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Fluctuation-dominated phase ordering driven by stochastically evolving surfaces: Depth model
and sliding particles
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We study an unconventional phase ordering phenomenon in coarse-grained depth models of the hill-valley
profile of fluctuating surfaces with zero overall tilt, and for hard-core particles sliding on such surfaces under
gravity. We find that several such systems approach an ordered state with large scale fluctuations which make
them qualitatively different from conventional phase ordered states. We consider surfaces in the Edwards-
Wilkinson ~EW!, Kardar-Parisi-Zhang~KPZ! and noisy surface-diffusion~NSD! universality classes. For EW
and KPZ surfaces, coarse-grained depth models of the surface profile exhibit coarsening to an ordered steady
state in which the order parameter has a broad distribution even in the thermodynamic limit, the distribution of
particle cluster sizes decays as a power-law~with an exponentu), and the scaled two-point spatial correlation
function has a cusp~with an exponenta51/2) at small values of the argument. The latter feature indicates a
deviation from the Porod law which holds customarily, in coarsening with scalar order parameters. We present
several numerical and exact analytical results for the coarsening process and the steady state. For linear surface
models with a dynamical exponentz, we show thata5(z21)/2 for z,3 anda51 for z.3, and there are
logarithmic corrections forz53, implying a51/2 for the EW surface and 1 for the NSD surface. Within the
independent interval approximation we show thata1u52. We also study the dynamics of hard-core particles
sliding locally downward on these fluctuating one-dimensional surfaces, and find that the surface fluctuations
lead to large-scale clustering of the particles. We find a surface-fluctuation driven coarsening of initially
randomly arranged particles; the coarsening length scale grows as;t1/z. The scaled density-density correlation
function of the sliding particles shows a cusp with exponentsa.0.5 and 0.25 for the EW and KPZ surfaces.
The particles on the NSD surface show conventional coarsening~Porod! behavior witha.1.
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I. INTRODUCTION

Phase ordering dynamics describes the way in which
mains of an ordered state develop when an initially dis
dered system is placed in an environment which promo
ordering. For instance, when a simple ferromagnet or allo
quenched rapidly from very high to very low temperaturesT,
domains of equilibrium low-T ordered phases form and gro
to macroscopic sizes. A quantitative description of the ord
ing process is provided by the time development of the tw
point correlation function; asymptotically, it is a functio
only of the separation scaled by a length which increa
with time, typically as a power law@1#.

New phenomena and effects can arise when we deal
phase ordering in systems which are approachingnonequi-
librium steady states. In this paper, we study a coupled-fi
nonequilibrium system in which one field evolves auton
mously and influences the dynamics of the other. The sys
shows phase ordering of a new sort, to our knowled
whose principal characteristic is that fluctuations are v
strong and do not damp down in the thermodynamic limi
hence the term fluctuation-dominated phase orde
~FDPO!.

In typical phase ordering systems such as a ferromagn
Ising model, if one considers a finite system and waits
infinite time, the system reaches a state with magnetiza
per site very close to the two possible values of the spo
1063-651X/2001/64~4!/046126~16!/$20.00 64 0461
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neous magnetizationms or 2ms , with very infrequent tran-
sitions between the two. This is reflected in a probabil
distribution for the order parameter which is sharply peak
at these two values, with the width of the peaks approach
zero in the thermodynamic limit@Fig. 1~a!#. In contrast, in
the FDPO steady state, the system continually shows str
fluctuations in time, but without losing macroscopic ord
Accordingly, the order parameter shows strong variations
time, reflected eventually in a probability distribution whic
remains broad even in the thermodynamic limit@Fig. 1~b!#.

The physical system we study consists of an indep
dently stochastically fluctuating surface of zero avera
slope, on which reside particles which tend to slide dow
ward guided by the local slopes of the surface. Somew
surprisingly, a state with a uniform particle density is u

FIG. 1. Schematic depiction of Prob(m) againstm in steady
state for~a! a normal phase ordering system such as a ferroma
at low temperature, and~b! a system showing FDPO.
©2001 The American Physical Society26-1
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stable toward large-scale clustering under the action of
face fluctuations. Eventually it is driven to a phase-orde
state with macroscopic inhomogeneities of the density, of
FDPO sort. Besides exhibiting a broad order parameter
tribution, this state shows an unusual scaling of two-po
correlation functions and cluster distributions. It turns o
that much of the physics of this type of ordering is al
captured by a simpler model involving a coarse-grain
characterization of the surface alone, and we study this
well. A brief account of some of our results appeared in R
@2#.

In the remainder of the introduction, we first discuss t
characteristics of FDPOvis a vis normal phase-ordere
states. We then discuss, in a qualitative way, the occurre
of FDPO in the surface-driven models under study. The l
out of the rest of the paper is as follows. In Sec. II, we defi
and study the coarsening and steady states of three diffe
coarse-grained depth models of the fluctuating surfaces
Sec. III, we demonstrate the existence of a power law in
cluster size distribution, and show how it can give rise
FDPO. In Sec. IV, we discuss ordering of sliding particles
fluctuating surfaces. In Sec. V, we explore the robustnes
FDPO with respect to changes in various rates defining
nonequilibrium process. Finally, in Sec. VI we summari
our principal results, and discuss the possible occurrenc
FDPO in models of other physical systems.

A. Ordered states in equilibrium systems

With the aim of bringing out the features of fluctuatio
dominated phase ordering in nonequilibrium systems, le
recall some familiar facts about phase-ordered states in e
librium statistical systems. We first discuss different char
terizations of spontaneous ordering, following the paper
Griffiths @3# on the magnetization of idealized ferromagne
We follow this with a discussion of fluctuations of the o
dered state.

1. Definitions of spontaneous order

~a! In the absence of a conservation law, the magnet
tion m is an indicator of the ordering

m5
1

Ld (
n

sn , ~1!

whereL is the linear size,d is the dimension, andsn is spin
at siten. In the thermodynamic limit, the thermal average
the absolute value

m15 limL→`^umu& ~nonconserved!, ~2!

with Boltzmann-Gibbs weights for configurations, provid
an unequivocal measure of the order. This is because in
low-temperature ordered phase, the probability Prob(m) of
occurrence of magnetizationm is peaked at1ms and
2ms ; the peak widths approach zero in the thermodyna
limit L→`, so that the average valuem1 coincides with the
peak valuems @Fig. 1~a!#.
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For the conserved order parameter case, the value o
magnetization is a constant, and is the same in both di
dered and ordered phases. One therefore needs a qua
that is sensitive to the difference between order and disor
The simplest such quantity is the lowest nonzero Fou
mode of the density@4#,

uQu5
1

L U(
n

e2p in/L
~11Sn!

2 U, ~3!

where Sn denotes the average magnetization in t
(d21)-dimensional planen oriented perpendicular to thex
direction. The modulus in Eq.~3! above leads to the sam
value for all states which can be reached from each othe
a translational shift. In the low-T ordered phase, Prob(Q) is
expected to be a sharply peaked function, with peak wid
vanishing in the thermodynamic limit. Then the mean va
Q1 defined by

Q15 limL→`^uQu& ~conserved! ~4!

serves as an order parameter. A disordered state corresp
to Q150, while a perfectly ordered state withm51 in half
of the system andm521 in the other half corresponds t
Q151/p.0.318.

~b! Another characterization of the order is obtained fro
the asymptotic value of the two-point spatial correlati
functionC(r )5^soso1r&. At large separationsr, C(r ) is ex-
pected to decouple:

limr→`limL→`^soso1r&5^so&^so1r&5mc
2 . ~5!

A finite value ofmc indicates that the system has long-ran
order. A valuemc51 would indicate a perfectly ordere
pure phase without any droplets of the other species~like the
T50 state of an Ising ferromagnet!, while mcÞ1 would in-
dicate that the phase has an admixture of droplets of
other species~like the state of an Ising ferromagnet for
,T,Tc).

In a finite system,C is a function only of the scaled vari
able r /L in the asymptotic scaling limitr→`,L→` @also
see property~d! below#. An operational way to find the value
of mc is then to read off the intercept (r /L→0) in a plot of
C versusr /L; this givesmc

2 in theL→` limit. In equilibrium
systems of the type discussed above,m1 @defined in Eq.~2!#
andmc coincide.

2. Characteristics of fluctuations

~c! With a conserved scalar order parameter, the lowT
state is phase separated, with each phase occupying a
roscopically large region, and separated from the other ph
by an interface of widthW. The interfacial region is quite
distinct from either phase, and on the scale of system siz
is structureless and sharp.

~d! Customarily in phase-ordered steady states, the sp
correlation functionC(r ) has a scaling form inur /Lu, for j
!r !L where L is the size of the system. In the limitr
→`,L→`,ur /Lu→0, C(r ) follows the form@1#
6-2
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FLUCTUATION-DOMINATED PHASE ORDERING DRIVEN . . . PHYSICAL REVIEW E64 046126
C~r !'mc
2~122ur /Lu! ~ ur /Lu→0!. ~6!

The origin of the linear fall in Eq.~6! is easy to understand i
systems where phases are separated by sharp boundar
the scale of the system size, as in property~c! above: a spa-
tial averaging ofsoso1r produces1mc

2 with probability (1
2ur /Lu) ~within a phase! and 2mc

2 with probability ur /Lu
~across phases!. The linear drop withur /Lu implies that the
structure factorS(k), which is the Fourier transform ofC(r ),
is given, for large wave vectors (kL@1), by

S~k!

Ld ;
1

~kL!d11
. ~7!

This form of the decay of the structure factor for scalar or
parameters is known as the Porod law@5,1#.

It is worth remarking that the forms Eqs.~6! and~7! also
describe the behavior of the two-point correlation function
an infinite system undergoing phase ordering starting fr
an initially disordered state. In such a case,L denotes the
coarsening time-dependent length scale which is the cha
teristic size of an ordered domain.

~e! For typical phase-ordered systems, spatial fluctuati
are negligible in the limit of the system size going to infinit
Hence the averages of one- and two-point functions ove
ensemble of configurations are well represented by a sp
average for a single configuration in a large system.

B. Fluctuation-dominated ordering

The phase ordering of interest in this paper occurs in c
tain types of nonequilibrium systems, and the result
steady state differs qualitatively from the ordered state
equilibrium systems and other types of nonequilibrium s
tems considered earlier@6#. The primary difference lies in the
effects of fluctuations. Customarily, fluctuations lead
variations of the order parameter which scale sublinea
with the volume, and so are negligible in the thermodynam
limit. Fluctuation effects are much stronger here, and lea
variations of the order parameter in time, though witho
losing the fact of ordering. Below we discuss how propert
~a!–~e! discussed above are modified.

~a! Nonzero values of the averagesM1 andQ1 @Eqs.~2!
and ~4!# continue to indicate the existence of order, but
longer provide an unequivocal measure of the order par
eter. This is because the probability distributions Prob(m)
and Prob(Q) remain broad even in the limitL→` @as shown
schematically in Fig. 1~b!#.

~b! The measureumcu of long-range order is nonzero, an
its value can be found from the interceptC(ur /Lu→0). How-
ever, the value ofmc is, in general, quite different fromm1.

~c! As with typical ordered states, the regions of pu
phases are of the order of system sizeL. But in contrast to
the usual situation, there need not be a well-defined inte
cial region, distinct from either phase. Rather, the reg
between the two largest phase stretches is typically a fi
fraction of the system size, and has a lot of structure;
region itself contains stretches of pure phases separate
further such regions, and the pattern repeats. Represent
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spin configurations$si% for the two cases are depicted sch
matically in Fig. 2. This nested structure is consistent with
power-law distribution of cluster sizes, and thus of a critic
state. The crucial extra feature of the FDPO state is that
largest clusters occupy a finite fraction of the total volum
and it is this which leads to a finite value ofmc as in property
~b! above. Representative spin configurations$si% for the two
cases are depicted schematically in Fig. 2.

~d! The ensemble-averaged spatial correlation funct
C(r ) continues to show a scaling form inur /Lu. However, in
contrast to Eq.~7! it exhibits a cusp~Fig. 2! at small values
of ur /Lu:

C~r !'mc
2S 12bU r

LU
aD . ~8!

This implies that the scaled structure factor varies as

S~k!

Ld ;
1

~kL!d1a
, ~9!

with a,1. This represents a marked deviation from the P
rod law @Eq. 7#. We will demonstrate in some cases that th
deviation is related to the power-law distribution of cluste
in the interfacial region separating the domains of pu
phases, as discussed in property~c! above.

~e! The spatial averages of one-point functions (m or Q)
and the two-point functionC as a function ofur /Lu in a
single configuration of a large system typically do not rep
sent the answers obtained by averaging over an ensemb
configurations. This reflects the occurrence of macrosco
fluctuations.

C. Fluctuating surfaces and sliding particles

Having described the general nature of fluctuatio
dominated phase ordering, we now discuss the model
tems that we have studied and which show FDPO. We c
sider physical processes defined on a fluctuating surface
zero average slope. The surface is assumed to have no
hangs, and so is characterized by a single-valued local he
variableh(x,t) at positionx at time t, as shown in Fig. 3.
The evolution of the height profile is taken to be governed

FIG. 2. Schematic depiction of a linear decay and a cuspy de
of C(r ) as a function ofr /L, characteristic of normal phase orde
ing and FDPO, respectively. Typical configurations correspond
to the two cases are also shown, with 1 and21 denoting the values
of si .
6-3
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DIBYENDU DAS, MUSTANSIR BARMA, AND SATYA N. MAJUMDAR PHYSICAL REVIEW E 64 046126
a stochastic equation. The height-height correlation func
has a scaling form@7# for large separations of space an
time:

^@h~x,t !2h~x8,t8!#2&;ux2x8u2x f S ut2t8u

ux2x8uzD . ~10!

Here f is a scaling function, andx and z are the roughnes
and dynamical exponents, respectively. A common value
these exponents and scaling function for several differ
models of surface fluctuations indicates a common univer
ity class for such models. In this paper we will study on
dimensional surfaces belonging to three such universa
classes of surface growth. Similar studies of tw
dimensional surfaces@8# show that similar fluctuation-
dominated phase-ordered states arise in these cases as

Before turning to the physical model of particles slidin
on such fluctuating surfaces, we address the notion of ph
ordering in coarse-grained depth models associated
these surface fluctuations. In Fig. 3 we show the funct
s(x,t) which take values11, 21, and 0 depending on
whether the height is below, above or at the same leve
some reference height̂h&. Explicitly, we have s(x,t)5
2sgn@h(x,t)2^h&#. Different definitions of̂ h& define vari-
ants of the model; these are studied in Sec. II.

Starting from initially flat surfaces, we study the coarse
ing of up-spin or down-spin phases, which arise from
evolution of surface profiles. With the passage of time,
surface becomes rougher up to some length scaleL(t). The
profile develops hills and valleys; the base lengths of th
are of the order ofL(t), implying domains of like-valueds
whose size is of the same order. Once the steady sta
reached, there are landscape arrangements of the order
system sizeL which occur on a time scaleLz. However,

FIG. 3. Schematic depiction of a surface with heighth(x,t) and
the coarse-grained depth functions(x,t).

FIG. 4. Depicting clustering of particles (d) in a section of the
fluctuating surface. A surface fluctuation such as (a)→(b) causes
the particles to roll into a valley. They remain clustered even aft
local reverse surface fluctuation (b)→(c) occurs.
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these landscape fluctuations do not destroy long-range o
but cause large fluctuations in its value.

Now let us turn to the problem of hard-core particles sl
ing locally downward under gravity on these fluctuating s
faces. Figure 4 depicts the evolution of particles falling to t
valley bottoms under gravity. When a local valley forms in
region@Fig. 3~a! → Fig. 3~b!#, particles in that region tend to
fall in and cluster together. The point is that particles s
together even when there is a small reverse fluctuation@val-
ley → hill as in Fig. 4~b! → Fig. 4~c!# as a movement
against gravity is inhibited; declustering occurs only if the
is a rearrangement on length scales larger than the size o
valley. The combination of random surface fluctuations a
the external force due to gravity drive the system towa
large-scale clustering. Results of our numerical studies sh
that in the coarsening regime, the typical scale of ordering
the particle-hole system is comparable to the length sc
over which surface rearrangements take place. Further,
steady state of the particle system exhibits uncommo
large fluctuations, reflecting the existence of similar fluctu
tions in the underlying coarse-grained depth models of
hill-valley profile. Similar effects are seen in one- and tw
point correlation functions.

II. FDPO IN COARSE-GRAINED DEPTH „CD… MODELS
OF SURFACES

A. Surface evolution

The dynamics of surface fluctuations can be modeled
Langevin-type equations for the height fieldh(x,t). The evo-
lution equations for the one-dimensional Edwards-Wilkins
~EW! @9#, Kardar-Parisi-Zhang~KPZ! @10#, and noisy
surface-diffusion~NSD! @11# models are

]h

]t
55

n1

]2h

]x2 1h1~x,t !, EW

n1

]2h

]x2 1lS ]h

]xD 2

1h1~x,t !, KPZ

2K
]4h

]x4 1h1~x,t !, NSD

~11!

respectively, whereh1(x,t) is a white noise witĥ h1&50
and ^h1(x8,t8)h1(x,t)&5Gd(x82x)d(t82t), and n1 , l,
andK are constants.

In one dimension, the EW and KPZ models can be sim
lated using lattice gas models whose large-distance la
time scaling properties coincide with those of the cor
sponding continuum theories. The lattice gas is compose
61-valued variables$t i 2(1/2)% on a one-dimensional lattice
with periodic boundary conditions, where thet spins occupy
the links between sites. The valuest i 2(1/2)511 or 21 rep-
resent the local slopes of the surface~denoted by / or\,
respectively!. The dynamics of the interface is that of th
single-step model@12#, with stochastic corner flips involving
exchange of adjacentt ’s; thus, /\→\/ with rate p1, while
\/→/\ with rate q1. For symmetric surface fluctuation
(p15q1), the behavior at large length and time scale is d
a

6-4
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FLUCTUATION-DOMINATED PHASE ORDERING DRIVEN . . . PHYSICAL REVIEW E64 046126
scribed by the continuum EW model. Forp1Þq1, the surface
evolution belongs to the KPZ class. Corresponding to
configuration$t j 2(1/2)% we have the height profile$hi% with
hi5(1< j < it j 2(1/2) .

For simulating a surface fluctuating via a NSD proce
we used a solid-on-solid model with depositing particles p
ing up on top of each other. The heighthi at site i is the
height of the pile of particles at that site. During each m
crostep a particle is deposited randomly on a sitei. If the new
heighthi at i, is greater thanhi 21 andhi 11, then with equal
probability (51/3) three things are attempted—the deposi
particle can remain at sitei, or can move to the neighborin
sites i 21 or i 11. It actually completes the left or righ
move only if there is an increase in the co-ordination num
of the particles, as discussed in Chap. 15 of Ref.@7#.

B. Definitions of the CD models

Let us imagine a process of coarse graining which eli
nates fine fluctuations of the height profile, and replaces
height fieldhi at sitei by a variablesi which is11, 21, or
0 depending on whether the surface profile at sitei is below,
above, or exactly coincident with a certain reference lev
which is the same at alli. The aim is to have a coarse-graine
construction of locations of large valleys and hills. Our pr
cedure depends on the choice of the reference level, an
have explored three choices of coarse-grained depth~CD!
models ~the CD1, CD2, and CD3 models! which are dis-
cussed below.

In model CD1, the reference level is set by the init
condition, which corresponds to an initially flat interfac
h(x,t50)50. The coarse-grained depth function is then

s~x,t !52sgn@h~x,t !#. ~12!

With the passage of time, the surface becomes roughe
that h(x,t) develops hills and valleys with respect to the
level. As the base lengths of the hills and valleys grow
size, there is a growth of the domains of the variables(x,t).
We are able to characterize the coarsening behavior of
model analytically in some cases.

In a finite system, at long enough times the surface mo
arbitrarily far away from its initial location. Thus the stead
state of the CD1 model is trivial—allsi ’s are 1, or all are
21, with probability 1. This clearly happens because
reference level in the CD1 model is fixed in space. This le
us to examine models CD2 and CD3, where the refere
level moves along with the surface, so that we may exp
nontrivial steady state properties.

In model CD2, the coarse-grained depth function

si52sgn@hi #, ~13!

wherehi5(1< j < it j 2(1/2) as defined in Sec. I A. Note that a
all times t, the origin moves along with site 0 so thathi 50
50. The height function of the continuum version of th
CD2 model is related to that of CD1 throughhj

CD2(t)
5hj

CD1(t)2h0
CD1(t). The functionsi is 11, 21, or 0 ac-

cordingly as the heighthi at sitei is below, above, or at the
zero level. A stretch of likesi ’s 511 represents a valley
04612
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with respect to the zero level. The time evolution of the CD
model variables$si% is induced by the underlying dynamic
of the bond variables$t i 2(1/2)% defined in Sec. II A. This
model was studied by us in Ref.@2#.

Finally model CD3 is defined as follows:hi is constructed
from t ’s exactly as described for the CD2 model, but th
one defines

si52sgn@hi2^h~ t !&#, ~14!

where^h(t)&5(1/L)( i 51
L hi(t) is the instantaneous averag

height which fluctuates with time. This definition was us
earlier by Kimet al. @13#, who were studying domain growth
in an evolving KPZ surface.

Each of the CD models defined above has its own me
and limitations. We will see below that the CD1 mod
proves to be analytically tractable~for Gaussian surface fluc
tuations! in the coarsening regime, while for the CD2 mod
several exact results can be derived in the steady state. O
three models, the CD3 model most resembles the mode
sliding hard-core particles on the surface that is studied
Sec. IV below.

C. Coarsening in the CD models

1. Analytical results for the CD1 model

In this section, our primary focus is on coarsening pro
erties of a class of CD1 models. To this end, we will foc
on the equal time correlation function

C~x,t !5^s~0,t !s~x,t !&5^sgn@h~0,t !#sgn@h~x,t !#&.
~15!

We consider only linear interfaces evolving from a flat initi
conditionh(x,0)50 according to the Langevin equation

]h

]t
52~2¹2!z/2h1h, ~16!

where h(x,t) is a Gaussian white noise witĥh(x,t)&50
and ^h(x,t)h(x8,t8)&5d(x2x8)d(t2t8). The dyanmic ex-
ponentz specifies the relaxation mechanism. For examp
z52 corresponds to an EW interface andz54 corresponds
to a NSD interface. Sinceh(x,t) is a Gaussian noise and th
evolution equation~16! is linear, the height fieldh(x,t) is a
Gaussian process. For Gaussian processes, it is straigh
ward to evaluate the correlation function in Eq.~15! exactly,
and one finds

C~x,t !5
2

p
sin21@H~x,t !#, ~17!

whereH(x,t) is given by

H~x,t !5
^h~0,t !h~x,t !&

A^h2~0,t !&^h2~x,t !&
. ~18!

Now the normalized height correlation functionH(x,t) can
be easily computed for linear interfaces evolving via Eq.~16!
6-5
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by taking its Fourier transform. Assuming a flat initial co
dition, the Fourier transform̂h(k,t)h(2k,t)& is given ex-
actly by

^h~k,t !h~2k,t !&5
~12e22ukuzt!

2ukuz
. ~19!

Inverting this Fourier transform, we obtain

H~x,t !5
~z21!

212(1/z)GS 1

zD FS x

t1/zD , ~20!

where the scaling functionF(y) is given by

F~y!5E
0

`12e22uz

uz cos~yu!du. ~21!

Using this exact expression ofH(x,t) in Eq. ~17!, we obtain
the exact correlation function for an arbitrary linear interfa
model parametrized by the dynamic exponentz. It is also
evident thatC(x,t) is a single function of the scaled dis
tance,y5xt21/z.

The small distance behavior of the scaling function can
easily derived from the small argument asymptotics of
integral in Eq.~21!. Let us first consider the EW interfac
with z52. In this case the integral in Eq.~21! can be done
~by putting a factorw in the exponential, i.e., writinge22wz2

,
and then differentiating with respect tow and integrating
back with respect tow up to w51); we obtain

H~x,t !5
1

2E0

1

dw w21/2e2x2/8wt. ~22!

A change of variable,x2/8wt5y, gives a more compact ex
pression:

H~x,t !5
uxu

4A2t
E

x2/8t

`

e2yy23/2dy. ~23!

Integration by parts yields the desired short distance beh
ior:

H~x,t !512Ap

8t
uxu1•••. ~24!

Putting this back into Eq.~10! and expanding the arcsine
we obtain

C~x,t !512S 2

p D 3/4

uxt21/2u1/21•••. ~EW!.

~25!

Thus the correlation function has a square-root cusp at
origin for thez52 CD1 model. One can similarly do a sma
distance analysis for arbitraryz.1. We find that, for genera
z,

C~x,t !512auxt21/zua1•••, ~26!
04612
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wherea is az-dependent constant and the cusp exponenta is
given by

a5~z21!/2 for z,3,

a51 for z.3. ~27!

For z53, we find additional logarithmic corrections

C~x,t !512auyuAlog uyu1•••, ~28!

wherey5xt21/3.
Thus our exact results indicate thatz5zc53 is a critical

value. Forz.3, one recovers the linear cusp in the corre
tion function at short distances~and hence Porod’s law! in-
dicating sharp interfaces between domains as in the u
phase ordering systems. But forz,3, one obtains a
z-dependent cusp exponent, signaling anomalous phase
dering dominated by strong fluctuations and a significant
viation from Porod’s law. The valuezc is the one across
which a morphological transition has been shown to occu
Gaussian surfaces@14#, in the context of spatial persistenc
of fluctuating surfaces.

2. Numerical results for the CD3 model

Unlike the CD1 model, we have not been able to analy
cally characterize the coarsening properties of the CD2
CD3 models, in which the reference level moves with tim
However the coarsening properties in both CD2 and C
models can be studied numerically. Results for the C
model were reported in Ref.@2#. Below, we present numeri
cal results for the equal time correlation functionC for the
CD3 model in three different cases where the underly
surface evolves, respectively, by EW, KPZ, and NSD d
namics. The initial condition chosen wast j 2(1/2)51 at odd
bonds and21 at even bond locations, ensuring that t
height profile was globally flat. We used a lattice with
numberL5409600 of bonds and equal number of sites.
time t.0 correlations gradually develop as thes-spin do-
mains grow. In Figs. 5, 6, and 7 we show the data forC as

FIG. 5. The data shown in the inset forC(r ,t) for the CD3
model of the EW surface at different timest540032n ~with n
50, . . . ,6) areseen to collapse whenr is scaled byL(t);t1/2. The
cusp in the scaling function at small argument is characterized
a.0.5.
6-6
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functions oft ~insets of the respective figures!, and how they
collapse on to a single curveCs in each case, on scalingr by
a t-dependent length scaleL(t). For each of the three case
we see thatL(t);t1/z, where the dynamical exponentz
52, 3/2, and 4, respectively for the EW, KPZ, and NS
surfaces. Note that the scaling curves for EW and KPZ s
faces have cusps at small values of the argumentr /L, and
the cusp exponent@Eqs.~8! and ~9!# is a.0.5 for both. For
the NSD surface there is no cusp, anda.1.0. We note that
these results for the CD3 model are consistent with the a
lytical results in Eq.~27! of the CD1 model.

The fact that the correlation function has a scaling form
r /L(t), with a nonzero intercept, implies that at infinite tim
the system would reach an ordered steady state, as the
of C at any fixedr ~no matter how large! approaches the
value of the intercept at large enough time. The intercept
all the three curves in Figs. 5, 6, and 7 have the value
implying thatmc51 for the CD3 model.

FIG. 6. The data shown in the inset forC(r ,t) for the CD3
model of the KPZ surface at different timest540032n ~with n
50, . . . ,6) areseen to collapse whenr is scaled byL(t);t2/3. The
cusp in the scaling function at small argument is characterized
a.0.5.

FIG. 7. The data shown in the inset forC(r ,t) for the CD3
model of the NSD surface at different timest540032n ~with n
50, . . . ,6) areseen to collapse whenr is scaled byL(t);t1/4. The
behavior of the scaling function at small argument is character
by a.1.0.
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Our results suggest that the CD1, CD2, and CD3 mod
all display similar cusps in the scaling function; in particul
the same value of the cusp exponent is found. The reaso
that the reference levelŝh(t)& in the CD2 and CD3 models
depart very little from zero so long ast!Lz, which is well
satisfied for the times and systems under study. Moreo
our results show that the cusp exponents for the o
dimensional~1D! KPZ and EW models are identical. This
because on length scales 1!r !L, the correlation function
resembles that in the steady state of a finite system of len
L5L, and the 1D EW and KPZ models are known to ha
identical steady states.

D. Steady state of the CD models

In a finite system, as time passes the surface diffu
away from itst50 location. As discussed above, this lea
to a trivial steady state in the CD1 models, corresponding
all si51 ~or all si521) with probability 1. We need the
reference level to keep up with the surface in order to pro
the steady state aspects of coarse-grained surface flu
tions. This is accomplished by using the CD2 and CD3 m
els.

In both the CD2 and CD3 models we will see below th
the cluster size distribution of thesi variables varies as a
power law; l 2u in the steady state. The order paramet
have a broad distribution, and the scaled two-point funct
has a cusp for small argument.

It is well known that for both EW and KPZ surfaces
one dimension, the steady states have random local sl
@7#, i.e., the steady state probability distribution of the heig
profile is

P~$h%!5Poe2[*x8(]h/]x8)2dx8] . ~29!

This leads to a mapping of each surface configuration in
CD2 and CD3 models to a random walk~RW! trajectory.
The correspondence is as follows:t i 2(1/2)511 or 21 can
be interpreted as the rightward or leftward RW step at thei th
time instant. Then in the CD2 model,si51,21, or 0 de-
pending on whether the walker is to the right of, to the l
of, or at the origin after thei th step. In the CD3 model, the
reference point for demarcating left (si51) and right (si5
21) is the average of displacements~heights!, and can be
fixed only after the full trajectory is specified; then, wit
respect to^h&, the value of the position of the walker a
every i th instant is specified and hence so are thesi spins.

1. Power law distribution of cluster sizes

For a CD2 model with EW or KPZ dynamics, exact r
sults for different properties in the steady state can be
rived, because the surface profiles map on to random wa
Periodic boundary conditions imply that the RW starts
time 0 from the origin and comes back to the origin afterL
time steps. Evidently, the lengths of clusters ofs51 spins
~or s521 spins! represent times between successive retu
to the origin. ThusP( l ), the probability distribution of the
cluster sizesl, for the CD2 model is exactly the well-know
distribution ('1/A2p l 3e21/(2l )) for RW return times to the

y

d
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origin, which behaves as; l 23/2 ~for largel ) with a cutoff at
l 5L. Thusu53/2 in this model.

For the CD3 model, the variable reference point make
difficult to make exact statements, but we expect that
cluster size distribution at large lengthsl will still be given as
l 23/2. The numerically determinedP( l )’s for the CD2 and
CD3 models are plotted in Fig. 8, and they show the
pected power-law decay.

We note that the power lawP( l ) of the intervals between
successive returns is the first derivative of the spatial per
tence, defined as the probabilityP( l ) of no zero crossings in
a stretch of lengthl @14#. For linear fluctuating interfaces
P( l ) typically decays asl 2up, whereup is the persistence
exponent. Now as shown in Ref.@14#, for the 1Dz54 linear
interface model,up5 1

4 if l is measured from a point wher
the height and its derivatives are finite, independent of s
tem size, whileup50 if l is measured from a point which i
sampled uniformly from the ensemble of steady state c
figurations, as is appropriate to our problem. Thus the d
sity of zero crossings tends to zero, which implies compl
phase separation in the steady state of the NSD model.

2. Order parameter distribution

A sampling of typical configurations in the steady state
each of the CD2 and CD3 models shows large differen
between one configuration and another. These differen
manifest themselves in most observables, including one-
two-point correlation functions. For instance, the distrib
tions of the order parameters for each of the CD2 and C
models are broad even in the thermodynamic limitL→`.
For the CD2 model, an appropriate~nonconserved! order pa-
rameter is the average valuem1 of the modulus ofm
5(1/L)(si @see Eq.~2!#, which for the RW represents th
excess time a walker spends on one side of the origin o
the other side. In order to respect periodic boundary con
tions, we need to restrict the ensemble of RW’s to tho
which return to the origin afterL steps. The full probability
distribution ofm over this ensemble is known from the equ
distribution theorem on sojourn times of a RW@15#:

FIG. 8. P( l ) againstl for up-spin clusters decays asl 23/2 in the
steady state of both the CD3 (d) and CD2~empty triangles! mod-
els corresponding to an EW or KPZ surface. We usedL52048.
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Prob~m!51/2, mP@21,1#, ~30!

i.e., every allowed value ofm is equally likely. This implies
^umu&51/2 and (̂ m2&2^umu&2)1/251/A12.

For the CD3 model, most often half of the surface profi
is above the average height level and half is below it. A
consequence, we find numerically that the distribution
cluster sizesP( l ) decays sharply beyondL/2. Hence the or-
der parameterQ1 is more suitable to describe the ordering
this model thanm1. We monitored the average valueQ1 of
Q* 5(1/L)u( je

i j 2p/Lr j u @Eq. ~4!#, wherer j5(11sj )/2. This
order parameter has a value 0 for a disordered configura
and a value 1/p'0.318 for a fully phase separated config
ration with two domains of1 and 2 spins, each of length
L/2. The numerical value of the distributionP(Q* ) of Q* is
shown in Fig. 9, and the average valueQ1 in the limit of
large system size numerically approaches the value 0.22.
apparent from Fig. 9 thatP(Q* ) is broad, and is larger for

FIG. 9. Probability distributionP(Q* ) in the steady state of the
CD3 model for EW or KPZ surfaces. The mean value isQ1

.0.22. We usedL5256.

FIG. 10. For both the EW and KPZ surfaces, the steady s
C(r ) collapses onto a single curve when plotted againstr /L for
both the CD2 and CD3 models. The scaling function shows a c
at small values of the argument, witha.0.5 for both models. We
usedL564, 128, 256, and 512.
6-8
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FLUCTUATION-DOMINATED PHASE ORDERING DRIVEN . . . PHYSICAL REVIEW E64 046126
largerQ* . The width, which remains finite in the thermod
namic limit, signifies that large-scale fluctuations occur f
quently in the system.

3. Correlation functions

Finally we turn to the two-point spatial correlation fun
tions in the CD2 and CD3 models in their respective ste
states, which set in once the coarsening length scaleL(t)
reaches the system sizeL. In Fig. 10 we show the scaling o
data forC(r ) in the steady state as a function ofr /L for an
EW surface. Recalling that the steady state weights of
EW and KPZ interfaces are identical in one dimension,
data equally describes the steady state correlations in
KPZ case. Both curves show a cusp at small values ofr /L,
with a cusp exponenta.0.5.

As was the case for the order parameter, there is a la
variability in the two-point correlation function, from on
steady state configuration to another; the correlation func
C, plotted as a function of the scaled variabler /L in Fig. 10,
is the average taken over many independent steady state
figurations.

Since successive RW returns to the origin are indepen
events, the calculation in Sec. III A below, based on indep
dence of intervals, is in fact exact for the CD2 model. Th
Eq. ~33! holds, and we conclude that the correlation functi
cusp exponenta51/2 exactly for the steady state of the CD
model.

This also implies the result thata51/2 even in the coars
ening regime for the CD2 model with EW and KPZ surfac
This is because, at any timet, regions of a coarsening syste
which become equilibrated are of length;L(t)!L. Now
the correlation functionC(r ,t) is obtained by spatial averag
ing over the system, and hence equivalently averaging o
an ensemble of several steady state configurations of
system size;L(t). Thus the exact result fora in the steady
state carries over to the coarsening regime.

III. UNDERSTANDING FDPO IN CD MODELS

We saw in Sec. II that the distribution of like-spin cluste
follows a slow power law decay in the CD models. We w
demonstrate below that on the basis of this power law,
may understand the occurrence of both~i! the cusp in the
two-point function and~ii ! ordered phases which occupy
finite fraction of system size.

A. Correlation functions through the independent interval
approximation

We now show analytically, within the independent inte
val approximation~IIA ! @16#, that the cusp exponenta and
the power law exponentu are related. Within this scheme
the joint probability of havingn successive intervals i
treated as the product of the distribution of single interva
In our case, the intervals are successive clusters of part
and holes, which occur with probabilityP( l ). Defining the
Laplace transformP̃(s)5*0

` dl e2 lsP( l ) and C̃(s) analo-
gously, we have@16#
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s@12sC̃~s!#5
2

^ l &

12 P̃~s!

11 P̃~s!
, ~31!

where^ l & is the mean cluster size. In typical applications
the IIA, the interval distributionP( l ) has a finite first mo-
ment ^ l & independent ofL. But this is not the case here, a
P( l ) decays as a slow power lawP( l ); l 2uQ(L2 l ) for l
@1. HereQ is the Heaviside function, necessary since t
largest possible value ofl is L. This implies that ^ l &
'aL22u for large enoughL. Considerings in the range
1/L!s!1, we may expandP̃(s)'12bsu21; then, to lead-
ing order, the right hand side of Eq.~31! becomes
bsu21/aL22u, implying C̃(s)'1/s2b/(aL22us32u). This
leads to

C~r !'12
b

aG~32u!
U r

LU
22u

. ~32!

This has the same scaling form as Eq.~8!. Matching the cusp
singularity in Eqs.~8! and ~32!, we obtain

u1a52 ~ IIA !. ~33!

We recall~see Sec. II D! that the assumption of independe
intervals which underlies the IIA in fact holds exactly for th
CD2 model, and Eq.~33! implies thata51/2 in the steady
state and the coarsening regime for the CD2 model. For o
models like the CD3 model, or the sliding particle models
will encounter in the subsequent sections, the IIA gives
sight into the origin of the cusp from the power laws, a
though it is not exact.

B. Extremal clusters and ordered phases

We now turn to our claim~ii !, that the very same distri
bution which gives rise to power-law distributed broa
boundaries with a collection of small clusters, also gives r

FIG. 11. Probability distributionsP̃( l 1) ~the curves on the right!

and P̃( l 2) of the largest~length l 1) and second largest~length l 2)
clusters in the steady state of the EW or KPZ CD2 model are s
to collapse when plotted against scaled lengthsl 1 /L and l 2 /L, re-
spectively. The sizes used areL5512, 1024, 2048, and 4096.
6-9
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to large clusters of size;L of ‘‘up’’ or ‘‘down’’ spins,
which form the pure phases. For the CD2 model, we num
cally studied the sizes of the largest clusterl 1 for systems of
different sizesL; we show them in Fig. 11. The full distri

bution P̃( l 1) scales as a function ofl 1 /L. The average value
is ^ l 1&.0.48L. We also find a similar scaling of the distr

bution P̃( l 2), for the second largest clusters of sizel 2, and
^ l 2&.0.16L ~see Fig. 11!.

Some understanding of the fact that the size of larg
clusters are of orderL can be reached by considering th
statistics of extreme values. Applied to our case, ifN cluster
lengths are drawn at random from a distribution of leng
given by P( l );(u21)/l u, then the probability distribution
LN(x) that the largest cluster is of lengthx goes as
'Nx2u exp(2Nx2(u21)) @17#. The latter distribution peaks a
x5xmax;N1/(u21). In the CD2 problemu53/2. Now, in a
system of lengthL we have on an averageAL clusters. If we
make the approximate replacement ofN by this average
numberAL, we immediately obtainxmax;L. This explains
how, although the average cluster sizes are of orderL1/2,
there are always clusters with sizes of orderL. This is remi-
niscent of the behavior of the largest loops in a random w
@18#.

Further, we found the contribution to magnetization co
ing from the largest clusters in the system and compa
them with the total magnetization of the system, configu
tion by configuration. In Fig. 12, we show scatter plots
m̃1, which is the magnetization obtained from summing t
spins of the largest cluster;m̃2, which is obtained by sum
ming spins of largest and the second largest cluster; andm̃3,
obtained by summing those down to the third largest clu
against the total magnetizationm5(1/L)(si . The conver-
gence of the scatter plots toward the 45° line shows that
few largest clusters give a major contribution to the mag
tization of the system. Each of these large clusters is a p
phase with magnetization 1, and thus gives rise tomc51 in
the curves in Fig. 10.

FIG. 12. Estimates of the magnetizationm̃1 ~squares!, m̃2 ~tri-

angles!, and m̃3 (d) from the largest few clusters plotted again
the total magnetization form, for 1000 different configurations. Th
convergence toward the line of slope unity shows that a few la
clusters account for the major contribution tom.
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IV. HARD-CORE PARTICLES SLIDING
ON FLUCTUATING SURFACES

A. Sliding particle „SP… model

In this section we consider the physical problem of ha
core particles sliding locally downwards on the fluctuati
surfaces discussed in the previous sections. We find tha
downward gravitational force combined with local surfa
fluctuations lead to large scale clustering of the hard-c
particles. The phase-separated state which arises mirror
hill-valley profile of the underlying surface. For example, t
particles on EW and KPZ surfaces show FDPO with t
cluster distribution, one-point function, and two-point fun
tion behaving as in their CD model counterparts. On
other hand, particles on the NSD surface show ordering
the conventional sort.

Let us first define a sliding particle~SP! model on a one-
dimensional lattice. This is a lattice model whose behav
resembles that depicted in Fig. 4. The particles are re
sented by 61-valued Ising variables$s i% on a one-
dimensional lattice with periodic boundary conditions, whe
s spins occupy lattice sites. Thet i 2(1/2) variables occupy the
bond locations and represent the surface degrees of free
as described in Sec. II B for the CD2 model, and their d
namics involves independent evolution via ratesp1 andq1 as
discussed earlier. For the particles,r i5

1
2 (11s i) represents

the occupation of sitei. A particle and a hole on adjacen
sites (i ,i 11) exchange with rates that depend on the int
vening local slopet i 2(1/2) ; thus the movesd\s→s\d

ands/d→d/s occur at ratep2, while the inverse moves
occur with rateq2,p2. The asymmetry of the rates reflec
the fact that it is easier to move downward along the gra
tational field. For most of our studies we consider the stro
field (q250) limit for the particle system. We setp25p1.
The dynamics conserves(s and(t; we work in the sector
where both vanish. This corresponds to a half-filled syst
of particles on a surface with zero average tilt. For the E
surface, we tookp15q1, while for the KPZ surface we took
p151 and q150. In Sec. V, we discuss departures fro
these conditions and explore the robustness of FDPO to t
changes.

On the NSD surface, the evolution of which was d
scribed in Sec. II A, a chosen particle moves to its right
left with equal probability (51/2) if there is locally a non-
increasing height gradient. Thus againq250. The rate of
update of the particles is same as that of the surface.

The problem can be specified at a coarse-grained m
scopic level by the continuum equations for the density fi
r(x,t) corresponding to the discrete variabler i for the par-
ticles. Since the particle density is conserved, the star
point is the continuity equation]r/]t52]J(x,t)/]x, where
J is the local current. Under the hydrodynamic assumpti
the systematic part of the above current isr(12r)@1
22(]h/]x)#, since for viscous dynamics the speed is p
portional to the local field, in this case the local gradient
height. Moreover there is a diffusive part2n2]r/]x which
is driven by local density inhomogeneities, and a noisy p
h2(x,t) which arises from the stochasticity. The noiseh2 is
a Gaussian white noise. The total density can be written

e

6-10
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FLUCTUATION-DOMINATED PHASE ORDERING DRIVEN . . . PHYSICAL REVIEW E64 046126
r5ro1 r̃, wherero is the average density andr̃ is the fluc-
tuating part. This implies finally that the density fluctuationr̃
evolves via the following equation:

]r̃

]t
5n2

]2r̃

]x2 12ro~12ro!
]2h

]x2

2~122ro22r̃ !S ]r̃

]x
D F122S ]h

]xD G
12~122ro!r̃S ]2h

]x2D22r̃2S ]2h

]x2D1
]h2~x,t !

]x
.

~34!

Using the well-known mapping in one dimension betwe
the density fieldr̃ and the height fieldh̃ of the corresponding
interface problem@19#, one has the relationr̃5]h̃/]x. This
implies from Eq.~34! that the lowest order term in the evo
lution equation ofh̃ is proportional to]h/]x. This linear
first-order gradient term is the result of the gravitational fie
which acts on the particles. The evolution of the fieldh(x,t)
is given by Eq.~11!. Thus a continuum approach to the pro
lem of the sliding particles requires analysis of the semi
tonomous set of nonlinear equations~11! and~34! as one of
the fields evolves independently but influences the evolu
of the other. The problem belongs to the general class
semiautonomous systems, such as the advection of a pa
scalar in a fluid system@20#.

The SP model is a special case of the Lahiri-Ramaswa
~LR! model @21,22# of driven lattices such as sedimentin
colloidal crystals. The general LR model has two-way line
couplings between ther andh fields, and its phase diagram
was recently discussed in Ref.@23#. The SP model of interes
here has autonomous evolution of the$h(x)%, and corre-
sponds to the LR critical line which separates a wa
carrying phase@24# from a strongly phase separated sta
@22#. Further, in a model of growing binary films consider
in Ref. @25#, in the limit where the height profile evolve
independently, the problem is mapped to noninteracting

FIG. 13. The data shown in the inset forC(r ,t) for the SP model
with an EW surface at different timest540032n ~with n
50, . . . ,6) areseen to collapse when scaled byL(t);t1/2. For
small arguments, the scaling function has a cusp witha.0.5.
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main walls~if annihilation is neglected! rolling down slopes
of independently growing surfaces. The latter problem
comes similar to ours, on thinking of the domain walls
particles. But the fact that they are noninteracting in contr
to the hard-core particles may introduce other physical
fects into the problem.

B. Coarsening in the SP model

We start with a surface in the steady state, and allow
initially randomly arranged assembly of sliding particles
evolve on it. In an initial short-time relaxation, particles slid
down to the bottom of local minima. After this, the densi
distribution evolves owing to the rearrangement of the s
chastically evolving surface, whose local slopes guide
particle motion. We found in numerical simulations that t
surface fluctuations actually drive the system toward a lar
scale clustering of particles. This can be seen as follo
After a time t, the base lengths of coarse-grained valleys
length t1/z would have overturned, wherez is the dynamical
exponent of the surface. We thus expect that the latter len
scale sets the scale of particle clustering at timet. To test this

FIG. 14. The data shown in the inset forC(r ,t) for the SP model
with a KPZ surface at different timest540032n ~with n
50, . . . ,6) areseen to collapse when scaled byL(t);t2/3. For
small arguments, the scaling function has a cusp witha.0.25.

FIG. 15. The data shown in the inset forC(r ,t) for the SP model
with a NSD surface at different timest540032n ~with n
50, . . . ,6) areseen to collapse when scaled byL(t);t1/4. The
scaling function has no cusp anda.1.0.
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we monitored the equal time correlation functionC(r ,t)
[^so(t)so1r(t)& by a Monte Carlo simulation. We foun
that it has a scaling form

C5 f „r /L~ t !… with L;t1/z, ~35!

in accord with the arguments given above. The data
C(r ,t) for the particles on EW, KPZ, and NSD surfaces a
shown to collapse in Figs. 13, 14, and 15, respectively. E
dently, Eq.~35! holds quite well for all three surfaces, de
spite the widely different values ofz for the three. The onse
of scaling will be discussed further in Sec. V, where w
discuss the effect of varying the ratio of rates of relat
updates of the particles and the surface.

To determine the short distance behavior of the decayC
as a function ofr /L(t), we evaluated the structure facto
S(k) for C. For any finiteL(t), we may write

C5Co~r !1Cs~r /L!, ~36!

where Co(r ) is the analytic part which decays over sm
distancesr, while Cs is the nonanalytic part which scales as
function of r /L. We are primarily interested inCs , and so

FIG. 16. The scaled structure factorS(k)/L vs kL for the SP
model with an EW surface, with (d) and without (s) subtraction
of the analytic part.

FIG. 17. The scaled structure factorS/L is plotted againstkL,
corresponding to the curves forn56 in the insets of Figs. 13, 14
and 15. The slopes at largekL for KPZ, EW, and NSD models are
21.25, 21.5, and22, respectively.
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r

i-

need to subtract the appropriateCo from C. In terms of the
scaled variabley5r /L, Co contributes only toy50, in the
limit L→`. In this limit we writeC(y)5Cs(y)1Cody,0 , and
determineCo by seeing which value gives the longest powe
law stretch forS/L, as judged by eye. In Fig. 16 we showS
for a late time, obtained without any subtraction and af
subtraction ofCody,0 with Cs(0)50.71. The power-law decay
as;1/(kL)a11 stretches over a substantially larger range
the latter case, corresponding to a real space decay w
cusp exponenta. A nonzero value ofCo implies thatmc

Þ1, as mc is given by A12Co. This indicates that the
particle-rich phase has some holes andvice versa.

In Fig. 17 we showS, corresponding to the three differen
surfaces att5400326. We find that for the EW surfacea
.0.5; for the KPZ surface it is.0.25, and for the NSD
surface it is.1.0. Thus there is a deviation from the Poro
law behavior for the EW and KPZ surface fluctuations, a
no such deviation for the NSD surface. In all three cases,
see that the behavior of the two-point functions in the p
ticle system resembles the corresponding correlation fu
tions of the CD model for the underlying surface. In the KP
case, the value of the exponenta.0.25 is different from its
valuea51/2 in the CD model counterpart. For the EW an
NSD surfaces, the values ofa are .0.5 and 1.0, respec
tively, as in the corresponding CD models.

The fact thata, for the KPZ surface in the SP model,
different from its value in the various CD models for th
same surface implies that the spatial statistical propertie
the underlying surface are not adequate to capture the q
titative details of the ordering of hard-core particles. To t
exactly how the temporal properties of the surface contrib
would require further work in future. Since the SP mod
corresponding to the NSD surface does not exhibit
anomalous behavior of the scaled two-point correlation fu
tion which is a signature of FDPO, we do not consider
further in our subsequent discussion of the steady state.

C. Steady state of the SP model

We first study one-point functions in order to character
the steady state. As the system phase separates, a su
quantity to study is the magnitude of the Fourier compone
of the density profile

FIG. 18. ^Q(k)& plotted as function ofk52pm/L, for different
system sizesL532, 64, 128, and 256, for an EW surface.
6-12
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Q~k!5U1L (
j 51

L

eik jnjU, k5
2pm

L
, ~37!

where nj5(11s j )/2 and m51, . . . ,L21. A signature of
an ordered state is that, in the thermodynamic limit, the
erage valueŝQ(k)& go to zero for allk, except atk→0. We
monitored these averages for the system of sliding partic
with the averagê •••& performed over the ensemble o
steady state configurations. In Figs. 18 and 19 we show
values of̂ Q(k)& as functions ofk for various system sizesL,
for the EW and KPZ surfaces, respectively. In both cases
all kÞ0 the value of̂ Q(k)& falls with increasingL, indicat-
ing that ^Q(k)&→0 in the thermodynamic limit, for any
fixed, finite k. But for k52p/L, we see that the value o
^Q(k52p/L)& approaches a constant. The sharpening of
curves neark→0 implies an ordered steady state.

The above behavior of̂Q(k)& as a function ofk suggests
that we take the valueQ* [Q(2p/L) ~corresponding tom
51) as a measure of the extent of phase separation. We
usedQ15^Q* & as the order parameter earlier for the CD
model, and note that it was also used in other studies
phase-separated systems@4#. Here we find thatQ1.0.18 and
0.16 for particles on the EW and and KPZ surfaces, resp
tively. The latter values being nonzero indicates that

FIG. 19. ^Q(k)& plotted as function ofk52pm/L for different
system sizesL532, 64, 128, and 256, for a KPZ surface.

FIG. 20. Numerically determined probability distributio
P(Q* ) of the order parameterQ* , obtained for the SP model with
EW surface fluctuations, in the steady state. We usedL532.
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steady state is ordered. At the same time, the values b
less than 0.318 indicates that the states deviate substan
from a phase-separated state with two completely orde
domains. To have a full characterization of the fluctuatio
which dominate the ordered state, one should actually ev
ate the probability distributions of all theQ’s, e.g., Q*
5Q(2p/L), Q(2)5Q(4p/L), Q(3)5Q(6p/L), . . . . We
show ~in Fig. 20! one of these distributions below, namel
that of Q* 5Q(2p/L) for an EW surface. We find that th
distribution P(Q* ) remains broad~with the root-mean-
square deviation being.0.07) even asL→`, again indicat-
ing the dominance of large scale fluctuations.

It is instructive to monitor the variation ofQ* as a func-
tion of time t, for different system sizes. For an EW surfa
~Fig. 21! the value ofQ* shows strong excursions about i
average value, consistent with the broad distribution sho
in Fig. 20. The temporal separation period of these fluct
tions of the order parameter increases roughly as;L2, but
their amplitude is independent ofL. ConsequentlyP(Q* )
approaches anL-independent form asL→`. A temporally

FIG. 21. Variation ofQ* with time t, for different system sizes
L532, 64, 128, and 256, showing that the separation between
fluctuations of the order parameter increases withL, but that the
amplitude does not vary much.

FIG. 22. Variations ofQ* [Q(1) ~solid thick line!, Q(2) ~solid
thin line!, andQ(3) ~broken line! are shown as functions of time t
show that a decrease in value of one is accompanied by an incr
in the others, indicating that one large cluster may break up in
few large ones in the steady state. The system size isL5128.
6-13
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oscillatory order parameter was also found earlier in a mo
for comparative learning@26#. However the temporal behav
ior in our case is quite different from the almost period
fluctuation in the latter model, as the Fourier spectrum of
time series inQ* (t) in our case follows a broad power law
We have not pursued a detailed study of the temporal be
ior any further.

The fluctuation ofQ* in Fig. 21 gives rise to an interes
ing question: Does the system become disordered and
the phase ordering property when the valueQ* falls to low
values? The answer is no, as is very clearly brought ou
Fig. 22 in which Q* [Q(1), Q(2), and Q(3) have been
plotted simultaneously as a function of timet for a single
evolution of the system. We observe that a dip inQ* is
accompanied by a simultaneous rise in the value of ei
Q(2) or Q(3). This implies that whenever the system los

FIG. 23. P( l ) vs l for clusters of particles~symbols! and holes
~lines! in the SP model with an EW surface, for different syste
sizesL5256, 512, 1024, and 2048.P( l ) decays as a power law
with u.1.8. The inset shows collapsed data of steady stateC(r ) for
L564, 128, 256, and 512 as functions ofr /L; the scaling function
has a cusp witha.0.5.

FIG. 24. P( l ) vs l for clusters of particles~symbols! and holes
~lines! in the SP model with a KPZ surface, for different syste
sizesL5256, 512, 1024, and 2048. The data show the existenc
a particle-hole asymmetry. A power law withu.1.85 has been
shown along with the curves as a guide to the eye. The inset sh
collapsed data of steady stateC(r ) for L564, 128, 256, and 512 a
functions ofr /L; the scaling function has a cusp witha.0.25.
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a single large cluster~makingQ* small! either two or three
such clusters appear in its place@making the values ofQ(2)
andQ(3) go up#. Thus the system remains far from a diso
dered state, and always has a few large particle clus
which are of macroscopic size;L. A numerical study
showed that the average size of the largest particle clust
;0.14L.

We have seen above that in the SP models, the o
parameter has a broad distribution just as in their CD mo
counterparts. We observe further that the particle and h
cluster size distributions in the steady state of the SP mo
decay as a power law:P( l ); l 2u. In Fig. 23 for the EW
surface, we find that the particle~denoted by symbols! and
hole ~denoted by lines! distributions coincide, withu.1.8.
In contrast, Fig. 24 for the KPZ surface shows that the p
ticle and hole distributions are not identical. This is becau
with asymmetric rates (p1Þq1), the surface has an overa
motion in one direction, such that the downward motion
the particles and the upward motion of the holes, due
gravity, are no longer symmetrical. We checked that the d
tributions for particles and holes are interchanged if the ra
p1 and q1 are interchanged. The exponent for the decay
both the particle and hole distributions isu.1.85.

Finally we note that the two-point correlation functions
the steady state of the SP model exhibit a scaling form
r /L, and have the same cusp exponents as in the coarse
regime ~with L being replaced byL). For the EW surface,
the scaling curve shown in the inset of Fig. 23 exhibits
cusp witha.0.5. The corresponding curve for the KPZ su
face, shown in the inset of Fig. 24, also exhibits a cusp, w
a.0.25. The fact thatmc,1 in these curves, as for those
the coarsening regime of the SP model, is indicative of
fact that the pure phases which are particle rich also h
holes in them. In this respect, the pure phases differ fr
their CD model counterparts.

We have seen above that the FDPO of the sliding partic
in the SP model is qualitatively of the same type as in the
models for the underlying surfaces. We measured the a
age overlapO5^sis i& to obtain a quantitative estimate o
the extent of correlation between the sliding particles~holes!
and the valleys~hills! of the underlying surface. We foun
that it is nonzero as we expected, e.g., for the EW surf
O.0.26 and 0.39 corresponding tosi being defined within
CD2 and CD3 models. The overlap is greater in case of C
model, since the domains are most often smaller thanL/2
and this matches with the fact that particle clusters are a
of size<L/2. On the other hand, domains in the CD2 mod
can be almost as large asL. For the KPZ surface,O.0.26
corresponding to the overlap between particles and
coarse-grained depth variables$si% ’s of the CD3 model.

V. ROBUSTNESS OF FDPO

We did several numerical tests to check the robustnes
the fluctuation dominated ordered state for the sliding p
ticle ~SP! problem.

~i! We explored the effect of varying the ratioR5p2 /p1,
the relative rate at which the particles get updated as c
pared to the surface.

of

ws
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~ii ! We allowed the possibility of a small but finite ra
(q2Þ0) of the particles to hop uphill on a localt slope.

~iii ! We made the overall slope nonzero, in the case of
KPZ surface.

We found that FDPO stays with properties~i! and ~ii !,
while it is lost with property~iii !. For the EW surface, with
R50.2 ~i.e., the surface moving five times slower than t
sliding particles!, we found thatQ1 remains close to bu
slightly larger than 0.18, the value forR51. We checked the
correlation functionC(r ,t) in the coarsening regime, an
found that it has a cusp as a function ofr /L with the expo-
nent a.0.5. ForR55 ~i.e., the surface moving five time
faster!, we found Q1.0.15. The latter value indicates
lesser degree of ordering, and this is also mirrored in
two-point functionC(r ,t): the collapse of the data as a fun
tion of r /L occurs beyond a time which is greater than th
for R51, i.e., the scaling regime sets in much later. Nev
theless, at large enough times, the cusp exponent is
changed (a.0.5). Figure 25~lower curves! shows the log-
log plot of S/L versuskL for the three ratesR55, 1, and
0.2. All of them have slopes21.5, which indicatea.0.5.

A similar evaluation ofC was also done for the KPZ

FIG. 25. S/L is plotted againstkL, with R55 ~triangles!, R
51 (d), andR50.2 (s) for EW ~lower curves! and KPZ~upper
curves! surfaces att5400326. For clarity of display, we have mul
tiplied the data for the KPZ surface by a factor of 2.

FIG. 26. S/L is plotted againstkL, for t5400326, with a finite
uphill hopping rate for both EW~lower curve! and KPZ ~upper
curve! surfaces. The data for the KPZ surface are multiplied b
factor of 2 for clarity of display.
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surface, and is also shown in Fig. 25~upper curves!. The
observed slope of21.25 implies that the cusp exponent r
mainsa.0.25 for all of them. We conclude that the vari
tion of update rates affects the degree of ordering but not
asymptotic scaling properties, as indicated by the consta
of the cusp exponenta.

So far we have considered the uphill hopping rate to
strictly zero, i.e.,p2 /q25`. By allowing for q2Þ0, i.e.,
allowing for an upward motion of the particles, we saw th
the FDPO persists so long asp2.q2. In Fig. 26, we show
S(k)/L as a function ofkL, at a large timet for EW and
KPZ surfaces, respectively, when the ratiop2 /q255. We
find that the slopes are21.5 and21.25 in the two cases
indicating that the values of the cusp exponents are stila
.0.5 anda.0.25, respectively, for the two surfaces. Th
points to the universality of the valuea.0.5 ~EW surface!
and a.0.25 ~KPZ surface! over a range of models with
different values ofR, and also with respect to varyingp2 /q2.

We also investigated the effect of having an overall tilt
the KPZ surface. This leads to an overall movement of
transverse surface fluctuations, which are the analogs o
nematic waves in particle systems@27,28#. In the presence of
such a wave, the profile of hills and valleys of the surfa
sweep across the system at finite speed, and the particle
not have enough time to cluster. Consequently the phen
enon of FDPO is completely destroyed. In Fig. 27 we sh
C(r ,t) as a function ofr @there is no scaling byL(t)# for
severalt. The curves are independent oft, in the absence of
coarsening towards a phase ordered state.

VI. CONCLUSION

In this paper we have discussed the possibility of ph
ordering of a sort which is dominated by strong fluctuatio
In the steady state, these fluctuations lead to variations of
order parameter of order unity, but the system stays orde
in the sense that with probability 1, a finite fraction of th
system is occupied by a single phase. The value of this f
tion fluctuates in time, leading to a broad probability dist
bution of the order parameter.

We demonstrated these features in two types of mod
having to do with surface fluctuations—the first, a coar

a

FIG. 27. For a tilted KPZ surface, the curves forC(r ,t) as a
function of r all overlap at different timest540032n ~with n
50, . . . ,6), indicating that there is no growing length scaleL(t).
Thus tilt removes FDPO.
6-15
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grained depth~CD! model where we could establish the
properties analytically, and the second a model of slid
particles ~SP model! on the surface in question. For the
models we found that besides~a! the broad probability dis-
tribution of the order parameter~which we may take to be
the defining characteristic of FDPO!, the steady state wa
also characterized by~b! power laws of cluster size distribu
tions and~c! cusps in the scaled two-point correlation fun
tion, associated with the breakdown of the Porod law. T
connection between~b! and ~c! was elucidated using the in
dependent interval approximation. Further, an extremal
tistics argument showed that the largest cluster drawn f
the power-law distribution is of the order of the system si
this implies a macroscopic ordered region, so that within
models, properties~a! and ~b! are connected.

There are several open questions. Does fluctuat
dominated phase ordering occur in other, completely diff
ent types of systems as well? Are properties~b! and~c! nec-
essarily concomitant with the defining property~a! of
FDPO? Can one characterize quantitatively the dynam
behavior in the FDPO steady state?

Our model of particles sliding on a fluctuating surfa
relates to several physical systems of interest. First, it
scribes a mechanism of large scale clustering in vibra
granular media, provided the vibrations are random both
space and time. Second, it describes a special case~the pas-
tt

e

ev
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sive scalar limit! of a crystal driven through a dissipativ
medium, for instance a sedimenting colloidal crystal@23#.
Finally, related models describe the formation of domains
growing binary films@25#. It would be interesting to see i
ideas related to FDPO play a role in any of these system

It would also be interesting to examine fluctuating pha
ordered states in other nonequilibrium systems from
point of view of FDPO. For instance, in a study of jammin
in the bus-route model studied in Ref.@29#, the largest empty
stretch in front of a bus was found to be of orderL, and it is
argued that such a stretch survives for a time which is p
portional toL2 for a nonvanishing rate of arrival of the pa
sengers. These features are reminescent of the behavio
the CD and SP models derived from the Edwards-Wilkins
model discussed above. However, more work is required
make a clear statement about FDPO in the bus-route mo

In general, fluctuation-dominated phase ordering is e
dently a possibililty that should be kept in mind when d
cussing new situations involving phase ordering in noneq
librium systems, both in theory and in experiment.
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