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Structural relaxation and frequency-dependent specific heat in a supercooled liquid

Upendra Harbola and Shankar P. Das
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

~Received 22 March 2001; published 24 September 2001!

We have studied the relation between the structural relaxation and the frequency-dependent thermal response
or the specific heat,cp(v), in a supercooled liquid. The mode coupling theory~MCT! results are used to obtain
cp(v) corresponding to different wave vectors. Due to the two-step relaxation process present in the MCT, an
extra peak, in addition to the low-frequency peak, is predicted in specific heat at high frequency.

DOI: 10.1103/PhysRevE.64.046122 PACS number~s!: 64.70.Pf, 05.60.2k, 64.60.Cn, 47.35.1i
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I. INTRODUCTION

Understanding the complex relaxation behavior in sup
cooled liquids has been a field of much research interes
recent times. In this regard the response of a system to
energy fluctuation, namely, the frequency dependence
specific heat of a supercooled liquid has been investigate
a number of authors. Generally, specific heat is a prop
that is usually linked to the thermodynamic property of
system. The pioneering experiments done by Birge and
gel @1# have studied the dynamic response in glassy syste
namely, glycerol and propylene and obtained interesting
namical response behavior, expressed in terms o
frequency-dependent specific heat@2#. In an experiment usu
ally the frequency-dependent product of thermal conduc
ity (k) and specific heatkcp(v) is measured. However, in
the temperature range 190–220 K, over which we are in
ested here,k has weak frequency dependence@3,4# and
hence the dynamics observed in the productkcp(v) is en-
tirely due to the frequency dependence of the specific h
The theoretical modeling for the frequency dependence
specific heat in a supercooled liquid has been studied
various authors@5,6#. A new internal mode was proposed
be present in the supercooled liquid to explain the frequen
dependent response. In a simple analysis, Zwangig, howe
had argued@7# that the frequency-dependence of the spec
heat can be obtained without introducing any such inter
mode. This work showed that what is measured as
frequency-dependent specific heat is actually related to
of the longitudinal viscosity in the liquid. In this model th
dynamics of fluctuations around the equilibrium was stud
in terms of a simple set of slow variables of hydrodynam
of fluids. These equations of motion used were the con
vation laws of mass, momentum, and energy in the syst
The resulting formula for the specific heat is equivalent
linking of the structural relaxation in a supercooled liquid
the frequency dependence of the specific heat. In the pre
work we take the data from the specific heat measurem
@1# and extract the frequency dependence of the viscosit
will be required from such a formulation proposed in R
@7#.

We then address the question if this value of the long
dinal viscosity will indeed be self consistent with indepe
dent measurements on the structural properties. The b
idea is to consider the frequency dependence of the spe
1063-651X/2001/64~4!/046122~7!/$20.00 64 0461
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heat solely in terms of the structural relaxation in the sup
cooled liquid.

For structural relaxation—the microscopic model for t
liquid dynamics, namely, the mode coupling theory~MCT!
has been studied by a number of authors in recent y
@8,9#. A simple application@2# of the MCT to fit the specific
heat data indicated that a very large exponent is require
match the experimental data to power law divergence. In
present work we also use the MCT as a model for structu
relaxation and obtain the corresponding frequency dep
dence of the longitudinal viscosity. We then use it to pred
the behavior of the specific heat with frequency as predic
from the theory proposed in Ref.@7#. In the microscopic
model of the mode coupling theory the wave number dep
dence of the longitudinal viscosity is obtained using prop
input for the structure factor of the liquid. For this purpo
standard results from the integral equations for simple
uids are used for the structure factor. The frequen
dependent specific heat is then computed for different w
numbers. Thus, the effect of the response to heat fluctuat
can be computed over different length and time scales in
present approach. While this extends the theory with sc
of further comparison, the main goal of the present work
to test if the frequency dependence of the specific heat ca
understood solely in terms of the structural relaxation an
the two sets of measurements agree in a self-consistent m
ner. The paper is organized as follows. In the following s
tion, Sec. II, we consider the schematic model for the ti
dependence of the viscosity and in Sec. III, we compare
theoretical results with the experimental observations.
wave number dependent calculation for the specific hea
presented in Sec. VI. In Sec. V, we present the mode c
pling results for the specific heat over different length sca
and temperatures. In the last section we discuss the res

II. FREQUENCY-DEPENDENT SPECIFIC HEAT

Since we are concerned here with the dynamic proper
of a supercooled liquid, an obvious choice is to conside
hydrodynamic model for the system. To start with, we wr
down the linearized hydrodynamic equations

]

]t
dr1¹W •gW 50, ~1!
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]gi

]t
1¹ i P2h¹2gW i2S 1

3
h1z D¹ i~¹W •gW !50, ~2!

rocv

]

]t
dT1k¹2T1

To

ro
S ]P

]T D
r

¹W •gW 50, ~3!

governing the time evolution of fluctuations of conserv
variables mass density (r), momentum density (gW ), and the
temperature~energy! T. Here ro and To represent equilib-
rium density and temperature, respectively, anddr and dT
are the fluctuations from the equilibrium values.cv is the
specific heat per unit mass at constant volume andh andz
are the shear and bulk viscosities, respectively. The visco
coefficients here are divided by the density. The fluctuat
of the pressureP around the equilibrium value can be e
panded to the lowest order in density and temperature a

dP5S ]P

]r D
T

dr1S ]P

]T D
r

dT, ~4!

where we have assumed that the change of the pressure
tional with the density function at the equilibrium can b
replaced by the equilibrium partial derivative — replaced
the corresponding thermodynamic quantity. Using the ab
equations the energy conservation equation~3! reduces to the
Fourier heat law for thermal fluctuations,

ivdT5m~v!¹2dT, ~5!

with the frequency-dependent thermal diffusivitym(v) de-
fined in terms of the specific heatcp as

m~v!5
k

rocp~v!
. ~6!

The specific heatcp(v) is expressed in the form

cp~v!5cv1~cp2cv!
KT~0!

KT~v!
. ~7!

The quantityKT(v) is called the generalized bulk modulu
and is given by

KT~v!

K0
511ivG~v! ~8!

and is expressed in terms of the reduced formG(v)
5h l(v)/co

2 of the frequency-dependent longitudinal visco
ity h l(v). In equation~8!, K0 is the v50 limit of KT(v).
Obviously for the liquid state with finite viscosity the ze
frequency limit ofKT(v) relates to the thermodynamic prop
erty of the supercooled liquid. The sound speedco is given
by

co
25S dP

dr D
T

5
K0

ro
. ~9!

A frequency-dependent longitudinal modulusM (v), the in-
verse of compliance, is defined along a similar line as
04612
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M ~v!

K0
5g1ivG~v!, ~10!

whereg is the ratio of the long time limit of the specific hea
cp(v50) to cv . Equation~7! is the key formula used in this
paper for testing the idea of modeling the frequency dep
dence in the specific heat solely in terms of the structu
relaxation. In obtaining equation~5!, one also needs to as
sume that the following self-consistent relation holds:

D~v![~g21!
v

M̄ ~v!@v1 inM̄ ~v!#
!1. ~11!

Here we have expressedM in the dimensionless form a
M̄ (v)5M (v)/K0 . n5c0

2/mo , with mo5k/(rocv) is the
bare thermal diffusivity. We test the validity of the assum
tion ~11! in the frequency range where the analysis with
spect to experimental data is made.

III. COMPARISON OF EXPERIMENTAL DATA

In this section we test the self-consistency in express
the frequency-dependent data on specific heat and struc
relaxation. For the supercooled liquids the relaxation o
longest time scales, i.e. thea relaxations, follows the
stretched exponential behavior

h~ t !5ho expF2S t

t D bG , ~12!

whereho is the amplitude andb is the stretching paramete
that defines the degree of deviation from the exponen
decay. In fitting the specific heat data we use the dimens
less form for the specific heat ratio

cp~v!5cvF11
~g21!

11ivG~v!G , ~13!

which reduces the formula in a dimensionless form. We
the specific heat data of Ref.@1# to the formula~13! using a
simple stretched exponential~12! relaxation function. In
Figs. 1~a! and 1~b! we show the respective fitting of th
experimental data for the real and imaginary parts ofcp(v)
in the supercooled glycerol for three different temperatur
T5201.4 K, 203.9 K, and 211.4 K. The points marked w
dots, circles, and squares correspond to the experimental
of Refs.@1,20# for supercooled glycerol. The arrows in Fig
1~b! indicate the peak positions in the imaginary parts of
viscosities at the corresponding temperatures. In calcula
the specific heat, the three parametersG(t50), the relax-
ation timet and the stretching exponentb are used as the
free parameters andg51.86. Using the best fit values of th
parameters with the specific heat data we compute the s
tural properties of the liquid given by modulusM (v) de-
fined in Eq.~10! and the longitudinal viscosity. The resultin
behaviors for these quantities are compared with the exp
mental results as shown in Figs. 2 and 3.

In Fig. 2, we show the viscosityh in the zero frequency
limit in units of Koto whereto is the unit of time used. In the
2-2
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inset we show the corresponding experimental data@10,11#
for the viscosity. The experimental data shown here is ov
much wider temperature range~317–190 K! — both theoret-
ical and experimental data agree with the Vogel-Fulc
~VF! fit (h;exp@A/(T2To)# for To5128 K and A
52559 K shown in both the figure and the inset as so
lines. The zero frequency modulusKo is roughly temperature
independent@12# over the range considered here. We not
that the viscosity increases by four orders of magnitude
the temperature is decreased over a small range~200–220 K!
near the glass transition temperature (Tg5190 K) @13#.

We define a normalized longitudinal modulus

M̃ ~v!5
M ~v!2M ~0!

M ~`!2M ~0!
. ~14!

In Figs. 3~a! and 3~b! we show the real and imaginary par
of M̃ , respectively, denoted byM 8(v) and imaginary
M 9(v) against the frequency for the three different tempe
tures,T5203.9 K ~solid!, 211.4 K ~dashed!, and 221.5 K

FIG. 1. ~a! Continuous lines show the theory fit to the expe
mental data~dots, square and circles! of Refs. @1,20# for the real
part cp8(v) of the specific heat@cp(v)# of supercooled glycerol a
three temperaturesT5201.4 K~continuous line!, 203.9 K ~long
dashed! and 211.4 K~dotted!. v* 5vto , whereto is the units of
time used~see text!. ~b! Imaginary partscp9(v) of specific heat
corresponding to the real parts shown in~a!. Theoretical values are
plotted as continuous lines. Dots, squares, and circles are the
perimental data of Refs.@1,20#. Arrows along the frequency axi
indicate the peak position in the imaginary part of the correspo
ing viscosity.
04612
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~dotted! lines. The frequency in each case is expressed
terms of the ratio with the corresponding peak positionvp in
the imaginary part. The corresponding results from meas
ments on the modulusM̃ @14# are also shown with filled
circles. In Fig. 4 we show the plot of the peak positions
found in the fitting of the specific heat curves with differe
temperatures. As the temperature is decreased, peak in
imaginary part of the specific heat shifts towards the low
temperatures, signifying the slower relaxations in the syst
The solid line indicates VF fit withTo5128 K. In Fig. 5, we
show the frequency-dependent specific heat and the visco
function ~in the inset! at the same temperature. The pea
appear nearly at the same position on the frequency scal
the two quantities showing that the dominant time scales
same in the two cases. Finally we test the validity of t
assumption~11! that is crucial in reaching the Fourier he
law ~5! with the frequency-dependent specific heat — d
fined above. For this we calculate both the real@D8(v)# and
the imaginary@D9(v)# parts of@D(v)# for the supercooled
glycerol. In Fig. 6 we plot both the real and the imagina
parts of D(v) on the frequency range over which speci
heat~frequency dependent! is observed. These figures clear
show that the quantityD(v) is much smaller as compared t
unity over this frequency range. This substantiates the
sumption made in the preceding section to reach the Fou
heat law in a generalized sense.

IV. WAVE VECTOR DEPENDENCE OF SPECIFIC HEAT

In the preceding section, we studied the specific heat
other quantities like longitudinal viscosity and modulus u
ing a schematic model to show the self-consistency of
relation between structural relaxation and the frequency
pendence of specific heat. Here we consider the wave ve
and frequency-dependent specific heat in a liquid. Star
from the generalized hydrodynamic equations for the c
served densities inq space, we obtain an equation,

x-

-

FIG. 2. Temperature variation of viscosity in supercooled gly
erol as obtained from the specific heat fitting. Viscosity is given
units of Koto . Experimental results for the viscosity are shown
the inset. The continuous line~both in the main figure and the inse!
is the Vogal-Fulcher fit,h5ho exp@A/(T2To)#, with A52559 K
andTo5128 K. Tg is the glass transition temperature for the gly
erol ~see Ref.@13#!.
2-3
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ivrocvdT~q,v!52q2kdT~q,v!

1
iq2vTo

rov22q2KT~q,v!
S ]P

]T D
r

2

dT~q,v!

~15!

that describes dynamics of the energy fluctuations over
ferent length and time scales.KT(q,v) is the wave vector
and frequency-dependent bulk modulus given by

KT~q,v!

KT~q!
511ivG~q,v!, ~16!

FIG. 3. ~a! Real partM 8(v) of the normalized longitudina

modulusM̃ (v) ~see text! is plotted at three different temperature
T5203.9 K ~solid line!, 211.4 K ~dashed line!, and 221.5 K~dot-
ted line!. Dots are the experimental results of Ref.@14#. Frequency
axis is scaled with respect to the peak valuesvp for the three
different temperatures andv* 5vto . ~b! Imaginary parts of the

normalized longitudinal modulusM̃ (v) corresponding to the rea
parts shown in~a!. Dots are the experimental results of Ref.@14#.
v* 5vto .
04612
f-

whereG(q,v) is the wave vector and frequency-depende
longitudinal viscosity divided by the square of the speed
soundcs

2(q)5KT(q)/ro . KT(q) is the zero frequency limit
of KT(q,v). The energy equation~15! reduces to the wave
vector dependent Fourier heat equation

ivdT~q,v!52q2x~q,v!dT~q,v! ~17!

where x(q,v)5k/@rocp(q,v)# is thermal diffusivity and
cp(q,v) is theq-dependent specific heat given by

cp~q,v!5cvF11~gq21!
1

11ivG~q,v!G ~18!

andgq is the ratiocp(q)/cv . Here in obtaining the Fourie
heat equation~17!, we have assumed that the quantity

FIG. 4. Peak positionvp in the imaginary part of the specific
heat is plotted as a function of the temperatureT. Continuous line is
the VF fit: vp5vo exp@2A/(T2To)#; with vo51.031015 Hz, A
52559 K andTo5128 K. Tg is same as in Fig. 2.vp* is the peak
frequency in the units of 1/to .

FIG. 5. Imaginary part of the specific heatcp9(v) at T
5214 K. Arrow along the frequency axis at 2.45 indicates the p
position in the imaginary part of the corresponding viscosity sho
in the inset.
2-4
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STRUCTURAL RELAXATION AND FREQUENCY- . . . PHYSICAL REVIEW E 64 046122
~gq21!
v

M̄ ~q,v!@v1in~q!M̄ ~q,v!
!1, ~19!

wheren(q)5cs
2(q)/mo and M̄ (q,v)5g(q)1ivG(q,v), is

much smaller as compared to unity. In the long wavelen
limit, this quantity reduces toD(v) given by Eq.~11!.

V. RESULTS FROM THE MODE COUPLING THEORY

In this section, we consider the time-dependent longitu
nal viscosity obtained from a microscopic theory of statis
cal mechanics, instead of taking inputs from experimen
results as was done in the Sec. III. We predict structu
aspects, i.e., the wave vector dependence in the specific
at different frequencies.

In the simplest form the self-consistent mode coupl
theory predicts a sharp transition of the supercooled liquid
nonergodic phase. The temperature at which this transi
takes place is known as the critical temperatureTc . In later
versions, however, it was shown that due to coupling of d
sity fluctuations with currents this sharp transition is elim
nated — the full model with the cutoff mechanism includ
is termed as the extended model. In this work we cons
the extended model where the cutoff function is adjusted
obtain agreement with the viscosity of the supercooled liq
to the results obtained from computer simulations. The
tails of the model and the scheme for computation of
density correlation function using the proper cutoff functi
is presented elsewhere@15#. We consider a one-compone
Lennard-Jones~LJ! system for computing the structural re
laxation properties using the MCT. The temperatureT* and
densityr* are expressed in the standard units ofe/KB and
s3, respectively.e is the unit of energy in a LJ system ands
is the diameter of a particle. For the system considered h
~LJ!, Tc ~in units of e/KB) is around 0.93. In computing th
dynamical behavior of the density correlation function w

FIG. 6. Log~base 10! of the real~continuous curve! and imagi-
nary parts~dotted curve! of D(v)~see text!, for supercooled glyc-
erol, are plotted with frequency atT5201.4 K. v* 5vt.
04612
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estimate the cutoff parameters of the theory so that the s
viscosity obtained from the self consistent MCT@15# agrees
with the computer simulation results. For the simulation
sults on one-component model we use the recent result
Ruocco and coworkers@16# using special techniques tha
avoid the typical problem of crystallization in one
component systems. From the self-consistent results for
density correlation functions we compute the mode coupl
integrals for the longitudinal part of the memory functio
related to the decay of the density correlation functions.

The longitudinal viscosity in the zero wave number lim
is shown in Fig. 7~with dots! for the temperature rang
aroundTc . The longitudinal viscosity shown for the tem
perature range aroundTc /T less than 1, follows the powe
law behavior as shown in the figure with continuous line. F
temperatures higher thanTc , viscosity diverges with power
law exponent equal to 1.9 and for lower temperatu
(Tc /T.1) the behavior follows a Vogel-Fulcher form~not
shown! with VF parameterTo50.023. This is usual with
results of the extended MCT@17#. We then use this
frequency-dependent memory function or the longitudi
viscosity to compute the corresponding frequency-depend
specific heat. In the mode coupling approximation, the n
malized longitudinal viscosityG(q,v) is given by

G~q,v!5
1

2n
S~q!E dteivtE dkW

~2p!3 F q̂•kW

q
c~k!

1
q̂•~qW 2kW !

q
c~ uqW 2kW u!G2

c~k,t !c~ uqW 2kW ,t !,

~20!

where c(q,t) and S(q) represent density correlation func
tion and the structure factor, respectively.c(q) is the direct

FIG. 7. Mode coupling viscosity@in units of (1/bs2)Am/e] is
plotted as a function of temperature. For temperatures (T.Tc) it
follows a power law behavior~shown as a continuous line! with
exponent 1.9. Arrow along the temperature axis atTC /T51.36 in-
dicates the power law divergence as predicted by the simpli
version of the MCT. Temperature is in the units ofe/KB .
2-5
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correlation function of the system.q̂ denotes the unit vecto
along qW and n is the number density. Using the above e
pression for the longitudinal viscosity in Eq.~18!, we calcu-
late theq-dependent specific heat in the supercooled liqu
The only input required in calculating the longitudinal vi
cosity is the structure factor of the system.

In Figs. 8~a! and 8~b! we show, respectively, the real an
imaginary part ofcp* (q,v) vs the frequency. This is show
here for three different wave vectors,q* 50, 7.05~peak of
the structure factor!, and 30~upper cutoff taken for thek
integral! at temperatureT* 50.559. Hereq* is the wave
vector expressed in the units ofs. The insets of the corre
sponding figures show the secondary peak predicted for
processes at very high frequency window — representing
so calledb processes in the supercooled liquid. The peak
the imaginary part shifts to lower frequency with lowering
temperature. In Fig. 9~a! we show the variation of the pea
position with temperature of the liquid. The solid line in th

FIG. 8. ~a! MCT results for the real part of the normalize
specific heatcp* (q,v)5@cp(q,v)2cv#/@cp(q)2cv# for three wave
vectorsq* 50 ~dotted!, 7.05 ~continuous!, and 30~dashed! at T*
50.559. Here frequencyv* is in the units of the inverse of Lenard

Jones time,t5Ams2/e. ~b! Imaginary part of c̃p(q,v) from
the MCT corresponding to the real parts shown in~a!. Inset shows
the secondary peaks predicted by the MCT for the same threq
values.
04612
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figure shows Vogel-Fulcher fit withTo50.014. This To
value is different from the one obtained by fitting the visco
ity data as mentioned above. The slight difference in the t
To values is due to the fact that the viscosity follows t
Vogel-Fulcher behavior over a smaller temperature ra
(T,Tc) while the peak frequency fits it over the entire tem
perature range considered here. In order to indicate the s
tural dependence we also show in Fig. 9~b!, the dependence
of the peak position on the wave numberq at a fixed tem-
perature T* 50.559. The peak frequency signifying th
dominant time scale for relaxation at different wave numb
follows the nature of the structure factor. It shows a mi
mum atq value that corresponds to the peak in the struct
factor of the liquid. Successive minima in the figure corr
spond to the other less pronounced maxima in the struc
factor.

FIG. 9. ~a! Variation of the peak positionvp in the specific heat

c̃p(q,v) with temperature forq50. T* is in the units ofe/KB .
along the vertical axis, we have shownvp* 5vt3102. ~b! Variation
of the peak frequencyvp with wave vectorq* . vp reaches to
minimum atq* 57.05 at which the structure factor shows a ma
mum. vp* 5vt3102. Solid line is a smooth fit to the calculate
values ofvp ~shown with dots! at different wave vectorsq* .
2-6
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VI. DISCUSSION

In Sec. III, we considered two types of experimental m
surements on the supercooled liquids, respectively, relate
the energy fluctuations and the structural relaxations. T
was done to check the consistency of the formula for spec
heat obtained from simple analysis of the hydrodynam
equations. The comparisons done in Sec. III indicate that
frequency-dependent specific heat can be understoo
terms of the structural relaxation data in terms of the anal
proposed in Ref.@7#.

Subsequently we apply the standard forms of the s
consistent mode coupling theory to compute the freque
dependence of the viscosity and compute those for the
cific heat in a supercooled LJ system. Here we use the
mula in terms of the generalized hydrodynamics, extend
the model to largek, or small wavelengths. We find that th
dispersion in the specific heat decreases as we go to
smaller length scales~higher q* ) with corresponding in-
crease in spectrum width. This demonstrates the fact tha
short length scales the relaxation is fast and here the mem
effects reflecting cooperativeness are not strong.

The peak positionvp in the imaginary part of the
cp* (q,v) shifts to higher frequency with the increase of t
corresponding wave vectorq* . It however reaches to a mini
mum frequency at the structure factor peak. Finally, since
MCT relates to the two-step relaxation process in sup
T

04612
-
to
is
c
c
e
in
is

f-
y
e-
r-
g

he

at
ry

e
r-

cooled liquids, there is a corresponding implication on t
specific heat curve predicting a peak at very high freque
in the specific heat. This is shown in the inset of Fig. 8~b!. It
is a consequence of secondary relaxation in the superco
liquid. Due to the constraints on the MCT at very low tem
peratures, we could not study the thermal response of
system close to the glass transition temperatureTg . How-
ever, as is shown in the Fig. 9~a!, the main peak in the
specific heat moves towards the smaller frequencies with
creasing temperature, thus at the temperatures very clos
the glass transition one can expect the two peaks to lie
ther apart from each other.

We have ignored here effects of nonlinearities in the
ergy equation@18,19#. This can produce frequency depe
dence on other transport coefficients like thermal conduc
ity as well. However, observation of such a peak will furth
strengthen the validity of the simple analysis presented h
in energy transport in terms of structural relaxation behav
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