domly chosen vertex is determined by

In this section we use the generating function formalis
introduced by Newmaf7] for graphs with arbitrary degree
distributions to analytically characterize search-cost scalin
in power-law graphs.

A. Random Walk Search
Let Go(x) be the generating function for the distribution

of the vertex degreels Then > Pl G1(X)T¥=Go(G4(X)). 7
K
Go(X)=% pixs, 1) It follows that the average number of second neighbors is
given by
wherep, is the probability that a randomly chosen vertex on P
the graph has degrde Zon=|—Go(G1(¥))|  =Gy(1)GL(1). 8
For a graph with a power-law distribution with exponent AT ox o(Ga(x)) =1 ol 1)G1(1) ®

7, minimum degre&k=1 and an abrupt cutoff ah=Kk, .y,
the generating function is given by Similarly, if the original vertex was not chosen at random,
but arrived at by following a random edge, then the number

m of second neighbors would be given by
Go(x)=c>, k™K )
1

=[G1(D]% €)
x=1

J
. o ZZB:[a_Gl(Gl(X))
with ¢ a normalization constant that dependsmmand 7 to X

satisfy the normalization requirement
In both Egs.(8) and(9) the fact thatG;(1)=1 was used.

" Both these expressions depend on the valBgsl) and
Go(l):C; k™7=1. () G/(1) so we calculate those for givenandm. For simplic-
ity and relevance to most real-world networks of interest we
The average degree of a randomly chosen vertex is giveRssume 2 7<3,

by m i L
m Gy(1)=> ck1*f~f xf*ldx=n(1—m2*f), (10)
’ 1 1 -
(k) =2 kpe=Go(1). 4
(9 m
Note that the average degree of a vertex chosen at randof (1) = —; X > ckirxkl (11
and one arrived at by following a random edge are different. Go(1) !
A random edge arrives at a vertex with probability propor- "
tional to the degree of the vertex, i.@/,(k)~kpy. The cor- 1 1= 4yok—2
rectly normalized distribution is given by _G()(l) ; ek (k—1)x (12
> kpex o 1 m(r—2)-2% (r—1)+m? (3—7)
K ~
=X (5 Gy(1) (7-2)(3—1)
> kp GtV 13
K

for large cutoff valuesm. Now we impose the cutoff of
If we want to consider the number of outgoing edges fromAiello et al. [1] at m~NY". Sincem scales with the size of
the vertex we arrived at, but not include the edge we justhe graphN and for 2< r<3 the exponent 2 7 is negative,
came on, we need to divide by one powerxofHence the we can neglect terms constantrin This leaves
number of new neighbors encountered on each step of a ran-

dom walk is given by the generating function 1 m3 14
Gi(l)=—— . 14
’ 3_
e Go(x) ©) Gy(1) (3-7)
X = 1 . . . . .
1(x) G(1) Substituting into Eq(8) (the starting node is chosen at
random) we obtain

where G((1) is the average degree of a randomly chosen ) ) 5

vertex as mentioned previously. 250=Gy(1)Gy(1)~m*>" 7. (15
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We can also derive,g, the number of second neighbors m -1
encountered as one is doing a random walk on the graph, p(x)= E X7 x77, (29
1

3-7]2

1-m2 7 3-7

(16) wherem=N'" is the maximum degree. A node chosen by
following a random link in the graph will have its remaining
outgoing edges distributed according to

2,8=[G1(1)]*=

Letting m~NY" as above, we obtain
-1

(x+1)3=7, (25)

m—1

> (x+1)@-7)

0

Zpp~N2E D), (17) p'(x)=

Thus, as the random walk along edges proceeds node to i
node, each node reveals more of the graph since it has infor- At €ach step one can choose the highest degree node
mation not only about itself, but also of its neighborhood.@mong then neighbors. The expected number of the outgo-
The search coss is defined as the number of steps until N9 €dges of that node can be computed as follows. In gen-
approximately the whole graph is revealed so tsat eral, the cumulative distributiofCDF) P,,.{X,n) of the

~N/zyg, OF maximum ofn random variables can be expressed in terms
of the CDFP(x)=[5p(x")dx’ of those random variables:
g~ N3(1-27) (18)  PradX,n)=P(x)". This yields
In the limit 7— 2, Eq.(16) becomes Proa XM =n(1+x)1"(7—2)[1—(x+1)>" 7|1
N X(l— N2/7‘—1)—n (26)
Zpp~ — (19 o _ . .
In“(N) for the distribution of the number of links the richest neigh-
_ o bor amongn neighbors has.
and the scaling of the number of steps required is Finally, the expected degree of the richest node among
) is given by
s~In“(N). (20
m-1
B. Search utilizing high degree nodes E[Xmax(n)]:; XPadX,N). (27)

Random walks in power-law networks naturally gravitate . ) ) .
towards the high degree nodes, but an even better scaling is e numerically integrated the above equation to derive
achieved by intentionally choosing high degree nodes.For the ratio between the degree of a node and the expected
Sufficient|y close to 2 one can walk down the degree Sedegl’ee of its richest ne|ghb0r. The ratio is plotted n Flg 1.
quence, visiting the node with the highest degree, followed O @ range of exponents and node degrees, the expected
by a node of the next highest degree, etc. iret a be the degreg of the richest neighbor is higher than th(_a degree of the
degree of the last node we need to visit in order to scan Aode itself. However, eventuallghe precise point depends
certain fraction of the graph. We make the self-consistengtrongly on the power-law expongnthe probability of find-
assumption thaa<m, i.e., the degree of the node has notiNg an even higher degree node in a neighborhood of a very
dropped too much by the time we have scanned a fraction diigh degree node starts falling.

the graph. Then the number of first neighbors scanned is What this means is that one can approximately follow the
given by degree sequence across the entire graph for a sufficiently

small graph or one with a power-law exponent close to 2
(2.0<7<2.3). At each step one chooses a node with a de-
gree higher than the current node, quickly finding the highest
degree node. Once the highest degree node has been visited,

The number of nodes having degree betweena and it Will be avoided, and a node of approximately second high-
m, or equivalently, the number of steps taken is given byeSt degree will be chosen. Effectively, after a short initial
J™ .k~ "~a. The number of second neighbors when oneclimb, one goes down the degree sequence. This is the most
follows the degree sequence is given by efficient way to do this kind of sequential search, visiting

highest degree nodes in sequence.

m
le=f Nk! "dk~Namt~". (22)
m—a

2,p*G(1)~Nan? 7, (22)
I1l. SIMULATIONS

which gives the number of steps required as . ) )
We used simulations of a random network with a power-

S~m2(T=2) N2~ 47, (23 law link distribution of 7=2.1 to validate our analytical re-
sults. As in the analysis above, a simple cutoffrat N~
We now consider when and why it is possible to go downwas imposed. The expected number of nodes anfhbhgv-
the degree sequence. We start with the fact that the originahg exactly the cutoff degree is 1. No nodes of degree higher
degree distribution is a power law than the cutoff are added to the graph. In real-world graphs
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' ' ' — 2 has passed the message and finds that all of its neighbors are

) 1=225 already on the list, it puts a special mark next to its name,
e - :ggg which means that it is unable to pass the message onto any
“qo:m‘ L — 7-3.00 M1 new node. This is equivalent to marking nodes as follows.
g -- 1=325 White.Node has not been visited.
$ e Gray. Node has been visited, but all its neighbors have
& ' not been visited.
BI * Black. Node and all its neighbors have been visited
% already.
T Here we compare two strategies. The first performs a ran-
B 10° dom walk, where only retracing the last step is disallowed. In
8 Sl the message passing scenario, this means that if Bob just
@’ \ received a message from Jane, he would not return the mes-
= ’ sage to Jane if he could pass it to someone else. The second

o 2 - o o 700 strategy is a self-avoiding walk that prefers high degree

degree of node nodes to low degree ones. In each case both the first and
second neighbors are scanned at each step.

FIG. 1. Ratior (the expected degree of the richest neighbor of a  Figure Za) shows the scaling of the average search time
node whose degree isdivided byn) vs n for 7 (top to bottom  with the size of the graph for the two strategies. The scaling
=2.0,2.25, 2.5, 2.75, 3.00, 3.25, 3.50, and 3.75. Each curve extendgxponent 0.79 for the random walk and 0.70 for the high
to the cutoff imposed for a 10 000 node graph with the particulardegree strategyis not as favorable as in the analytic results
exponent. derived above (0.14 for the random walk and 0.1 for the high

degree strategy whern=2.1) .
one, of course, does observe nodes of degree higher than this Consider, on the other hand, the number of steps it takes
imposed cutoff, so that our simulations become a worse cage cover half the graph. For this measure we observe a scal-
scenario. Once the graph is generated, the largest connecti#g that is much closer to the ideal. As shown in Figufie) 2
component(LCC) is extracted, that is the largest subset ofthe cover time scales &' for the random walk strategy vs
nodes such that any node can be reached from any oth&*°from Eq.(18). Similarly, the high degree strategy cover
node. For 2 7<3.48 a giant connected component existstime scales adl®?*vs N°in Eq. (23).
[1], and all our measurements are performed on the LCC. We The difference in the value of the scaling exponents of the
observe that the LCC contains the majority of the nodes ofover time and average search time implies that a majority of
the original graph and most of the links as well. The link nodes can be found very efficiently, but others demand high
distribution of the LCC is nearly identical to that of the origi- search costs. As Figure(@ shows, a large portion of the
nal graph with a slightly smaller number of 1 and 2 degreel0 000 node graph is covered within the first few steps, but
nodes. some nodes take as many steps or more to find as there are

Next we apply our message-passing algorithm to the netaodes in total. For example, the high degree seeking strategy
work. Two nodes, the source and the target, are selected &inds about 50% of the nodes within the first 10 stépsan-
random. At each time step the node that has the messagy that it would take about 102=12 hops to reach 50% of
passes it on to one of its neighbors. The process ends whehe graph. However, the skewness of the search time distri-
the message is passed on to a neighbor of the target. Sinbetion brings the average number of steps needed to 217.
each node knows the identity of all of its neighbors, it can Some nodes take a long time to find because the random
pass the message directly to the target if the target happenswalk, after a brief initial period of exploring fresh nodes,
be one of it's neighbors. The process is analogous to pettends to revisit nodes. It is a well-known result that the sta-
forming a random walk on a graph, where each node is “vistionary distribution of a random walk on an undirected graph
ited” as it receives the message. is simply proportional to the distribution of links emanating

There are several variants of the algorithm, depending ofrom a node. Thus, nodes with high degree are often revis-
the strategy and the amount of local information available. ited in a walk.

(1) The node can pass the message onto one of its neigh- A high degree seeking random walk is an improvement
bors at random or it can avoid passing it on to a node that hasver the random walk, but still cannot avoid retracing its
already seen the message. steps. Figure @) shows the color of nodes visited on such a

(2) If the node knows the degrees of its neighbors, it canwalk for a N=1000 node power-law graph with exponent
choose to pass the message onto the neighbor with the maatl and an abrupt cutoff &1¥>. The number of nodes of
neighbors. each color encountered in 50-step segments is recorded in

(3) The node may know only its neighbors or it may know the bar for that time period. We observe that the self-
who its neighbors’ neighbors are. In the latter case it wouldavoiding strategy is somewhat effective, with the total num-
pass the message onto a neighbor of the target. ber of steps needed to cover the graph about 13 times smaller

In order to avoid passing the message to a node that hdksan the pure random walk case, and the fraction of visits to
already seen the message, the message itself must be sigrggdy and black nodes is significantly reduced.
by the nodes as they receive the message. Further, if a node Although the revisiting of nhodes modifies the scaling be-
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FIG. 2. (a) Scaling of the average node-to-node search cost in a random power-law graph with exponent 2.1, for rand&wWaitid
high-degree seekin@S) strategies. The solid line is a fitted scaling exponent of 0.79 for the RW strategy and the dashed is an exponent of
0.70 for the DS strategyb) The observed and fitted scaling for half graph cover times for the RW and DS strategies. The fits are to scaling
exponents of 0.37 and 0.24, respectively). Cumulative distribution of nodes seen vs the number of steps taken for the RW and DS
strategies on a 10 000 node grapdh. Bar graph of the color of nodes visited in DS search of a random 1000 node power-law graph with
exponent 2.1. White represents a fresh node, gray represents a previously visited node that has some unvisited neighbors, and black
represents nodes for which all neighbors have been previously visited.

havior, it is the form of the link distribution that is respon- are randomly distributed and hence all nodes have approxi-
sible for changes in the scaling. If nodes were uniformlymately the same degree. We will explore and contrast the
linked, at every step the number of new nodes seen would bsearch algorithm on a Poisson graph in the following section.
proportional to the number of unexplored nodes in the graph.

The factor by which the search is slowed down through re- |, coOMPARISON WITH POISSON DISTRIBUTED

visi_ts_ \_/vould be independent of the size of the graph._Hence, GRAPHS
revisiting alone does not account for the difference in scal-
ing. In a Poisson random graph wilthnodes and edges, the

The reason why the simulated scaling exponents for thesgrobability p=2z/N of an edge between any two nodes is the
search algorithms do not follow the ideal is the same reasosame for all nodes. The generating functi@g(x) is given
why power-law graphs are so well suited to search: the linky [7]
distribution is extremely uneven. A large number of links
point to only a small subset of high degree nodes. When a Go(x)=e2" 1), (28
new node is visited, its links do not let us uniformly sample
the graph, they preferentially lead to high degree nodedn this special cas&q(x)=G;(x), so that the distribution of
which have likely been seen or visited in a previous stepoutgoing edges of a node is the same whether one arrives at
This would not be true of a Poisson graph, where all the linkghe vertex by following a link or picks the node at random.

046135-5



ADAMIC, LUKOSE, PUNIYANI, AND HUBERMAN PHYSICAL REVIEW E 64 046135

—— power—law

O const.av.deg. =34 o 1 Poisson

O incr. av. deg.

’ O Poisson
a Power—law

-
o

cover time for 1/2 of graph
degree of current node

05

fraction revisited

FATRRR

0
o 0 0.2 04 086 0.8 1
fraction of nodes visited

. , , 10° : :

.
10° 10* 10° 10° 107 10 10

number of nodes in graph

step

FIG. 3. Squares are scaling of cover time for 1/2 of the graph forI FlGa‘; pegrees OL noc;lelso\(/)igged :jn a single search for power
a Poisson graph with a constant average degree/(witle fit to a awand Foisson grapns o nodes.

scaling exponent of 1.0). Circles are the scaling for Poisson graphs . . .
with the same average degree/node as a power-law graph with e@linimally self-avoiding strategy on the power-law graph out

. 085 . . .
ponent 2.1(with fit to a scaling exponent of 0.85). The inset com- Performs the ideaN™*" scaling for the Poisson graph. It is

pares revisitation between search on Poisson vs power-law grapt@|SO important to note that the the high degree node seeking
as discussed in the text. strategy has a much greater success in the power-law graph

because it relies heavily on the fact that the number of links

This makes analysis search in a Poisson random graph paser node varies considerably from node to node. To illustrate
ticularly simple. The expected number of new links encoun+his point, we executed the high degree seeking strategy on
tered at each step is a constanSo that the number of steps two graphs, Poisson and power law, with the same number
needed to cover a fraction of the graph iss=cN/p. If p of nodes, and the same exponert2. In the Poisson graph,
remains constant as the size of the graph increases, the Co¥fe variance in the number of links was much smaller, mak-
time scales |inear|y with the size of the graph. This has been']g the h|gh degree node Seeking Strategy Comparative|y in-
verified via simulation of the random walk search as showreffective as shown in Fig. 4.
in Fig. 3. In the power-law graph we can start from a randomly

In our simulations the probability grows slowly towards  chosen node. In this case the starting node has only one link,
its asymptotic value as the size of the graph is increasegut two steps later we find ourselves at a node with the
because of the particular choice of cutofiat-N(') for the  highest degree. From there, one approximately follows the
power-law link distribution. We generated Poisson graphsjegree sequence, that is, the node richest in links, followed
with the same number of nodes and links for comparisonpy the second richest node, etc. The strategy has allowed us
Within this range of graph sizes, growth in the average numtg scan the maximum number of nodes in the minimum num-
ber of links per node appears BE°, making the average per of steps. In comparison, the maximum degree node of the
number of second neighbors scaleNfs'. This means that exponential graph is 11, and it is reached only on the 81st
the scaling of the cover time scalesh$®, as shown in Fig.  step. Even though the two graphs have a comparable number
3. Note how well the simulation results match the analyticalof nodes and edges, the exponential graph does not lend
expression. This is because nodes can be approximatefgelf to quick search.
sampled in an even fashion by following links.

The reason why the cover time for the Poisson graph
matches the analytical prediction and the power-law graph
does not is illustrated in Fig. @nsed. If links were approxi- GNUTELLA is a peer-to-peer file-sharing system that treats
mately evenly distributed among the nodes, then if at onall client nodes as functionally equivalent and lacks a central
point in the search 50% of the graph has already been visserver that can store file location information. This is advan-
ited, one would expect to revisit previously seen nodes aboutgeous because it presents no central point of failure. The
50% of the time. This is indeed the case for the Poissombvious disadvantage is that the location of files is unknown.
graph. However, for the power-law graph, when 50% of theWhen a user wants to download a file, she sends a query to
graph has been visited, nodes are revisited about 80% of tral the nodes within a neighborhood of size ttl, the time to
time, which implies that the same high degree nodes arive assigned to the query. Every node passes on the query to
being revisited before new low degree ones. It is this biasll of its neighbors and decrements the ttl by one. In this
that accounts for the discrepancy between the analytic scalvay, all nodes within a given radius of the requesting node
ing and the simulated results in the power-law case. will be queried for the file, and those who have matching

However, even the simulated®3® scaling for a random, files will send back positive answers.

V. GNUTELLA
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" zndneighbors | - - - - - - stored by their first and second neighbors haidis infor-
M mation must be passed at least once when a new node joins
the network, and it may be necessary to periodically update
------------------- ° the information depending on the typical lifetime of nodes in
the network. Instead of passing the query to every node,
queries are only passed along to the highest degree nodes.
] The IP numbers of the nodes already queried are appended to
the query, and they are avoided.
The modified algorithm places an additional cost on every
] node, that of keeping track of the filenames of its neighbors’
files. Since network connections saturated by query traffic
are a major weakness GNUTELLA, and since computational
] and storage resources are likely to remain much less expen-
degree | sive than bandwidth, such a tradeoff is readily made. How-
ever, now instead of every node having to handle every
% 10 20 30 40 30 6 70 8 90 100 query, queries are routed only through high connectivity
step nodes. Since nodes can select the number of connections that
. __they allow, high degree nodes are presumably high band-
FIG. 5. Cumulative n_umber of nodes found at e.aCh step 'n.th%idth nodes that can handle the query traffic. The network
GNUTELLA network. The inset shows the measured link dlstrlbutlonhas in effect created local directories valid within a two link
of the realGNUTELLA network used in the search simulations and a__ . . .
fit to a power-law link distribution with exponent 2. radius. Itis resilient to attack because of the lack of a central
server. As for power-law networks in genefall], the net-

This broadcast method will find the target file quickly, WOrk is more resilient than Poisson graphs to random node
given that it is located within a radius of ttl. However, broad- failure, but less resilient to attacks on the high degree nodes.
casting is extremely costly in terms of bandwidth. Every Figure 5 shows the success of the high degree seeking
node must process queries of all the nodes within a given t@lgorithm on theGNUTELLA network. We simulated the
radius. In essence, if one wants to query a constant fractiopearch algorithm on a crawl by Clip2 company of the actual
of the network, say 50%, as the network grows, each nod&NUTELLA network of approximately 700 nodes. Assuming
and network edge will be handling query traffic that is pro-that every file is stored on only one node, 50% of the files
portional to the total number of nodes in the network. can be found in eight steps or less. Furthermore, if the file

Such a search strategy does not scale well. As query traP"€ iS seeking is present on multiple nodes, the search will
fic increases linearly with the size GNUTELLA graph, nodes € €ven faster.
become overloaded as was shown in a recent study by the 10 Summarize, the power-law nature of IB&IUTELLA
Clip2 company[9]. 56k modems are unable to handle moredraph means that these .search algorithms can be effective.
than 20 queries a second, a threshold easily exceeded by”%® theé number of nodes increases, tageady smajlnum-
network of about 1000 nodes. With the 56k nodes failing, the?€r ©f nodes that will need to be queried increases sublin-
network becomes fragmented, allowing users to query onlFa!y- AS long as the high degree nodes are able to carry the
small section of the network. traffic, theGNUTELLA network’s performance and scalability

The search algorithms described in the previous section&@y improve by using these search strategies.
may help ameliorate this problem. Instead of broadcasting a W€ @lso note that even if a network of clients was not
query to a large fraction of the network, a query is only POWer law, a search strategy that possesses knowledge o_f its
passed onto one node at each step. The search algorithms 2gighbors of a network radius greater than two could sitill
likely to be effective because theNUTELLA network has a improve search. For example, in the Poisson case, the algo-
power-law connectivity distribution as shown in Fig(i-  fthm could attempt to hold more than the contents of a
seb. qode’; first andi second neighbors. pr gﬁlClent th|_s algo-

Typically, aGNUTELLA client wishing to join the network rithm is on arbitrary network topologies is the subject _of
must find the IP address of an initial node to connect tofuture work. Here we have analyzed the naturally occurring
Currently, ad hoclists of “good” GNUTELLA clients exist ~Power-law topology.

[9]. It is reasonable to suppose that thid hoc method of

growth would bias new nodes to connect preferentially to

nodes that are already fairly well connected, since these VI. CONCLUSION

nodes are more likely to be “well known.” Based on models
of graph growth[5,6] where the ‘“rich get richer,” the
power-law connectivity odd hocpeer-to-peer networks may
be a fairly general topological feature.

By passing the query to every single node in the network, IThis idea has already been implemented by Clip2 company in a
the GNUTELLA algorithm fails to take advantage of the con- |imited way. 56k modem nodes attach to a high bandwidth Reflec-
nectivity distribution. To implement our algorithm the tor node that stores the filenames of the 56k nodes and handles
GNUTELLA clients must be modified to keep lists of the files queries on their behalf.
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In this paper we have shown that local search strategies in
power-law graphs have search costs that scale sublinearly
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with the size of the graph, a fact that makes them very aptiveness of social networks in terms of access to relevant
pealing when dealing with large networks. The most favorresource$12].
able scaling was obtained by using strategies that preferen- Furthermore, it has been shown that the Internet backbone
tially utilize the high connectivity nodes in these power-law has a power-law distribution with exponent values between
networks. We also established the utility of these strategieg 15 and 2.42], and web page hyperlinks have an exponent
for searching on theNUTELLA peer-to-peer network. of 2.1[5]. While in the Internet there are other strategies for

It may not be coincidental that several large networks arginding nodes, such as routing tables and search engines, one
structured in a way that naturally facilitates search. Rathergpserves that our proposed strategy is partially used in these
we find it likely that these networks could have evolved tosystems as well. Packets are routed through highly connected
facilitate search and information distribution. Networks nodes, and users Searching for information on the Web turn
where locating and distributing information, without perfect ¢ highly connected nodes, such as directories and search
global information, plays a vital role tend to be power law engines, which can bring them to their desired destinations.
with exponents favorable to local search. On the other hand, a system such as the power grid of the

For example, large social networks, such as the AT&Tyestern United States, which does not serve as a message
call graph and the collaboration graph of film actors, haveyassing network, has an exponent 4 [5]. It would be

exponents in the ranger{-2.1-2.3) that according to our fajrly difficult to pass messages in such a network without a
analysis makes them especially suitable for searching usingiatively large amount of global information.

our simple, local algorithms. Being able to reach remote
nodes by following intermediate links allows communication
systems and people to get to the resources they need and
distribute information within these informal networks. At the
social level, our analysis supports the hypothesis that highly We would like to thank the Clip2 company for the use of
connected individuals do a great deal to improve the effectheir GNUTELLA crawl data.
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