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We apply the renormalization group formalism, to integrate quantum fluctuations of quantum mechanical
systems at zero and finite temperature. At zero temperature a nonperturbative renormalization group equation
allows to compute the ground state energy whereas at finite temperature a variational renormalization group
equation is proposed to compute the free energy.
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[. INTRODUCTION equation takes automatically into account, through the run-
ning coupling constants, all the terms in the loop expansions.

Methods of reducing quantum statistical calculations toln Ref.[7] it has been found that this is no more the case in
classical ones are very important from theoretical and pracfinite temperature as the RG equation is no more a closed
tical point of view. In this context the path integral approachexpression but is defined by an infinite series in the tempera-
has been proved to be very useful, as the quantum partitiomure. We have studied the flow of the coupling constants by
function can be approximated by a classical one after intetruncating this RG series. But the results being not convinc-
gration of the quantum fluctuations. Several methods baseélg we turn to an improvement of the variational Feynman-
on a variational principle have been proposed to comput&leinert method by the renormalization group, the goal being
these quantum fluctuatioh$,2] leading to an effective clas- to automatically resum terms of the variational perturbation
sical potential. In particular the Feynman-Kleind®,4]  theory, as already suggested in REf]. We find only an
variational approach has shown to give accurate results anghprovement of the Kleinert variational perturbation expan-
to be easy to handle. Later this method has been improved Bjon for small values of the coupling and large temperature,
the variational perturbation theofy,5,6], but computations  put our results cannot compete for strong coupling. We dis-
get rapidly cumbersome with the perturbation expansion. cuss the reasons for these mitigated results.

In previous paperd7,8,9 we proposed an alternative  Section Il is devoted to the zero temperature situation. In
method based on the renormalization groR®) to integrate  Sec. I1 A, to establish clearly the formalism, we apply the RG
the quantum fluctuations and to obtain the effective classicahethod to the sextic oscillator. The case of the one quantum
potential. This procedure is nonperturbative and nonvariaparticle in a periodic cosine potential is developed in Sec.
tional. It has proven to be very efficient and easy to handlg|B. In Sec. Il C, as a generalization of the previous formal-
for the computation of the ground state and first excited enism, we establish the RG equation for two particles with an
ergy level of a one quantum particle system at zero temperasrhitrary interaction and obtain quantitative results for a pair
ture. Moreover it allows to find with a greater accuracy thanof coupled oscillators with quartic couplings.

the variational method the particle distributif®]. Unfortu- In Sec. Ill we investigate the finite temperature situation.
nately this method seemed not to be really promising forSection Il A is devoted to the study of the truncation of the
finite temperature calculus. RG finite temperature series. The variational RG equation is

The aim of the present paper is twofold. In the first partderived in Sec. I11B and applied to the computation of the
we apply the zero temperature RG formalism to several diffree energy for the anharmonic oscillator.
ferent physical models. Even if the RG method cannot com-
pete with the efficiency of Kleinert’'s systematic variational
perturba_tion that converge to the exact re$dl6,6), i_t has Il. RENORMALIZATION GROUP
t_he merit to be easily extrapolatgd_ to non_polynomlal poten- AT ZERO TEMPERATURE
tials and to systems of particles in interaction. We then com-
pute the ground state and the first excited energy level for a In this section we recall the main steps of the procedure
one quantum particle in the sextic potential and discuss thkeading to the RG equation in quantum mechanics. We work
convexity of the effective classical potential of a particle in ain the euclidean formalism at a finite temperature and dis-
periodic cosine potential. In addition we derive the RG equacrete time and quickly retrieve the RG equation as was done
tion for a two quantum particles in interaction system andin Ref.[8]. In this section we limit ourself to the zero tem-
apply it to a pair of coupled oscillators with quartic cou- perature limit, so we will always neglect contributions of
plings. Our results are very accurate for small couplings andrder 132, Keeping a finite temperature in the intermediary
accurate to a few percent for large couplings. steps allows to work with a finite number of Fourier modes,
In a second part we inspect more carefully the finite tem-=so that we can integrate each mode after the other in the path
perature case. It is well known that the zero temperature R@tegral.
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Consider the euclidean action of a quantum particle at @he truncated path with Fourier components uprtéthe so

finite temperature

hp
so= [ w

with M the mass an® the potential.

2

g X ] FV®)|, )

The effective classical potential is defined as a con-

strained path integral over periodic paths with perfiggi[4]

)

1
exp — BVo(Xo)]= f DXS(X— Xo)exﬁ{ 7 S(X) |,

wherex=1/4 8/ kB dt x(t) is the average position of the par-
ticle in the time intervat €[ 0,83].

We consider the Feynman path integral with a discretized@bles Vi (Xo, ...,

time t,=nT/N+1=ne, with N an arbitrary large number,
and n=O, ... N+1. The Fourier decomposition of a peri-
odic pathx(t,) contains only a finite number of Fourier
modes

!

X(th) =Xo+ \/%2 expliontn) XmtH.c.,  (3)

where’ is from 1 toN/2 if N is even and from 1 td\
—1/2 if N is odd. Thex,, are the Fourier modes and

2mm

2— COSm

w :—h.
m €

The discrete action 4]

N/2 N-+1
Suz(¥) = €2 Noffxm|?+e X ViaX(t)  (4)
and the partition function,
f f N2 A, A%y 1 :
\/27Tﬁe/|v| 2men oW TS O
M

Now, using the fact thafl}/?e?w2=\N+1 (see[4]) and

AB=(N+1)e, we can drop the first integral to get the ef-
fective classical potentid4]:

N/2

dx,, dXn,
exp(— BVo(Xo))= fH X

2meh

2 201
oM

1
X —gsN/z). G

The RG method allows to computg, by integrating recur-
sively, each mode after the other in the path integral. Let

m

>, expliopty)x,+H.c.,

1
JVN+1p=1

X(M(ty) =X+ ()

called background pathWe define the running action at
stepm—1, S,_1, recursively by integrating on the two
modesx,, andx,, that is

dX, dXp,

2meh
Za)ran

1 1
exr{ — 7S (xX™) exr{ — 7 Sn(x™)],

®

where Sy, is the initial action.

Note an important point observed in RE8]. Only a kind
of quasilocal potential is preserved by the renormalization
group flow(8). As shown in Ref[8] we have to consider for
the potentialV,, a function of them+ 1 independent vari-

X e wpt+x elwpt eiwmtxm_’_eiwmtxim)
denoted for convemence bym(x(m)(t))

In fact, due to the nonlinearity of the,,, this kind of
potential is not preserved by the RG flow. But recall that we
want to consider the limit3—o. In such limit wp,
=2mm/# B and the class of function considered is preserved
by the flow.

To derive the flow equation for the potential, it is easier to
work in functional space. We write the action at scale

m

Sn(X™) = €, Mwd|xy|>+ BUn(x™), 9
p=0
where we have introduced the notation
€ N+1
Up(x(™) = B nzo Vin(Xo,€' 1'%, +e7101tx _y ... elomix,
+e femty_ ). (10)

Expanding the potential aroung we get the following ex-
pansion:

(0 zm: gm "(Xo)
U (X )—gm(Xo)Jrn:imanxfn
n#0
L e
ny...ong=-m 4!(N+1)
n;#0

X anxnzxn3xn45nl+'~+n4,0+ o (11
Note that in Eq.(11) there is still conservation of the mo-
mentum due to our choice of the potentjaD).

To get only the contributions of orderAlt is enough to
expand the actios,(x'™) aroundx(™~%) to the second or-
der[8], so that the result is obtained after a Gaussian inte-
gration. The RG equation is

S 2 (X™M1) = Sy (XM ) + 1 In[det A)] - 34T,
(12

with the matrix.A given by
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Ly Un M REUT) ~Im(Ur™)
Mw?, Mwim
Mwﬁ1 Mw
|
and one-dimensional systems. For this reason we expdpd
aroundxy=0 and define thenth coupling constant at the
Re(U") scalem as
—Im(u{"
(Unm ) (n):w (17
. . m dxn "
with the notation, 0 Ix,=0
b . , . .
U(”l"'”p)E(N+ 1P U, 13 The equation for the first coupling constant is
m (9Xn "(9Xn (2)
g Ty 0 601 =g0+ = in| 1+ om, ) (18)
m-1 m B wan '

From Eq.(12) we deduce the flow equation for the potential
part of the action: The value of the ground state energy is given EEQyzgg
=Vy(0), which is the minimum of the effective classical

U 1 il 14 UEnm'm)) 2 ’Uﬁnm'm) 2 potential. The flow of the quadratic coupling constants is
+—1In
2B Mwp, M, | 1 g%u
2 2
(erzn+U(m’_m))|U(m)|2—RdU(_m’_m)UEnm)z) g(m)l_gin) ,3 Mo (2) (19

(Mawy+Ug~™)2—|umm]2 2
The particular valug™ corresponds to the mass gap or the
(14 inverse correlation length in statistical mechanics language.

Then it is well known that the first exited energy level can be
For the constant background patff’=x, Eq. (14) reduces

) 0 =" deduced from the relatioB,— Ey= \/gom.
tF(Q)Gﬂ}FovSvO called local potential approximatidePA) of the The general formula for the other coupling constants is

given in Eq.[7] and recalled below:

1 0)
Um-1(X0) =Un(Xo) + 7 In 1+—M2(_) (15 O g<k)+1

B

> (—1)P P (0)P
p

As in Ref.[7], we will use this LPA to compute the ground (a;+2) +2)
. . - KIA, 9, 9m
state energy and first excited energy level of various quan- % T )
a1t =k,a;m0

tum mechanical system. In this approximatiod,(Xo) P! ap!
=Vn(Xo) andU{™ ™™ (xo) = Vir(Xo).
where A, is the combinatorial factor of (“1”)/
To solve the flow of Eq.15) we have to expand the 9
potential V,(x) in series and compute the flow of the cou- x-- gm 2)/a I in the series expansion gV, (Xo )]P in

pling constants. As a first application we consider the SeXt"f)ower ofXo andP w(0)=1/(Mw? +g(2))

oscillator. Tables | and Il display the values of the ground state

energy and the first excited energy level for various values of

A. Sextic oscillator the coupling constan.
We want to compute the ground state energy of the an- . .
harmonic oscillator whose potential is TABL_E l. C_;round statezenergy and first excited energy level of
the sextic oscillator foMQ°=1.
MO? N
V(X)) = 5 X +§X . (16) A Eoexact Eore E1 exact Eire
7.2 0.5154 0.5152 1.5954 1.5956
Note that in quantum mechanics each coupling in a polyno- 72 0.5869 0.5847 1.9504 1.9428
mial interaction is a relevant coupling constant. For an even 720 0.8048 0.7958 2.8749 2.8439
potential the minimum of the effective classical potential is 7200 1.2819 1.2610 4.7566 4.6848

always located aty=0 in the absence of phase transition in
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TABLE Il. Ground state energy and first excited energy level of 2rde _
the sextic oscillator foM Q2= —1. Z= Nf — e PRol¢)=Ng PEole) (20)
B0 0 2
A Foerac Fore B exac Firo where ¢ is the location of the minimum of the first band.
72 0.5434 0.1095 1.3006 0.880 The partition can be written in terms of the effective clas-
720 0.6808 0.5302 2.4070 2.2627 sical potential as
7200 1.1791 1.1133 4.4602 4.3991

+ 00

— oo

The numerical solution of the RG flow shows a good
convergence foN=10% and 8=10°. The truncation of the From Eq.(2) and the periodicity of the action it is clear that
potential at the order six gives the best approximation. Addthe effective classical potential must be also a periodic func-
ing more coupling constant does not improve the result onion and in the zero temperature limit we get
the contrary(see also Ref[.7]). o
Z = Nexf — BVer(Xo) . (21

B. Periodic cosine potential e

In this section we extend the application of the RG for- Equating Eqs(20) and (21) leads to
malism to a quantum system in a nonpolynomial potential. E Vo
We choose a cosine potentfdll] whose action is defined as 0(¢) =Veii(Xo).

2 To compute the effective classical potential at its minimum
+N(cosax(t)—1);. we apply the RG equation,

d
&X(t)

g1
S(X): jo dt{EM

1+

. . . Vin(Xo)
This action has the discrete symmesgx+ 27/ a)=S(x). Vin-1(X0) = Vm(Xg) + [—3“”' M2 )
We note\ =27/« the period length. It is well known that @m
the energy spectrum of a quantum particle is made up of; js easy to check that the following form fof is preserved
periodic bands. Following Refl11] we noteE,(¢) the en- by the RG flow:
ergy of the nth band, with the propertyE,(¢+2m)
=En(¢). In a finite volumep=¢,=2mp/B. *
Let H be the Hamiltonian and be the partition function V(X)) = E bm(cosax—1)".
of the system. The stationary states are defined by n=0

Then for the second derivative we have
H|\Pn,p>: En,p|qfn,p>v
}/l\:k:]i((::triworlleads to the following expression for the partition V%(X)Z—GZEO [(2n%+3n+1)b" 1+ n2pN]
. n=

+ o0 +L X(COSaX—l)n

Z=J dx{x|e”#"|x)= lim J dxX, [ p(x)|2e FEnp o
— — 0 -L n,p

- =a?, cN(cosax—1)".
n=0

with L=N\. Using the following normalization,

Starting with the initial potential

L
J_Llwn,p(X)IzdFl. Vn(X)=A(cosax—1)
the RG equation is
as well as, 1 @20\ 2
2n dep Vo 1(x)=V,(x)+ ﬁln 1+w_,2,,>
2 efﬁEn,p = NE f _efﬁEn(‘P)
n,p N—s o n 0 27T 0 2

a’ch(cosax—1)"
1

we obtain the expression ! Il 1+ =
+— +
2B . w,zn-l- azcgl
2
Z: NE %efﬁEn(‘P). =1
n Jo 2w (22)
And in the zero temperature limit, Expanding the logarithmic term yields
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TABLE lIl. Coupling constants of the periodic cosine potential ~ TABLE V. Ground state energy of the coupled oscillator in the

for «a=0.1. symmetric case,;=a,,=1. In every entry, the upper number is
the exact energies obtained frga8], whereas the lower number is
A bJ by b3 b3 by our RG result.
-1 0.0992 -0.975 —0.0065 0.0035 —0.0021 Mag, 1 02 —0.2
-10 0.3154 —9.921 —0.0021 0.012 —0.0064
0.05 1.0843 1.0692 1.0613
1.0837 1.0648 1.0647
1 (—1)P+t 2 0.1 1.1502 1.1250 1.1114
== Z E @ 1.1485 1.1182 1.1078
B =1 p=>1 ]
1 1.7242 1.6332 1.5802
cllnoclp 1.7044 1.6127 1.5615
(025 a2c0yP (cosax—1)". 10 3.301 3.0753 2.9396
Ktdp=n L OmT ¢ m 3.230 3.0160 2.8840

Identifying the different orders in the two members of Eq.

(22) we get the flow of the couplingsy,. The first terms are whose very good approximation is

1 a?c?
bom,1=b°m+E|n 1+ w—;“) with c2=—b?, (x)~z-1 dx,  exd — (Xa—Xo)4/2a%(x)]
m P Xy) ™ \/7 >
27 BRIM V2ma(Xq)
1 01201m ) x @~ BVolxo) 24
b1 =Dht 5 w2m+a20%) with cl=—bl—6b2, (24
with
2.2 4,12
bﬁq—lzbﬁﬁi 201 Cr; 0 C;(sz) 0 2) 2 N2 1
Blontaty 2(ontacy a%(xo) = B > Mw2+VP(xo) 29
m=1 M ®m m (A0

with cZ=—4b2— 1503, _ _ _ o
It is clear that the density of particle has to be periodic

p(Xa)=p(Xz+A\) and nonconstant, so that by inspection of

The ground state energy is given by
Eq. (24) Vo(xg) has to be nonconstant and periodic.

Eo(¢=0)=h).

) . C. Pair of coupled oscillator with quartic coupling
Truncating the expansion at the second order we can com- ] ] ]
pute numerically the flow of the couplings to get an approxi- [N this section we extend the one quantum particle RG
mation of the ground state energy. Some results are given firmalism to a system of two particles in interaction and
Tables Ill and IV for various values of and . compare with some exact result3]. _ _
These results show that the effective classical potential s Consider the following two particles model with action

periodic but not flat as asserted in REE2]. Although it is  Written in continuous time:

well known that the effective potential is a convex quantity 5 (M Mo
that must be flat if periodic, take care that this property is S:f d [ 171, 7272 +V(x1,x2)}.
true for the effective potential defined as a Legendre trans- 0 2 2

form of the generating function&V[ j ] of connected Green’s

functions. Actually the classical effective potential4] has
not to be convex.

We defineV,,(x3,x§) the running potential at scale for a
two particle system. LeV;! the second derivative o,

To confirm our statement consider the density of particlewith respect toc, andx) . Similar to the one particle case the

[4,10] computed in Ref[9],

po=2 [ axide Mok (29

TABLE IV. Coupling constants of the periodic cosine potential

for a=1.

A b3 bg b3 b3 by
-1 3.098 -9.187 -024 015 —0.09
-10 0930 -0653 —042 208 -821

RG equation is straightforwardly derived,
(1+ Vrlnl(X%,XS))

1
Vo1 (X5,X2) =V, (X3, X2) +
m 1( 0 0) m( 0 O) leﬁq

Eln

2
y 1+V2m2(X$,XS))_ Vi (X5:Xp)
Mg, WM Myw?] |

Choosing a quartic potential

4 2.2 4
V(Xq,X2) =N(@11X] + 221 X1X5+ @0%5)
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TABLE VI. First excited energy level of the coupled oscillator TABLE VII. Ground state energy of the coupled oscillator in
in the symmetric casa;;=ay,=1. the dissymmetric case;;=0.4, a,,=1.

Aay, 1 0.2 -0.2 May, 1 0.2 -0.2
0.05 2.2388 2.1972 2.1746 0.05 1.0669 1.0509 1.0424
2.2372 2.1852 2.1850 1.0667 1.0512 1.0428

0.1 2.414 2.3471 2.3094 0.1 1.1206 1.0933 1.0782
2.408 2.3361 2.3152 1.1250 1.0871 1.0721

1 3.8304 3.6073 3.4704 1 1.6123 1.5043 1.4379
3.7511 3.4871 3.3421 1.5961 1.4854 1.4274

10 7.527 6.9887 6.6476 10 3.0175 2.8165 2.5580
7.233 6.771 6.4612 2.8826 2.6552 2.3451

it is easy to derive the flows of the different coupling con- 1. Infinite temperature

stants around the poin=0, andxz=0 in order to compute For a large temperature, the quantum fluctuations are
the ground state energy. We omit to write the long expressmall and the system is close to the classical one. The flow of
sions of the RG flows for the coupling constants and onlythe potential stays near the classical @he: potential energy

report in Tables V, VI, and VII the results for the ground of the action and will be obtained after a relatively small

state energy and first excited energy level as well as the exaftmber of iterations O‘; the RG equation. In par2t|cular in the

results for comparisofl.3]. limit B—0, V{?)(x)/w:M and P are of orderp? and we
The computations have been performed by truncating th@Ptain

series expansion of the potential at the sixth order. Again our Vv -y )

results are very accurate for small couplings and accurate to m-1(X0) =Vm(Xo),

a few percent for large couplings. a running potential constant along the flow. As a conse-
quence the quantum patrtition function reduces to the classi-
cal one.

I1l. RENORMALIZATION GROUP
AT FINITE TEMPERATURE 2. Zero temperature
A. Perturbative renormalization group series In this opposite case due to quantum fluctuations the ef-

At finite temperature the derivation of the RG equationfective classical potential is expected to be different from the

needs some precautions. First of all as shown in &fand classical one and will be obtained after a huge number of
recalled in the first section this equation can only be derivedterations of the RG equatioltypically 10 for =1C°). The
consistently for a constant background path Second as higher loop contributions are negligible, then we can extract
shown in Ref.[7], we can no more neglect corrections of mformgtmns for large coupling cqnstants. In pagtlcular, n
order higher than . In Ref.[7], we showed that the correct the limit B—c the propagatoiP,, is of order 1W{)(xo).

formula at finite temperature for the flow of the running po- Then, keeping only the one loop contribution in E26) we
tential is given by recover the closed forrfi5):

Vim-1(Xo) V2(xo)
V(z)(x ) Vm,l(X0)=Vm(X0)+ Eln 1+ a)z—M .
m 0 m
Vin(Xo) ﬂln 1 wZM )
3. Finite temperature

. iln > nt ()t ko For finite 8 the partition function

B n=2 7lk1p1+---+knpn=n

dxg
[V (xo) 15 [V (xg) 10 2= | e Aol
PN, 26 2mhelM
(e TRl (pa) 2 (20

is no more dominated by the minimum of the effective clas-

sical potential.
whereP =1 w2 M +V{@(x)]. Thus, at finite temperature, the computation of the parti-
This equation has not the closed form of the zero temperation function requires the whole knowledge of the effective
ture RG equatior(15) as it contains an infinite number of classical potential, and not only its value at the minimum.
terms. We will not compute the ground state, but rather the free

Let us quickly review the border cases. energy InZ/B3 of the system.
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TABLE VIII. Free energy of the anharmonic oscillator for minimum, which for quadrati¢7] or sextic interaction ap-
MQ?=1. Fge is the perturbative RG computation afds, is the  pears to be well approximated by a sextic polynomiakgn

Feynman-Kleinert variational computati$,4]. As it is difficult to avoid the truncation of the set of RG
equations for the derivatives of the running potential, we can
A B Fro Frar Fexact at least, avoid the truncation in power of3Lin the follow-

24 1 0.228 69 0.226 08 0.226 07 ing{ we propose anothe.r method that tries to improve the
24 5 0.546 33 0.559 15 0.558 67 variational Feynman-Kleinert method.
12 1 0.486 30 0.492 68 0.492 58
12 10 0.67175 0.70093 0.696 29 B. Variational renormalization group equation
12000 0.1 2.67904 2.6997 2.68 34 In the Feynman-KleinerfFK) method, one tries to find a
12000 10 5.252 88 5.4525 53199  quadratic potential at each poiry fitting at best the effec-

tive classical potential. One can improve this procedure by
. . ] ) looking for a quadratic potentieﬂzfn(xo)x2 fitting V,(Xo) at
To do so, we first write a perturbative expansion of thegach step of the renormalization group flow. Then by im-

RG equation(26) truncated to the fourth order in g/ proving in such a manner the FK method, one will take into
2 . account some contributions of the Kleinert's variational per-
v v nl 1 Vin (%) | 1 Vin(Xo) turbation expansiofé].
m-1(X0) = Vm(Xo) + Rk wZM 232 P2 The derivation of the variational RG equation was done in
Ref.[7]:
1 (1Va(xo) 1 [Va(xo)l? 2ol 1 02
gle P, 8 Pp Vi 1(X :—|n(1+—2—mx°)———2—;"’x°
m l( 0) [)) wm B m(XO)+(1)m

11 [Va(X0)® 1 Va(Xo)Ve(Xo)
B E(ﬂ P8 + 12 Pe : +Va§_|(X0)v (27
WhereQ%(xo) is the variational parameter satisfying the in-

By deriving this equation we also get an infinite set of RG )
tegral equation:

equations for the successive derivati\xé#)(xo) of the run-
ning potential. For the numerical computations, we will ne-

L . dx X
glect all the derivatives of order more than six. 02(x ):f Zexp(—x2I2)V! (xo+ [aZ (%) )%)
Then, we compute numerically, the flow of the successive mXo V2mas, 2 K m(*o+ Vam(Xo
derivatives up to the sixth order of the potential in different (28

point X,. It allows to reconstruct an approximation of the
whole effective classical potential up to the fourth order inwith
1/, and then to compute the free energy of the system.

The results for a quartic initial potential are reported in
Table VIII, for various values of the coupling constant

The free energy computed with the RG method is denoted
Frg. For comparison, we report al$Q,,.andF,, the free  and
energy computed with the Feynman-Kleinert variational
method[3,4]. dx A

The results obtained with the RG method are not far from Va2 (Xo) = J Wexp{—(x—xo) 1285(X0) [Vm(X)-
the exact free energy, but are clearly less good than the varia- Tém (29)
tional method. The trouble comes from the truncation of the

running potential at the sixth order, as well as the truncatiorrg perform an analytic computation, we expang(x) in the
at the fourth order in 3. An attempt to improve these re- ight hand side of Eqs(28) and (29) in a series of X
sults by increasing the order of the expansion, would be tog_ Xo)kVS,'?(Xo). Keeping only the derivatives up to the order

cumbersome. It is quite surprising that the RG method 'i/;‘1 allows a complete analytic computation. This means that

very powerful in the most complex ca_sxsero temperatuje the running potential is fitted at each poig by a polyno-
where quantum fluctuations are very important whereas th%ial of order four

results are less accurate at finite temperature where quantumL tX=a2 th . t i in Ea€28) and (29) vield
fluctuations are less relevant. In this last case we should ex- -6t X=am: the integrations in Eq$28) and(29) yields
pect the truncation of the expansion of the potential to be a
good approximation. The trouble here is that, at finite tem-
perature, we have to rebuild the whole effective classical
potential to compute the free energy. In this case, our trun- Q2(x0)=V2 (x0) + VI (xg) X.

cation is too rough to give an accurate approximation of the

true effective classical potential. In the zero temperaturdEquating this last result t€)3=2/8a%— w?%=2/X— w?,

case, we just need to fit the effective classical potential at itfeads to a second order equationdrwhose solution is

1

2
2 - -
Bn(%0)= 5 02 (xo) +

Va2 (Xo) = Vin(Xo) + 3V} (o) X = 3 Vi (X0) X2,
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TABLE IX. Free energy of the anharmonic oscillatéizg is the variational RG computation amhe, yar

is the perturbative variational result of Klein¢#,5].

A B FRG Fvar Fper,var Fexact
0.012 2 0.427 938 0.427 937 0.427 937 0.427 741
2.4 1 0.226 075 0.226 084 0.226 075 0.226 074
2.4 5 0.559 46 0.559 155 0.558678 0.558 675
12 1 0.492612 0.492 685 0.492578 0.492579
12 5 0.70125 0.699 431 0.696 180 0.696 118
12 000 0.1 4.500 2.6997 2.698 34 2.698 34
12 000 10 9.875 5.4525 5.6225 5.3199
480000 0.1 46.61 18.15 18.047 18.045

o V(o) ]+ V(Vi(x0) + 05) >+ 4V B

4
v

In terms ofX, Eq. (27) becomes

1

Ll 2%
5N

Vm-1(Xo) =Vm(Xg) +

12 72
X4 = E (V%”)ZY*W— E (Vg?))zvg:]l) p2y—5/2

12
B

60

3 _
(Vﬁn))4Y 5124 3

3 —
(Vﬁn))‘lPZY 12

1y/4 2 . o .
2wﬁ1) —5Vm(X)X* (3D For the numerical application of these flow equations we

consider an initial quartic potential with coupling In Table

and the RG flows for the derivatives of the running potentiallX, we report the value$rg of the free energy estimated

are

!

V- 1(X0) =Vi(Xo) — X TVm(X0)X'X,

1 XH XrZ
Vi 1(X0)=Vir (o)~ (Y— ¢)
— V(X0 (X" X+X"2),

- . 1(X® 3x"x"  2X’3
Vin=1(Xo) =V, (XO)_E ~ x T

— EVm(X0) (XX +3X"X"),

(4) (3)y n2
V$;‘>1<x0)=v£;‘><x0>—3(x AN

gl x X2
12X"X/2 6Xr4
TR X

— V(X)) (XWX +4XEX" +3X"2),

where the derivatives oK are obtained from Eq30). Let

P=Vn(Xo)+ wﬁv andY= P2+4\/§;1)/,3,

-V 4 pv

x’:_vgﬁ) ’

4
X": _ 1+ PY_1/2+ E(Vﬁ))ZY-?»/Z'

12 12
X(3) = F Vﬁ)v%‘:)y— 3/2__ F (Vgs))3p Y- 5/2,

with the variational renormalization group equation for vari-
ous values ofA. For comparison we also report the exact
valueF .., as well as the Feynman-Kleinert variational re-
sults[3,4] and the perturbative variational results5].

As seen in Table I1X, our method works very well, with
better results than the perturbative RG results, for small
enough coupling constants. Of course our results cannot
compete with a systematic application of the perturbative
variational method. For very large coupling constants, the
results are very bad, even for large temperature. This is due
to the fact that in this case, the higher derivatives coupling
constants are not negligible, invalidating our truncation. It
would be interesting to extend our method by keeping more
derivatives of the running potential. But it needs much more
work, since it would imply an equation fot of higher de-
gree than 2an equation of degreH, if we truncate at the
order N).

Nevertheless, for small coupling constants and small
B (B<5) our results are better than the FK variational
method and very close to the exact free energy. Actually, at
high temperature, the quantum fluctuations are small and the
true effective classical potential is close to the initial bare
potential. This means that quantum fluctuations do not influ-
ence very much the flow of the coupling constants and our
truncations at the quartic order is enough for accurate com-
putations. For smaller temperature, the quantum fluctuations
influence more the running coupling constants, which in turn
grow too much to justify our truncation.

IV. CONCLUSION

In this paper, we have studied in detail the renormaliza-
tion group formalism for quantum systems at zero and finite
temperature.
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At zero temperature, the flow equation for the potentialpotential in order to deduce the free energy of the system,
has a closed form that allows to obtain nonperturbatively aince the partition function is no more approximated by the
very good approximation of the ground state energy of theexponential of the minimum of the classical effective poten-
system, as well as the first excited energy level. It is pertial. By truncating both the RG equation and the running
formed by computing the flow of the coupling constants ofpotential, we obtain numerical results inferior to the ones
the truncated potential, around its minimum. We have apeomputed with the Feynman-Kleinert variational method.
plied this method to polynomial interaction, as well as a As we cannot avoid the truncation of the running poten-
periodic potential and a two particle system. In the case ofial, we have at least avoided the truncation i by setting
the periodic system, we obtain a periodic and nonconvex variational renormalization group equation leading to an
effective classical potential. Actually, our potential, called inanalytic equation for the variational parameters.

[4] the classical effective potential, is different from the Leg-  Our results are very good for small couplings and srgall
endre transform of the generating functional of connectedince in these cases, the flow of the coupling constants does
Green'’s functions. not grow too much due to the small quantum fluctuations.

At finite temperature, the renormalization group equationfFor larger 8 the growth of the coupling constant needs to
is given by a perturbative expansion inBlMoreover, we take into account much more couplings. This point is under
need, in this case, to compute the whole classical effectiveonsideration.
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