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We study an unconventional phase ordering phenomenon in coarse-grained depth models of the hill-valley
profile of fluctuating surfaces with zero overall tilt, and for hard-core particles sliding on such surfaces under
gravity. We find that several such systems approach an ordered state with large scale fluctuations which make
them qualitatively different from conventional phase ordered states. We consider surfaces in the Edwards-
Wilkinson (EW), Kardar-Parisi-ZhangKPZ) and noisy surface-diffusiotNSD) universality classes. For EW
and KPZ surfaces, coarse-grained depth models of the surface profile exhibit coarsening to an ordered steady
state in which the order parameter has a broad distribution even in the thermodynamic limit, the distribution of
particle cluster sizes decays as a power-{aith an exponen#), and the scaled two-point spatial correlation
function has a cusfwith an exponentr=1/2) at small values of the argument. The latter feature indicates a
deviation from the Porod law which holds customarily, in coarsening with scalar order parameters. We present
several numerical and exact analytical results for the coarsening process and the steady state. For linear surface
models with a dynamical exponentwe show thatw=(z—1)/2 for z<3 anda=1 for z>3, and there are
logarithmic corrections foz=3, implying o= 1/2 for the EW surface and 1 for the NSD surface. Within the
independent interval approximation we show that 6=2. We also study the dynamics of hard-core particles
sliding locally downward on these fluctuating one-dimensional surfaces, and find that the surface fluctuations
lead to large-scale clustering of the particles. We find a surface-fluctuation driven coarsening of initially
randomly arranged particles; the coarsening length scale grows*4s The scaled density-density correlation
function of the sliding particles shows a cusp with exponentsd.5 and 0.25 for the EW and KPZ surfaces.

The particles on the NSD surface show conventional coarséRiogd behavior witha=1.
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I. INTRODUCTION neous magnetizatioms or —mg, with very infrequent tran-
sitions between the two. This is reflected in a probability
Phase ordering dynamics describes the way in which dodistribution for the order parameter which is sharply peaked
mains of an ordered state develop when an initially disor-at these two values, with the width of the peaks approaching
dered system is placed in an environment which promotegero in the thermodynamic limiiFig. 1(a)]. In contrast, in
ordering. For instance, when a simple ferromagnet or alloy i¢he FDPO steady state, the system continually shows strong
quenched rap|d|y from very h|gh to very low temperatu'res fluctuations in time, but without Iosing macroscopic order.
domains of equilibrium lowF ordered phases form and grow Accordingly, the order parameter shows strong variations in
to macroscopic sizes. A quantitative description of the orderfime, reflected eventually in a probability distribution which
ing process is provided by the time development of the twol€Mains broad even in the thermodynamic lififitg. 1(b)].
point correlation function: asymptotically, it is a function = 1he physical system we study consists of an indepen-
only of the separation scaled by a length which increasedently StOCh"?‘St'Ca”Y fluctugtlng surface of Z€10 average
with time, typically as a power lad]. slope, on which reside particles which tend to slide down-

New phenomena and effects can arise when we deal Wity]vard_g_wded by the Iog:al SIOp?S of the _surface. _Sor_newhat
o : . . surprisingly, a state with a uniform particle density is un-
phase ordering in systems which are approachmagequi-
librium steady states. In this paper, we study a coupled-field
nonequilibrium system in which one field evolves autono- Prob(m)
mously and influences the dynamics of the other. The system

- Prob(m
shows phase ordering of a new sort, to our knowledge, (em)
whose principal characteristic is that fluctuations are very
strong and do not damp down in the thermodynamic limit—
hence the term fluctuation-dominated phase ordering
(FDPO. -Mg +Mg m -1 +1m

In typical phase ordering systems such as a ferromagnetic
Ising model, if one considers a finite system and waits for FIG. 1. Schematic depiction of Prabj againstm in steady
infinite time, the system reaches a state with magnetizatiostate for(a) a normal phase ordering system such as a ferromagnet
per site very close to the two possible values of the spontaat low temperature, anth) a system showing FDPO.
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stable toward large-scale clustering under the action of sur- For the conserved order parameter case, the value of the
face fluctuations. Eventually it is driven to a phase-orderednagnetization is a constant, and is the same in both disor-
state with macroscopic inhomogeneities of the density, of thelered and ordered phases. One therefore needs a quantity
FDPO sort. Besides exhibiting a broad order parameter dighat is sensitive to the difference between order and disorder.
tribution, this state shows an unusual scaling of two-poinfThe simplest such quantity is the lowest nonzero Fourier
correlation functions and cluster distributions. It turns outmode of the density4],

that much of the physics of this type of ordering is also

captured by a simpler model involving a coarse-grained 1 o iy (1 Sh)

characterization of the surface alone, and we study this as Q= L zn: € o I )

well. A brief account of some of our results appeared in Ref.

[2]. . . _ ! . where S, denotes the average magnetization in the

In the remainder of the introduction, we first discuss the(d_ 1)-dimensional plane oriented perpendicular to the
characteristics of FDPQiis a vis normal phase-ordered iraction, The modulus in Eq3) above leads to the same
states. We then discuss, in a qualitative way, the occurrengg,) e for all states which can be reached from each other by
of FDPO in the surface-driven models under study. The Iay:,i translational shift. In the loW- ordered phase, Pro@y is

out of the rest of the paper is as follows. In Sec. I, we definee ted to b harol ked functi ith K width
and study the coarsening and steady states of three differegXpec ed f0 bE a sharply peaxec IUncion, with peak widins

. ) cImishing in the thermodynamic limit. Then the mean value
coarse-grained depth models of the fluctuating surfaces. I@l defined by

Sec. Ill, we demonstrate the existence of a power law in the

cluster size distribution, and show how it can give rise to Q,=lim, _.(|Q[)
FDPO. In Sec. IV, we discuss ordering of sliding particles on ! Lo

fluctuatm_g surfaces. In Sec. V, we explore the robu;tness OJerves as an order parameter. A disordered state corresponds
FDPO with respect to changes in various rates defining th

L i . % Q1=0, while a perfectly ordered state with=1 in half
nonequilibrium process. Finally, in Sec. VI we summarize the system anan=— 1 in the other half corresponds to
our principal results, and discuss the possible occurrence %‘l: 1/m~0.318
FDPO in models of other physical systems. (b) Another characterization of the order is obtained from
the asymptotic value of the two-point spatial correlation
A. Ordered states in equilibrium systems function C(r) =(s,S,+ ). At large separations C(r) is ex-

With the aim of bringing out the features of fluctuation P€cted to decouple:
dominated phase ordering in nonequilibrium systems, let us _ ) )
recall some familiar facts about phase-ordered states in equi- limy_olimy . o(SoSo+1) = {So)(So-+r) =M . (5
librium statistical systems. We first discuss different charac-
terizations of spontaneous ordering, following the paper ofA finite value ofm, indicates that the system has long-range
Griffiths [3] on the magnetization of idealized ferromagnets.order. A valuem.=1 would indicate a perfectly ordered
We follow this with a discussion of fluctuations of the or- pure phase without any droplets of the other spediks the
dered state. T=0 state of an Ising ferromagnetvhile m;# 1 would in-
dicate that the phase has an admixture of droplets of the
1. Definitions of spontaneous order other specieglike the state of an Ising ferromagnet for 0O
(a) In the absence of a conservation law, the magnetiza-<T<T°?'. . . .
tion m is an indicator of the ordering Ina flnlte system( is a functl_on o_nl)_/ of the scaled vari-
abler/L in the asymptotic scaling limit —oo,L—c [also
1 see propertyd) below]. An operational way to find the value
m= 4 > S (1) of m, is then to read off the intercept/L—0) in a plot of
L™ % C versus/L; this givesmg in the L —co limit. In equilibrium
systems of the type discussed abawe,[defined in Eq(2)]
whereL is the linear sized is the dimension, and, is spin  andm, coincide.
at siten. In the thermodynamic limit, the thermal average of
the absolute value 2. Characteristics of fluctuations

(conserved (4)

) (c) With a conserved scalar order parameter, the Tow-
my=lim__..{[m[)  (nonconservey (2)  state is phase separated, with each phase occupying a mac-
roscopically large region, and separated from the other phase
with Boltzmann-Gibbs weights for configurations, providesby an interface of widthV. The interfacial region is quite
an unequivocal measure of the order. This is because in thdistinct from either phase, and on the scale of system size, it
low-temperature ordered phase, the probability Pmyb6f  is structureless and sharp.
occurrence of magnetizatiom is peaked at+mg and (d) Customarily in phase-ordered steady states, the spatial
—mg; the peak widths approach zero in the thermodynamicorrelation functionC(r) has a scaling form ifr/L|, for &
limit L—oo, so that the average value, coincides with the <r<L wherelL is the size of the system. In the limit
peak valuemg [Fig. 1(a)]. —0o0,L—o0,|r/L|—0, C(r) follows the form[1]
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C(r)=m3(1-2Jr/L|) (Jr/L|—0). (6)
The origin of the linear fall in Eq(6) is easy to understand in /

systems where phases are separated by sharp boundaries on C
the scale of the system size, as in propédyabove: a spa- 1
tial averagi.ng. 0fSySo4 + produceer2 mg. with prob.a.bility (1 _HHJU_[HJ_l
—|r/L]) (within a phasg and —mZ with probability |r/L|
(across phasgsThe linear drop withr/L| implies that the M
structure factoS(k), which is the Fourier transform & (r),
is given, for large wave vectork[(>1), by FIG. 2. Schematic depiction of a linear decay and a cuspy decay
of C(r) as a function of /L, characteristic of normal phase order-
S(k) 1 ing and FDPO, respectively. Typical configurations corresponding
KR ~ W- (7) tof the two cases are also shown, with 1 antl denoting the values
ors;.

This form of the decay of the structure factor for scalar order . G _ for th devicted sch
parameters is known as the Porod IEsL]. spin configurationgs;} for the two cases are depicted sche-

It is worth remarking that the forms Eqe5) and (7) also matically in Fig. 2. This nested structure is consistent with a

describe the behavior of the two-point correlation function inpowerzll_?lw d'Str.'bIUt'on O'; cluster ?'Zﬁs'&;‘gothus ofa c;mcar:
an infinite system undergoing phase ordering starting fronptate. The crucial extra ea.tu're oft € state Is that the
an initially disordered state. In such a cakegdenotes the largest clusters occupy a finite fraction of the total volume,

coarsening time-dependent length scale which is the chara@Nd itis this which leads to a finite valuef, as in property
teristic size of an ordered domain. b) above. Representative spin configurati¢g$ for the two

(e) For typical phase-ordered systems, spatial fluctuation§aSes are depicted schematically in Fig. 2. _
are negligible in the limit of the system size going to infinity. _ (4 The ensemble-averaged spatial correlation function
Hence the averages of one- and two-point functions over afr() continues to show a scaling form /L |. However, in

ensemble of configurations are well represented by a spati&P"trast to Eq(7) it exhibits a cusgFig. 2) at small values
average for a single configuration in a large system. flr/Ll:

) . 8

r
B. Fluctuation-dominated ordering C(r)= mg( 1-b T

The phase ordering of interest in this paper occurs in cer-
tain types of nonequilibrium systems, and the resultingrhis implies that the scaled structure factor varies as
steady state differs qualitatively from the ordered state of
equilibrium systems and other types of nonequilibrium sys-
tems considered earligs]. The primary difference lies in the
effects of fluctuations. Customarily, fluctuations lead to
variations of the order parameter which scale sublinearly

with the volume, and so are negligible in the thermodynamiGyith o< 1. This represents a marked deviation from the Po-
limit. Fluctuation effects are much stronger here, and lead tgpg law[Eq. 7). We will demonstrate in some cases that this
variations of the order parameter in time, though withoutgevyiation is related to the power-law distribution of clusters
losing the fact of ordering. Below we discuss how propertiesn the interfacial region separating the domains of pure
(a.)—(e) discussed above are modified. phases’ as discussed in propqnyabove.

() Nonzero values of the averaghl; andQ; [Egs.(2) (e) The spatial averages of one-point functions ¢r Q)
and (4)] continue to indicate the existence of order, but nognq the two-point functiorC as a function of|r/L| in a
longer provide an unequivocal measure of the order parankingle configuration of a large system typically do not repre-
eter. This is because the probability distributions Pneb(  sent the answers obtained by averaging over an ensemble of
and ProbQ) remain broad even in the limit— [as shown  configurations. This reflects the occurrence of macroscopic
schematically in Fig. (b)]. fluctuations.

(b) The measurém,| of long-range order is nonzero, and
its value can be found from the intercepg|r/L|—0). How-
ever, the value ofn. is, in general, quite different fromm;.

(c) As with typical ordered states, the regions of pure Having described the general nature of fluctuation-
phases are of the order of system dizeBut in contrast to dominated phase ordering, we now discuss the model sys-
the usual situation, there need not be a well-defined interfatems that we have studied and which show FDPO. We con-
cial region, distinct from either phase. Rather, the regiorsider physical processes defined on a fluctuating surface with
between the two largest phase stretches is typically a finiteero average slope. The surface is assumed to have no over-
fraction of the system size, and has a lot of structure; thidhangs, and so is characterized by a single-valued local height
region itself contains stretches of pure phases separated bgriableh(x,t) at positionx at timet, as shown in Fig. 3.
further such regions, and the pattern repeats. Representatifée evolution of the height profile is taken to be governed by

S(k) B 1
Ti_ (kL)d+a’

(C)

C. Fluctuating surfaces and sliding particles
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A~ yah these landscape fluctuations do not destroy long-range order,
h(x,t) l X — but cause large fluctuations in its value.
\’/ \/ Now let us turn to the problem of hard-core particles slid-
L bbb IR b ing locally downward under gravity on these fluctuating sur-

faces. Figure 4 depicts the evolution of particles falling to the
valley bottoms under gravity. When a local valley forms in a
region[Fig. 3(@ — Fig. 3(b)], particles in that region tend to
ﬁall in and cluster together. The point is that particles stay
together even when there is a small reverse fluctudtiah

ley — hill as in Fig. 4b) — Fig. 4(c)] as a movement
against gravity is inhibited; declustering occurs only if there

FIG. 3. Schematic depiction of a surface with heigfx,t) and
the coarse-grained depth functisfx,t).

a stochastic equation. The height-height correlation functio
has a scaling fornj7] for large separations of space and
time:

lt—t'| is a rearrangement on length scales larger than the size of the
([h(x,t) = h(x',t")]?)~ |x—x"|2Xf ———|. (10  valley. The combination of random surface fluctuations and
[x—=x'| the external force due to gravity drive the system toward

large-scale clustering. Results of our numerical studies show

Heref is a scaling function, ang andz are the roughness that in the coarsening regime, the typical scale of ordering in
and dynamical exponents, respectively. A common value ofhe particle-hole system is comparable to the length scale
these exponents and scaling function for several differenbver which surface rearrangements take place. Further, the
models of surface fluctuations indicates a common universakteady state of the particle system exhibits uncommonly
ity class for such models. In this paper we will study one-large fluctuations, reflecting the existence of similar fluctua-
dimensional surfaces belonging to three such universalityions in the underlying coarse-grained depth models of the
classes of surface growth. Similar studies of two-hill-valley profile. Similar effects are seen in one- and two-
dimensional surfaceg§8] show that similar fluctuation- point correlation functions.
dominated phase-ordered states arise in these cases as well.

Before turning to the physical model of particles sliding
on such fluctuating surfaces, we address the notion of phasé" FDPO IN COARSE-GRAINED DEPTH (CD) MODELS
ordering in coarse-grained depth models associated with OF SURFACES
these surface fluctuations. In Fig. 3 we show the function A. Surface evolution
s(x,t) which take values+1, —1, and 0 depending on
whether the height is below, above or at the same level as,,
some reference heighth). Explicitly, we have s(x,t)=
—sgrih(x,t) —(h)]. Different definitions of h) define vari-
ants of the model; these are studied in Sec. Il.

Starting from initially flat surfaces, we study the coarsen-

The dynamics of surface fluctuations can be modeled by
ngevin-type equations for the height fidii,t). The evo-
lution equations for the one-dimensional Edwards-Wilkinson
(EW) [9], Kardar-Parisi-Zhang(KPZ) [10], and noisy
surface-diffusion(NSD) [11] models are

ing of up-spin or down-spin phases, which arise from the ¢ o%h
evolution of surface profiles. With the passage of time, the ulWJr 71(X,1), EW
surface becomes rougher up to some length s€éig. The o 2 )
profile develops hills and valleys; the base lengths of these d
are of the order ofZ(t), implying domains of like-valued E:< e M ) T, KPZo
whose size is of the same order. Once the steady state is "
Jd*h
reached, there are landscape arrangements of the order of the —K =7+ 71(x,1), NSD
system sizel. which occur on a time scale? However, IX
o.. P O 0.0 ® respectively, wherep,(x,t) is a white noise with(7,)=0
() Q. L) and (7,(x",t") p1(x,1))=T8(x"' —x)8(t"' —1), and vy, X\,
andK are constants.
| In one dimension, the EW and KPZ models can be simu-
9% P o lated using lattice gas models whose large-distance large-
() w time scaling properties coincide with those of the corre-
%e® sponding continuum theories. The lattice gas is composed of
*1-valued variableg r;_1/»} on a one-dimensional lattice
| with periodic boundary conditions, where thespins occupy
0o o0 000 the links between sites. The valugs (1,,)=+1 or —1 rep-
(©) 0@/\&./0/—\’ resent the local slopes of the surfa@ienoted by / on,

respectively. The dynamics of the interface is that of the
FIG. 4. Depicting clustering of particled®) in a section of the ~ Single-step mod_e[l12], with stochastic corner flips |nV0|Y|n9
fluctuating surface. A surface fluctuation such ay-¢(b) causes ~exchange of adjacents; thus, A—\/ with rate p,, while
the particles to roll into a valley. They remain clustered even after a./—/\ with rate q;. For symmetric surface fluctuations
local reverse surface fluctuatiob)(— (c) occurs. (p1=4d4), the behavior at large length and time scale is de-
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scribed by the continuum EW model. Roy# q4, the surface  with respect to the zero level. The time evolution of the CD2
evolution belongs to the KPZ class. Corresponding to thenodel variableqs;} is induced by the underlying dynamics
configuration{7;_ (1/,)} we have the height profilgh;} with  of the bond variableg 7 _(y,)} defined in Sec. Il A. This
hi=Z1<j<iTj-(12)- model was studied by us in Rd2].

For simulating a surface fluctuating via a NSD process, Finally model CD3 is defined as followh; is constructed
we used a solid-on-solid model with depositing particles pil-from 7's exactly as described for the CD2 model, but then
ing up on top of each other. The height at sitei is the  one defines
height of the pile of particles at that site. During each mi-
crostep a particle is deposited randomly on aisitethe new si=—sgrihi—(h(t))], (14)
heighth; ati, is greater that;_; andh,_ 4, then with equal
probability (= 1/3) three things are attempted—the depositedvhere(h(t))=(1/L)=t_;hi(t) is the instantaneous average
particle can remain at site or can move to the neighboring height which fluctuates with time. This definition was used
sitesi—1 or i+1. It actually completes the left or right €arlier by Kimet al.[13], who were studying domain growth

move only if there is an increase in the co-ordination numbein an evolving KPZ surface.
of the particles, as discussed in Chap. 15 of Re. Each of the CD models defined above has its own merits

and limitations. We will see below that the CD1 model
proves to be analytically tractab{@or Gaussian surface fluc-
. . o ) _tuationg in the coarsening regime, while for the CD2 model
Let us imagine a process of coarse graining which elimiseveral exact results can be derived in the steady state. Of the
nates fine fluctuations of the height profile, and replaces thghree models, the CD3 model most resembles the model of

height fieldh; at sitei by a variables; whichis +1, —1, or  gjiding hard-core particles on the surface that is studied in
0 depending on whether the surface profile atisitebelow,  sec. IV below.

above, or exactly coincident with a certain reference level,
which is the same at alll The aim is to have a coarse-grained
construction of locations of large valleys and hills. Our pro-

B. Definitions of the CD models

C. Coarsening in the CD models

cedure depends on the choice of the reference level, and we 1. Analytical results for the CD1 model

have explored three choices of coarse-gralped dé@@ In this section, our primary focus is on coarsening prop-
models (the CD1, CD2, and CD3 modglsvhich are dis-  grfies of a class of CD1 models. To this end, we will focus
cussed below. on the equal time correlation function

In model CD1, the reference level is set by the initial

condition, which corresponds to an initially flat interface: C(x,t)=(s(0)s(x,t)}=(sgr h(0;t)Isgr h(x,t)1).
h(x,t=0)=0. The coarse-grained depth function is then

s(x,t)=—sgrih(x,t)]. (12 we consider only linear interfaces evolving from a flat initial

. . conditionh(x,0)=0 according to the Langevin equation
With the passage of time, the surface becomes rougher, so . (x.0) ng gevin equat

that h(x,t) develops hills and valleys with respect to the O oh
level. As the base lengths of the hills and valleys grow in Ez—(—VZ)Z’thr 7, (16
size, there is a growth of the domains of the variadflet).
We are able to characterize the coarsening behavior of th
model analytically in some cases.

In a finite system, at long enough times the surface move

RWhere 7(x,t) is a Gaussian white noise witfy(x,t))=0
and{n(x,t) p(x’,t"))=8(x—x") 8(t—t"). The dyanmic ex-
L A . Sonentz specifies the relaxation mechanism. For example,
arbitrarily far away from its initial location. Thus the steady 2=2 corresponds to an EW interface and 4 corresponds

state of the CD1 model is trivial—aB;’s are 1, or all are : ; . . .
_ 1, with probability 1. This clearly happens because theto a NSD interface. Since(x,t) is a Gaussian noise and the

reference level in the CD1 model is fixed in space. This lead evolutl_on equation(16) is Imear,_the height fleldh_(x_,t) IS a
. aussian process. For Gaussian processes, it is straightfor-
us to examine models CD2 and CD3, where the reference . el
: ard to evaluate the correlation function in Ef5) exactly,
level moves along with the surface, so that we may expec :
o . and one finds
nontrivial steady state properties.
In model CD2, the coarse-grained depth function

s;=—sgrih;], (13

whereh;=31-;7j_ (11 as defined in Sec. | A. Note that at whereH(x,t) is given by

all timest, the origin moves along with site 0 so that_,

=0. The height function of the continuum version of the HOxt) = (h(0t)h(x,t))
CD2 model is related to that of CD1 throughi °*(t) " 200 (h2(x,1))
=h{P*(t) —hg®(t). The functions; is +1, —1, or 0 ac-

cordingly as the heighty; at sitei is below, above, or at the Now the normalized height correlation functidh(x,t) can
zero level. A stretch of likes's =+ 1 represents a valley be easily computed for linear interfaces evolving via Bd)

2
C(x,t)= ;sm‘l[H(x,t)], (17

(18)
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by taking its Fourier transform. Assuming a flat initial con- 1
dition, the Fourier transforngh(k,t)h(—k,t)) is given ex- 08
actly by ’
—olKklZ 0.6 ['g
(1_e 2|K| t) o« L
<h(k,t)h(—k,t)>zw. (29 04 |
Inverting this Fourier transform, we obtain 021
(z—1) X or
H(x,t)= 1 F ) (20 02
217(1/2)1‘* - :
z
where the scaling functioR(y) is given by FIG. 5. The data shown in the inset f6(r,t) for the CD3
1 o2 model of the EW surface at different timés-400Xx 2" (with n
*l—€e — i 1/2
_ =0,..., 6) areseen to collapse whanis scaled byZ(t)~t~< The
Fiy)=| —— . 21
(¥) J'o u? cogyu)du @1 cusp in the scaling function at small argument is characterized by
a=0.5.

Using this exact expression bf(x,t) in Eq. (17), we obtain

the exact correlation function for an arbitrary linear interfacewherea is az-dependent constant and the cusp exponeist
model parametrized by the dynamic exponentt is also  given by

evident thatC(x,t) is a single function of the scaled dis-

tance,y=xt" 2. a=(z—1)/2 for z<3,
The small distance behavior of the scaling function can be
easily derived from the small argument asymptotics of the a=1 for z>3. (27)

integral in Eq.(21). Let us first consider the EW interface _ - o _
with z=2. In this case the integral in E¢1) can be done Forz=3, we find additional logarithmic corrections

(by putting a factom in the exponential, i.e., writingfz"“z,
and then differentiating with respect o and integrating
back with respect tov up tow=1); we obtain

C(x,t)=1-aly|\log|y|+ -, (28)

wherey=xt"1%,

1 (1 Thus our exact results indicate that z,=3 is a critical

H(x,t)= —J dw w Y2 xBut, (220  value. Forz>3, one recovers the linear cusp in the correla-
2Jo tion function at short distancgand hence Porod’s Iagwin-

dicating sharp interfaces between domains as in the usual

. 2 _ .
A change of variablex”/8wt=y, gives & more compact €X- phase ordering systems. But far<3, one obtains a

pression: zdependent cusp exponent, signaling anomalous phase or-
dering dominated by strong fluctuations and a significant de-
H(x,t)zi - e Yy ~32dy. (23) viation from Porod’s law. The value. is the one across
4.2t ) xs which a morphological transition has been shown to occur in

Gaussian surfacd44], in the context of spatial persistence
Integration by parts yields the desired short distance behawf fluctuating surfaces.
ior:
2. Numerical results for the CD3 model

H(x,t)=1— \ﬁ|x|+ . (24) Unlike the CD1 model, we have not been able to analyti-

8t cally characterize the coarsening properties of the CD2 or

CD3 models, in which the reference level moves with time.

However the coarsening properties in both CD2 and CD3

models can be studied numerically. Results for the CD2
3/4 model were reported in Reff2]. Below, we present numeri-

C(x,t)=1—<—) |xt= Y24 .. (EW). cal results for the equal time correlation functi6rfor the
m 25 CD3 model in three different cases where the underlying
surface evolves, respectively, by EW, KPZ, and NSD dy-

Thus the correlation function has a square-root cusp at thBamics. The initial condition chosen wag.(12=1 at odd
origin for thez=2 CD1 model. One can similarly do a small Ponds and—1 at even bond locations, ensuring that the

distance analysis for arbitramz>1. We find that, for general height profile was globally flat. We used a lattice with a
z numberL =409600 of bonds and equal number of sites. At

time t>0 correlations gradually develop as teepin do-
C(x,t)=1—a|xt Y|o+..., (26)  mains grow. In Figs. 5, 6, and 7 we show the datadas

Putting this back into Eq10) and expanding the arcsine,
we obtain
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Our results suggest that the CD1, CD2, and CD3 models
all display similar cusps in the scaling function; in particular
the same value of the cusp exponent is found. The reason is
that the reference leve($(t)) in the CD2 and CD3 models
depart very little from zero so long ds<L?, which is well
satisfied for the times and systems under study. Moreover,
our results show that the cusp exponents for the one-
dimensional1D) KPZ and EW models are identical. This is
because on length scales<t <., the correlation function
resembles that in the steady state of a finite system of length

-0.2 o : 1 : 2 : 3 : . L=/L, and the 1D EW and KPZ models are known to have
identical steady states.
/@B y
FIG. 6. The data shown in the inset f6(r,t) for the CD3 D. Steady state of the CD models
model of the KPZ surface at different timés:400x 2" (with n In a finite system, as time passes the surface diffuses
_ : 123 3 P . i
=0, ...,6) areseen to collapse whenis scaled byC(1)~1"". The a4y from itst=0 location. As discussed above, this leads

cusp in the scaling function at small argument is characterized b¥0 a trivial steady state in the CD1 models, corresponding to
@=0.5. all s;=1 (or all s;=—1) with probability 1. We need the
reference level to keep up with the surface in order to probe
functions oft (insets of the respective figupesind how they the steady state aspects of coarse-grained surface fluctua-
collapse on to a single cun in each case, on scalinfgpy  tions. This is accomplished by using the CD2 and CD3 mod-
at-dependent length scalg(t). For each of the three cases, els.
we see thatﬁ(t)fvtllzy where the dynamical exponemt In both the CD2 and CD3 models we will see below that
=2, 3/2, and 4, respectively for the EW, KPZ, and NSDthe cluster size distribution of thg variables varies as a
surfaces. Note that the scaling curves for EW and KPZ surPower law~I1~7 in the steady state. The order parameters
faces have cusps at small values of the arguméft and have a broad distribution, and the scaled two-point function
the cusp exponeriEgs. (8) and (9)] is @=0.5 for both. For Nas & cusp for small argument.

the NSD surface there is no cusp, amet1.0. We note that It is well known that for both EW and KPZ surfaces in
these results for the CD3 model are consistent with the ang€ dimension, the steady states have random local slopes

lytical results in Eq.27) of the CD1 model. 7], i.e., the steady state probability distribution of the height

The fact that the correlation function has a scaling form inprOfIIe IS
r/L(t), with a nonzero intercept, implies that at infinite time
the system would reach an ordered steady state, as the value

of C at any fixedr (no matter how largeapproaches the Thjs eads to a mapping of each surface configuration in the

value of the intercept at large enough time. The intercepts ofp2> and CD3 models to a random walRW) trajectory.

all the three curves in Figs. 5, 6, and 7 have the value 1ype correspondence is as follows: (;/2=+1 or —1 can

implying thatm.=1 for the CD3 model. be interpreted as the rightward or leftward RW step af the
time instant. Then in the CD2 mode;=1,—1, or O de-
pending on whether the walker is to the right of, to the left

P({h})=Poe~ LI (7o) ax], (29

1 g of, or at the origin after théth step. In the CD3 model, the
0.8 reference point for demarcating lefs;&1) and right §=
08 ) —1) is the average of displacemertteights, and can be
06 ’*504 %5, fixed only after the full trajectory is specified; then, with
) S|, ] respect to(h), the value of the position of the walker at
Soal ﬁ% 0 M" everyith instant is specified and hence so areghspins.
021 0 1‘0 ' 2'0 ' 3|0 ‘ 4‘0 | 1. Power law distribution of cluster sizes
T
ol For a CD2 model with EW or KPZ dynamics, exact re-
sults for different properties in the steady state can be de-
0.2 o 1 2 3 “‘ s rived, because the surface profiles map on to random walks.

Periodic boundary conditions imply that the RW starts at
time O from the origin and comes back to the origin after

FIG. 7. The data shown in the inset f6¢r,t) for the CD3 time steps. Evidently, the lengths of clusterssef1l spins
model of the NSD surface at different times 400x 2" (with n  (Or S= —1 sping represent times between successive returns
=O, L. ,6) areseen to C0||apse whenis scaled by[:(t)~tl/4_ The to the Origin. ThUSP(l), the probablllty diStribution Of the
behavior of the scaling function at small argument is characterize@luster sized, for the CD2 model is exactly the well-known
by a=1.0. distribution (= 1/y271%e~Y)) for RW return times to the
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FIG. 8. P(l) against for up-spin clusters decays b3%?in the FIG. 9. Probability distributiorP(Q*) in the steady state of the
steady state of both the CD®() and CD2(empty trianglesmod- ~ CD3 model for EW or KPZ surfaces. The mean valueQs
els corresponding to an EW or KPZ surface. We used2048. =0.22. We used =256.
origin, which behaves as|~%? (for largel) with a cutoff at Prodm)=1/2, me[—1,1], (30)

[=L. Thus=3/2 in this model.

For the CD3 model, the variable reference point makes it
difficult to make exact statements, but we expect that the.e., every allowed value ahis equally likely. This implies
cluster size distribution at large lengthwill still be givenas  (|m|y=1/2 and (m?) —(|m|)?)2=1/\/12.

| =32 The numerically determine®(1)’s for the CD2 and For the CD3 model, most often half of the surface profile
CD3 models are plotted in Fig. 8, and they show the eXis above the average height level and half is below it. As a
pected power-law decay. consequence, we find numerically that the distribution of

We note that the power la®(l) of the intervals between ¢|yster sized(l) decays sharply beyorld/’2. Hence the or-
successive returns is the first derivative of the spatial persisjer paramete®, is more suitable to describe the ordering in
tence, defined as the probabili§(l) of no zero crossings in  this model tharm,. We monitored the average val@ of
a stretch of lengti [14]. For linear fluctuating interfaces, Q*:(l/L)|E]-e”2”’LpJ-| [Eq. (4)], wherep; = (1+s;)/2. This
(1) typically decays ad™“», where g, is the persistence order parameter has a value 0 for a disordered configuration
exponent. Now as shown in Rél4], for the 1Dz=4 linear  and a value 1#~0.318 for a fully phase separated configu-
interface modelf, =z if | is measured from a point where ration with two domains of+ and — spins, each of length
the height and its derivatives are finite, independent of sys; /> The numerical value of the distributid(Q*) of Q* is
tem size, whilef,=0 if | is measured from a point which is  shown in Fig. 9, and the average valQ@g in the limit of
sampled uniformly from the ensemble of steady state COngrge system size numerically approaches the value 0.22. It is

figurations, as is appropriate to our problem. Thus the denapparent from Fig. 9 tha®(Q*) is broad, and is larger for
sity of zero crossings tends to zero, which implies complete
1

phase separation in the steady state of the NSD model.

A sampling of typical configurations in the steady state of 06 | % .
each of the CD2 and CD3 models shows large differences .
between one configuration and another. These differences ¥
manifest themselves in most observables, including one- and 02}
two-point correlation functions. For instance, the distribu-
tions of the order parameters for each of the CD2 and CD3
models are broad even in the thermodynamic lifnit:o. 02t
For the CD2 model, an appropriateonconservedorder pa-
rameter is the average valum, of the modulus ofm 0 0'1 0'2 0'3 0'4 05
=(1L)Zs; [see Eq.(2)], which for the RW represents the ) ’ ’ ) ’
excess time a walker spends on one side of the origin over r/L
the other side. In order to respect periodic boundary condi- F|G. 10. For both the EW and KPZ surfaces, the steady state
tions, we need to restrict the ensemble of RW'’s to thosec(r) collapses onto a single curve when plotted agaiikt for
which return to the origin aftek steps. The full probability poth the CD2 and CD3 models. The scaling function shows a cusp

distribution ofm over this ensemble is known from the equi- at small values of the argument, with=0.5 for both models. We
distribution theorem on sojourn times of a R\A5]: usedL =64, 128, 256, and 512.

2. Order parameter distribution
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largerQ*. The width, which remains finite in the thermody- 0.12
namic limit, signifies that large-scale fluctuations occur fre-
qguently in the system.

_ ) 0.08 |
3. Correlation functions

la~h

Finally we turn to the two-point spatial correlation func-
tions in the CD2 and CD3 models in their respective steady
states, which set in once the coarsening length scétg
reaches the system sikeln Fig. 10 we show the scaling of
data forC(r) in the steady state as a functionrdt. for an
EW surface. Recalling that the steady state weights of the 0
EW and KPZ interfaces are identical in one dimension, the
data equally describes the steady state correlations in the 1/L

KPZ case. Both curves show a cusp at small valued lof v i
with a cusp exponeni=0.5. FIG. 11. Probability distribution®(l,) (the curves on the right

As was the case for the order parameter, there is a largdd P(I2) of the largestlengthl,) and second largestengthl,)
variability in the two-point correlation function, from one clusters in the steady state of the EW or KPZ CD2 model are seen
steady state configuration to another; the correlation functiofy CO'.laplse V‘;]hen. plotted Zga'nSt S;alegzlen%m; ano(ljlzloLéGre-

C, plotted as a function of the scaled variabl& in Fig. 10, spectively. The sizes used dre=512, 1024, 2048, and 4096.
is the average taken over many independent steady state con-
figurations.

Since successive RW returns to the origin are independent
events, the calculation in Sec. Il A below, based on indepen-
dence of intervals, is in fact exact for the CD2 model. Thus h 1) is th | e | ical licat f
Eq. (33) holds, and we conclude that the correlation function"" ere(l) is t € mean ¢ u_ster size. In typlca_ app |_cat|ons 0
cusp exponent = 1/2 exactly for the steady state of the CD2 the lIA, t.he interval dlstr|but|or9(l) has a finite first mo-
model. ment{l) independent otf.. But this is notﬁtehe case here, as

This also implies the result that=1/2 even in the coars- P(l) decays as a slow power IaFf?/(.I)~I O(L-1) fpr !
ening regime for the CD2 model with EW and KPZ surfaces.>1' Here© 'S the HeaV|S|dg funcﬂon, necessary since the
This is because, at any tingregions of a coarsening system Iargeé'sfepossmle value of is L. "I'h|s. |mp]|es that(1)
which become equilibrated are of length£(t)<<L. Now ~al for large enoughl:. Con5|der|0n_gls inthe range
the correlation functiorg(r,t) is obtained by spatial averag- /L<S<1, we may expand(s)~1—bs" = then, to lead-
ing over the system, and hence equivalently averaging ovdPd order, the right hand side of Eq31) becomes
an ensemble of several steady state configurations of subs’ YaL? % implying C(s)~1/s—b/(aL? ’s®~?%. This
system size~ £(t). Thus the exact result far in the steady leads to
state carries over to the coarsening regime.

0.04 |,

~ 1-P(s)
s[1-sC(s)]= U ]_—I——(s)

2
| , G

o m

r27€

T (32

b
Cr)~1———
Ill. UNDERSTANDING FDPO IN CD MODELS al'(3—10)

We saw in Sec. Il that the distribution of Iike-spin clusters This has the same scaling form as m_ Matching the cusp
follows a slow power law decay in the CD models. We will singularity in Eqs.(8) and (32), we obtain

demonstrate below that on the basis of this power law, we
may understand the occurrence of bdiththe cusp in the 0+ a=2 (IIA). (33)
two-point function and(ii) ordered phases which occupy a

finite fraction of system size. We recall(see Sec. Il Dthat the assumption of independent

intervals which underlies the 1lA in fact holds exactly for the
A. Correlation functions through the independent interval CD2 model, and Eq(33) implies thata=1/2 in the steady
approximation state and the coarsening regime for the CD2 model. For other
models like the CD3 model, or the sliding particle models we
will encounter in the subsequent sections, the IIA gives in-
sight into the origin of the cusp from the power laws, al-
' though it is not exact.

We now show analytically, within the independent inter-
val approximation(llA) [16], that the cusp exponemt and
the power law exponend are related. Within this scheme
the joint probability of havingn successive intervals is
treated as the product of the distribution of single intervals.

In our case, the intervals are successive clusters of particles B. Extremal clusters and ordered phases

and holes, which occur with probability(I). Defining the We now turn to our claindii), that the very same distri-
Laplace transformP(s)= /5 dl e '*P(l) and C(s) analo- bution which gives rise to power-law distributed broad
gously, we hav¢16] boundaries with a collection of small clusters, also gives rise
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1

IV. HARD-CORE PARTICLES SLIDING
ON FLUCTUATING SURFACES

A. Sliding particle (SP) model

In this section we consider the physical problem of hard-
core particles sliding locally downwards on the fluctuating
surfaces discussed in the previous sections. We find that the
downward gravitational force combined with local surface
fluctuations lead to large scale clustering of the hard-core
particles. The phase-separated state which arises mirrors the
hill-valley profile of the underlying surface. For example, the
particles on EW and KPZ surfaces show FDPO with the
cluster distribution, one-point function, and two-point func-

_ _ tion behaving as in their CD model counterparts. On the

FIG. 12. Estimates of the magnetization (squares m, (tri-  other hand, particles on the NSD surface show ordering of
angles, andm; (@) from the largest few clusters plotted against the conventional sort.
the total magnetization fan, for 1000 different configurations. The Let us first define a sliding partickSP model on a one-
convergence toward the line of slope unity shows that a few largelimensional lattice. This is a lattice model whose behavior

clusters account for the major contributionrto resembles that depicted in Fig. 4. The particles are repre-
sented by *1-valued Ising variables{o;} on a one-
to large clusters of size-L of “up” or “down” spins, dimensional lattice with periodic boundary conditions, where

which form the pure phases. For the CD2 model, we numeri¢ SPIiNs occupy lattice sites. The._ (15 variables occupy the
cally studied the sizes of the largest clustefor systems of bond Iocaﬂong and represent the surface degrees of freedom
different sizesL; we show them in Fig. 11. The full distri- &5 d_esqr|be<|j in Szc. I E:jfor thelc_DZ model, an% their dy-
~ namics involves independent evolution via rggesandq; as
butionP(l,) scales as a function ¢f /L. The average value P e G

. , L i YUS - discussed earlier. For the particlgs= 3 (1+ o) represents
is (I;)=0.48.. We also find a similar scaling of the distri- {he occupation of sité. A particle and a hole on adjacent

bution P(l,), for the second largest clusters of sizgand  sites §,i+1) exchange with rates that depend on the inter-
(l1,)=0.16_ (see Fig. 11 vening local sloper;_(y); thus the move®\O—O\@®
Some understanding of the fact that the size of largesatnd O/@ — @/O occur at ratgp,, while the inverse moves
clusters are of ordek can be reached by considering the occur with rateq,<p,. The asymmetry of the rates reflects
statistics of extreme values. Applied to our casd\ ifluster  the fact that it is easier to move downward along the gravi-
lengths are drawn at random from a distribution of lengthdational field. For most of our studies we consider the strong-
given by P(1)~(6—1)/1?, then the probability distribution field (q,=0) limit for the particle system. We sg=p;.
Ly(x) that the largest cluster is of lengtR goes as The dynamics conservéss andX7; we work in the sector
~Nx~?exp(~Nx" 1) [17]. The latter distribution peaks at Where both vanish. This corresponds to a half-filled system
X=Xmac~N¥D_ In the CD2 problemd=3/2. Now, in a of particles on a surface with zero average tilt. For the EW

system of length. we have on an averagd_ clusters. If we surface, we toolp; =q,, while for the_ KPZ surface we took
make the approximate replacement Nfby this average P1=1 andd,=0.In Sec. V, we discuss departures from
number /L, we immediately obtairx,,,,~L. This explains these conditions and explore the robustness of FDPO to these
how, although the average cluster sizes are of ot} Chg]r?etf\.e NSD surface, the evolution of which was de-
there are always clusters with sizes of orteiThis is remi- ’

- ; : cribed in Sec. Il A, a chosen particle moves to its right or
Fiséa:ent of the behavior of the largest loops in a random wal eft with equal probability & 1/2) if there is locally a non-

Further, we found the contribution to magnetization com-Nncreasing height gradient. Thus agaip=0. The rate of

ing from the largest clusters in the system and compareh'pdate of the particles is same as that of the surface.

them with the total magnetization of the system, configura- The problem can be_specmed at a coarse—grameq meso-
tion by configuration. In Fig. 12, we show scatter plots of SCOPIC level by the continuum equations for the density field

~ S L . . p(x,t) corresponding to the discrete variablefor the par-
my, which is the magnetization obtained from summing theticles. Since the particle density is conserved, the starting

spins of the largest clustem,, which is obtained by sum-  point is the continuity equatiosp/at=— aJ(x,t)/dx, where
ming spins of largest and the second largest clusternanyd J is the local current. Under the hydrodynamic assumption,
obtained by summing those down to the third largest clustethe systematic part of the above current dél—p)[1
against the total magnetization=(1/L)Xs;. The conver- —2(dh/dx)], since for viscous dynamics the speed is pro-
gence of the scatter plots toward the 45° line shows that thportional to the local field, in this case the local gradient of
few largest clusters give a major contribution to the magneheight. Moreover there is a diffusive partv,dp/dx which
tization of the system. Each of these large clusters is a purs driven by local density inhomogeneities, and a noisy part
phase with magnetization 1, and thus gives risenie=1 in 7,(X,t) which arises from the stochasticity. The noiggis

the curves in Fig. 10. a Gaussian white noise. The total density can be written as
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p=po+ p, Wherep, is the average density andis the fluc-

tuating part. This implies finally that the density fluctuatjpn
evolves via the following equation:

ip (725+2 L #h
S0 V22 T 2pe(1=po) 72
1-2po—2p i 1-2 on
(1=2po=2p)| oo x
~[h\ . [8%h\  dnu(x,t)
+2(1- —|—2p? — |+ ——.
2(1 2p°)p(ax2) 2p (&xz) X r/t23
(34 FIG. 14. The data shown in the inset f¢(r,t) for the SP model

with a KPZ surface at different times=400x2" (with n
Using the well-known mapping in one dimension between=0. ....6) areseen to collapse when scaled it)~t*°. For
the density field and the height fielh of the corresponding  STall arguments, the scaling function has a cusp with0.25.

interface probleni19], one has the relatiop=dh/dx. This _ . S .
implies from Eq.(34) that the lowest order term in the evo- Main walls(if annihilation is neglectedrolling down slopes
lution equation ofh is proportional tosh/ax. This linear of independently growing surfaces. The latter problem be-

first-order gradient term is the result of the gravitational field®omes similar to ours, on thinking of Fhe doma'”_ walls as
which acts on the particles. The evolution of the fibld, t) particles. But the fact that they are noninteracting in contrast

is given by Eq(11). Thus a continuum approach to the prob- to thg hard-core particles may introduce other physical ef-
lem of the sliding particles requires analysis of the semiauf(aCtS into the problem.
tonomous set of nonlinear equatiofid) and(34) as one of
the fields evolves independently but influences the evolution
of the other. The problem belongs to the general class of
semiautonomous systems, such as the advection of a passiveWe start with a surface in the steady state, and allow an
scalar in a fluid systerf20]. initially randomly arranged assembly of sliding particles to
The SP model is a special case of the Lahiri-Ramaswam§Volve on it. In an initial short-time relaxation, particles slide
(LR) model [21,22] of driven lattices such as Sedimenting down to the bottom of local minima. After this, the denSity
colloidal crystals. The general LR model has two-way lineardistribution evolves owing to the rearrangement of the sto-
couplings between the andh fields, and its phase diagram chastically evolving surface, whose local slopes guide the
was recent'y discussed in Rézg] The SP model of interest particle motion. We found in numerical simulations that the
here has autonomous evolution of thie(x)}, and corre- surface fluctuations actually drive the system toward a large-
Sponds to the LR critical line which Separates a Wave_scale Cluste“ng of parthleS. This can be seen as follows.
Carrying phasd24] from a Strong'y phase Separated StateAfter a timet, the base |engthS of Coal‘se-gl‘ained Va.”eys of
[22]. Further, in a model of growing binary films considered lengtht** would have overturned, wheeeis the dynamical
in Ref. [25], in the limit where the height profile evolves €xponent of the surface. We thus expect that the latter length
independenﬂy’ the prob|em is mapped to noninteracting dosca.le sets the scale of partiCle ClUStering at tinTeo test this

B. Coarsening in the SP model

2 1 2
r/ t1 /2 r/ t1/4
FIG. 13. The data shown in the inset f(r,t) for the SP model FIG. 15. The data shown in the inset f(r,t) for the SP model
with an EW surface at different time$=400x2" (with n with a NSD surface at different time$=400x2" (with n
=0,...,6) areseen to collapse when scaled lyt)~t*2 For  =0,...,6) areseen to collapse when scaled kyt)~t*% The
small arguments, the scaling function has a cusp with0.5. scaling function has no cusp amg=1.0.
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FIG. 16. The scaled structure factstk)/£ vs kL for the SP System size& =32, 64, 128, and 256, for an EW surface.
model with an EW surface, with@) and without (O) subtraction

of the analytic part. need to subtract the appropriatg from C. In terms of the
scaled variabley=r/L, C, contributes only toy=0, in the
we monitored the equal time correlation functicir,t) limit £L—oe. In this limit we write C(y) =C4(y) +C,6y 0, and
=(0,(t)oo4(t)) by a Monte Carlo simulation. We found determine’, by seeing which value gives the longest power-
that it has a scaling form law stretch forS/ L, as judged by eye. In Fig. 16 we shaw

for a late time, obtained without any subtraction and after
subtraction o, 8y o with C5(0)=0.71. The power-law decay
. . . as~1/(kL)*" ! stretches over a substantially larger range in
in accord with the arguments given above. The data fOlEhe latter case, corresponding to a real space decay with a
C(r,t) for the particles on EW, KPZ, and NSD surfaces areCusp exponentr. A nonzero value ofC, implies thatm
shown to collapse in Figs. 13, 14, and 15, respectively. Evi-;&1 asm. is given by yI—C,. This ?ndicates that tche
dently, Eq.(35) holds quite well for all three surfaces, de- art’icle-ricch hase has some hoolles b versa
spite the widely different values affor the three. The onset P In Eiq. 17 El)ve shows. corresponding to the three different
of scaling will be discussed further in Sec. V, where Wesurface%. at = 400x 26 ’We fincFi) that f%r the EW surfaca
discuss the effect of varying the ratio of rates of relativez0 5 for th_e KP7 sﬁrface it is=0.25 and for the NSD
upi?)t?j?atzfrrtr:]iﬁ ep?r:gcs!ﬁzr?g?sgr? czutggar?ae\}i or of the decay of surface it is=1.0. Thus there is a deviation from the Porod
. law behavior for the EW and KPZ surface fluctuations, and
as a function ofr//:(_t)_, we evaluated thg structure factor no such deviation for the NSD surface. In all three cases, we
S(k) for C. For any finite£(t), we may write see that the behavior of the two-point functions in the par-
_ ticle system resembles the corresponding correlation func-
= +Cy(r/ L), 36 . )
C=Colr) +CA(r1L) (36) tions of the CD model for the underlying surface. In the KPZ
| case, the value of the exponent=0.25 is different from its
value @=1/2 in the CD model counterpart. For the EW and
NSD surfaces, the values ef are =0.5 and 1.0, respec-
tively, as in the corresponding CD models.
The fact thata, for the KPZ surface in the SP model, is

C=f(r/L(t)) with L~t'7 (35

where C,(r) is the analytic part which decays over smal
distances, while Cs is the nonanalytic part which scales as a
function of r/£. We are primarily interested i, and so

Ly o~ 1 different from its value in the various CD models for the
same surface implies that the spatial statistical properties of
0.1} the underlying surface are not adequate to capture the quan-
titative details of the ordering of hard-core particles. To tell
2 0.01 exactly how the temporal properties of the surface contribute
© would require further work in future. Since the SP model
corresponding to the NSD surface does not exhibit the
0.001 ¢ anomalous behavior of the scaled two-point correlation func-
tion which is a signature of FDPO, we do not consider it
0.0001 | N further in our subsequent discussion of the steady state.
001 0.1 1 10 100 1000 10000
kL C. Steady state of the SP model
FIG. 17. The scaled structure factStZ is plotted againskZz, We first study one-point functions in order to characterize

corresponding to the curves far=6 in the insets of Figs. 13, 14, the steady state. As the system phase separates, a suitable
and 15. The slopes at largeC for KPZ, EW, and NSD models are quantity to study is the magnitude of the Fourier components
—1.25, - 1.5, and— 2, respectively. of the density profile
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FIG. 21. Variation ofQ* with timet, for different system sizes
L=32, 64, 128, and 256, showing that the separation between the
fluctuations of the order parameter increases Wittbut that the

amplitude does not vary much.

steady state is ordered. At the same time, the values being

an ordered state is that, in the thermodynamic limit, the aviess than 0.318 indicates that the states deviate substantially

erage value$Q(k)) go to zero for alk, except ak—0. We

from a phase-separated state with two completely ordered

monitored these averages for the system of sliding particleglomains. To have a full characterization of the fluctuations
with the average(---) performed over the ensemble of which dominate the ordered state, one should actually evalu-
steady state configurations. In Figs. 18 and 19 we show thate the probability distributions of all th®'s, e.g., Q*

values o Q(k)) as functions ok for various system sizds

=Q(27/L), Q(2)=Q(4w/L), Q(3)=Q(6m/L), ....We

for the EW and KPZ surfaces, respectively. In both cases, foshow (in Fig. 20 one of these distributions below, namely,

all k0 the value of Q(k)) falls with increasing., indicat-

that of Q* =Q(2«/L) for an EW surface. We find that the

ing that (Q(k))—0 in the thermodynamic limit, for any distribution P(Q*) remains broad(with the root-mean-
fixed, finite k. But for k=27/L, we see that the value of square deviation being 0.07) even as —«, again indicat-
(Q(k=2m/L)) approaches a constant. The sharpening of théng the dominance of large scale fluctuations.

curves neak— 0 implies an ordered steady state.

The above behavior giQ(k)) as a function ok suggests
that we take the valu®*=Q(2=/L) (corresponding tan

It is instructive to monitor the variation d@* as a func-

tion of timet, for different system sizes. For an EW surface
(Fig. 21 the value ofQ* shows strong excursions about its

=1) as a measure of the extent of phase separation. We alswerage value, consistent with the broad distribution shown
usedQ,=(Q*) as the order parameter earlier for the CD3in Fig. 20. The temporal separation period of these fluctua-
model, and note that it was also used in other studies ofions of the order parameter increases roughly-as’, but

phase-separated systefd$ Here we find tha@Q,=0.18 and

their amplitude is independent af. ConsequentlyP(Q*)

0.16 for particles on the EW and and KPZ surfaces, respe@pproaches ah-independent form ak—. A temporally
tively. The latter values being nonzero indicates that the

0.05

0.04

003

P(Q*)

0.02

001

P(Q*) of the order parametd*, obtained for the SP model with

0.2 03

Q*

0.1

EW surface fluctuations, in the steady state. We use®?2.

03

021

01|

4000

8000
t

FIG. 22. Variations oQ* =Q(1) (solid thick ling, Q(2) (solid
thin line), andQ(3) (broken ling are shown as functions of time to
FIG. 20. Numerically determined probability distribution show that a decrease in value of one is accompanied by an increase

in the others, indicating that one large cluster may break up into a

few large ones in the steady state. The system sike=i§28.
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1

a single large clusteimakingQ* small either two or three
such clusters appear in its plajgaaking the values oR(2)
andQ(3) go upg. Thus the system remains far from a disor-
dered state, and always has a few large particle clusters
which are of macroscopic size-L. A numerical study
showed that the average size of the largest particle cluster is
~0.14._.

We have seen above that in the SP models, the order
parameter has a broad distribution just as in their CD model
counterparts. We observe further that the particle and hole
. B 3% cluster size distributions in the steady state of the SP model
1 10 100 : 1000 decay as a power lawP(l)~1"?. In Fig. 23 for the EW

1 surface, we find that the particlelenoted by symbojsand
hole (denoted by lingsdistributions coincide, withh=1.8.

FIG. 23. P(l) vs|1 for clusters of particlegsymbolg and holes  In contrast, Fig. 24 for the KPZ surface shows that the par-
(lineg) in the SP model with an EW surface, for different systemticle and hole distributions are not identical. This is because
sizesL =256, 512, 1024, and 2048(l) decays as a power law wijth asymmetric ratesp; #q,), the surface has an overall
with =1.8. The inset shows collapsed data of steady §lat¢ for  motion in one direction, such that the downward motion of
L=64, 128, 2_56, and 512 as functionsrét ; the scaling function {he particles and the upward motion of the holes, due to
has a cusp withw=0.5. gravity, are no longer symmetrical. We checked that the dis-

tributions for particles and holes are interchanged if the rates
oscillatory order parameter was also found earlier in a modegb,; andq; are interchanged. The exponent for the decay of
for comparative learninf26]. However the temporal behav- both the particle and hole distributions ds=1.85.
ior in our case is quite different from the almost periodic  Finally we note that the two-point correlation functions in
fluctuation in the latter model, as the Fourier spectrum of théhe steady state of the SP model exhibit a scaling form in
time series iMQ* (t) in our case follows a broad power law. r/L, and have the same cusp exponents as in the coarsening
We have not pursued a detailed study of the temporal behavegime (with £ being replaced by ). For the EW surface,
ior any further. the scaling curve shown in the inset of Fig. 23 exhibits a

The fluctuation ofQ* in Fig. 21 gives rise to an interest- cusp witha=0.5. The corresponding curve for the KPZ sur-
ing question: Does the system become disordered and losace, shown in the inset of Fig. 24, also exhibits a cusp, with
the phase ordering property when the va@ falls to low  «@=0.25. The fact thamn.<1 in these curves, as for those in
values? The answer is no, as is very clearly brought out inhe coarsening regime of the SP model, is indicative of the
Fig. 22 in whichQ*=0Q(1), Q(2), andQ(3) have been fact that the pure phases which are particle rich also have
plotted simultaneously as a function of timmdor a single holes in them. In this respect, the pure phases differ from
evolution of the system. We observe that a dipQi is  their CD model counterparts.
accompanied by a simultaneous rise in the value of either We have seen above that the FDPO of the sliding particles
Q(2) orQ(3). This implies that whenever the system losesin the SP model is qualitatively of the same type as in the CD
models for the underlying surfaces. We measured the aver-
age overlapO=(s;o;) to obtain a quantitative estimate of
the extent of correlation between the sliding partidlesies
and the valleyghills) of the underlying surface. We found
that it is nonzero as we expected, e.g., for the EW surface
0=0.26 and 0.39 corresponding $ being defined within
CD2 and CD3 models. The overlap is greater in case of CD3
model, since the domains are most often smaller thé&h
and this matches with the fact that particle clusters are also
of size<L/2. On the other hand, domains in the CD2 model
can be almost as large &s For the KPZ surfaceQ=0.26
corresponding to the overlap between particles and the
coarse-grained depth variablgg}'s of the CD3 model.

0.01

P()

0.0001 ¢

176

0.01

P()

0.0001 ¢

176

1

V. ROBUSTNESS OF FDPO

FIG. 24. P(l) vs| for clusters of particlegsymbols and holes ) .
(lines in the SP model with a KPZ surface, for different system e did several numerical tests to check the robustness of

sizesL =256, 512, 1024, and 2048. The data show the existence dhe fluctuation dominated ordered state for the sliding par-
a particle-hole asymmetry. A power law with=1.85 has been ticle (SP) problem.

shown along with the curves as a guide to the eye. The inset shows (i) We explored the effect of varying the ratR=p,/p;,
collapsed data of steady staigr) for L=64, 128, 256, and 512 as the relative rate at which the particles get updated as com-
functions ofr/L; the scaling function has a cusp with=0.25. pared to the surface.
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FIG. 27. For a tilted KPZ surface, the curves fir,t) as a
FIG. 25. S/ is plotted againskZ, with R=5 (triangles, R function of r all overlap at different timeg=400x2" (with n
=1 (@), andR=0.2 (O) for EW (lower curve$ and KPZ(upper =0,..., 6),indicating that there is no growing length scalét).
curves surfaces at=400x 2°. For clarity of display, we have mul- Thus tilt removes FDPO.
tiplied the data for the KPZ surface by a factor of 2.
surface, and is also shown in Fig. 28pper curves The
(i) We allowed the possibility of a small but finite rate observed slope of-1.25 implies that the cusp exponent re-

(g,#0) of the particles to hop uphill on a localslope. mains «=0.25 for all of them. We conclude that the varia-
(iii) We made the overall slope nonzero, in the case of th&ion of update rates affects the degree of ordering but not the

KPZ surface. asymptotic scaling properties, as indicated by the constancy
We found that FDPO stays with propertiég and (i),  of the cusp exponent.

while it is lost with property(iii). For the EW surface, with So far we have considered the uphill hopping rate to be

R=0.2 (i.e., the surface moving five times slower than thestrictly zero, i.e.,p,/q,=%. By allowing for q,#0, i.e.,
sliding particle$, we found thatQ, remains close to but allowing for an upward motion of the particles, we saw that
slightly larger than 0.18, the value f&=1. We checked the the FDPO persists so long @>q,. In Fig. 26, we show
correlation functionC(r,t) in the coarsening regime, and S(K)/L as a function ofkZ, at a large timet for EW and
found that it has a cusp as a functionréfZ with the expo- ~KPZ surfaces, respectively, when the rafig/q,=5. We
nenta=0.5. ForR=5 (i.e., the surface moving five times find that the slopes are-1.5 and—1.25 in the two cases,
fastey, we found Q;=0.15. The latter value indicates a indicating that the values of the cusp exponents are gtill
lesser degree of ordering, and this is also mirrored in the=0.5 anda=0.25, respectively, for the two surfaces. This
two-point functionC(r,t): the collapse of the data as a func- points to the universality of the valug=0.5 (EW surface
tion of r/£ occurs beyond a time which is greater than thatand a=0.25 (KPZ surfacg¢ over a range of models with
for R=1, i.e., the scaling regime sets in much later. Neverdifferent values oR, and also with respect to varying /qs.
theless, at large enough times, the cusp exponent is un- We also investigated the effect of having an overall tilt of
changed &=0.5). Figure 25lower curve$ shows the log- the KPZ surface. This leads to an overall movement of the
log plot of S/L versusk” for the three rateR=5, 1, and transverse surface fluctuations, which are the analogs of ki-
0.2. All of them have slopes 1.5, which indicatex=0.5.  nematic waves in particle systeif7,28. In the presence of

A similar evaluation ofC was also done for the KPZ such a wave, the profile of hills and valleys of the surface

sweep across the system at finite speed, and the particles do
1 T : , : not have enough time to cluster. Consequently the phenom-
g enon of FDPO is completely destroyed. In Fig. 27 we show

C(r,t) as a function ofr [there is no scaling by (t)] for
severalt. The curves are independenttpin the absence of
coarsening towards a phase ordered state.

0.1

001

S/L

VI. CONCLUSION

0.001 } In this paper we have discussed the possibility of phase
ordering of a sort which is dominated by strong fluctuations.
In the steady state, these fluctuations lead to variations of the
order parameter of order unity, but the system stays ordered
in the sense that with probability 1, a finite fraction of the
system is occupied by a single phase. The value of this frac-
FIG. 26. S/ is plotted againskZ, for t=400x 2°, with a finite  tion fluctuates in time, leading to a broad probability distri-
uphill hopping rate for both EWlower curve and KPZ (upper ~ bution of the order parameter.
curve surfaces. The data for the KPZ surface are multiplied by a We demonstrated these features in two types of models
factor of 2 for clarity of display. having to do with surface fluctuations—the first, a coarse-

0.0001

0.1
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grained depth(CD) model where we could establish these sive scalar limit of a crystal driven through a dissipative
properties analytically, and the second a model of slidingnedium, for instance a sedimenting colloidal crydgt28].
particles (SP mode)l on the surface in question. For these Finally, related models describe the formation of domains in
models we found that besidés) the broad probability dis- growing binary films[25]. It would be interesting to see if
tribution of the order parametéwhich we may take to be ideas related to FDPO play a role in any of these systems.
the defining characteristic of FDRCthe steady state was |t would also be interesting to examine fluctuating phase-
also characterized bp) power laws of cluster size distribu- ordered states in other nonequilibrium systems from the
tions and(c) cusps in the scaled two-point correlation func- point of view of FDPO. For instance, in a study of jamming
tion, associated with the breakdown of the Porod law. ThQn the bus-route model studied in Réz_g]' the |argest empty
connection betweeth) and(c) was elucidated using the in- stretch in front of a bus was found to be of orderand it is
dependent interval approximation. Further, an extremal staargued that such a stretch survives for a time which is pro-
tistics argument showed that the largest cluster drawn fro%ortionm toL? for a nonvanishing rate of arrival of the pas-
the power-law distribution is of the order of the system sizesengers. These features are reminescent of the behaviors of
this implies a macroscopic ordered region, so that within outhe CD and SP models derived from the Edwards-Wilkinson
models, propertiega) and (b) are connected. model discussed above. However, more work is required to
There are several open questions. Does fluctuationmake a clear statement about FDPO in the bus-route model.
dominated phase ordering occur in other, completely differ- |5 general, fluctuation-dominated phase ordering is evi-
ent types of systems as well? Are properfigsand(c) nec-  dently a possibililty that should be kept in mind when dis-
essarily concomitant with the defining propert®) of  cussing new situations involving phase ordering in nonequi-
FDPO? Can one characterize quantitatively the dynamica|brium systems, both in theory and in experiment.
behavior in the FDPO steady state?
Our model of particles sliding on a fluctuating surface
relates to several physical systems of interest. First, it de- ACKNOWLEDGMENTS
scribes a mechanism of large scale clustering in vibrated
granular media, provided the vibrations are random both in  We acknowledge useful discussions with M. R. Evans, D.
space and time. Second, it describes a special (tasgas- Dhar, G. Manoj, S. Ramaswamy, and C. Dasgupta.
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