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Structural relaxation and frequency-dependent specific heat in a supercooled liquid

Upendra Harbola and Shankar P. Das
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
(Received 22 March 2001; published 24 September 001

We have studied the relation between the structural relaxation and the frequency-dependent thermal response
or the specific heat,(w), in a supercooled liquid. The mode coupling the@ACT) results are used to obtain
cp(w) corresponding to different wave vectors. Due to the two-step relaxation process present in the MCT, an
extra peak, in addition to the low-frequency peak, is predicted in specific heat at high frequency.
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[. INTRODUCTION heat solely in terms of the structural relaxation in the super-
cooled liquid.

Understanding the complex relaxation behavior in super- For structural relaxation—the microscopic model for the
cooled liquids has been a field of much research interest itiquid dynamics, namely, the mode coupling thedWCT)
recent times. In this regard the response of a system to dras been studied by a number of authors in recent years
energy fluctuation, namely, the frequency dependence d8.9]. A simple applicatiorj2] of the MCT to fit the specific
specific heat of a supercooled liquid has been investigated byeat data indicated that a very large exponent is required to
a number of authors. Generally, specific heat is a propertjnatch the experimental data to power law divergence. In the
that is usually linked to the thermodynamic property of aPresent work we alsp use the MCT as a model for structural
system. The pioneering experiments done by Birge and Ng€laxation and obtain the corresponding frequency depen-

gel[1] have studied the dynamic response in glassy systemg,ence of t_he Iongitudinal_ \_/iscosity._We then use it to pre_dict
namely, glycerol and propylene and obtained interesting d the behavior of the specific heat with frequency as predicted

namical response behavior, expressed in terms of Hom the theory proposed in Ref7]. In the microscopic

frequency-dependent specific h&2k In an experiment usu- model of the mode coupling theory the wave number depen-

. dence of the longitudinal viscosity is obtained using proper
_ally the frequency.-dependent product of thermal C':md'“'f:tlv'input for the structure factor of the liquid. For this purpose
ity («) and specific heakcy(w) is measured. However, in

] .. standard results from the integral equations for simple lig-
the temperature range 190-220 K, over which we are iNteryids are used for the structure factor. The frequency-
ested herex has weak frequency dependen®4] and  jependent specific heat is then computed for different wave
hence the dynamics observed in the producf(w) is €n-  nympers. Thus, the effect of the response to heat fluctuations
tirely due to the frequency dependence of the specific heagan be computed over different length and time scales in the
The theoretical modeling for the frequency dependence oOfresent approach. While this extends the theory with scope
specific heat in a supercooled liquid has been studied bgf further comparison, the main goal of the present work is
various author$5,6]. A new internal mode was proposed to to test if the frequency dependence of the specific heat can be
be present in the supercooled liquid to explain the frequencyunderstood solely in terms of the structural relaxation and if
dependent response. In a simple analysis, Zwangig, howevehe two sets of measurements agree in a self-consistent man-
had argued7] that the frequency-dependence of the specifimer. The paper is organized as follows. In the following sec-
heat can be obtained without introducing any such internalion, Sec. Il, we consider the schematic model for the time
mode. This work showed that what is measured as th@ependence of the viscosity and in Sec. lll, we compare the
frequency-dependent specific heat is actually related to thaheoretical results with the experimental observations. A
of the longitudinal viscosity in the liquid. In this model the wave number dependent calculation for the specific heat is
dynamics of fluctuations around the equilibrium was studiecpresented in Sec. VI. In Sec. V, we present the mode cou-
in terms of a simple set of slow variables of hydrodynamicspling results for the specific heat over different length scales
of fluids. These equations of motion used were the conse@nd temperatures. In the last section we discuss the results.
vation laws of mass, momentum, and energy in the system.

The resulting formula for the specific heat is equivalent to

linking of the structural relaxation in a supercooled liquid to Il. FREQUENCY-DEPENDENT SPECIFIC HEAT

the frequency dependence of the specific heat. In the present i , ,
work we take the data from the specific heat measurement, SINce we are concerned here with the dynamic properties

[1] and extract the frequency dependence of the viscosity 8& @ Supercooled liquid, an obvious choice is to consider a

will be required from such a formulation proposed in Ref. ydrodynamic model for the system. To start with, we write
[7]. down the linearized hydrodynamic equations

We then address the question if this value of the longitu-
dinal viscosity will indeed be self consistent with indepen-
dent measurements on the structural properties. The basic ﬂﬁ +Y.3=0 1)
idea is to consider the frequency dependence of the specific at P 9=5
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M(w)

Ko =y+iol(w),

(10

wherevy is the ratio of the long time limit of the specific heat
Cp(w=0) toc, . Equation(7) is the key formula used in this
paper for testing the idea of modeling the frequency depen-

governing the time evolution of fluctuations of conservegdence in the specific heat solely in terms of the structural

variables mass density), momentum density&), and the
temperaturglenergy T. Here p, and T, represent equilib-
rium density and temperature, respectively, @pdand 6T
are the fluctuations from the equilibrium values. is the
specific heat per unit mass at constant volume arehd ¢

are the shear and bulk viscosities, respectively. The viscosit

coefficients here are divided by the density. The fluctuatio
of the pressurd® around the equilibrium value can be ex-
panded to the lowest order in density and temperature as

JP
) 5p+(
T

dp

aP

EP:( aT

) oT, (4)
p

where we have assumed that the change of the pressure func-

tional with the density function at the equilibrium can be

replaced by the equilibrium partial derivative — replaced by

the corresponding thermodynamic quantity. Using the abov

equations the energy conservation equat®)meduces to the

Fourier heat law for thermal fluctuations,
Lw5T=,LL(w)V25T, (5)

with the frequency-dependent thermal diffusivjiy ) de-
fined in terms of the specific heat as

= . 6
@)= (6)
The specific heat (w) is expressed in the form
K+(0)
Cpl@)=Cy (=) 5. ()

The quantityK(w) is called the generalized bulk modulus
and is given by
Kr(w)
Ko

=1+ i0wl'(w) 8

and is expressed in terms of the reduced folifw)
= y(w)/c? of the frequency-dependent longitudinal viscos-
ity 7(w). In equation(8), Kq is the w=0 limit of K{(w).
Obviously for the liquid state with finite viscosity the zero

frequency limit ofK(w) relates to the thermodynamic prop-
erty of the supercooled liquid. The sound spegds given

by
(3
.

A frequency-dependent longitudinal modulMy ), the in-
verse of compliance, is defined along a similar line as

oP

5 =

=—. 9
Po

relaxation. In obtaining equatiofb), one also needs to as-
sume that the following self-consistent relation holds:

Alw)=(y—1)= <1.

v (11)

(a))[a)—l—ivl\W(w)]

Yiere we have expressdd in the dimensionless form as
M(w)=M(w)/Kg. V:CS/,LLO, with u,=«/(p,C,) is the
bare thermal diffusivity. We test the validity of the assump-
tion (11) in the frequency range where the analysis with re-
spect to experimental data is made.

n—

IIl. COMPARISON OF EXPERIMENTAL DATA

In this section we test the self-consistency in expressing
the frequency-dependent data on specific heat and structural
relaxation. For the supercooled liquids the relaxation over
?ongest time scales, i.e. the relaxations, follows the
stretched exponential behavior

7n(t) =1, eXF{ - (

where 7, is the amplitude ang is the stretching parameter
that defines the degree of deviation from the exponential
decay. In fitting the specific heat data we use the dimension-
less form for the specific heat ratio

oD
1+ ol (w)

t

y

(12

Cp(w)=cC,| 1+ (13

which reduces the formula in a dimensionless form. We fit
the specific heat data of Réfl] to the formula(13) using a
simple stretched exponentidll2) relaxation function. In
Figs. 1a and Xb) we show the respective fitting of the
experimental data for the real and imaginary partg gf)
in the supercooled glycerol for three different temperatures,
T=201.4 K, 203.9 K, and 211.4 K. The points marked with
dots, circles, and squares correspond to the experimental data
of Refs.[1,20] for supercooled glycerol. The arrows in Fig.
1(b) indicate the peak positions in the imaginary parts of the
viscosities at the corresponding temperatures. In calculating
the specific heat, the three parametE($=0), the relax-
ation time 7 and the stretching exponept are used as the
free parameters ang=1.86. Using the best fit values of the
parameters with the specific heat data we compute the struc-
tural properties of the liquid given by modulM(w) de-
fined in Eq.(10) and the longitudinal viscosity. The resulting
behaviors for these quantities are compared with the experi-
mental results as shown in Figs. 2 and 3.

In Fig. 2, we show the viscosity in the zero frequency
limit in units of K, 7, wherer, is the unit of time used. In the
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0.5 T T T T T T T [ T T FIG. 2. Temperature variation of viscosity in supercooled glyc-
i ] erol as obtained from the specific heat fitting. Viscosity is given in
04 /‘”\( - units of K,7,. Experimental results for the viscosity are shown in
B . the inset. The continuous lieoth in the main figure and the inget
T 03 B ] is the Vogal-Fulcher fit,p= 7, exdA(T—T,)], with A=2559 K
. L - andT,=128 K. T, is the glass transition temperature for the glyc-
=) - T erol (see Ref[13)).
\oo. 0.2 _-
o1 N (dotted lines. The frequency in each case is expressed in
' - terms of the ratio with the corresponding peak positigyin
0 Lows® T T e the imaginary part. The corresponding results from measure-
-1 o T T4 T 3 ments on the modulud [14] are also shown with filled
(b) log(e*) — circles. In Fig. 4 we show the plot of the peak positions as

_ ) _ ~ found in the fitting of the specific heat curves with different
FIG. 1. (a) Continuous lines show the theory fit to the experi- temperatures. As the temperature is decreased, peak in the
mental datadots, square and circlesf Refs.[1,20] for the real  jmaginary part of the specific heat shifts towards the lower
partcy(w) of the specific heafic,(w)] of supercooled glycerol at o mperatures, signifying the slower relaxations in the system.
three temperature$=201.4 K(continuous ling 203.9 K (long The solid line indicates VF fit witfr,= 128 K. In Fig. 5, we
. . : ‘ .9,
dashedi and 211.4 K(dotted. o* =wr,, Wherer, is the units of -y, e frequency-dependent specific heat and the viscosity
time used(see text. (b) Imaginary partscp(“’) Of.Spec'f'C heat function (in the inset at the same temperature. The peaks
corresponding to the real parts shown(@ Theoretical values are appear nearly at the same position on the frequency scale for
plotted as continuous lines. Dots, squares, and circles are the eﬁ;]e WO quantities showind that the dominant time scales are
perimental data of Refg1,20]. Arrows along the frequency axis m inqth W Ig:in v we test the validity of th
indicate the peak position in the imaginary part of the correspondzzsuemptior(ell) ?hz:?issets:.rucia?ir{ re?icf?i?]g thee I?ouri)e/roheate
ing viscosity.
9 Y law (5) with the frequency-dependent specific heat — de-

inset we show the corresponding experimental dae11] fineq abqve. For this we calculate both the el (w)] and
for the viscosity. The experimental data shown here is over 1€ imaginaryf A"(w)] parts of{ A(w)] for the supercooled
much wider temperature ran¢@17—190 K — both theoret-  dlycerol. In Fig. 6 we plot both the real and the imaginary
ical and experimental data agree with the Vogel-FulcheParts ofA(w) on the frequency range over which specific
(VF) fit (p~exdA(T-T,)] for T,=128 K and A heat(frequency dept_ande)ns. observed. These figures clearly
=2559 K shown in both the figure and the inset as soligSshow that the quantith (w) is much smaller as compared to
lines. The zero frequency modulks is roughly temperature Unity over this frequency range. This substantiates the as-
independenf12] over the range considered here. We noticeSUmption made in the preceding section to reach the Fourier
that the viscosity increases by four orders of magnitude af€at law in a generalized sense.
the temperature is decreased over a small ra2ge—220 K
near the glass transition temperatufig €190 K) [13]. IV. WAVE VECTOR DEPENDENCE OF SPECIFIC HEAT
We define a normalized longitudinal modulus '

In the preceding section, we studied the specific heat and
_ _ (14) other quantities like longitudinal viscosity and modulus us-
M () —M(0) ing a schematic model to show the self-consistency of the
] . . relation between structural relaxation and the frequency de-
In Figs. 38 and 3b) we show the real and imaginary parts pendence of specific heat. Here we consider the wave vector
of M, respectively, denoted bM'(w) and imaginary and frequency-dependent specific heat in a liquid. Starting
M"(w) against the frequency for the three different temperafrom the generalized hydrodynamic equations for the con-
tures, T=203.9 K (solid), 211.4 K (dashegl and 221.5 K served densities iq space, we obtain an equation,

o) M(w)—M(0)
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FIG. 3. (a) Real partM’(w) of the normalized longitudinal

modulusM (w) (see textis plotted at three different temperatures
T=203.9 K(solid line), 211.4 K(dashed ling and 221.5 K(dot-
ted line. Dots are the experimental results of Ref4]. Frequency
axis is scaled with respect to the peak valugs for the three
different temperatures an@* =wr,. (b) Imaginary parts of the

normalized longitudinal modulud () corresponding to the real
parts shown in(@). Dots are the experimental results of Rief4].
w*=wT,.

LwpoC,oT(q,w)=— q2K5T(q,w)

quwTo (
p0w27 quT(q1 w)

P
aT

2
) 6T(q,0)
p

(19

that describes dynamics of the energy fluctuations over dif-

ferent length and time scaleK;(q,w) is the wave vector
and frequency-dependent bulk modulus given by

KT(q,(U)

W=1+ LwF(q,w),

(16)
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FIG. 4. Peak positionw, in the imaginary part of the specific
heat is plotted as a function of the temperaflir€ontinuous line is
the VF fit: wp=w, exd —A(T—To)]; with w,=1.0x10" Hz, A
=2559 KandT,=128 K. T, is same as in Fig. Zu; is the peak
frequency in the units of %{.

0.93 0.95

whereI'(qg,w) is the wave vector and frequency-dependent
longitudinal viscosity divided by the square of the speed of
soundci(q)z K+(q)/p,-. K1(q) is the zero frequency limit
of K+(g,w). The energy equatiofil5) reduces to the wave
vector dependent Fourier heat equation

L dT(0,@)=—0°x(q,0) 5T(d, ) (17)
where x(q,0) = «/[psCp(d,w)] is thermal diffusivity and
Cp(g,w) is theg-dependent specific heat given by

1

1+ ol (q,w) (18

Cp(qvw)zcv l+(7q_l)

and vy, is the ratioc,(q)/c, . Here in obtaining the Fourier
heat equatiori17), we have assumed that the quantity

0.5

log, (@) —

FIG. 5. Imaginary part of the specific heat(w) at T
=214 K. Arrow along the frequency axis at 2.45 indicates the peak
position in the imaginary part of the corresponding viscosity shown
in the inset.
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FIG. 6. Log(base 10 of the real(continuous curveand imagi- FIG. 7. Mode coupling viscositfin units of (1802)Jm/e] is
nary parts(dotted curvg of A(w)(see text, for supercooled glyc-  piotted as a function of temperature. For temperatufies T,) it
erol, are plotted with frequency at=201.4 K. 0*=wr. follows a power law behaviotshown as a continuous linevith

exponent 1.9. Arrow along the temperature axi@fT=1.36 in-
dicates the power law divergence as predicted by the simplified
<1, (190  version of the MCT. Temperature is in the unitsedKg .

w

M(q,®)[ 0+ r(q)M(q, )

(yq_l)

estimate the cutoff parameters of the theory so that the shear
viscosity obtained from the self consistent MCI5] agrees
HNith the computer simulation results. For the simulation re-
sults on one-component model we use the recent results of
Ruocco and coworkerfl6] using special techniques that
avoid the typical problem of crystallization in one-

V. RESULTS FROM THE MODE COUPLING THEORY component systems. From the self-consistent results for the

In this section, we consider the time-dependent Iongitudi-.denS'ty correlation functions we compute the mode coupling

nal viscosity obtained from a microscopic theory of statisti-'mm‘:Jrals for the longitudinal part of the memory function

o _ . elated to the decay of the density correlation functions.
cal mechanics, instead of taking inputs from experimenta - . - -
. ; The longitudinal viscosity in the zero wave number limit
results as was done in the Sec. Ill. We predict structural

aspects, i.e., the wave vector dependence in the specific he'gtShOWn in Fig. 7(with dots for the temperature range

at different frequencies aroundT.. The longitudinal viscosity shown for the tem-
In the simplest form the self-consistent mode coupling{erature range arourit, /T less than 1, follows the power

wherev(q) = cg(q)/,u0 and I\W(q,w) =y(q) + ol (q,w), is
much smaller as compared to unity. In the long wavelengt
limit, this quantity reduces td (w) given by Eq.(11).

theory predicts a sharp transition of the supercooled liquid t ivr; bgrhaat“ljlr(érsar?i SESNS] in th?/ifslggrs?twgihvg?n;sm\j\(/)i?hs l'g\?v'e':or
nonergodic phase. The temperature at which this transitio P 9 an, y 9 P

) o aw exponent equal to 1.9 and for lower temperatures
takes place is known as the critical temperattge In later .
versions, however, it was shown that due to coupling of dengTC/T>1) the behavior follows a Vogel-Fulcher for(not

sity fluctuations with currents this sharp transition is elimi- shown with VF parameterT,=0.023. This is usual with

nated — the full model with the cutoff mechanism inc:ludedresur[S of the extended MCT17]. We then use this

is termed as the extended model. In this work we Considev_eque_ncy-dependent memory funcf[ion or the longitudinal
the extended model where the cutoff function is adjusted tanscosny to compute the corresponding frequency-dependent

obtain agreement with the viscosity of the supercooled quuidSpec'f'C heat. In the mode coupling approximation, the nor-

to the results obtained from computer simulations. The de[n"’lllzed longitudinal viscosity'(q,w) is given by

tails of the model and the scheme for computation of the 1

density correlation function using the proper cutoff function  T'(q,w)= _s(q)f dte“"tf
is presented elsewhefé5]. We consider a one-component 2n
Lennard-JoneslLJ) system for computing the structural re- 8 (G-F) 2
laxation properties using the MCT. The temperatftifeand A > e s P
densityp* are expressed in the standard unitseffg and * q c(lg k|)} kDyla—k),

o°, respectivelye is the unit of energy in a LJ system and (20)

is the diameter of a particle. For the system considered here

(LJ), T, (in units of e/Kg) is around 0.93. In computing the where ¢(q,t) and S(q) represent density correlation func-
dynamical behavior of the density correlation function wetion and the structure factor, respectivetyq) is the direct

dk
(2m)3

ik
—C
q

(k)
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FIG. 8. (a) MCT results for the real part of the normalized
specific heat; (d,0)=[cy(g,w)—c,1/[cp(q) —c,] for three wave (b)
vectorsq* =0 (dotted, 7.05 (continuou$, and 30(dashed at T*
=0.559. Here frequency* is in the units of the inverse of Lenard-
Jones time,r=mo?e. (b) Imaginary part opr(q,a)) from - ) R )
the MCT corresponding to the real parts showrdh Inset shows ~ Cp(d,@) with temperature fog=0. T* is in the units ofe/Kg.

the secondary peaks predicted by the MCT for the same three &/0ng the vertical axis, we have showfj = w X 1%. (b) Variation
values. of the peak frequencys, with wave vectorg*. , reaches to

minimum atq* =7.05 at which the structure factor shows a maxi-
mum. w;=w7'>< 10%. Solid line is a smooth fit to the calculated

correlation function of the systeny. denotes the unit vector Values ofw, (shown with dots at different wave vectorg*.
alongﬁ and n is the number density. Using the above ex-
pression for the longitudinal viscosity in E€L8), we calcu-  figure shows Vogel-Fulcher fit witiT,=0.014. This T,
late theg-dependent specific heat in the supercooled liquidvalue is different from the one obtained by fitting the viscos-
The only input required in calculating the longitudinal vis- ity data as mentioned above. The slight difference in the two
cosity is the structure factor of the system. T, values is due to the fact that the viscosity follows the

In Figs. 8a) and 8b) we show, respectively, the real and Vvogel-Fulcher behavior over a smaller temperature range
imaginary part ofcy (q,w) vs the frequency. This is shown (T<T.) while the peak frequency fits it over the entire tem-
here for three different wave vectorg; =0, 7.05(peak of  perature range considered here. In order to indicate the struc-
the structure factgr and 30(upper cutoff taken for th&  tural dependence we also show in Figb)9 the dependence
integra) at temperaturel* =0.559. Hereq* is the wave of the peak position on the wave numlgpat a fixed tem-
vector expressed in the units of The insets of the corre- perature T* =0.559. The peak frequency signifying the
sponding figures show the secondary peak predicted for faglominant time scale for relaxation at different wave numbers
processes at very high frequency window — representing théollows the nature of the structure factor. It shows a mini-
so calledB processes in the supercooled liquid. The peak irmum atq value that corresponds to the peak in the structure
the imaginary part shifts to lower frequency with lowering of factor of the liquid. Successive minima in the figure corre-
temperature. In Fig. (@) we show the variation of the peak spond to the other less pronounced maxima in the structure
position with temperature of the liquid. The solid line in the factor.

FIG. 9. (a) Variation of the peak positiow, in the specific heat
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VI. DISCUSSION cooled liquids, there is a corresponding implication on the

. . specific heat curve predicting a peak at very high frequency
In Sec. Ill, we considered two types of experlmental MeAn the specific heat. This is shown in the inset of Fig)8It

surements on the supercooled liquids, respectlvely_, related_#g a consequence of secondary relaxation in the supercooled

was done to check the consistency of the formula for speciﬁﬁqu'd' Due to the constraints on the MCT at very low tem-

heat obtained from simple analysis of the hydrodynamic%eratures’ we could not study the thermal response of the

equations. The comparisons done in Sec. Il indicate that thgystem clpse to the_ glass tr_ansmon temp_erat[ge HOW
o gver, as is shown in the Fig.(®, the main peak in the
frequency-dependent specific heat can be understood I~ . . .
.specific heat moves towards the smaller frequencies with de-

terms of the structural relaxation data in terms of the analys'%reasing temperature, thus at the temperatures very close to

proposed in Refl7]. " . X
Subsequently we apply the standard forms of the seIfEhe glass transition one can expect the two peaks to lie fur
ther apart from each other.

consistent mode coupling theory to compute the frequency We have ignored here effects of nonlinearities in the en-

dependence of the viscosity and compute those for the spe- . ; )
cific heat in a supercooled LJ system. Here we use the fory 9 equation 18,19, This can produce frequency depen

mula in terms of the generalized hydrodynamics, extendin dence on other transport coefficients like thermal conductiv-

the model to largé, or small wavelengths. We find that the gi’ty as well. However, observation of such a peak will further

dispersion in the specific heat decreases as we go 1o thsérengthen the validity of the simple analysis presented here

smaller length scaleghigher g*) with corresponding in- In energy transport in terms of structural relaxation behavior.
crease in spectrum width. This demonstrates the fact that at
short length scales the relaxation is fast and here the memory
effects reflecting cooperativeness are not strong.

The peak positionw, in the imaginary part of the We are grateful to Professor N. O. Berge for providing
c;(q,w) shifts to higher frequency with the increase of thedata on specific heat measurements. U.H. acknowledges the
corresponding wave vectg®* . It however reaches to a mini- financial support from the University Grant Commission, In-
mum frequency at the structure factor peak. Finally, since thelia. The authors thank the Hahn Meitner Institute, Berlin,
MCT relates to the two-step relaxation process in superGermany for providing computational facilities.
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