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Crossover phenomena in spin models with medium-range interactions
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We study crossover phenomena in a model of self-avoiding walks with medium-range jumps, which corre-
sponds to the limitN—O0 of an N-vector spin system with medium-range interactions. In particular, we
consider the critical crossover limit that interpolates between the Gaussian and the Wilson-Fisher fixed point.
The corresponding crossover functions are computed by using field-theoretical methods and an appropriate
mean-field expansion. The critical crossover limit is accurately studied by numerical Monte Carlo simulations,
which are much more efficient for walk models than for spin systems. Monte Carlo data are compared with the
field-theoretical predictions for the critical crossover functions, finding good agreement. We also verify the
predictions for the scaling behavior of the leading nonuniversal corrections. We determine phenomenological
parametrizations that are exact in the critical crossover limit, have the correct scaling behavior for the leading
correction, and describe the nonuniversal crossover behavior of our data for any finite range.
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[. INTRODUCTION ids, binary mixtures, and polymgrsHowever, in a specific
limit—we call it the critical crossover limit—one can define
The universality of critical phase transitions is related touniversal quantities that do not depend on the microscopic

the presence of a diverging correlation lengthWhen ¢ is  details.
much larger than any microscopic scale characterizing the In this paper, we will consider spin models with medium-
system, one observes a scaling behavior that is universal, i.éange interactions. For instance, we may consider the Hamil-
independent of the microscopic details. However, in experifonian
mental situations the correlation length may not be so large
and, on t_he_contrary, it may be c_omparable to some other H:—E 2 T30y, (1)
scale intrinsic to the system. In this case, one does not ob- X y:ly=x/<R
serve the expected critical behavior, but rather a crossover. ) o
Here, we will be interested in the crossover between thdvhereoy is anN-component vector satisfyingox=1. The -
standard Wilson-Fisher behaviorear the critical pointand ~ crossover behavior of these systems has been extensively
the mean-field behavioffar from the critical poink that is  Studied numericallf19-24,13. By means of scaling argu-
observed by varying the temperature in systems belonging tB'ents, it was showfil9—21 that the Ginzburg numbés is
the N-vector universality class, i.e., magnets, fluids, multi-Proportional toR=?¥“=9 in d dimensions. Thus, foft|
component fluid mixtures . . (the critical behavior of these >R~ 2¥“~9, such systems show an approximate mean-field
systems is reviewed, e.g., in Ref§,2]). Such a crossover is behavior, while for|t|<R™2¥“~9  one observes the stan-
characterized by the Ginzburg numb@r[3] that measures dard Wilson-Fisher criticality.
the relevance of the magnetizatitor density space fluctua- Such a crossover can be described by using effective ex-
tions that determine the departure from the Landau mearfonents. For instance, one can define an effective suscepti-
field behavior. Ift=(8.— B8)/ . is the reduced temperature, bility exponenty.(t) (often called the Kouvel-Fisher expo-
for [t|>G the system shows an approximate mean-field benent[25]) by
havior, while for|t|<G one observes the standard Wilson-
Fisher criticality. The crossover behavior is nonuniversal Yerl(t,R) = — t dxr(H) @)
since it depends on the specific details of the system under efft™ Xxr(t) dt
investigation, and is usually described in terms of phenom- . o )
enological models(see, e.g., Refs[4—18 and reference where yg(t) is the susceptibility. By varying the tempera-

therein for a discussion of phenomenological models for flufure, the exponeny.(t,R) varies between 1, the mean-field
value, andvy, the Wilson-Fisher valugactually, the full

crossover behavior can be observed onlyRdarge enough,
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cise approximations, one must resort to phenomenologicdine the limit in spin model$20—-23 and review the results
models, such as those presented in Rgfs.17]. However, of Ref.[27]. In Sec. Il B, we define the crossover limit for
there is a particular limit—the critical crossover limit—in walk models and derive some general results for the univer-
which the effective exponents become universal. If we consal CFFSS?VEBfUHCEOHS- In particfular,.we show thagthe¥. 6}39
; o i Tt/ tR2d/(4—d) £ exactlyrelated to the crossover functions computed in fie
sider the limitt—0R— with t=t/G~(R fixed, theory[39—41]. Moreover, by using the results of R¢27],
~ ) ] o - we show that by an appropriate definition of the raRyéhe
Yer(t) that is universal apart from a trivial rescalingfin - eading corrections to the universal crossover functions scale
practice, at least in lattice models such as @g.the critical 55 g-d ¢ being the dimension, aB—c. In Sec. IV, we
crossover functions provide a good description of the crossgerive the expressions of the crossover functions from field
over as soon as the interactions extend over a (@ or  theory generalizing the results of Ré#0]. Details are re-
threg lattice spacings. ported in the Appendix, where we also compute the first
The universality of the critical crossover functions can becoefficients of the asymptotic expansion of the crossover
shown explicitly in the largeN limit [26,27] and for any  functions near the Wilson-Fisher point by using the fixed-
value of N by performing an expansion around mean fielddimension expansion in the zero-momentum scheéA®}
[27]. Moreover, as shown in Rdi27], they are giverexactly — and in the dimensional regularization scheme withegix-
by the field-theoretical crossover curves computed within thgpansion[43,31,33. In Sec. V, we briefly describe the nu-
¢* framework in Refs[28—37. merical algorithms we use. In Sec. VI, we perform a detailed
In this paper, we wish to check with a high-precision comparison of the numerical results in three dimensions with
simulation the field-theoretical predictions of RgR7].  the field-theory predictions. We find a very good agreement,
Large-scale Monte Carlo results have already been obtaindfie deviations being small already when the interaction ex-
for the Ising model, both in two and in three dimensionstends over three lattice spacings. Particular care has been
[20—23. However, because of the difficulty of keeping un- devoted to the behavior of the leading corrections. We show
der control the finite-size effects, only small rangesvere  that they scale aR™ ¢ as predicted in Ref27]. Finally, in
simulated near the Wilson-Fisher point. Although the generaec. VIl we report our conclusions and discuss some further
trend of the data was consistent with the analytic field-applications of these results. In particular, we give phenom-
theoretical predictions, in the Wilson-Fisher region a high-enological expressions that are able to describe the crossover
precision numerical test has not yet been done. The consigurves even outside the critical limit, for all rangBswe
ered values oR were too small and there were significant have considered. Preliminary results appeared in [Ré.
discrepancies between numerical data and theoretical predic-
tions. Il. THE MODEL
Here, we address the problem for a spin model in the limit
N—0, which can be described in terms of self-avoiding [In this paper, we consider SAW’s with medium-range
walks (SAW’s) [33—38. The advantage of such a system isjumps. To be specific, let us consider a hypercubic lattice in
that we can now work directly in the infinite-volume limit d dimensions. Given an integer numbger let us define a
without finite-size effects and thus we can investigate syslattice domainD ,(x). If x is a lattice pointD ,(x) is the set
tems with much larger values of the correlation len¢th  of lattice points defined by
this paper we reacl~500 for systems in which the inter-
action extends up to 12 lattice spacipgs the limit N—0, i
the model (1) is mapped into a model of SAW’s with Dp(x)=|y:i21 |Xi_yi|$P’- ©)
medium-range jumps, i.e., of SAW’s such that the length of
each link is less than or equal B As usual in walk simu-
lations, we work in a monodisperse ensemble, i.e., wit
walks of fixed lengthn. The lengthn replaces here the re-
duced temperature Medium-range SAW’s show a cross-
over behavior depending omG~nR 2¥(“4~9)  For n
<R?¥(4~9  the SAW behaves as an ordinary random walk v,= X 1L (4)
(mean-field behavigy while in the opposite regime the self- yeD,(0)
repulsion becomes important and one observes the standard
critical behavior. As we already stressed, for fixed values of ) 1 )
R, such a behavior is not universal and can only be described R= 2dV %‘4 o y*. ()
phenomenologically. There is, however, a universal limit, the py<Dy0)
critical crossover limit: If we take the liminh—o,R—©
keepingfi=nR~2¥(“~9 fixed, the crossover functions be-
come universal, and can again be computed by using field-

then yq4(t,R) converges to a critical crossover exponent

We indicate withV, the number of points belonging to
o(X) gnd withR the mean-square size Df,(x). Explicitly,
we define

In three dimensions,

theory methods. Vo= 3(2p+1)(2p°+2p+3), ©)
The paper is organized as follows. In Sec. I, we introduce )

the model and the basic observables we consider. In Sec. I, re PPt L) p"tp+3 @

we discuss the critical crossover limit. In Sec. Il A, we de- 10 2p%+2p+3°
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Forp—c, V,~3p* andR?~ 7 p. In the following, we will
often characterize the size of the jumps by udtigstead of
p and thus we will writeDg,Vg,..., instead ofD,,V,,....

Let us now define our model. We define amstep
R-SAW as a sequence of lattice pointe,,...,w,} with
0o=(0,...,0) andwj ;€ Dg(w;), such thatw;+ w; for all
i#]. All walks are weighted equally. Fgsy=1, the model

corresponds to a standard SAW with nearest-neighbor

jumps.

We will consider the following observables: df, g(x) is
the number oh-stepR-SAW'’s going from 0 tox, we indi-
cate withc,, g the total number of-step walks and W|tIE
the mean-square end-to-end distance. They are deflned
follows:

cn,Rzg Cnr(X), ®

EZ R= g 9
This model of walks is related to a lattidé-vector model

with medium-range interactions in the linlt— 0. Indeed,
consider the Hamiltonian

R(O')___E >

X yeDRg(x)

(10

0Ty,

where o is an N-dimensional vector satisfyingr,o,=1,

and define as usual

ZR(B)E{E} e AHR(), (11)

1
GR<x;ﬁ>E<aoox>R=m§ Tooye PR (12)

The susceptibility and the(second-momeint correlation
length are then defined as

xRus)Eg Gr(X;8), (13

E x2Gg(x; B). (14)

A standard procedurg83—3§ allows us to prove that

lim xr(8)= E B"Co g, (15)
N—O
lim £3(8)xr(B)= 2d2 penrEim (16

N—O0

This equivalence will allow us to use the results available for

the Hamiltonian(10) that are discussed in detail in RE27].
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lll. CRITICAL CROSSOVER LIMIT

In this section, we derive some general results for the
critical crossover limit of medium-range SAW'’s. They will
be obtained by extending to walk models the results of Ref.
[27].

A. The variable-length g ensemble

Let us consider the Hamiltoniati0), which, for R fixed,
defines a generalized-vector model with short-range inter-
actions. For each value d®, there is a critical poinf45]
Bcr: for B—pB.r, the susceptibility and the correlation
Emgth have the standard behavior

XR(B)=A (R [1+B,(R)t*+- ],

..],

wheret= (8. r— B)/ B¢ r and we have neglected additional
subleading corrections. The exponentsy, and A do not
depend onR. In two dimensions, foN=0, y and v are
known exactly[46],

17

ER(B)~ALRIt ?[1+B4R)t*+ (18

wl-h
Nlow

v=%, y=%, (19
while A is still the object of an intense debdi47-52. In
three dimensions, foN=0, the best estimates of the expo-
nents have been obtained in Monte Carlo simulations:

0.58770.0006, Ref.[53]
V:

0.58758:0.00007, Ref.[54],

y=1.1575-0.0006, Ref.[55] (20)

A=0.5153037 Ref. [54].
Less precise Monte Carlo results can be found in H&6-
59] and references therein. Similar, although less precise,
results are obtained by using field-theory methods and from
the analysis of enumeration seri@sr a list of results, see
Refs.[40,60—63 and references thergin

On the other hand, the amplitudes are nonuniversal and
depend orR. For R—«, they behave ag20,21]

~ A*p2d(1-y)/(4—d ~ APRA2—dv)/(4—d

AX(R)NAXR (1= )' Ag(R)vagR( )M ),

da/(4—d da/(4—d @D
_R*p2dA/(4— _p*p2dA/(4—

B,(R)~B;R?4/4=d  B,(R)~BfR24/4~d,
Corrections to these asymptotic behaviors vanish 23§
RC.

The critical point3. g also depends oR. The expansion
of B¢ r for R—o was derived in Ref{27] in two and three
dimensions. Explicitly, foN=0 andd= 3, we have

1 —
ﬂc,R=V—R(1+IR——

+0O(R%In RZ)) , (22
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TABLE |. Estimates ofR?’I_R for several values op for the
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a
~ f ~_ ~_

domain(3). From Ref.[27]. fo(t)~ T[:H_ a ™ Am O(t~28mn)], (30)

p R3lg p R3l, _ o . .
whereA = (4—d)/2. It is important to notice that this ex-

3 0.043960387 10 0.043486698 pansion is corrected by logarithms wheneder 4—2/k, k
4 0.043921767 12 0.043451767 integer, and therefore in the interesting cades?,3. Ford
5 0.043713672 14 0.043429899 =3, the neglected terms in EqR9) and (30) are of order
6 0.043664053 16 0.043415345  O(t~!Int) and not simply of orde®(t ). A detailed deri-
7 0.043574469 18 0.043405187 vation of these expansions and of the expressi@ds and
8 0.043547206 20 0.043397824 (30) is given in Ref.[27] for a much more general model

than the one considered here. The constaptsa,, «,, and
a; are given, for 22d<4, by

wherer; andr, are constants anic is a function ofR. The
nonperturbative constantg and =, depend on the domain. a=a,=1,

The expression of, for a generic domain is reported in Ref. a2 (32)
[27]. For the domair(3), 7;~ —0.00060(11). The constant ay=ag=—(4m) T (1-d/2).

7, Will be computed numerically in Sec. VI A. The function

I is defined by Additional terms can be computed exactly by using the field-

theoretical results of Ref$28,29, the perturbative series of
Refs.[66,60, and the mean-field results of R¢R27], see
Sec. IV.

It is also possible to compute the corrections to E@S)
and (26). On the basis of a two-loop calculation, RE27]
conjectured that, if the range is expressed in terms of the

— [ d% 1-TIg(k)
' @ T =

where

1 ‘ variableR defined in Eq.(5) [67], then the correctionf58]
ITp(k)=1- - Y ek (24 scale asR™ 9. Explicitly, in the critical crossover limit we
R xeDR(0) ex t
pec
ForR—, g~oR 3+ 0O(R™®). For the domain considered 1
in this paper,c~0.043 365 29. Explicit values dfs are re- xr— (1) + R—dhx(t)+“' : (32
ported in Table I.
Let us now define the critical crossover limit. In this case, 1
we consider the limiR—c,t—0, with T=R?¥“*~t fixed. Er— D)+ oghe(D+--. (33

It is possible to show that

Tr=R- 2440y (3t () 25 Fort—0 andt—c, the functionsh,(t) andh,(t) have an
R R A asymptotic behavior that is analogous to that of the universal
B=RY4-02(g) 1,1 (26)  crossover functions, (t) andf(t). In Ref.[27], the leading

term fort—o was computed, obtaining
where the functions, (t) andf «(t) are universal apart from

an overall rescaling df and a constant factor. Equatiof2) h (T)~— Eq h(T)~— Eq (34)
and(26) were predicted in Ref$20,21 by means of a scal- X 1 ¢ r
ing argument and were proved to all orders in an expansion

aroundt = in Ref.[27]. whereE, is a domain-dependent constdeee Ref[27] for
The crossover functions have a well-defined behavior irits definition. For d=3 and for the domain(3), we have

the limiting cased —0 andt—o. Fort—0, Egs.(17) and  E3~0.058 545.
(18) imply
- o, o B. The fixed-length ensemble
BO=A LB ), @ Given the previous results, it is now a completely stan-
~ 2 A dard procedur¢38] to obtain the behavior af, r and Eﬁ'R.
F)~A A (1+B 10+ ). 28 Forn—w atR fixed, we obtain the standard behavior

In the limit t—oo, for generic values ofi, the crossover

Crr~C(R)BcRNY 1+D (R)n"4+--], (35
functions behave as

a Exr=Ce(RIN*[L+De(R)N" 4+, (36)
()~ 2[1+a,t Am+O(T24m)], 29
(D~ = 1+ ay (T24m)] @
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A((R) gc(T)=efnt g (), (46)

T
) where(,, is a constant and,, ;,(f) is a function with a regu-
2dA(R)T(y) lar expansion in powers G without logarithms. The be-

C,(R)=

Ce(R)= Tiyr20) havior of gg(fi) is simpler: It has a regular expansion in
yrev powers offi*mf in all dimensions without logarithmg39].
B.(R)T(y) (37 The constantg, and {g can be easily related te, anda,
D (R)= IX‘(—A;,' defined in Egs(29) and (30):
y—
o
Du(R) - [B,(R)+BR)IT(y+21) B (RI(y) 50:—r(1+XAmf)' (47
E [(y+2v—A) L(y—A)
+
For R—®, wusing Eq. (21), we obtain C,(R) ¢ . Sl S %x (48)

ET .
—CyR¥MI=NIA4=d) “whereC}=A}/T'(v), with corrections P(2+Am)  T(1+An)

of relative orderR™“. Similar relations hold for the other Using the explicit result§31), we obtain in three dimensions

amplitudes.
The critical crossover limit is trivially defined by remem- 1 1
bering thatn is the dual variablgin the sense of Laplace gczz—m, §E=6—m. (49)
a a

transformg of t. Therefore, we should study the limit
—,R—o with Ai=nR™2¥(“~9 fixed. From Eqs(25) and

(26), we obtain that the following limits exist: We wish now to compute the corrections to the universal

crossover functions. FOR—o, in the variable-length en-
semble, the corrections a@R %), see Eqs(32) and(33),

€n R=Cp RO n), 38
nR=Cn.RBer0e(M) 38 for 2<d<4. Thus, we expect that the universal crossover
~ g4 ~ functions in the fixed-length ensemble have the same behav-
2 _p2 8i(4—d)_,
Enr=EnrR 9e(M), (39 ior. Therefore, we write
where the functionsg.(f) and gg(f) are related by a 1
Laplace transform té (t) andf«(t). Explicitly, TR 9e() + 2ake(R), (50)
f (t)=f dug.(u)e ", (40) 5 1
L E2 e 0e() + oke(T). (51
fAOf ()= %fxdu g(U)ge(u)e 1t (41) It is easy to verify by using the Euler-MacLaurin formula
0 that
Notice that, while the knowledge @&, r is not required for % ot
the definition ofge(f), the critical point is needed to com- h ()= fo du k(u)e*, (52
puteg.(n).
The standard critical behavior is obtained for. In 1 (=
this limit, we have (N (041,000 = 57 [ “dulge(uk(u
)~Co R H(1+Dh 2+, 42
9eM=C, AT * : 42 +gc(ukg(u)le ™. (53
ge(M)~CER?"(1+Dgfi 2 +--+). (43)

The asymptotic behavior of the correction functidggn)
andkg(n) for i—0 andhi— is analogous to that aj (1)
andgg(f). Forni—0, by using Eqs(34), (29), and(30), we
obtain

The mean-field limit corresponds To—0. Using Eqs.(29)
and (30), we obtain

n)~ FAmi ...
Qo)=L+ L=, 44 ko(0)=—E4, Kke(fi)=—2dEgi+O(fl"2m). (54)
ge(Ti) ~2dR(1+ {ghtmi+- ), (45)
IV. FIELD-THEORY RESULTS IN THREE DIMENSIONS

with corrections of ordefi?*mt. In two and three dimensions,

additional logarithms appear. For 3, the neglected correc- ~ We wish now to compute the crossover functions by us-
tions tog.(fi) in Eq. (44) are of ordefi InTi. However, it can  ing field-theory methods. Consider the continugrhtheory,

be shown by using the field-theoretical results of Appendix
A 3 that the logarithmic terms exponentiate and that one can

; H= f d3x
write

046130-5
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where ¢ i; an N-dimen_sional vector—in oiur case B§=§15A=2.92t 0.27. (64)
N=0—and introduce the Ginzburg numb@e=u?“~9 and

t=r—r., wherer is the critical value of. Then, consider ~For the(universa) ratio B7/B; we obtain the more precise
the limit u—0t—0, with tse=t/G=tu" "9 fixed. In  result

this limit we have

oo

B
X
~ ~ —=0.745-0.034. (65)
X=XG—F (tsp), (56) B¢
EZE§ZGHF5(TSR) (57) Consistent, although less precise, results can be obtained in

the framework of dimensional regularization withotiex-

The functionsF (tsp) andF «(tsp) can be computed by re- pansion, see Appendix AR

. ; . . In a completely analogous way, we can derive from field
summing appropriately the perturbative series. There are eﬁﬁeory the crossover functioms (i) andge(f). Indeed, we
sentially two different perturbative series one can consid—imrooluce functionsG,(fisy) and Ge(R R)Ein tﬁe f0||OV\;in
er: (a) the fixed-dimension expansig#2,28,29, which is c\’’s E\YS 9

at present the most precise one since seven-loop series &Y

available[66,60; (b) the so-called dimensional regulariza- o

tion without € expansion[43,31,33 that uses five-loop FX(t)=f du Gy(u)e ", (66)
e-expansion results9,70. In these two schemes, the cross- 0

over functions are expressed in terms of various

renormalization-group quantities. The explicit expressions F(t)F (t)=ifxduG (U)Ge(u)e U, (67)
are reported in Appendixes A1 and A2. For our purposes, ¢ X 2d Jo ¢ E

the relevant result is that the functioRg(tsp) andF .(tsp)
are related by simple rescalin¢gSR) to the crossover func-
tions we have defined befof27]. More precisely,

The functionsG.(Tisg) and Gg(Tisg) can be computed per-
turbatively by using the corresponding perturbative expres-
sions forF,(tsp) and F.(tsp). The relevant formulas are

f (D =uF (D), f)=unFst), (58)  reported in Appendix A3. _ _

In the fixed-dimension expansion, using the seven-loop
for appropriate constanys, , u¢, ands. These relations are results of Ref.[60], we obtain [the six-loop result for
shown rigorously to all orders in the expansion around theGe(Tfisg) already appears in Reff40]]
mean-field limit in Ref.[27] and provide the link between N 2, ) .
medium-range crossover functions and field-theoretical ex-  Gc(Risp) =€*™* "KI[1+4z+ 27 y7z°—60.729%
pressions. The constants can be easily computed by compar- 96.672%%— 144 435+ 2491 955

ing the behavior fort—o. In three dimensions, the func-

tionsF (tsp) andF.(tsp) behave agsee Appendix A B) —5070.3%'+0(2%)], (68)
~ 1 1 ~ ~ - - 4 28 6 > 3
F)((t):% 1+ Et—l/2+ O(t—l In t) ' GE(nSR)=6nS 1+ §Z+ 7— ? Z°+6.2968&
(59) —25.057%*+116.135°—594.717°
Fe)= = 1+ —F 7240 Hint
)=z o (t=Int)]. +3273.16"+0(2) |, (69)
t T
By comparing these expansions with E¢9) and(30), we  WhereK is a nonperturbative constant and
obtain ~ 1p
B 1 [Ngr 70
S=,U,X=,u.§=%. (60 2= 24\ ' (
We can now use the explicit results of the Appendix to ob-Explicitly,
tain predictions for the constants,, A7, BZ, andB} de-
g W Aes By : InK =1447?D 3+ In(16m) — 3, (72)

fined in Eqs(27) and(28). We obtain in the fixed-dimension

expansionsee Appendix A b) whereD; is a nonperturbative constant reported in Appendix

A1la. Numerically, using the estimate bBf; reported in Ap-

30: Y=
Ay = HyXoS 0.59580.0041, (61) pendix A la, we haveK =5.445).
_ These perturbative expressions can be resummed by using
o __ 2v__
Ag = pebos “'=0.5238£0.0024, (62 the fact that the series are Borel summapié—74. The
. N technical details are reported in Appendix A3. The resum-
B,=x15"=2.18+0.18, (63)  mation is very precise foz=<1, with errors smaller than
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0.2%. For larger values afthe resummation errors increase V. ALGORITHMS
and the numerical integration becomes unstable: In practice : . . )
we have not been able to compute numerically the crossover. The SAW with nearest-neighbor jumps can be very effi-

functions using Eqs(A87) and (A89) for z=5. However, in ciently simulated by means of nonlocal algorithf?$,77).

this region the crossover functions are already well approxi!\Ione of them can be generalized to the case at hand, and

. . thus we have resorted to the dimerization algoritti)
mated by the asymptotic expansm@:l@ 3) and (A94). The. [78,79. Although the CPU time needed to generate a walk
resummed expressions are well fitted by the following

; ) increases more than any power of its length], the prefac-
simple formulas: -
tors are so small that we can reach quite large lengths. It

~ 2 3 should be noticed that other algorithms could have probably
Go(fisp) = (1+50.79363+508.5428°+ 5929.473 performed better. For instance, we could have used the
+10937.03%4)007875 (72 pruned-enriched Rosenbluth method of R&D.
Before defining the DA, let us introduce the simple-
Ge(Tigr) = 6Tge( 1+ 7.611z+ 12.051 352)0-175 166 sampling algorithm(SSA). The SSA is the simplest algo-

(73)  rithm for the generation of SAW's. It builds a walk recur-
sively. Once am-stepR-SAW {wy,...,w,} is generated, an
The expression foBg(Tisr) Was proposed in Ref54] and it ~ (n+1)-stepR-SAW is obtained by choosing at random a
was obtained from a detailed Monte Carlo study of thenew pointw,.; in Dg(w,)\{wy}. If the new walk is self-
Domb-Joyce model75]. We find that the perturbative re- avoiding it is kept, otherwise the-stepR-SAW is discarded
sults are very well described by these expressions, with disand the procedure starts again from scratch generating a new
crepancies of less than 0.3% o 2. For larger values of,  n-stepR-SAW. Since adding one step and checking for self-
the differences are slightly larger, of the order of 1%, whichavoidance require$81] O(1) operations, the CPU time
is, in any case, of the same order of the error of our reneeded to generate arstep walk is
summed results. Note that the expressitid and (73) ex- non
actly reproduce the smatl-behaviors(68) and (69) up to T _ Be,m E m
terms of ordeiO(z?). crun) =~ c, =1 ComBe,m
The relation between the field-theory functions ap(h)

and gg(f) is straightforward. From Eqg58) and (60), we  whereg, = 1/(Vg—1). In the limitn—c with R fixed and

(81)

have large, using Eqs(35) and(22), we obtain
9c(M)=AGe(pN),  ge(M)=AeGc(pT), (74) TepuM)~RI7n(- 7+ DgenR (82
with where « is defined by B¢ mi/Bcr~1—aR % For our
model,a~0.035. The computer time increases exponentially
Ae=3, N=1, p=09. (75 with nalthough the factor in the exponential goes to zero as
RA.

Using the results of Appendix A3, we can easily derive es- 1he SSA is quite efficient in generating short walks.
= andDZ defined in However, far from the Gaussian region it becomes too slow,

timates for the constan§?, Cg, D} e o
Egs. (42 and (43). In the fixed-dimension expansion, we because of the exponentlal[y increasing time needed to gen-
have erate a walk. A better algorithm is the DJA8,79. Numeri-
cally, we find DA to perform better than SSA for=Vg.
C*=0.640+0.005, (76) The DA is again a recursive algorithm. To generateatep
X walk one generates twa/2-step walks and concentrates
them. If the resulting walk is self-avoiding, it is kept, other-

Ce=2.45/0.011, 77 wise the twon/2-step walks are discarded and the procedure
is repeated again. The algorithm is recursive: in order to
D} =1.45+0.10, (78)  generate the walks of lengtif2, the DA is used again until
n/2<n. If n/2<n., we generated the walks using the SSA.
D{=5.03+0.48. (79 In our implementation we chose,~Vg. The behavior of

the DA in the limitn— at R fixed was studied in Ref76].
If we consider the universal ratd}/Dg we obtain the more By using the results of Sec. Iil, one finds
precise result _1)

()’
~ RY1nY92 - 7
Icpu(n) R%1n exp{ 2in2

DUJ
D—o{:o.zsst 0.016. (80) (83
E

whereq, andq, are exponents that depend on the specific
We mention that from the very precise Monte Carlo resultsmodel and on the implementation of the algorithm.
of Ref. [54], we would obtainCg~2.450 andD£~5.57, in Let us now discuss how to estimﬁ-ﬁ,R andcy, g from
reasonable agreement with our results. the simulation. Estimatingzﬁ'R is completely straightfor-

|n2(n RZd(l* 'y)/(4*d)) ,
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TABLE II. Monte Carlo results. Herg8 = (VR—1)"1.

p n InE; IN(CrBa) p n InE; IN(CrBaf)
2 20 4.09410®) —1.57080012) 10240 11.847Q1) —264.348944)
30 4.556891(121) —2.521514) 15360 12.3157(B3) —396.938836)
40 4.88688617) —3.488843) 30720 13.123®2) —794.807%75)
80 5.6868%3) —7.424536) 5 600 8.8806810) —8.8104925)
160 6.49158) —15.3994414)
1040 9.48441@3) —15.5133413)
320 7.2996612) —31.4543930)
1200 9.64208L7) —17.9569950)
640 8.1097824) —63.6715064)
1280 8.92196654) —128.212416) 2080 10.25378) —31.4268626)
' ' 2400 10.4126@8) —36.331310)
3 120 6.505863) —5.201786) 4160 11.032184) —63.34116)
160 6.8294(015) —7.0653730) 8320 11.8185@5) —127.262411)
240 7.2875(b) —10.8148213) 16640 12.611554) —255.201424)
320 7.6146626) —14.5809%62) 33280 13.410341) —511.180848)
480 8.0768010) —22.1356%27) 66560 14.216@1) —1023.25112)
960 8.87276L9) —44.8762456) 6 500 8.9351@31) —4.617818)
1920 9.6731@7) —90.458812)
3840 10.4783@ 1) —181.729731) 800 9.438418) ~1.5210120
' ’ 1000 9.6787(06) —9.4641916)
4 1200 9.394032) —30.435612) 1600 10.1888@.4) —15.3145140)
1280 9.4673@15) —32.49885) 2000 10.4324@10) —19.2230833)
1920 9.9272012) —49.02214) 3200 10.949223) —30.9737682)
2560 10.2548@28) —65.563710) 4000 11.1961@38) —38.8161066)
3840 10.7190@2) —98.667Q@8) 8000 11.9692(81) —78.084613)
5120 11.048564) —131.791721) 16000 12.7513%4) —156.711027)
7680 11.5158615) —198.056417) 32000 13.540Q1) —314.0585%56)

ward. To estimate, g we have used the acceptance fractionour global observables, the correlation should be small.
for the elementary moves of the two algorithms. Indeed Analogously, when we use the SSA, we can compute the
given ann-stepR-SAW, the probability of obtaining ann(  observables for all values ai, although in this case the

+1)-step walk using the SSA is simplg,. i8¢ mi/Ch- results are strongly correlated.
Thus, if we know in a given SSA simulation the numibdéy
of generated walks of length we can estimate, using the VI. NUMERICAL RESULTS

recursion relation : . . .
We have performed an extensive simulation using three-

N, dimensional walks withn=<66560 and 2 p=<12. Notice
cn:cn_lﬁgﬁﬁ N (84)  that the values op are particularly large: fop=12, in the

n-1 spin language, each spin interacts with 2624 neighbors. The
advantage of working with SAW'’s is the absence of finite-
size effects—we work in the infinite-volume limit—and the
possibility of reaching large values of the correlation length
[82]. The raw data for the largest valu@s] of n and several
values ofp are reported in Tables Il and IlI.

In Sec. VIA, we will determing3, g from our numerical
data and we will explicitly check the theoretical predictions
N, for the largeR behavior of 8. r of Ref. [27] presented in
(85) Sec. llIA. In Sec. VIB, we will compute the critical cross-

over functions and we will compare them with the field-
theoretical results of Sec. IV.

with the initial conditionc,= S p-

Analogously, given twdR-SAW'’s of lengthn, the prob-
ability that their concatenation is aR-SAW is simply
cZn/cﬁ. Therefore, if we know in a given DA simulation the
numberN,, of generated walks of lengtihn we can compute
C, using

_ A2
Cn_Cnlan/2
for n=n; and then Eq(84).

Note that in a dimerization simulation in which we gen-
erate walks of maximal length,,,,, we obtain at the same
time estimates of the observables also for a set of smaller In order to computg3, r we define
values ofn, i.e., for n=n5/2, Naf4, . .. . These results
are of course correlated, especially in the mean-field region
where the rejection rate at each step is small. However, for

A. Determination of . r

-1

, (86)

Cn,R
e,t(M)

Beﬁ,R(n)E[
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TABLE lIl. Monte Carlo results. Herg8=(VR—1)"1.

p n InE; IN(CoBnf)
7 100 7.50043A.7) —0.54330413)
200 8.21464@5) —1.16466826)
400 8.935614) —2.440105)
800 9.66448) —5.03235%11)
1600 10.4021(®) —10.2676123)
3200 11.1498¢16) —20.7986651)
6400 11.9075@5) —41.930410)
12800 12.6754(A3) —84.2725%21)
25600 13.4515®9) —169.042042)
51200 14.236@.4) —338.673887)
8 750 9.80701®) —3.295635)
1500 10.53426) —6.7401910)
3000 11.2703@) —13.6782620)
6000 12.0159(1.2) —27.6128742)
12000 12.7715@89) —55.5500885)
24000 13.536834) —111.500917)
48000 14.3114%9) —223.486635)
9 1040 10.34094.2) —3.3546221)
2080 11.0643dL7) —6.84094)
4160 11.7958@7) —13.85749)
8320 12.5368%) —27.944118)
16640 13.286¢) —56.180736)
33280 14.04910) —112.727071)
66560 14.818@0) —225.90114)
10 1500 10.89768) —3.6608113)
2000 11.19596) —4.9180411)
3000 11.6183@1) —7.4424126)
4000 11.9198@) —9.9728822)
6000 12.3468417) —15.0466152)
8000 12.65204.3) —20.1273244)
16000 13.393520) —40.4903291)
32000 14.1451B2) —81.280218)
64000 14.906482) —162.932451)
12 1500 11.2151@) —2.1964610)
2000 11.5097410) —2.9522316)
3000 11.92640.4) —4.4702421)
4000 12.2232416) —5.99264)
6000 12.6435@0) —9.04634)
8000 12.9431&5) —12.10538)
12000 13.3677B0) —18.235@9)
16000 13.671137) —24.370416)
32000 14.4076%7) —48.950431)

whereg. () is the theoretical crossover function: in our
numerical determination oBer(nN) we will use [84] Egs.
(74) and(A106). By using Eqs(35) and(42), we obtain for

nN—oo

Coo

6(y—1
CX(R)R (y ))
X

1
IBeff,R(n) :ﬁC,R|: 1- ﬁ In(

1 0
+nT5[DX(R)—DXR6A]+~-- (87)

PHYSICAL REVIEW &4 046130

Using the asymptotic expansiofil) and the relation$37),
we obtain forR— oo

o aZRGA 3

ﬁeff R(n) :80 R R —3t —A_+ ) (88)

wherea; and a, are R-independent constants. This expres-
sion shows the advantage of the definiti86) over the com-
mon one in which one simply considersn,(R)*l’”. Indeed,
with our choice, the I correction vanishes fdR— o while
the 1h'™ remains approximately constanA£%); with
the other one, we would have corrections of ordeni€)/n
and R®4/n'™2, This improved behavior is particularly im-
portant, since for larg® we are quite far from the Wilson-
Fisher point, and thus a reduction of the scaling corrections
is essential in order to obtain precise estimategof. In
order to determingd; g, we have performed fits of the form
[85]

RGA

Bett r(N)Vr= ﬂcRVR+ + PED (89

assuming\ = 3. We have repeated the fit several times, con-
sidering each time only the data satisfyimg n,,,. The final
results, reported in Table 1V, correspond to the smalest
for which x?/d.o.f~1 (d.o.f. is the number of degrees of
freedom). Notice that, by rescaling by R®, the coefficients
a andb should becom&-independent aR increases. This is
evident for a and indeed we can roughly estimages
—0.015(5) forR—oo. This allows us to compute the leading
correction toC, (R). We have
C(R)=CRY™" V(14K R 3+, (90)
where k,=—a. The results forb are less stable, but still
reasonably compatible with a constant for laRyén order to
understand the systematic errors due to the trunc#8ep
we have repeated the fit with an additional correction:

bR6A cR6

a
Bett. r(N)Vr= ﬁcRVR+ + 1+A+ (91

n?

The results for3. g do not differ significantly from those of
the fit with c=0, except forp=12, where the difference is
approximately three combined error bars. Therefore, our fi-
nal estimates should be quite reliable. As an additional
check, we have compared our results with the theoretical
prediction(22). If we indicate withB{% the expansiori22)
neglecting terms of ordeR ™8, we define

-1,
If we have correctly determine. r, 7, ¢ Should converge
to the constantr, as R—oo, with corrections of order

log;oR?/R. The plot of 7, o iS reported in Fig. 1. A fit of the
form 7, .= +b/R gives

BCR

IB(exp (92)

T2 eff= R (
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TABLE IV. Determination ofg,  for several values gf. The reported results are obtained by fitting the
numerical data withn>ny,. Fit (@: VgBeir(M)=VrBert+a/n+bRINS. Fit (b): VgBesr()=VrBer

+a/n+bR/n*>+ cR8/n?.
p Nmin VrBe R a b c
Fit (a)

2 40 1.152388l) 0.07254) 0.104416)

3 80 1.065656@) 0.01423) 0.036@5)

4 150 1.034266Q) —0.004G3) 0.01743)

5 260 1.0199238) —0.01111) 0.010Q1)

6 400 1.012574@) —0.01384) 0.00662)

7 800 1.0084058@) —0.01643) 0.00531)

8 1500 1.00588848) —0.01744) 0.00441)

9 1040 1.00427552) —0.014Q10) 0.00262)

10 3000 1.00320023) —0.016713) 0.00313)

12 2000 1.001923G7) —0.008011) 0.001@1)

Fit (b)

2 10 1.1523881) 0.07111) 0.12113) —0.011396)

3 15 1.065657@) 0.01211) 0.04421) —0.001821)

4 40 1.034266(1) —0.00571) 0.02171) —0.00058%6)

5 70 1.0199234) —0.013Q1) 0.1321) —0.0002743)

6 100 1.012575Q) —0.01584) 0.009G2) —0.0001526)

7 140 1.00840568.0) —0.01594) 0.00621) —0.0000813)

8 300 1.0058883%) —0.01765) 0.00552) —0.0000713)

9 250 1.004275510) —0.015310) 0.003712) —0.0000373)
10 450 1.0032001®) —0.01435) 0.003@1) —0.0000281)
12 400 1.00192275) —0.00285) 0.00061) —0.0000081)

7,=—0.008 1421), (93 cf. Eq.(38). The function is reported in Fig. Qipper graph
together with the theoretical prediction obtained by using
b=0.002 77(19), including all data with=3. Egs.(74) and(72). Note that there is no free parameter in the

theoretical curve. We observe a very good agreement, espe-
cially in the Wilson-Fisher region. Systematic deviations are

] ] N ~ observed for smaller values @f In order to understand the
We wish now to determine the critical crossover functionsyg|e of the deviations, we report in Fig.(®wer graph the

in three dimensions. We begin by studying the funcigr, same data, but now we exclude all points witk Vg/2. The
agreement is now perfect for ghl=3. We thus clearly see
that the crossover behavior requires-RY. In particular,
mean-field behavior is always observed fieg R?¢/(4~9 jf R

is sufficiently large, but it is described by the critical cross-
over curves only iR9<n<R?Y/(#-9,

In order to see the corrections to scaling, in Fig. 3 we
report the rati@, r/g. (), which should converge to 1 as
R—o0. Corrections to scaling are clearly evident, points with
different values ofR lying on different curves that indeed
converge to 1 aR—o. These corrections are predicted to

B. Determination of the critical crossover functions

-0.004

-0.005

-0.006

T2, eff

-0.007

-0.008 | - scale aR 9. To check this behavior, we considered
-0.009 | 1 A RER3( En’Fi —1>, (94)
. . . . w gc,in(M)

0.4 0.6 0.8 1 1.2

R which should converge tk.(1)/g.(T) in the crossover limit.

FIG. 1. Estimates ofr,e vs 1R. The reported points Using the expected asymptotic behaviokeffi) andg.(f),
correspond top=3,4,5,6,7,8,10,12. The line is the best fit: Ac.nr CONVerges to a constant both for-0 andi— . For
73,6=—0.00814+ 0.00277R. The errors on the data take into ac- —0, k.(0)/g(0)= —Ez~ —0.059.
count the error orB, g and on the constant, . The numerical results are reported in Fig. 4, where the
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0.01

10 100 1000
nR*®

10000 100000

FIG. 3. Estimates oF, g/ (7)) vs i=nR™°. The reported
3 points correspond tp=3,4,5,6,7,8,10,12. The errors only take into
account the error ofi, .

theoretical prediction is very good. Alsd,., g Shows a
E nice scaling behavior confirming that the corrections scale as
R4

Let us finally discuss the effective exponepdy(n,R). A
standard definition would be

log(CpBaR)

dInT, g
yeﬁ(n,R)ElJrnid . (97
n
0.001 L . . . . . . . _ o _ . .
0.01 0A 1 10 100 1000 10000 100000 However, this definition is not easy to use in numerical simu-

lations since it involves the derivative with respect rto
Here, we will use the definition

nR?®

FIG. 2. Estimates of logT, g vsTi=nR™®. The reported points
correspond tp=3,4,5,6,7,8,10,12. The line is the field-theoretical 1 Ton R
prediction. In the upper graph we report all points, in the lower one Yeif(N,R)=1+ InzIn( :
only those satisfyingn>Vg/2.

Zor )’ 8

o which interpolates between the SAW valge=1.1575 and
error onl¢;, r has been computed by considering the erorpe mean.field value/=1. The results are reported in Fig. 6
on B¢ r, Cnr, and on the theoretical curi86]. A reason-

al’™ o together with the theoretical prediction. The agreement is
ably good scaling is observed, confirming the results of Refyery good. Note that in the Wilson-Fisher region the numeri-
[27]. Also the predictiork.(0)/g.(0)=~ —0.059 is fully com-

patible with the data cal data are well approximated by the field-theoretical pre-
ible wi .

In order to perform a more precise check, we have also

considered the quantity 0.04 1
.02 1
) Cﬁ,R 0.0
n,R™ c ’ (95) 0 k
2n,R

T -0.02 1

that converges tay.(f)%/g.(2f) in the critical crossover <
limit. For Q,, r we do not need the value ¢, r and thus a -0.04 T
source of error is avoided. In Fig. 5, we sh@y i together 0.06 |

with the theoretical prediction and
-0.08 |
>3 Qn,Rgc,th(Zﬁ) K X R L X R L X L

Agnr=R Oe.in(M)? -1/ (96) 0'c1J.oo1 001 01 1 10 100 1000 10000 100000

nR®

The errors onAqg., g have been computed as we did for  FIG. 4. Estimates ofA., g vs i=nR . The reported points
A¢.nr. The agreement between the numerical data and theorrespond tgp=3,4,5,6,7,8,10,12.
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FIG. 5. Estimates o, r (upper graphand of Ag., g (lower FIG. 7. Estimates o2 /(6Ti) (upper graphand of Ag., g

graph vs i=nR° 6. The reported points correspond tp (lower graph vs i=nR 8. The reported points correspond po
=3,4,5,6,7,8,10,12. The continuous line in the upper graph is the=3,4,5,6,7,8,10,12. The continuous line in the upper graph is the
theoretical prediction. theoretical prediction.

diction only forp=4. For smaller values g, the corrections for EﬁvR. In this case, however, the errors are smaller since
are important, as was already noticed in the Ising modethe critical crossover functions do not depend @z. In

simulations[22,2?ﬂ. Fig. 7 (upper graph we report our results foE2  together
The analysis we have performed fofg can be repeated \ith the predictionge (i) obtained by using the field-

theory result(73) and the relationg74) and (75). Note that

12 - ' ' ' ' ' ' there is no free parameter in the theoretical curve. The agree-
2 e ment is very good, although one can see clearly the presence
115 b g S . of corrections to scaling.
7 heo We wish now to compute the correction cutgn). For
13 Lo this purpose we consider
g 12— | ~
5 A —R3< Eo 1) (99)
10 : ERRET gen® )

which converges tdkg(N)/geg(fi) as R—o. The plot of
Ag.nRr is reported in Fig. 7lower graph, where we have

taken into account only the error cTEﬁ,R. A good scaling
0.95 0-01 0-1 : 1'0 160 10'00 10600 100'000 behavior is.observed confirming the theoretical predict?on for
) ) - the corrections. Moreover, this nice scaling behavior is also
nR an indication that the approximatidi@3) can be considered
FIG. 6. Estimates of.x(n,R) vsi=nR°. The reported points at our level of precision practically exact. Note also that the
correspond top=2,3,4,5,6,7,8,10,12. The continuous line is the prediction kg(0)/gg(0)= —0.059, cf. Eq.(54), is in good
theoretical prediction. agreement with our data.
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0.6

058 115 |

0.56

0.54

Vesii(N,R)
Yetf

0.52

0.5 [

0.48 Lo . . . . . L . 0.95 L . \ . . . . .
0.01 0.1 1 10 100 1000 10000 100000 0.01 0.1 1 10 100 1000 10000 100000

nR*® nR*®
FIG. 8. Estimates ob.(n,R) vsti=nR 5. The reported points 0.6 '
correspond top=2,3,4,5,6,7,8,10,12. The continuous line is the
theoretical prediction. 0.58
Let us finally discuss the effective exponengt;. As we 0.56
did for y.g, instead of
®
din Eﬁ - 5 054
veﬁ(n,R)En—d -, (100
n 0.52
we will consider
0.5
1 Elnr
Veff(n,R)E_lnlo(T‘ y (101) 0.48 1 L 1 L 1 L ) L
2In2 Enr 0.01 0.1 1 10 100 1000 10000 100000
nR?®

which is easier to compute numerically. A graph of this

quantity is reported in Fig. 8. It shows the expected behavior: FIG. 9. The effective exponentge; (Upper curvg and v

for i—0 it converges ta;, while for i— it converges to  (lower curve vs i=nR ®, obtained from the phenomenological

vsaw~0.588. The agreement with the perturbative predic-expressiong102 and(103), for several values 0.

tion is quite good in the random-walk region. On the other

hand, asi increases the corrections increase, in agreemenith the theoretical predictionsor the essentially equivalent

with similar results obtained for the Ising modéeR,23. model discussed in Ref9], or one can use the procedure
proposed in Ref{27]. The idea is to write

VII. CONCLUSIONS - ~ _ ~
Cn,Rzgc(n)+R 3kc(n)y

In this paper, we have studied the critical crossover limit (102
for a model of walks and we have verified numerically the Eﬁ R:gE('ﬁ)JrR*\?kE(ﬁ),
following statements, predicted by field-theoretical and '
mean-field methodg27]. and use a simple parametrization for the correction terms.

(i) The critical crossover functions in medium-range mod-Here, we approximate
els coincidewith the field-theoretical crossover curves. The
nonuniversal constants can be determined by computing the _ __—0.059+an"?+bn
corrections to the mean-field behavior. k(m)=g(n) 1+ch?+dn

(if) The asymptotic behavior 0B r for R— can be
computed exactly in lattice models up to corrections of relaboth for k. and kg, where we have used the asymptotic
tive order R by determining the first corrections to the behavior(54). The parameters, b, ¢, andd are determined
mean-field limit and exploiting the field-theoretical model. by fitting the numerical data. The best results are obtained

(iii) The corrections to the critical crossover functions de-for a= —61, b=—1.06, c=1830,d= 87 (function k.) and
crease af % onceR is defined as in Eq(5). a=—23,b=0.8505,c=972,d= 32 (functionkg). These fit-

Our numerical results can also be used to determine phding functions provide phenomenological expressions that
nomenological expressions that describe the data for all vakorrectly describe our data for all values @f The corre-
ues of R Here, different procedures can be used. One casponding effective exponents are reported in Fig. 9 and show
consider the phenomenological model of H&f7] (with the  the typical behavior that has been found in simulations of the
modifications discussed in R€27] to make it compatible Ising model. We have also included in the figure the curves

(103
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corresponding tp=3, to show that fopp small the phenom-  \here is related to the zero-momentum four-point renor-
enological expressions show a nonmonotonic behavior that igalized couplingg by
not present in the critical crossover curve.

We mention a different approach to the crossover dis- _ g* Y(X) X 1
cussed by Nicke]88,54], in which the crossover curves are t= —tof dx—ex;{ dz—}
expressed in terms of a quantity that has a universal critical g v(X)W(X) o V(W)
limit: For polymers the interpenetration ratio is considered,
while for spin systems the four-point renormalized couplin L
would be tEe va?/riable of choice.pThis method has the agva%Y(X)' v(x), and W(x) are the standard renormalization-

tage of providing a better description of the nonuniversalgrouf(RG) f“”Cti‘j”Syg* is the critical value og.def_ined by
deviations in the Wilson-Fisher region. W(g*)=0, andx*, &*, ty, andy, are normalization con-

Although our main motivation was the understanding ofStants- _ .
spin models, the results of this paper are also relevant in thg_ The expressiongAl), (A2), and (A3) are valid for any
context of polymers. Indeed, as is well knofa¥,38, non- llmenS|ond<4. The first two equations are always Wg!l de-
interacting SAW's describe the universal behavior of ho-fin€d, while Eq.(A3) has been obtained with the additional
mopolymers in dilute solutions above tietemperature. In  NyPOthesis that the integral overis well defined when the
the polymer context, however, it is more interesting to con.Ntégration is extended up @*. This hypothesis is verified
sider a different model with medium-range interactions. Sup¥When the system becomes critical at a finite valuggaind
posing, for simplicity, to be in the continuuitoff-lattice), shows a standard critical behavior. In our cdse;0, this is
we can define a SAW in the following way. A SAW with frue for all 1=d<4. , _ ,
medium range interactions is a collection of point Ve normalize the coupling as in Refs[66,89 so that in
{wg,....0)}, weRY, such that|w—w.i|=p and |o; the perturbative limig—0,t—o, we have
- a)j|>a for all i #j. In this case, the relevant scalepfa
and the crossover limit is obtained fpfa— o, n—oo, with
fi=n(p/a) 2¥“~9 fixed. For this model, the critical cross-
over functions can also be computed using &), although
with different nonuniversap-independent constanks:, N\, This implies that fory,— 0, we haveto~(yo/Ag)?@ % and
and p. Thus, the results presented here are relevant for theg*)?t,~ y*t,~1. With this normalization, in three dimen-
description of polymeric systems in which the macromolecu-sions the previous equations can be written as
lar persistence is much larger than the molecular scale. In

(A3)

4 d\~ ~
g~Wr<2—§)t<d4>’25>\dt<d4>’2. (A4)

practice, we expect the description to be reasonably accurate _ ) g Y(X) 2
whenp/a=3. F(t)=(67g)"ex _fo dx W+; , (A5)
APPENDIX A: CRITICAL CROSSOVER FUNCTIONS g 1
FROM FIELD THEORY T) = 2 — _
F(t)=(67Q) ex;{ ZJO dX(W(x) + mit (AB)

In this appendix, we will compute the critical crossover
functions for the polymer case using field-theory methods. Iryq
Appendix A1, we will use the approach of Ref&8,29,

while in Appendix A2 we will present the results obtained 1 ( 3 2 1 gdx

using the method of Ref43,31,33. The first approach pro- t= ——|1— -9 + g—Ioglog +Ds+ —zf —
2 4 (6m)° Jo X

2
vides the most precise estimates and it will be applied in (679)
Appendix A 3 to obtain numerical results for polymers gen- [ (%)

L x 1 2
eralizing Ref.[40]. X Wexﬁ{ fodz(erE) +

1. Crossover functions in the fixed-dimension expansion (A7)

x 2 4

23x}

a. General results . . .
whereDj is a nonperturbative constant given by

In this section we report the critical crossover functions

using the approach of Reff28,29. We start from the ex- 1 1 3
pressions folF, (t) andF .(t): Dg=— (67)2[(97)2_ ﬁ‘L}T Ing*
_— 0y 1 (edx[ v
FrO=x exr{— yodxv(x)W(x) ' (A1) (6)? fo x? [v(x)W(x)
xexp{f%z(—l + 2) + 3 X}
T ? dx W) 'z 274
Fo(D)=(£")? p[—z d , A2 o 12
(D= e 2] sl 02 "
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Numerically, D;=0.0024786). Expressions for a general We obtain for the leading term and the first correction
N-vector model and in two dimensions can be found in Ref.

[27]. ~ — (6mg*) 77 ex _fg*dx y(X) z
Fort—o, in three dimensions we obtain X0 79 0 v(X)W(X) X
~ 1 1. 1 Y
F(O==|1+—1 Y2~ ——In(367°1) +—A(g*_x) ] (A16)
1 12w 28877t
59 1 D3 3/2 ~ 2__ 6 *\2¥ 2v jg* 1 1
— 4= - = t“’exp —2 dx +—
2592#27+ - +0(T ¥Int)|, (A9 &o=(6mg") . Pwoo T x
+ - ] (A17)
~ 1 1. 1 * _ '
Fuf)=>|1+ —1 2 ——In(36n%) (g7 =X)
t 127 2887t .
g Y1 ~_A
11 1 D - - X1= 7t (A18)
- “+2+0(T %) | (AL0) A(1+4)
4687
£ 20° T Ay (1+A) Al, (A19)
— T T oA Ao 14 -V ,
b. Asymptotic behavior near the Wilson-Fisher point ! YA(1+A) 7 7

Let us now compute the asymptotic behavior of the cross

over functions fort—0. This requires the determination of
the expansion of the various RG functions in the limit . p{f
ex

where

2 1
VOOWR) | X AgF ) ]
(A20)

g*
dx
0

Y
—g*. As it has been extensively discussed in the literature t= W
[42,90-92,60,88,93—-97these functions are singular gt
=g*. General arguments predict a behavior of the form

(91,99 In order to estimate these constants, we use the seven-loop
o B 2 L ALA results of Ref[60] and the resummation technique of Ref.
W(g)=—w(g" —g)+wi(g* — )"+ W,(g* —g)™2 [89]. Errors due to the resummation are determined by using
Fws(gr —g) A (A11)  the general procedure of R¢B5]. In order to computeyg
and &2, we perform resummations keeping, v, », andA
V(@)= v+ y1(g* —9) + y2(g* —g) >+ y5(g* —g)22/A f’:lS free parametetmg (lllependen.ce oincancels irl){o gndég
(gt —g) B (A12) if one uses the explicit expression for. We obtain finally
Xo=0.4216+0.0006-4(y—1.1575—-0.1(g* — 1.395,
v(g)=v+vi(g* —g)+ vp(g* — )%+ r3(g* —g)t2’ (A21)
+uu(g*—g) A+, (A13)

£3=0.3565+ 0.0002+ 0.4(y—1.1579—0.1(g* —1.395

This ngnanalytlc behav[or makes the determ|_nat|on of the —8(»—0.58758, (A22)
corrections extremely difficult. For instance, since one ex-

pectsA, /A to be close to 298], it is practically impossible . .

to determinew; andw, in the 3 function since these two t=[0.99+0.004+0.9(y—1.1575 - 8(g* —1.399
terms are essentially degenerate. The only subleading coef- —9(A—0.519]% 103, (A23)

ficients that can be reliably determined aye and v,. In-

i ~1 ~ -to- i - ) . S
See% sr,]mceA~2 aid A2~/2A Z,tr:hte ,next todlerf\dlng rc]:orrlzc where the first error is related to the uncertainty in the re-
lon behaves asy(* —g)~2, so thaty’(g) and»’(g) shou summation, while the other terms indicate the variation of

*
be_ltﬁasonablyt str_noo_th ];@%t?tf. dand | tth the estimate with changes in the values of the critical expo-
€ computation Is straighttorward and we only report tn€, o nig ang ofy*. To obtain the final results, we must decide

final results. The crossover functions can be expanded for \yhich estimates to use foy, v, A, andg*. In principle, we

—0 as could use the values that have been determined from the
_ _ _ ~ _ _ resummation of the perturbative expansions in three dimen-
F (1) =xot L+ xat2+ xot + xat 22+ y t24+- ], sions [61], i.e., g* = 1.413+0.006, y=1.1596* 0.0020, »
(Al4)  =0.5882+0.0011, andA =0.478+0.010. However, we be-
5 5 o 5 lieve the Monte Carlo estimates of the critical exponents to
Fo(1)= €121+ E12 4+ E51 + E5t 22+ £,122+- -], be more reliable, and thus we have used the values reported

(A15) in Eq. (20). The field-theoretic estimate af* is probably
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1
e+ 0(€d), (A34)

also not reliable since it differs from the estimates obtained X1 e |\
12 256

using different methods. Indeed, from tleexpansion one §—=1— F
estimategy* = 1.396+ 0.020[99], while the extrapolation of .
exact-enumeration series givag® =1.388+0.005 [100]:

One observes a systematic discrepancy, which we believe Pherex~1.171854. We obtairy, /£,=0.85+0.10, where

be due to the nonanalytic structure of tBéunction that iS4 error is purely indicative because of the shortness of the
not properly taken into account in the analygl®1]. This  cqriag.

problem should also appear in our analysis since we use the
same resummation technique. In the reanalysis of &

of the perturbative series for the exponentit was shown 2. Crossover functions in dimensional regularization
that the systematic error could be reduced, obtaining field- without € expansion
theory estimates in close agreement with the Monte Carlo
results, if one usesxy*~1.395. Therefore, we usg* a. General results
=1.395+0.015, where the error is such to include all esti- |n this section, we will study the critical crossover func-
mates. Our final estimates are tions using the minimal renormalization scheme proposed in
Refs.[43,31,32. We start from the expression31,32
Xo=0.4216£0.0029, (A24)
£2=0.3565+0.0016, (A25) _ ) u (%)
F (t)=x*F(u) "ex —fdx—,
- 4 (D=x"F (W) ;{ u M)Wy (X)
=(0.99+0.21)x 102, (A26) (A35)
To computey; and§;, we analyze the series of the deriva-
tive of y(g) and»(g). We obtain u
(1) (é*)zexr{ J dx . (A36)
y1=—7v'(g*)=—0.1071:0.0013+ 0.007 g* — 1.395, Wi (x)
(A27)
v;=—»'(g*)=—0.0659-0.0018-0.01Xg* —1.395. where' is related to the minimal-subtraction renormalized
(A28)  couplingu by
The ratio y, /v, has already been computed in RgS0]
finding ~ f 2P(x) X 1
SN L Y L S
Y1 Wy (X ) & u  Ym(2)Wyw(2)
22-1.31+0.05-1.7(g* — 1.39), (A29) (A37)

41
which, however, differs significantly from our result, Here 7y (x), 7(x), andWy(x) are the standard RG func-
1 tions computed in dimensional regularizatioR(x) and
—=1.62+0.05-0.4(g* —1.395. (A30) F(x) are functions defined in Reff31,32 that will be ex-
Y1 plicitly given below, andu* is the critical value ofi defined

*
Using the estimates of the critical exponents reported nPy Ww(u®)=0. The constanty*, £, to, andu; are ob-

Eq. (20) and, as beforeg* = 1.395+0.015, we obtain tained by requiring that, fot—0, F,(t) and Fg(t) behave
as in Eq.(59). The RG functions have been computed to
x1=6.8+0.8, (A31) five-loop order in Refs[69,70. Explicitly, we have[103]
£,=9.1+1.1. (A32)
Wy (u)=Wy(u,1), (A38)

Notice that a significant fraction of the error is due to the

uncertainty ort. The error is largely reduced if we consider

the ratioy,/&;. We obtain

vm(u)= (A39)

2+ mp(u)’

)gl =0.745+0.034. (A33)
1

Notice that, if we use the estimat&29), we would obtain
x1/€,~0.56. The ratioy, /£, can also be computed in thke
expansion using th®(e?) series of Ref[102]: where

ym(U) =[2—n3(u)Jry(u), (A40)
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2960+ 2112(3) , —196648+2816mw/5—223877(3)—35712Q(5)

__ 4.2 7.3 5
Wy (u,e) eu+zu—gu’+ 1728 ut+ 62208 u
13177344- 675847" — 31744Gr%/21+ 21029376 (3) + 2506752 (3) 2+ 42261504 (5) + 59383296 (7)
+ u
1990656
+0(u”), (A41)
37 —31060- 3527*/5— 3264(3)
— 1 S5.,2_ ~ ,3_ 4
72(U) =~ 53Ut ssUT— U 62208 u

3166528 426887%/5+ 39680r%/21+ 1528704(3) — 446976(3)2+ 55296/(5)

us+0(u), (A42)

2985984
—77056- 14087*/5+ 8832(3)
73(U) = % U?— 55U+ 22 ut+ 1497992 us+0(u®). (A43)
|
To compute the functionB(u) andF(u), let us first recall u 7o(u")
the relation between the bare couplingand the renormal- Z2(u)=ex JO dU'W : (A50)

ized couplingu,

(Add) where Fo(x) and Py(x) can be derived from the five-loop

_ a-1 -2
Up= phg TUZ,(1)Z(U) results of Refs[29,37:

L2
Wy(u')  u’

]- Fo(x)=1+ sz—s 8329110 'x3
0 77767 '
(A45)

Zu(u)Zcp(u)ZZexp{ - fudu’
0

_ o _ +6.17241x 10 8x*
Here u is the renormalization scale ardg is a constant that

depends on the specific renormalization scheme. Of course, —4.73993< 10 °x°+0O(x%), (A51)
physical results should not depend on it. This fact can be

. el . i 1
easily verified by noticing thafy can be absorbed in the 241 81785¢ 10" 55

definition of «, and that, by construction, all physical quan- Po(x)=1+ 247X 28872
tities are independent qf. However, different choices @ ea
give rise to different perturbative series providing different —1.24518<10 °x
results at the intermediate stages of the calculation. This free- +1.01097 10~ "x5+ O(x®). (A52)

dom may be used as a further check of the uncertainty of the
final results. In Refs[31,32 the authors use WhenA, is given by Eq.(A46), we have

Aq= Sl (3~ d/2)T'(d/2=1), g (W= 1l 5.525 10010 U~ 4,016 33¢10°Cu’
< 2 —1.92954<10 3u®+0(u®), (A53)
= AT g
4 (4m) 92T (d/2) o , y
P(u)y=1-3u++u—0.031827 &°+0.032 666 4

a choice that makes the one-loop corrections vanish in many 5 6
observables. However, in order to understand the size of the —0.064.406 8°+O(u®). (AS4)
systematic errors, we will also uge;=S; and A =4S;.

The functionsF (u) and P(u) are obtained from b. Asymptotic behavior near the Wilson-Fisher point
In order to compute the asymptotic behavior of the cross-

over functions fort —0, we need the expansion of the vari-
! 75U ous RG functions in the limiu—u*. It.has been qrgued
an(u):ex;{f du'————|, (a48)  [104] that the scheme we are presenting has an important
o Wy(u") advantage over the approach described in Appendix A 1: The
RG functions are expected to be analytic at the critical point.
and The reason is that the RG functions are essentially
. . L, dimension-independent, while* depends one being the
P(U)=Z2(u)""Po[Az UZy(W)Z,(U)"7],  (A49)  solution of Wy, (u*,€)=0. Notice, however, that this argu-

F(W=Z,(WF[A;UZ,(W)Z,(u) "%,  (A47)
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ment does not exclude the presence of singular terms for
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We have first of all determined*. We obtainu*=1.1

=0 since this scheme is essentially four-dimensional. An-+=0.1. Although this result is consistent with the estimate of

swering this question is in any case nontrivial since it re-
quires a nonperturbative definition of the RG functions. In
the following we will assume the following analytic expan-
sions:

Win(U)=— @(u* —u)+wy(u* —u)’+---, (A55)
ym(U)=y+y (U —u)+---, (A56)
vm(U)= v+ (UF —u)+---, (A57)
Fu)=f*+fy(u*—u)+---, (A58)
P(u)=p* +py(u* —u)+-- (A59)

Expanding the crossover functions for-0 as in Eqs(A14)
and (A15), we obtain the following for the leading term and
the first correction:

(ku )2 Ym(X) 2
Xo= trex f Xm0 W ()
Y
2_ *\272v I
&= (ku™)“t exp[ 2]0 dx WM(X)+
1
+m , (A61)
f1 71 Y P1) ]+
X1= Ut et ooy p*) t74, (A62)
— I * 2v pl_ Pilzoa
51—u 1+A(p_* B)t s (A63)
where
A 2p*1/ u* 1 1
= G2 fo B W0 T x P A x|
(AB4)

The normalizationx is related to the choice oA, in Eq.
(A45) by

k=4m(1+2Qq3),

S (3—d/2)T'(d/2—1)— Ay
2(4—d)Ay

qQu= (AB5)

The estimate of critical quantitie_s requires a resummation
large-order behavior of the coefficierjts05,104 given by

c~k! (—3H*KP[1+0(1/k)], (AG6)
and the numerical method of Ref{89,95.

04613

Ref. [31], u* =1.092+0.012, the error bar is much larger.
However, using our algorithd®5], we have been unable to
understand how the error can be so small. On the other hand,
as we shall see later by comparing our results with the esti-
mates of the preceding section and by checking their inde-
pendence oy, our error bars look reasonable and at most
overestimated by a factor of 2. In the following, we report
various estimates keeping as a free variable. We have

y,=—0.140-0.010-0.04u* —1.1),  (A67)

v,=—0.089+0.010-0.02u* —1.1),  (A68)
0.991+0.004-0.02 u* —1.1)

f*—{ 0.987+0.006-0.02 u* —1.1) (A69)
0.983+0.006-0.02 u* —1.1),
0.932+0.006- 0.05 u* — 1.1)

p* =1 0.825+0.015- 0.15u* —1.1) (A70)
0.670+0.040-0.3Q(u* —1.1),
0.026+0.007+0.03 u* —1.1)

f,=1 0.039+0.012+0.04u* —1.1) (A71)
0.051+0.018+ 0.06 u* —1.1),
0.0749+0.015+ 0.03 u* —1.1)

py=1 0.1820.012+0.02u* — 1.1) (A72)

0.399+0.030+0.13u* — 1.1).

Forf*, p*, f,, andp,; we report three estimates correspond-
ing to A3=S;, 1/47, and 4S;, respectively. Notice that in
most cases the uncertainty o is negligible compared to
the resummation errors. We obtain finally

=0.42015),0.42219),0.44742), (A7)
£2=0.35815),0.36319),0.39538),  (A74)
X1=6.7(4.2),6.5(4.1) 5.4(3.4), (A75)
£,=10.16.3,9.2(5.7),6.7(4.2), (A76)

where the three different estimates correspond\ie S;,
1/47r, and 45;, respectively. As before, a more precise esti-
mate is obtained if one consideys/&;. We obtain

2. 6613),0.71(10),0.81(7).

%1 (A77)

O{\s expected, these results are independent of the valAg of

é(\nthm error bars. Notice that the difference among the esti-

mates of the same quantity is of the same order of the error
bars, thereby confirming the correctness of our error esti-

mates. The final results are also in good agreement with,

although less precise than, the results presented in the pre-
ceding section. Notice that the estimate yaf/ ¢, obtained
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here is compatible with the estimate obtained in AppendixExpanding the previous expression for 0, we obtain the

A 1b. Instead, the result of Reff60] is somewhat too small.

3. Polymer critical crossover functions

Let us now compute the critical crossover functions in
terms offi. We will only consider the approach described in

perturbative expansio(68).
The computation oGg(z) is analogous. Starting from

1 ct+ioe dhf

Xl mﬁemF (DOF ),

Ge(h)= (A88)

Appendix A1, since it appears to be the most precise one.

From Eq.(40) we have

c+io dﬁf o~
Gc(ﬁ)zf ——e'F

c—iw 2i

L. (A78)

Changing variables from to g, we obtain

49 g 79
v(g)W(g)

9 12
Xexr{j dz—(z)W(z)

where C may be taken as a circle of the forg=R(1
+e %), —r<¢=<, with R fixed satisfying 6<R<g*/2.

To compare with the results of Ref40] we introduce
their notations,

Gc(ﬁ):X*tOf

C277i

(A79)

_ 20(gW(g)
B(9)= O (A80)
' = ( 1- L) A81

g (17'}’)/A g ay_l

J(g):(l_ g_*) exW"fodX 500 " B —x) ]
(A82)

- 9 [2-j(0 2 1

A(g)‘e"p| fodx{ BX) X Ag )

(A83)

1/A A( )
0= dx( g*) oo %Y

we obtain for the swelling factdé0] Sg(z) = Gg(2)/(61),

1 dg J(9)K(g)

’TTZ2
SO Tor22602) o B@EQ S
(A89)
where
L [2v(9) )
k(g)—Z(—(g) 1 (A90)
(y—2v)/A
K(g)=| 1 3)
K(X) 'y—ZV
”[ J B * x)*’ (A91)
1( g)” 9y 1 1
BO=gl g & f B0 T x
Y

From the previous expressions we can compute the
asymptotic behavior 06.(z) andSg(z) for z—«. We have

+ 9022_2+ gc3z_2A2+ o '):
(A93)

c(z) chZ (1+g z

+ SE2272+ SE327 2A2+ b ) .
(A94)

Se(2)=sgoz*" " 4(1+sg2 %4

These expansions can be related to the expansioﬁ§(59

anng(T) for t— 0. Using the results of Appendix Ad, we
have

wherey andA are the standard critical exponents. Then, we

obtain

- 3(g)
Gc(”)‘zf 241 Blg) ©

In order to have the same definitions of R¢f39,40Q, let us
also introduce

p[ B2 Edg)} (A8S)

NG
We obtain finally
dg J(9)
sua= | g e

Oeo= )(24773"2)2(y 1=2.117+0.020, (A95)
£ ()
SEO:W(MWW)MV*D:1.549r0.007,
(A96)
I'(7) 3/2) -2
Jor= r( T(,—a) (2479 *$=0.028-0.005, (A97)
Soq= (X1+§1)F(7+2V)_ Xlr(y) (24773/2)—2A
El T (y+2v—A) I'(y—A)
=0.101+0.016. (A98)
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If we consider the ratig; /sg1, the error is largely reduced This expansion is in reasonable agreement with (B§3),

and we have keeping into account that~ 3. However, while the leading
term is close to the estimat@95), the correction differs
%=0.288t 0.016. (A99) significantly from Eq.(A97_). A S|m_pler expression, tha_t is,

Sg1 however, more accurate in the Wilson-Fisher region, is

The constantsg, and sg; have already been computed in G.(z)=(1+38.0952+ 276.844°+ 1073.17>)%1%
Ref. [40], finding sgp~1.5310 andsg;~0.1204, in reason- (A106)
able agreement with our results. The constagtsand sg;

have also been determined by a Monte Carlo simulation of ©" Z—%,
the Domb-Joyce mod¢b4], obtaining

it behaves as

G.(2)=2.0&?7"2(1+0.027%2" 1), (A107)
SEO:J}'TO Br(w)=~154654, (AL00) agreement with the asymptotic expansi@®3) and the
numerical valuesA95) and (A97).
Sg1= lim bg(w)~0.11498, (A101) For Sg(z) we find that the expression reported in Ref.
w—0 [54],
whereBr(w) andbg(w) are defined in Ref54]. Se(2)=(1+7.611&+12.05135%)%175166 (A108)

We have computed the functioi®,(z) and Sg(z) using .
the numerical technique presented in Réf]. In the resum-  fits the data extremely well and correctly reproduces the
mation we have used the seven-loop results of f&&fl that ~ asymptotic behavior for—0 andz—. A different inter-

allow the extension of the series expansion§(g andk(g)  Polation appears in Ref104], based on the five-loop com-
by one order. If putations of Schloms and Dohf81]. Settingz=6.9% in the
formulas of Ref[104] in order to reproduce the correct be-
. : havior forz— 0, we obtain
H(9)=2 jag", k(@)= k", (A102)
Se(z)=(1+7.4074+10.91%2)18 (A109)

we derive from Ref[60
(60J in good agreement with EQA108). Another interpolation

j7=0.0996888, k,=—0.00190671. (A103) formula was proposed in Ref9], motivated again by per-
turbative field theory. The swelling fact@:(z) is obtained

The results foiIG.(z) are well fitted by by solving the equation
G.(2)=(1+50.793 65+ 508.5428%+ 5929.475° Se(z)28215- 5 (7)01975= 3 326 L. (A110)
+10937.03%)0-07875 (A104)

Other phenomenological representations are reported in
Refs.[40], [107], [75].

Finally, from the results reported in Rd58], we can
estimate the rati@,/Sg;. We find 9.1 /sg1~0.26, in rea-
sonable agreement with EGA99). Let us finally notice that
G.(2)=2.0&?""2[14+0.08% 1+ 0(z ?)]. if we use the estimatéA29) we would obtaingg,;/sg;

(A105  ~0.23.

Forz—0, this expression giveS.(z)~1+4z, in agreement
with the perturbative expansio(68), while for z—«~ we
have
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