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Structure of growing social networks
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We propose some simple models of the growth of social networks, based on three general prifigiples:
meetings take place between pairs of individuals at a rate that is high if a pair has one or more mutual friends
and low otherwise(2) acquaintances between pairs of individuals who rarely meet decay over(@nibere
is an upper limit on the number of friendships an individual can maintain. Using computer simulations, we find
that models that incorporate all of these features reproduce many of the features of real social networks,
including high levels of clustering or network transitivity and strong community structure in which individuals
have more links to others within their community than to individuals from other communities.
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I. INTRODUCTION people, for instance—and introduced a simple model of a
(statio social network, which has since been analyzed in
Many real-world systems take the form of networks—depth in the physics literaturfl,13—17. Social networks
nodes or “vertices” joined together by links or “edges.” also evolve, with new acquaintances forming between indi-
Commonly cited examples include communication networksviduals and old ones decaying. However, it is clear that the
such as the Internet or the telephone network, informatiorvolution of a social network is governed by very different
networks such as the world-wide web, transportation netprocesses from those that govern the evolution of the world-
works such as airline routes or roads, distribution networksvide web. In this paper, we propose some new models of the
such as the movements of delivery trucks or the blood vesevolution of social networks. In the same spirit as the highly
sels of the body, and other naturally occurring networks sucllyccessful models of web growtland indeed of most of
as food webs or metabolic networks. In the last few yearstatistical physics these models are based on simple sto-
there has been a substantial amount of interest in networ&]astic processes and do not attempt to Capture the micro_
structure and function within the physics community; seescopic details of social dynamics. As we will see, however, a
Refs.[1-3] for reviews. In particular, it turns out that many number of nontrivial but intuitively reasonable results
of the techniques of statistical physics, such as scaling angmerge from these models, including the formation of
renormalization group methods, Monte Carlo simulation, an¢|osely knit communities within the network and the devel-

mean-field theory, are well suited to the Study of these SySOpment of a h|gh degree of network transitivity'
tems.

One specific question that has received a large amount of
attention in the phyS|c§ Ilteraturg concerns the structure of Il. MECHANISMS OF SOCIAL NETWORK GROWTH
networks that are evolving over time. While many networks,
such as metabolic networks or blood vessels, are fundamen- The key elements in previous network growth models,
tally static and do not change their topology, many othersuch as models of the growth of the world-wide web, @e
change substantially over time. The classic example is theontinual addition of both vertices and edges to the network
world-wide web. The vertices in this network are web pagess time passes an@) preferential attachment, meaning that
and the(directed edges between them are hyperlinks fromedges are more likely to connect to vertices of high degree
one page to another. This network is certainly changingthan to ones of low degre€The degree of a vertex is the
pages are added to the web at a rate of over a million pagesumber of other vertices to which it is connecje@ther
a day, according to some estimates, while other pages disafeatures, such as removal of vertices or edges, or movement
pear. It is widely believed that the rapid growth of the webof edges to new positions in the network, can also be incor-
leaves a highly distinctive signature in the resulting network porated[18], but the crucial features of power-law degree
including such characteristic features as power-law degredistributions and correlations between vertex degrees are re-
distributions[4,5], correlations between degree and age ofproduced with only the element&) and(2) above.
vertices[6], and correlations between degrees of connected Growth models of this type are, as mentioned above, quite
vertices[7,8]. A number of models of the growing web have inappropriate as models of the growth of social networks for
been proposed, which convincingly reproduce some or all oh humber of reasons as follows.
these featureg6—11]. (1) New vertices are of course added to social networks

The web however was not the first type of network toall the time: people are born and people travel around joining
catch the eye of the physics community. In a seminal papemew networks and leaving old ones. However, the timescale
in 1998, Watts and Strogaf2 2] discussed a number of fea- on which people make and break social connections, which
tures of social networks—networks of acquaintance betweenan be as short as hours or days, is much shorter than the
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timescale on which vertices join or leave the network, whichbroken as well as made if the evolution of the network is not
is typically some years. For this reason, we expect that th& stagnate.
addition and removal of vertices will not be a major factor  In the following sections we propose and study two mod-
determining the instantaneous structure of social networksls that have these properties. The first model is quite general
and to a first approximation these networks can therefore b# its formulation, allowing for arbitrary functional forms
treated using a model with a constant number of vertices bu€Presenting people’s propensity to form friendships. This
a varying number and arrangement of edges. This is in shafpodel makes a reasonable stab at realism in its representa-
contrast to models of web growth. tion of network evoIqUon, put turns out to be cumbersome to
(2) The degree distribution of many acquaintance netSimulate and analytically intractable. So we also propose a

works does not appear to follow a power-law distribution, asS€c0nd model, a much simplified version of the first, which
the degree distribution of the web does. Instead the distribul€Produces the characteristic features of the first model, al-

tion appears to be strongly peaked around a certain meafit in stylized form, and which can be simulated with con-

degree(whose value depends on what definition of acquain_siderably greater efficiency. This second model is similar in

tance one adopt&nd is not noticeably right skewé9,20. its level of sophistication to the previously studied models of
The typical explanation for this result is that there is a recur9rowth of the web and other networks, and may be similarly

ring cost in terms of time and effort to maintaining a friend- @Menable to analytic treatment, although we have not at-

ship, and given limited resources people can only maintain £MPted an analytic treatment here.
certain number of them. Indeed, in cases of networks in
which there is little cost, or only a one-time cost, to increas- 1. MODEL |
ing one’s degree, e.g., in networks of sexual contg21g,
highly skewed and possibly power-law degree distributions We consider the following mechanism for the growth of
are seen. In our work, we have assumed, as is usually thgocial networks. Pairs of individuals meet with a probability
case, that there are costs to friendship and hence vertex deer unit time, which depends on how many mutual friends
grees are narrowly distributed. they have. If they have no mutual friends, then there is only
(3) The lack of a power-law degree distribution in ac- a very small chance of their meeting, but if a pair have a
guaintance networks also suggests that the preferential dtiend in common, then their chance of meeting is increased
tachment mechanism is not an important one. Since mostubstantially. In the particular case of networks of collabora-
people have about the same number of friends, it makes littldon between scientists, the existence of this effect has been
difference whether people with more friends attract new oneserified by direct empirical measuremg@gd|. The presumed
at a higher rate. mechanism that drives it is a social one: people often intro-
(4) Lastly, and perhaps most importantly, social networksduce pairs of their friends to one another, either deliberately
show “clustering,” also called “transitivity” in the socio- or simply by virtue of bringing them together in the same
logical literature. Clustering is the propensity for two of place.
one’s friends to be friends also of each other and is very We also place a limit on the numberof friends that
common in social networks. Growth models of the web showpeople can have by arranging for the probability of their
weak clustering—the probabilit€ that two neighbors of a forming new friendships to fall off beyond some cutoff point
given vertex will be neighbors also of one another, alsoz*.
called the clustering coefficient, is greater by a factor of If only these two mechanisms were in place, we would
about 5 than in the corresponding baseline network, a rarget a network that would grow until all or most people had
dom graph in which edges are assigned to vertices comeboutz* friends and then stop growing. The structure of the
pletely at randonj3]. However, in social network€ can be  community would not change after its initial formation. In
thousands or millions of times greater than in the correfact, Watts[23] has described just such a model, hig “
sponding random grapfL2,22. The importance of this re- model,” in which a hard upper limit is placed on the number
sult has been emphasized extensively in the literatR8,  of acquaintances an individual can have, and the model does
and certainly any reasonable model of social network growtlindeed stop evolving once everyone has this many. In the
should incorporate it. real world, however, social networks do not stop evolving.
Taking each of these points into account, we propose thélthough there really does appear to be an upper limit to the
following as a minimal set of features that a model of socialnumbers of people’s friends, the network continues to

network evolution should have. change because friendships are broken as well as made. To
(1) Fixed number of vertices: we consider a closed popu-account for this, we propose an obvious mechanism: we pro-
lation of fixed size. pose that even after a pair of people become acquainted, they

(2) Limited degree: the probability of a person developingstill need to meet regularly in order to maintain that acquain-
a new acquaintance should fall off sharply once their currentance. If they cease meeting, their acquaintance ceases as
number of friends reaches a certain level. well. (Many people say that they have friends they rarely see
(3) Clustering: the probability of two people becoming but with whom they nonetheless remain acquainted. We dis-
acquainted should be significantly higher if they have one ocount such friendships from our model since there is essen-
more mutual friends. tially no cost to such a friendship and hence it does not fall
(4) Decay of friendships: Given that the number of verti- under the influence of our upper limit on friendship numper.
ces is fixed and the degree is limited, friendships must be Thus our model has three components) friendships

046132-2



STRUCTURE OF GROWING SOCIAL NETWORKS PHYSICAL REVIEW &4 046132

form when people meet, which happens preferentially be-
tween pairs of people who have one or more mutual acquain
tances;(2) the number of a person’s friends is limite(8)
friendships decay and disappear if the two people in questior
do not meet on a regular basis. In detail we implement these
components as follows.

The probability per unit timep;; of two given peoplej
and j, meeting depends on two factor&) the number of
friendsz; andz; each person already has af@l the number
m;; of mutual friends shared by both. We represent these
factors by functiong andg thus,

pij=f(z)f(z)a(m). (1

The functionf(z) is presumably large and roughly constant %
for small z, but falls off sharply around the transition value
z*. One possible functional form with these properties is the
Fermi function

f(z)= 2 S

eBz-7*) 4 1’ NN

FIG. 1. Sample network generated by model I. In this simulation

and we have used this form for the simulations describe(ghere whereN=250 vertices, andk—0.01, B=5. During the

here. The tempe*raturehke paramegecontrols the sharpness course of the simulation the isolated components did not join the
of the falloff atz*. ;
: . _ main component.
The functiong(m) represents the expected increase in the

likelihood that two people will meet if they have one or more tion the threshold value used was 0.3. The same criterion is

[rgﬁu?#igfgr?;ioqu \:\?:sr;;es;ii'riz c:jfir(;%ltll""bgrr%“?gugst\f[‘gorg:used for counting numbers of mutual friends and for calcu-
' y lating clustering coefficients.

well fit by the simple exponential form

g(m) =1— ( 1— po)ef am, (3) A. Results
We have simulated the model described in the previous

wherep, represents the probability of a chance meeting besection for networks of up to 1000 vertices. In order to pick
tween two people with no mutual acquaintances and the pgpairs of individuals with the correct probability per unit time,
rametera controls the rate at whicg(m;) increases. Eqg. (1), we use a continuous-time Monte Carlo mettfatso

The forms forf andg chosen here are somewtst hog  called an ‘h-fold way” algorithm) [25]. Simulations can be
but we have experimented with other forms and found thenitialized in a variety of ways: one can, for example, start
qualitative predictions of the model to be the same. Amongswith a random graph in which each vertex has average de-
other things, this provides some justification for the simplergreez*. In our simulations, we started with an empty net-
model presented in Sec. IV, which does not contain arbitraryvork having no edges and then allowed edges to appear with
functions of this sort. the decay parameter set to zero or to a very small value.

And what happens once two people meet? Friendships dafter each individual has formed abomt friendships, the
not merely exist or not exist: we have friends whom we seeevolution of the network then stagnates because no more
every week, once a month, or whom we gradually lose toucledges can be either added or removed. At this point we set
with. We represent this in our model by giving each friend-to a larger, more realistic value and watch the subsequent
ship a strength. When two peogleandj meet, the strength evolution of the network. Statistics such as the clustering
s;j of the connection between them is set to 1. Then as timeoefficientC and the average path length are measured as a
passes and they do not meet again the strength decays exgonction of time.
nentiallys;;=e~ At whereAt is the time since they last met Figure 1 shows a snapshot of the network from a simula-
and « is an adjustable parameter of the model. If they dotion with N=250 vertices withk=0.01, =5, andz* =5.
meet agains;; is set back to 1. Thus the time averagedThere are a number of interesting features of this network.
strength of a connection is measure of how often peopléirst, it has a high clustering coefficient @=0.45. The
meet. clustering coefficient for a random graph of the same size

For the purposes of constructing pictures of our networksand number of edges is roughtyy/N=0.02. Thus our model
we normally place a threshold on the connections, and corelearly reproduces the strong clustering of real social net-
sider only those whose strength is greater than that thresholslorks. This, however, is no great surprise; the primary
to be active friendships. For the figures in the following sec-mechanism of network evolution in the model—the meeting
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FIG. 2. The hierarchical tree or dendrogram
showing community structure for a network with
N=250, k=0.01, B=5, calculated as described
in the text. In this case, we have designated sepa-
is rate communities by whether their lowest con-
necting path in the tree falls above or below a
| specified threshold, indicated by the horizontal
M N dotted line, and the components have been spaced
out and shaded to illustrate this designation. The
threshold value is chosen using a criterion based
on the density of edges within components as de-
scribed in Ref[26].

] 0 LGOI Lt

of pairs of people with high numbers of mutual friends—is with subsequent edges only serving to connect individual
clearly geared precisely towards creating such strong clustenodes to the giant component. The strong communities seen
ing. Nonetheless, our results provide a demonstration thah Fig. 2 are absent in the random graph.
such mechanisms can produce clustering in social networks. The formation of communities is of course seen in real-
A less trivial outcome that emerges from our model is theworld social networks but was not a specific design feature
formation of clearly defined communities. As Fig. 1 shows,of our model. We can however explain it in terms of the
there are groupings of vertices in the network among whichyodel's dynamics as follows. If, during the growth of our
there is a high density of connections and between whichenyork. a region forms in which there is a higher than av-

there are few connections. Most of these communities arg 5qe density of connections between vertices, then there
joined together in one large connected component, but therg;, 3156 he more pairs of vertices in that region that have

are tglso E'ithsma” nqmge(rj of fct(;]mmunltlletzrs] thart] have no.lfonéommon acquaintances. Hence, new friendships will prefer-
nection wi e main body of the gragalthough as we wi entially form between those pairs and so the density of con-

see shortly, the existence of such islands depends on tr?‘letections in the region will become higher still. Thus small

preOC|se ch0|cte of the_par?rzneters In th.f mﬁt)delt tit initial fluctuations in network density can form the seeds for
né way 1o examine the communily structure quantitay, growth of tightly connected communities.

thG|_y IS tF) assign a “connection strength to every pair of Furthermore, communities in our model are self-

néustaining structures. Within communities, many pairs of

structure of the graph as edges are added between vert éople necessarily have mutual friends and the communities

pairs in order of decreasing strength, starting from a graply, " contain a high density of “triangles” of friendship.

rEThe clustering coefficient can in fact be defined precisely as
% measure of the density of such triandlg$].) A triangle is

€4 self-sustaining structure in our model. Each pair of vertices
in a triangle has a mutual neighbor in the third vertex and as
rét’result, meetings between each pair take place at a much

; . . eI'?itgher rate than between randomly chosen pairs of vertices
paths have been considered elsewligi) To visualize the in the graph. Thus the strength of the connection between

cpmmumty structure ex_tracted by this .CaICUIf'it'On’ we draw %ach pair of vertices is repeatedly reinforced. This means that
hierarchical tree showing the order in which components

¢ q oined toqsther. Such t h b eﬁiges within a community have a greater lifetime on average
orm and aré joined togetner. such trees have been USgHa, iose petween communities—the community structure

widely in social network analysis, where they are sometime ; ; ;
called “dendrograms’{28,29, and occasionally in physics ¥s created by mutual friendships and helps to sustain them.

too [30].

Figure 2 shows the hierarchical tree for a network gener-
ated by our model with parameters as in Fig. 1. The tree The behavior described above is typical of a large region
reveals strong community structure in the network: substanef the parameter space of this first model. However, for ex-
tial connected components appear early in the clustering prareme values of the parameters other behaviors are seen,
cess(lower down in the treeand persist until latéhigher  most of them rather unlike the behaviors of real social net-
up). By contrast, a typical hierarchical tree for a randomworks.
graph shows a few small components forming early in the Consider, for instance, the extreme cases where the decay
process but these quickly combine into one giant componentate « is either very slow or very fast. Figure 3 shows the

paths through the network between vertex pairs, with short
paths weighted more heavily than longer ong6]. (The

paths we consider need not be node- or edge-independe
although connection strengths based on node-independ

B. Other behaviors of the model
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FIG. 3. Clustering coefficient as a function of time fer0.001(left) and « =20 (right). In the former case the clustering coefficient is
high, but hardly fluctuates, since the network topology is almost constant. In the latter case, there is much fluctuation, but th€value of
rarely rises above that for a random graph of the same size and edge debsitguld take the value 0.019 in the random graph.

time evolution of the clustering coefficie@for simulations  that the basic community structure of the graph remains
with «k=0.001 and«x=20. With an extremely slow decay roughly constant, as does the clustering coefficient, but the
(top panel in the figure established connections decay very pattern of connections within communities is continually
little before being reinforced by a repeat “meeting” of the changing. New edges are added to vertices occasionally and
two corresponding vertices. Thus connections rarely disapedges are removed to bring the mean degree back to about
pear once established and the evolution of the network stag*. But the edges that are removed are not necessarily the
nates. We still get a high clustering coefficient, as the figur&ame ones that were added. In Fig. 5 we show how the pat-
shows, but it has almost no fluctuation with time because theéern of edges evolved in one such community during one of
topology of the network is not changing. This roughly repro-our simulations. This simulation seems to mimic a situation
duces the behavior of Watts® model [23]. At the other in which the exclusivity of communities is maintained but
extreme, very rapid decay of connections prevents the forthe friendships within those communities are brief and ca-
mation of any lasting friendships, producing a network thatsual, which may be a reasonable representation of certain
is essentially a random graph with no clustering or commutypes of social organization.
nity structure(right panel in Fig. 3.

Between these two extremes, variation of the parameters IV. MODEL Il
produces slight variations on the basic behavior discussed in
Sec. Il A. In Fig. 1, for example, we saw the formation of ~ The model described in the first part of this paper has
well-connected communities, some of which could be isomany adjustable parameters, as well as the funcfiamsig,
lated from the rest of the graph. The length of time for which
this isolation persists depends on the decay paramets 0.4
well as the parametay,, which governs the probability of a
chance meeting between two people with no common ac-
quaintances. lfc is increased, then friendships decay more
quickly, leaving some vertices with room for an extra edge. 03
And if pg is sufficiently high, then edges will occasionally be
formed between two isolated components of the graph. Once
one such edge forms, there exist other pairs of vertices in the
two components that have a common neighbor and henct’ 02 1
more edges will quickly form between the components. In
other words, once a single friendship forms between differ-
ent communities, others usually follow. Note however that,
as we saw above, higher decay ratéeads to a lower clus-
tering coefficient, and in fact the decrease in the clustering
coefficient can be seen as clear “steps” when different com-
munities in the graph mergsee Fig. 4 Thus it appears that

01

communities that are less tightly connected interndbyver 0 300 _ 600 200
C) allow for new connections to appear more easily between time
separate communities. FIG. 4. Clustering coefficient as a function of time fo=0.5,

We can also vary the value of the temperature parametgy,=0.0001, ands=6.67. The network settles into distinct groups
B. Decreasings allows a vertex more flexibility about its that seem to be stable until individuals from separate commun-
degree—it can add an extra edge more easilyg is de- ities become acquainted, causing two groups to merge and thus
creased while keeping the other parameters fixed, we finthwering C.
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FIG. 5. Time evolution of the
edges within one component for
B=1.25 and x=0.01. Dotted
lines indicate connections that ex-
isted in the previous frame and
have since decayed. Bold lines in-
dicate new connections. All new
connections are made with verti-
ces already included in this group.

whose forms are infinitely variable. While a large number ofhas the maximum numbe* of connections.

free parameters allows us a lot of flexibility to study the (3) At each time step, we choosgy vertices with prob-
behavior of the model and may, in addition, make the modeébility proportional toz; . For each vertex chosen we choose

a more accurate representation of the real world, we find imne of its neighbors uniformly at random and delete the con-
fact that the selection of behaviors that we get from thenection to that neighbor.

model is limited to a few general classes, as described above. It is straightforward to convince oneself that repetition of
This suggests that it may be possible to formulate a lesthese steps simulates the dynamics of the model proposed
baroque model, one whose definition and dynamics are simabove.

pler, and still retain most of the interesting behavior. In this  As before, the network is initialized by starting with no
section we do just this. edges and running the first two stef@dition of connec-

Our simplified model incorporates all four of the crucial tions) without the third(breaking any connectiopsintil all
features outlined in Sec. Il, but in a simplified fashion asor most vertices have degret. Then all three steps are used
follows. First, all connections between vertices are only eifor the remainder of the simulation.
ther present or absent—there is no longer any concept of Figure 6 shows a sample network from a simulation of
connection strength. The exponential decay of connectiothis model with N=250, ry,=0.0005, r;=2 (about 4850
strength from Sec. lll is replaced by a constant probability pairs per time step y=0.005, andz* =5. As with our first
per unit time that an existing connection will disappear. Thuamodel, there are clearly identifiable communities in the net-
out of any initial group of connections, & of them will  work, mostly connected together in a single giant compo-
remain after time in the absence of any other processes. nent, although there are also communities that are well con-

Second, “meetings” occur between pairs of individuals nected internally but disconnected from the rest of the graph.
represented by vertices at a ratevhich is simply linear in  The values ofy and r, were chosen so that connections
their numbem of mutual friendsr =rqy+rym. If a pair meet based on mutual friendship have some stability over time:
and there is not already a connection between them, a neewen when they get broken, they are likely to be remade
connection is established unless one of them alreadyhas quickly. This mechanism replaces the ‘reinforcement”
connections, in which case nothing happens. In other wordsnechanism of the first model. However, there is always
z* forms a hard upper limit on the degreeof any vertex, some possibility that broken links will not be remade and
beyond which no more edges can be added. other links will appear instead, allowing for evolution of the

Apart from being conceptually much simpler than our firstnetwork structure over time at a rate dependent on the pa-
model, this model is also much easier to simulate. Instead afameter values. The network shown in Fig. 6 is also highly
having to use a complicated and inefficient continuous timeslustered, having a clustering coefficient©f0.53, where
simulation method, the model can be simulated directly usthe corresponding random graph would h&e 0.02.
ing the following algorithm. Most of the types of behavior seen in our first model can

Let n,=3N(N—1) be the number of pairs of vertices in be reproduced by appropriate choices of parameter values in
the network. Len,= 33,z be the number of existing edges, this second model. For example, extremely high or low val-
where z; is the degree of thdath vertex. And letn,  ues of the decay parametgrproduce either highly fluctuat-
=33z(z—1) be the total number of mutual neighbors of ing structures with clustering not noticeably different from
pairs of vertices in the network. that of a random graph, or highly clustered graphs that are

(1) At each time step, we choosgr, pairs of vertices stagnant and barely evolve. Other parameter changes can af-
uniformly at random from the network to meet. If a pair meetfect the stability of the island communities in the graph over
who do not have a preexisting connection, and if neither ofong periods, or vary the rate at which connection patterns
them already has the maximuz’ connections then a new within communities vary.
connection is established between them.

(2) At each time step, we chooser; vertices at random,
with probabilities proportional t@;(z;—1). For each vertex
chosen we randomly choose one pair of its neighbors to meet What can we learn from results of the type presented
and establish a new connection between them if they do ndtere? The primary lesson is that complex and intuitively rea-
have a preexisting connection and if neither of them alreadgonable patterns of social network structure and evolution

V. DISCUSSION
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higher rate than those with few—we conjecture that social
network growth is dominated by the introduction of future
acquaintances to one another by mutual friends. As a result,
almost everything about the resulting graphs is different be-
tween the two cases. Where preferential attachment yields a
graph with a power-law degree distribution, the limit we
place on vertex degree in our social networks creates a
sharply peaked distribution. Where graphs grown with pref-
erential attachment show clustering coefficients only slightly
higher than the corresponding random graph, our social net-
work models show very high clustering coefficients, similar
to those seen in real-world social networks. And where the
structure of the web and similar networks is dominated by
their rapid growth, the structure of our social networks is
dominated by constant rewiring of connections between ex-
isting vertices, with the addition of new vertices not playing
a major role.

But perhaps the most intriguing feature of our models is
that they show community structure in the networks they
generate: there are groups of vertices with many connections
between their members and few connections to vertices out-
side the group. For some parameter values, these communi-
ties even separate entirely and there are no connections be-
tween them at all. Community formation is certainly a
feature of real social networks also and it is interesting to see
that communities can arise from simple local growth rules
only. We are not aware of any study that has shown the
existence of such communities in preferential attachment
models. Interestingly, however, the real world-wide web
doesshow community structurg82]. Perhaps then a realistic
model of the growth of the web should include some addi-
tional elements similar to those in our social network models

FIG. 6. Network structure generated in a run of our secondn order to capture community formation fully.
model withN=250, r,=0.0005,r,=2 (about 4850 pairs per time This paper represents only a first attempt at modeling the
step, y=0.005, andz* =5. evolution of the structure of social networks. There are many
possible directions for further study. One can ask whether

Ipere are important mechanisms of network growth that we

can emerge from very simple rules. Furthermore, the generz}1 issed out of th t model heth
form of those patterns is not strongly influenced by the mi- ave missed out ot the present models, or whether even our
implest model is still more complicated than it need be.

croscopic details of the rules, so that most of the interestin . )
behaviors can be reproduced in a much simplified model erhaps the three basic rules given here are not all neces-
Sary? It would also be useful to acquire a detailed under-

which is clearly not a realistic representation of real-world .
social behavioys P standing of how the parameters of the models relate to one
The crucial features that we find necessary to producé‘nomer_Wha.t Is the structure of the phase diagrgm_for these
models? And is an analytic approach to these or similar mod-

plausible networks are three in numbét) meetings be- . .
tween pairs of individuals giving rise to friendships at a rateeIS pos§|ble. It WOUId be helpful 'f. we cguld gnderstand the
ualitative behaviors seen in our simulations in terms of ana-

that is high if a pair has one or more mutual friends and Iowlq " lculati ith imat £ We h that
otherwise;(2) decay of friendships between pairs of indi- Y "¢ Caiculalions, €lineér approximate or exact. ¥e nope tha

viduals who no longer meet or rarely do @) an upper the first steps taken here will encourage others to look at

limit (either soft or hardon the number of friendships an these questions in more depth.
individual can maintain. ACKNOWLEDGMENTS
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