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Grinfeld instability on crack surfaces
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The surface of a propagating crack is shown to be morphologically unstable because of the nonhydrostatic
stresses near the surfag&saro-Tiller-Grinfeld instability. We find numerically that the energy of a wavy
crack becomes smaller than the energy of a straight crack if the crack length exceeds a critical Jength
=5.18_¢ (L is the Griffith length. We analyze the dynamic evolution of this instability, governed by surface
diffusion or condensation and evaporation. It turns out that the curvature of the crack surface becomes diver-
gent near the crack tips. This implies that the widely used condition of the disappearaKige tie stress
intensity factor of the sliding mode, is replaced by the more general requirement of matching chemical
potentials of the crack surfaces at the tips. The results are generalized to situations of different external loading.
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[. INTRODUCTION crack tip. In this sense its surfaces are “frozen” and not
subject to any additional dynamics.

The uniform motion of a straight crack is well understood  On the other hand, another elastic instability has attracted
[1]: A crack exceeding a certain critical length, the Griffith much interest in the recent time: Grinfeldl] and Asaro and
length, starts to grow, since the energy gain due to elasti¢iller [8] discovered that the energy of a non-hydrostatically
relaxation is bigger than the loss of surface energy that apstressed solid with a flat surface can be diminished by a
pears as a consequence of the elongation of crack surfaceghange of its shape and formation of deep grod@¢sThis

However, in experiments the surfaces of a crack are ofted€formation is not due to elastic strain but to redistribution
rough[2]. Some of these results are interpreted in the frame0f matter along the surface. Apart from surface diffusion
work of models of cracks propagating in heterogeneous mé)ther transport mechanisms can be taken into account as
dia. The other possibility for the roughening of the crackWwell: For example, a solid phase that is in contact with its
surfaces is the instability of the straight motion of the crackmelt grows due to melting and recrystallization. Similarly an
tip. Recent experiments revealed that many puzzling pheevaporation-condensation mechanism is also conceivable.
nomena in brittle fracture are related to an oscillatory insta- In all cases the central reason for this instability is again a
bility at velocities appreciably below the Rayleigh spgafi  drastic decrease of elastic energy during the deformation pro-
There were several attempts in literature to investigate theess. This decrease is bigger than the accompanying increase
stability of a propagating crack. The linear stability analysisof surface energy for relatively long-wave interface pertur-
of the quasistatic crack subject to modéopening mode  bations. Grinfeld performed a lowest order stability analysis
loading has been performed by Cotterell and Hi¢pwith ~ Where he described the temporal evolution of a curved inter-
subsequent refinement by Adda-Bedia and Ben Afsdr face shapey(x,t)=yoexpf(kx+Ait). The liney=0 corre-
They employ the Griffith theory and the so-called principlesponds to the initial unperturbed interface of a two-
of local symmetry, i.e., the condition that mode(#liding ~ dimensional body in the-y plane.
mode stress intensity factoK,, vanishes at the tip of the In the case of surface diffusion the time-evolution is gov-
crack. They found that the straight motion of the crack be-erned by the dispersion relation
comes unstable if the tangential loading exceeds a critical
value. A =Duv.k2

A full dynamical model, including the microscopic de- S
scription of the cohesive zone around the crack tip, has been
developed by Ching, Langer, and Nakanif]. The cohe- whereD is proportional to the surface diffusivity and the
sive force in the neighborhood of the tip provides a fractureatomic volumeE and v are the Young and Poisson coeffi-
energy and a mechanism for regularizing the stress singulafients respectively,a is the surface tensionoo= o,
ity; this model removes the need to speculate about a prin= @ -, With normal and tangent directiomsand , reflects
ciple of local symmetry. In addition to Ref$4,5], they the nonhydrostaticity of the stress tenser Here one can
found a strong microscopic instability even for very low €asily see that long-wave perturbations lead to the Grinfeld
crack velocities, which depends very sensitively on tiny dednstability, whereas short-wave perturbations are hampered
tails of the cohesive-zone model. However, later Langer an®dy surface tension. The most unstable mddg=303(1
Lobkovsky [7] showed that these cohesive-zone models in— v?)/2aE evolves with\ ,= Dvsakﬁ1/3.
the framework of a sharp-tip representation lead to unphysi- Recently, it was emphasized in R¢L0] that the condi-
cally unreasonable features of the elastic stresses in spite oti@n of nonvanishingr, is fulfilled on the cut interfaces of a
regularization by cohesive forces. straight crack that is loaded perpendicular to the crack at

We strongly point out that in all these descriptions a crackinfinity. In this sense a straight crack cannot be a stable con-
is recognized as the trace left behind by the propagatindiguration under all circumstances, because slight deforma-

202(1—1?)
20 g ae| @

1063-651X/2001/641)/04612Q@13)/$20.00 64 046120-1 ©2001 The American Physical Society



R. SPATSCHEK AND EFIM A. BRENER PHYSICAL REVIEW B4 046120

AN »

/\/\

FIG. 2. Deformation of the crack shape as a result of a reshuf-
fling of matter. This can happen either directly through the crack or
along the crack surfaces and around the tips.

straight crack, it is clear from symmetry that two cragkg)
and —y(x) must have the same energy. THD$y?) is the
lowest nonvanishing contribution 1d[ y].
FIG. 1. Geometry of a wavy crack in a two-dimensional solid. From now on we assume the special case of a two-
dimensional plane-strain situation.
tions may reduce the total energy. In REEQ] it was pre- The basic idea to derive the change of energy during de-
dicted that this can happen provided that a certain criticaformation of the crack shape is founded on the expression for
crack length is exceeded. the chemical potential of the solid phase at an interfdde
The aim of the current paper is a deeper understanding of
this instability. It is organized as follows: In Sec. Il we de- 1-27 2
rive expressions to compare the energy of a static straight ms=vsl fsot g (07— onn) "+ ak . @
and a wavy crack. In Sec. Ill the dynamics of crack defor-
mation beyond the threshold of instability is analyzed. AHereu is the atomic volume of the solid phasky is the
more detailed investigation of the behavior near the singulafree energy density for a hydrostatic situatienjs the sur-
crack tips is performed, and the situation is generalized tdace energyxk is the curvature of the interfageounted posi-
not necessarily parallel crack surfaces. In Sec. IV we contive for a convex solijl
sider different loading mode situations. Appendix A contains In principle one has to remove matter from one front of
a solution of the elastic problem of a crack with independenthe crack and deposit it at the opposite one. In this way the
surfaces. Appendix B is a proof for the equivalence of twooriginally straight crack is deformed to its final wavy shape.
representations of the elastic energy that are derived ihis procedure is outlined in Fig. 2.
Sec. Il. Later different mechanisms for this transport process will
be discussed: The removed matter can either cross directly
through the interior of the crack or diffuse along the surfaces.
The first case corresponds to a evaporation-condensation
As mentioned above a crack with a length different fromprocess; in the second case of surface diffusion the matter
the Griffith length wants either to grow until the whole ma- must wander around the crack tips. For energetic consider-
terial is fractured into pieces or to shrink until it disappearsations the precise transport process is of course irrelevant; it
completely. In order to study the quasistatic kinetics of theébecomes important later for dynamical approaches.
Grinfeld instability, this fast straight motion must be sup- An easy way to calculate the energy of a perturbed crack
pressed. Formally we fix the tip positions of the crack andvas proposed in Ref10]. The total energy change consists

@ neous external stressify:P acts perpendicular to the

II. STABILITY ANALYSIS

only discuss shape deformations. of a change of both the surface energy and the elastic energy.
The key question is whether a straight crack is stable with First a deformation increases the arc length of the crack
respect to small perturbations of its shape. and therefore the surface energy. To the lowest nonvanishing

For the moment we restrict our considerations to the caserder this change is given by
of parallel crack surface@nathematical cragk Thus we can o
describe the crack shape by a functipfx), with —L<x U =2afL " dx &)
<L (see Fig. 1 The tips are located at==*L, y=0 and s L 2 '
the straight crack corresponds to the shape functix)
=0. The goal of this section is to derive expressions for theThe factor 2 appears because the crack consists of two inter-
energy change due to shape deformatidhg]—U[0]. This  faces.
functional depends in a complicated, nonlocal way on the Additionally, the change of geometry also alters the
function y(x). We normalizeU[0]=0. Since the homoge- stored elastic energy. We calculate this energy change in two
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steps: First we keep the stress field of the straight crack ar- We imagine to create this crack by cutting the solid, start-
tificially fixed in the whole solid while the material is re- ing at the left tipx=—L and proceeding tx=+L. The
shuffled along the two sides of the crack. One uses the exassociated mode Il stress intensity fadtgy is calculated in
pression for the chemical potentigR) to calculate the [4]. Assume that the current crack tip positiorxis L’ with
required energy. When the final shape is reached, the usualL<L’<L, it is given by

condition of vanishing normal and shear stress along the

crack surfacesg,,,=0,,=0, is clearly violated. Therefore
one has to adjust the stress appropriately by adding a com- K (L")= L f L’—y "(x)dx. (7)
pensation fields") and book keeping the relaxation of en- 77( +L) -t
ergy.
Let us begin with the first contribution to the elastic en-

ergy. The analytic continuation of the stress field in the vi-

The energy release rate coming along with an increase of the
crack length bydL’ is given by Irwin’s formula[13]

cinity of a straight crack up to first order is given tsee for — 2L
example[12]) Ugy=— Tf_LKﬁ(L')olL'. (8
2
Oy=—P 1;# +0(y?), Finally the total energy of the wavy crack is given by the
(LZ_XZ)S/Z sum
U'yy:O+o(y2): Uly]=UstUgistUeyy. 9
Oxy=0+0(y?). (4) Alternatively, and more intuitively, the total energy of the

crack can be calculated as follows: As before one can imag-
The minus branch imr,, corresponds to the upper, the plus ine to reshuffle the matter along the crack surfaces to obtain
branch to the lower crack surface. Therefore the elastic corthe final wavy shape, but this time the stress field is not fixed
tribution to the chemical potenti&®) at the upper crack sur- during the redistribution. At each step during this process the
face is(the shape-independent parts are irrelevant and ther€ondition of vanishing normal and shear stress at the crack

fore neglectep surfaces must be fulfilled. This requires the solution of the
elastic problem of a wavy crack; its solution is derived in
2vP?(1—v?)L? Appendix A for the generalized situation of not necessarily
[mslu=— TRz Y (5)  parallel crack surfaces. Inserting these expressi@ish)—
( x) (A16) into the chemical potentidR) gives to first order iry
At the lower interfacd ws];= —[ usly - We note that due to 1-,2 4p2
the fixing of the stress field the chemical potential is also —ud funt P25
. " . . . . [:U’s]ull Us| Iso 2E 2 2\ 1/2
fixed during the redistribution of matter. It results in m(Le—X%)
y(X)[ILl’S]U y (t) VL2 tz
els f f P
=0 Us
L 4P%(1-1?)L%y? _ 4PAL? o
:f,L X E(LZ_XZ)S/Z 7 +(L2_X2)3/2y(x) Tay (X) (10)

2P%(1-v?) oy > (P denotes the principal value of the integrah contrast to
T E J',de(y )VLE= X 6) the former approach, the stress distribution changes during
the rearrangement, and therefore the chemical potdd@al
As one can see from the second representation this energigpends on the “intermediate shapg(x). The total energy
contribution is always positive, i.e., stabilizing. The last rep-can now be obtained by integration
resentation results from integration by parts which requires
the boundary conditiong(+L)=0 and corresponds to fixed f fy(X)[,uS(x)]u [MS(X)]l
crack tips.
The second contribution to the change of the elastic en-
ergy comes from the adjustment of the stress field. From Ecsimilar to Eq.(6). This results in a completely different rep-
(4) it follows that after performing the first step the shearresentation ofJ,,.
stress along the new crack surfagé€x) is o,,=Py’ Though it is clear from physical reasons that both ap-
+0(y?). To this order the normal component is already cor-proaches should give the same result, this is not directly
rect: o,,=0. The compensation field>) introduced above visible from the expressions. In particular, two cragkx)
must cancel these boundary values and vanish at infinity. landy(—x) should have exactly the same energy. Integrating
corresponds to the stress field of a straight crack with surfacthe chemical potentia(10) clearly reflects this situation.
tractionsTg,=—Py’ andT,=0. Also Ug and U s obey this symmetry but this property is

ydx (11
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less clear folJ,. Since we started to cut the solid at its left 0.3
tip for derivation ofUy,,, the resulting formulag7) and(8) 02 b
seem to violate this parity invariance at a first glance. Nev-
ertheless it is possible to give a proof of the equivalence of o1r unstable region
these two different approaches to calculate the energy of the | o
system. It is sketched in Appendix B. The idea is to rederive &
the expression for the chemical potentigd) from the total R
energy(9), which proves the equivalence of both ways. Con- S 02} stable region
sequently the symmetry condition is also fulfilled, or, in 03l
other words, the energy operatdrcommutes with the parity
operatorP, which is defined by Ry)(x)=y(—x). 04}
05 . ' . . .
A. Numerical results 4 45 5 Ls/i o s &5 4

Based on the energy expressions derived in the previous
section we are now able to perform a full stability analysis of
the problem. We remind that we assigned=0 to the
straight crack and hence are interested in the occurrence of . E[ ] _X5_f:0 (14)
U[y]<0 for a wavy crack shape. One can easily check that Rt T VAR
all parameters of the problem appear only in the combination o ) ) .
Lo=2Ea/m(1— v2)P? (Griffith length) in the total energy  OF by multiplication withy(x) and integration

FIG. 3. Minimum normalized energy of a curved crack.

(9), apart from common prefactors. Thus the minimum en- U

ergy with respect to all possible crack shapes with a certain N — (15)
lengthL is simply a function of one single parametefl g, IL 5_f M X

which easily allows to trace the threshold of instability. Loy 2

In Ref.[10] minimization has been performed by a varia-
tional procedure using only a limited set of analytical repre-Thus for the threshold of instability, characterizedWy-0,
sentations of shape functions. Here we solve the problenye havex =0 and the normalization condition becomes ir-
numerically and find the real shape without such restrictiongelevant in Eq.(13). Consequently the critical length of the
by a full minimization procedure. For that we have chosencrack and its corresponding shape are universal. For any
a Fourier representation of the crack function(x),  other length the results depend on the normalization condi-

xe[—L,L] tion. Later the physical meaning of the condition chosen here
" will become more obvious.
B _ka(x+L) The concrete normalization condition given above is
Y(X)—gl by sin—2— (12 equivalent to

where the upper summation limit is replaced by a sufficiently fL y2(x)dx=LL2
=LLZ.
—L

large cutoffK. Since this is linear in the unknown coeffi-
cientsby, and the total energy is quadratic in the amplitude
y(x), we can write the total energy as quadratic foun Therefore Eq(15) reads
=Djb;by with a real, symmetrik X K matrix D that de-
pends only onL/Lg. This matrix can be computed almost ~ U
completely analytically. A= LL2 (16)
In order to find the minimum of the free enerdy, a
normalization condition is needed, since the amplitude is noand the minimization condition is equivalent to
restricted in our lowest order calculation. The cholgd,
=L2 is convenient but arbitrary. In this case the minimum of
energy is exactii\.L 2, where\ is the smallest eigenvalue
of the matrixD.
It must be remarked that the threshold of instability —Figure 3 shows the minimum energy versus crack length.
U(L)=0 is not affected by the specific choice of normaliza- For L>5.188_¢ the straight crack becomes unstable and fa-

2 ~
IU_S[MS]U/l_Z)\y(X)ZO' (17)

tion: Minimization requires vors a wavy shape. The critical shape is plotted in Fig. 4.
All results turn out to be very robust, and alrealy
) ~ ~20 harmonics are sufficient to describe the shape quite
Sy(x) (Uly]=AflyD=0, 13 accurately. The code has been checked very carefully against

analytically known energy values for special shapes. The re-
where f[y]=0 is the arbitrary normalization condition, sult is consistent with the predictidn.<6L g in Ref.[10].

coupled to the energy by the Lagrange multiperBy con- As we have already seen, the energy operator commutes
struction this is equivalent to with the parity operatolP and therefore all eigenfunctions
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04 y - T v - terested in a stability analysis, and therefore we look for
02} /\ /\ : eigenfunctions of this equatiory(x,t) =y(x)expit). This
0 leads to
02| 1 N
o oal ] AY(x)==DV?ady], (19
= 06t
= o8} ; where we writeu for the linear operator of chemical poten-
al ] tial that depends nonlocally on the shap).
sz b A simpler dynamics is described by the equation
-14 r P ( t)
. . . . X y(x,t)
1'6-6 4 2 0 2 4 6 at =Decus(X,t), (20
z/Le
FIG. 4. Universal shape of the critical cradk=5.1882.¢ . with the kinetic coefficienDe. It corresponds to a direct

transport of matter through the void of the crack. It is similar

are either even or odd. It turns out that the most unstablé? €vaporation-condensatio(EC) processes known, e.g.,
mode, which belongs to the smallest eigenvalue, is an evefiom the theory of phase separation. We mainly introduce
function. Thus only terms with odklappear in the represen- this mechanism because of its simplicity that is useful for

tation (12). Yet there are still certain length intervals where (€Sting purposes of the numerical code.
the optimum solution is an odd function. In both languages the threshold of instability corresponds

to A=0 and should be the same. As before, the equations of
motion depend only on the single adjustable parameter
Ill. DYNAMICS OF GRINFELD INSTABILITY L/Lg. Thus the different eigenvalues are also only a func-

In this section we go beyond the previous static descriplion of this parameter, and by simple plotting one can easily

tion where we used the energy to judge whether a certaiff€t€ct the crossing poin(L./Lg)=0.

configuration is stable or not. Here we analyze how a given BOth mechanisms are purely dissipative and we expect
shape develops in time. If it decays to the straight crack, thd1at all eigenvalues are real. One can readily check that the
crack is stable; otherwise a perturbation develops further anéperatorus fuffills the self-adjointness conditioru(y, ,y)
further. This allows to calculate the threshold of instability in = (y,, zsy,) with respect to the standard scalar product
a different way and to compare the results with the pfediC(yl,yz)=fL_Lmy2(x)dx. Therefore at least the second
tions of the previous section. Again we calculate the chemimechanism allows only real lambdas.

cal potential only up to first ordefwhich corresponds to a For the diffusion process we note that the operatai? is

quadratic energy In this sense we cannot expect to obtainpositive definite; one can prove that under these circum-

new results _about the long-time b_ehawor of unstable Sqlu'stances the compound operateﬂz,&s indeed has only real
tions. Especially we cannot describe the known groovelik

e .
; eigenvalues14].
structures that are governed by nonlinear eff¢8ts Never- gSince ?ﬁe] eigenvalue equation for the melting-

Vecrystallization mechanism is a second order ordinary

more carefully the behavior near the crqck tips. This .reg'antegro-differential equation, we require two boundary con-
cannot be described by the previous static approach since thg ions. As before we demang(+L)=0. Surface diffusion

Fourier representation produces strong oscillations there. "}'equires two additional boundary conditions. Since the
Ste?d* we use a rea_l space representation herg. By CONC&IKemical potential on the upper and lower surface of the
trating more grid points in the sensitive tip region we are

ble to study th liariti ina th it crack [apart from the trivial constant contributions in Eq.
?ateelyo study the peculiarilies occurring there quite accu-(lo) that we ignore from now opis the same but with op-

. : . osite sign, the condition of a unique value @f requires
Again we start with th.e special case .Of C.Ohefe”t surface%s(i L)=0. Otherwise a fast redistribution of matter, driven
yu(X)=y,(x). Later we will generalize this situation.

Redistribution of matter is driven by spatial variations of by the force differencuslu(=L) ~[ushi(*L) would take

the chemical potential of the solid phase along the crac lace in the microscopic region around the crack tips, until
b . P 9 : .the above condition is satisfied. In both cases a critical crack
surfaces. We analyze two different transport mechanisms i

n . o
. . e ) .~ 'Is characterized by the conditigug(x)=0.
this section: Surface diffusion is described by the equation We use the notationy=(y,y',ue,u.) and discretize

these functions on the intervgl—L,L]. Then the linear
IyxH DV2u(x.1) (18  equation(19), together with the boundary conditions, can be
at s expressed a&-Y=0 with a real, quadratic matri»A that
depends on the control parameteil; and on the eigen-
From the representation of the chemical potential, explicitiyvalue \. Since this equation is nonlocal the matrix is not
given in Eq.(10), it is clear, that Eq(18) is of fourth order  sparse; nontrivial solutions correspond to the condition
with respect to the spatial derivatives. Basically we are in-detA=0, and we use a standard matrix decomposition to
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-0.25 = . + : .
4 4.5 5 55 6 6.5 7 75

L/Lg

FIG. 5. Eigenvalues of the surface diffusion vs crack length. We
detect nontrivial solutions through a change of sign of the determi-
nant. Whenever two curves intersect or come close to each other,
this sign does not change. This leads to missing points in the
diagram.

detect it[15]: A=Q-R, whereR is an upper triangular ma-
trix, Q is orthogonal and positive definite, and thus Alet
:HiRii .

The allowed eigenvalues as a function of the crack length
are shown in Figs. 5 and 6.

To each length belongs an infinite number of eigenfunc-
tions with different eigenvalues; here only the biggest eigen-
values near the threshold of instability are visible. A closer
inspection shows that the first crossing of #e 0 axis hap-
pens atL .=5.1871 ¢, which is in excellent agreement with
the previous, static prediction.

Some of the shape functions are illustrated in Fig. 7.

All eigenfunctions are even or odd, but it turns out that
not always the even function is the most unstable one. One
can clearly see that the two biggest eigenvalue functions of
surface diffusion intersect at arouthd=5.3L 5 and again at
L~6.8Lg; in between the odd branch is the most unstable
one. This phenomenon occurs again at bigger crack lengths
and also for the EC mechanism.

In both cases the most unstable modes are functions that
consist of only one-half or one full period. With descending
eigenvalue the number of nodes increases. In this sense the

0.15 T r T v T

**

*
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4 3 2 1 0 t 2 38 4

z/Le

z/Le

z/Lg

z/Lg

FIG. 7. Some eigenfunctions of surface diffusiofa) L

005 L =4.28.5,A=—0.047, =5. A=-0. ,
’ =6.00Lg,A\=—0.167,(d) L=7.29.5,A=—0.167. \ is given in
0.1 units of Daws/Lg.
015 . . .
-0.2 chanical eigenstates, e.g., of a single particle in a box.

(b) L=5.18 —0.096, (¢) L

eigenvalue problem is comparable to simple quantum me-

It is also instructive to use a simplified scaling analysis of

the situation: The dispersion relatioh) of the free interface
FIG. 6. The same relation for the EC mechanism. defines a characteristic wavelength .~k_'~Ea/(1
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—vz)oﬁ. The tangential stress at the crack surfaces js
=0y~ P. ThusL.~Lg which underlines the fact that Grin-
feld instability and the Griffith condition for crack growth
are basically of the same origin, namely, the competition
between surface and elastic energy. Since the tip positions
are fixed, only certain perturbation waves fit into this inter-
val. In particular, a minimum crack length~L 5 must be
exceeded to allow at least for one unstable mode.

For the critical crack withL=L_, the shape is indistin-
guishable from the static picture 4 for both mechanisms. We
note that also for other lengths the shape functions of the EC -0.03
mechanism are very similar to those of the diffusion mecha- 004 . . . . .
nism. -4 -2 0 2 4

If one plugs in the ansaty(x,t)=y(x)exp@t) into the z/Le
eq_uat'on of motlor{Z_O)_, one |mmed|atel_y arrives at the con- FIG. 8. Contributions to the chemical potential of a critical
dition (17) for the minimum of the static energy of the last a0k with L =5.187.¢ ,\ =0,M = 400.
section with the amplitude constraint applied there. Now we
see that this arbitrarily chosen constraint is related to the EG. |, _
mechanism if we identify

pfvey

<, they must cancel each other everywhere on the
crack: ug+ peist me=0. It is difficult to justify this can-
cellation for the Fourier representati@h?) of the previous
Uv D, section because of strong oscillations near the crack tip,
A= LLé (2D though it holds nicely in the center regior=0. The reason
is that though the full Fourier series with summation cutoff
, ) o K— is complete K< always implies that nonvanishing
with thg energy_J of the (normalized crqck. First, _|t is clear _values ofy”(+L) can only be achieved asymptotically. With
from this equation that a stable crack in the static sense witf},q (eq) space representation we do not suffer from this prob-

U>0 is also stable in the dynamic sendes:0, and vicé oy and indeed this cancellation seems to be verified, see
versa. Furthermore, the lower the crack energy for a giverig. g,

length, the faster.the instability develops. The relatﬁﬁm) In Ref.[10] the guess was made that the divergent con-
also holds numerically: Mapping the two graphs Figs. 3 andyjp, tions of we), @nd ue s cancel each other at the crack tip.

6 using Eq.(21), lets the energy curve exactly conceal the g s equivalent to a vanishing of the total mode Il stress

curve of the most unstable eigenvalue. intensity factork (1Y . The expression for this value has been
In the case of very long cracks the spectrum become

more and more continuous and finally coincides with th Gerived in Ref4] for the case of a slightly wavy crack. To

spectrum(1), since the boundary conditions become less ime-fIrSt order iny it is given by[5]

portant. All eigenvalues that are smaller than the maximum ot
value of the Grinfeld spectrum,<\,,, lead to possible so- K{{°V=Ky (L) +JLwPy' (L)/2. (25
lutions. We indeed observe a very good agreement with this

exp_ectation forL_= 1006 in our numerical _ca_llcU|ati0nS: in |t reflects exactly the decomposition of the elastic field into a
particular, the discrete eigenvalues of the finite geometry bestapilizing and unstabilizing part as used in the first section
come very dense and hard to separate. Thus we are able §p this paper. The divergent component of the tangential

reproduce the dispersion relatieh for the case of indepen-  gyress along the surfaces of a wavy crack is given by
dent interfaces.

. ZK(IOI)
A. Near-tip behavior olsing—_ 11 (26)

T 1/2
The tip of a crack is typically subject to divergencies. For (2mr)

example, the stress field behaves like-r =2, wherer is
the distance from the tip. From E@LO) it follows readily  in the close vicinity of the tip. One can easily check that the
that the different contributions to chemical potential behavesecond contribution t&([°Y produces exactly the divergent
like part of the stress fiel#) and therefore of the chemical po-
tential we s in Eq. (23).
Msur~Y"(X), (22 It is clear from the representatiq@2)—(24) above that a
cancellation of the divergencies pfy, and e s IS equiva-
teis~ (L2—x3) "3y (x), (23 lent to a finite crack curvature at the tips and, from E#),
also to the vanishing of the stress intensity fa¢t§f" . The
> latter criterion is widely discussed in literature as a criterion
_ dt. (24) for the direction of crack propagation, referred to as the “cri-
t—Xx terion of local symmetry.” It states that a crack propagates in

L
ot (L2=x2) ~12p f Yo
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the direction of maximum energy release, maximum hoop We analyze this problem in the same way as before. It
stress or stationary Sih energy density factme references turns out that the spectrum is very similar to that of coherent
in [4] for a survey. crack surfaces. The main result is that the critical length is

Surprisingly the calculations show that this criterion is notslightly bigger in this arrangement:3"V=5212 . It
fulfilled here. It turns out that a divergent curvature contri-means that during a slow elongation of the crack the parallel
bution remains. Calculations with extreme accuracy raise thenodes will become visible first.
claim thaty(r)~r+r? at the tips of a critical crack with It is now easy to generalize this statement to arbitrary
=5.18M g, with y~1.5(see Fig. 9. For these calculations crack surfacey,, . Since we are basically interested in the
it is necessary to concentrate as many grid points as possibiRreshold of instability, we use again the energetic argument
in the vicinity of the tips where the shape functions varyof the last section. To understand this behavior, we decom-
crucially, whereas a moderate accuracy suffices in the middlpose the shape functions into a parallel and an antiparallel
part. contribution:

The reason for this unexpected behavior is that the
K({°Y=0 criterion maximizes only the release of elastic en-
ergy, and does not take surface energy into account; it simply
compares different directions of elongation and leaves begrom Eqs.(2) and(A16) it follows readily that the chemical
hind the crack as the track of the tip. In our case, the elonpotential decomposes similarly,
gation is completely forbidden, but we allow for a deforma-
tion of the already existing crack. Therefore completely
different crack shapes are compared to each other to mini-
mize the total energy. For fast crack growth the deformation

Yoi=(YutYDI2,  Yar=(Yuo—Y1)/2.

Hy(X) = Mp(x) + pa(X),

can be neglected since it is driven by the slow surface diffu- M1 (X) == pp(X) + pal(X), (30)
sion, but it is still an unanswered question hk Y=0 and ith
w=const can be reconciled for a slow motion of the tip, W't
when both processes, crack propagation and Grinfeld insta-
bility, are present. 1= v? 4p?.2 31
Hp(X) =0 —=—1 ~ (LZ_X2)3,2yp(x) 31
B. Grinfeld instability on incoherent crack surfaces
In this subsection we give up the restriction of parallel 4p? L yi(t)
crack surfaces. Both surfaces are described by independent - TZMPJ’_L,[F)_—X\/LZ—tZdt
shape functions/,(x) and y,(x), provided thaty,,(=L) m( x%)
=0. Of course it must be assured that the two branches of
the crack do not overlap, i.ey,(x)>y,(x). However, a +ayr(x) |, (32
) A : p
small opening of the crack is present due to the applied load-
ing even in the case of a straight crack. Consequently a small
perturbation with a sufficient small amplitude does not lead 1— 12 4P2L 2
to an intersection. ra(X¥)=vsl fsot —2 P?————>Va(X)
The dynamics of both interfaces is again described by (L*=x%)
surface diffusiony,,;= ¥ DV?u,, and the boundary condi- 4P?2 (L ylL(1)
tions - a v
- PLL T—x dt] +ayi(x)]. (33
my(ZL)=u(£L), yu(=L)=0 (27)
_ The crucial observation is that the total energy
and also flux conservation
1 L L
po(EL)=—pi(£L). (28) U=g(—f LMU(X)YU(X)dX"‘f Lm(X)yu(X)dX>
s - -
This implies the mass conservation law (34)
L becomes diagonal in this representation:
f L[yu(x)—y|(x)]dx= const, (29
_ 1L
U=——J (pYpt maYa)dX. (35
which is trivially fulfilled for parallel crack surfaces. ve) L T PIRTATa

For the moment we restrict our considerations to antipar-
allel crack surfacey )= —Yix=Y(X). In this caseu(x) Thus the parallel and antiparallel configurations are the
= (X)=u(x) holds everywhere and thus the condition “principal axes” of the energy ellipsoid. We can therefore
(27) is satisfied automatically. Equatié®8) requires the dis- conclude that the parallel arrangement of surfaces indeed
appearance of the tip flux'(=L)=0. gives the most unstable configuration.
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FIG. 9. Logarithmic plot of the curvature near the tips of a  FIG. 10. Dependence of the critical length on the loading ratio
critical crack, L=5.1815,A=0. All curves correspond to the B=P,/P.
same number of grid points but different spatial distributions. The
solid line possesses the least grid point density near the tips, the For 8<0 the compressive surface stress is even increased
dotted one the highest. With increasing accuracy the coeffigient and the critical length becomes smaller.

comes closer and closer towards 1.5. The casg8>1 means that the horizontal stress becomes
bigger than the vertical loading. Generally the elastic energy
IV. CRACKS UNDER GENERALIZED MODE | LOADING released Ug /dL~K?+K? during crack relaxation is maxi-

So far in all situations a pure uniaxial streBs-0, per- mized if the crack orients perpendicular to the direction of
pendicular to the crack, has been exerted on the :;olid. No\;\pe highest stress. A vertical orientation of the crack is for-
we add an additional stress componBgtat infinity parallel  Pidden by the boundary conditiogg= L) =0 but by taking
to the crack x direction. In the framework of a linear theory 9N & Wavy shape the crack tries to mimic this optimal shape.

of elasticity this homogeneous field is simply added to the! S tendency becomes stronger with higher value®,of

former field. Since it gives a new contribution to the shear! hereforeL—0 for f—o.

traction of a wavy crack, the elastic energy is modified. We
declareP, to be positive for a tensile stress and introduce the V. SUMMARY AND DISCUSSION

dimensionless paramet@—P,/P. One easily derives We calculated expressions for the total energy of a wavy

crack that is subjected to a mode | loading. It turned out that,

Ueis(B)=(1=B)Ue(f=0), for a loading perpendicular to the crack, this energy becomes
smaller, when a critical crack lengti,.=5.18 5, is ex-
Ueii(B)=(1-B)?Uey(B=0). (36)  ceeded. Then the Grinfeld instability can develop and a for-
mation of deep grooves along the crack surfaces becomes
Hence the critical length becomes a functionfas well;  possible. This deformation is due to a redistribution of matter
this dependence is plotted in Fig. 10. 0 we retain the and not due to instabilities of the moving crack tip. We de-
former resultL.=5.18 . termined the threshold of instability either using a static, en-

The most interesting range is<Q3<1: The pure tensile ergetic description, either through the early dynamical evo-
loading perpendicular to the crack causes a tangential strefigion via surface diffusion or melting and recrystallization.
o4=— P along a straight crack. The additional loadiRg We generalized the loading condition by adding a stress
>0 reduces this value toy=0o,,=—P+P,<0 and thus component parallel to the crack; this modifies the threshold
hampers the evolution of the Grinfeld instability. Thereforeof instability in a nontrivial way. Furthermore the situation
the critical length increases in comparisonge-0. For 8 of independent crack surfaces has been studied, with the re-
—1 the nonhydrostaticity vanishes completely and the Grinsult that the parallel configuration is the most unstable one.
feld instability cannot occur. Consequently the critical length It turned out that the eigenfunctions of the equations of
diverges. In other words, the change of the elastic energgnotion exhibit a singular tip curvature. This corresponds to a
during redistribution of matter is at least of ord®(y*) in  nonvanishing stress intensity factisf°®? . The principle of
the deviation from the straight ling=0. This result has local symmetry states that during crack propagation pro-
already been derived in Réfl6]. The operator of the chemi- cesses the direction of extension is oriented suchKijaP
cal potential therefore consist® the lowest nonvanishing =0 is satisfied. In our model the tip positions are fixed and
ordep only of the local curvature operatqrs~v,ax that  we studied only the slower surface kinetics.
has eigenfunctiong,~ sin(7kx/L). Thus energy becomes di- ~ The most important outstanding problem is the combina-
agonal in this Fourier representation. We just remark thation of crack propagation and Grinfeld instability. We men-
these eigenfunctions are completely different from the onetion that the start of the Grinfeld instability is beyond the
obtained above. The most important fact is that they do no6riffith threshold, and therefore the deformations naturally
exhibit a divergency of curvature near the tips. happen only in the regime of fast propagating cracks. There-
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fore we briefly discuss dynamical aspects of the Grinfeld cold bath !
instability when the tip velocity is not assumed to be small.
However, the stress distribution on the crack surface remains '
qualitatively the same as in the static case, apart from some N~ b

1

'
y -———
]
(
r
1

factors that depend on the tip veloci¥[1]. Therefore our
predictions that were performed for a static crack remain
gualitatively correct even in the limit of fast crack extension. %

Far from the tips of a long, static crack with>L g, the
usual Grinfeld spectrunil) is valid in a local sense. For a FIG. 11. Suggestion of an experiment to observe the Grinfeld
fast propagating crack it is slightly modified due to inertial instability on the surfaces of a slowly propagating crack.
effects. In the laboratory frame of reference it can be written
as With a suitable choice of the control parameters, the tem-

perature decreas&T between the hot and cold region and
37) the distancé between them, a stationary semi-infinite crack

growth with velocityV becomes possible. All elastic strains

arise here from a thermal gradieViT~AT/b; no external
whereq is a dimensionless function that depends weakly ortension is applied here. For simplicity we choose the strip
V/Vg with the Rayleigh speeWfg and the Poisson ratio. width also to be of ordeb; in other words,b is the only

One can expect that the linear instability described by theelevant length scale in the problem. Far from the tip in the
local dispersion relatiort37) should be only convective in cold and hot regions the material is completely relaxed. In
the frame of reference of the moving tip due to its slowthe transition region the characteristic stresses are
development compared to the fast tip motion. Indeed the-Ea;AT (o is the coefficient of thermal expansioiThey
most unstable mode corresponds to the vakues//Ls and  result in a stress intensity factér~ ob'2 By Irwin’s theo-
)\=)\U~Dq4/Lé. In the moving frame of reference\ rem an advance of the crack tip by the lendtreduces the
should be replaced by(iVKk) that contains a convective elastic energy byW,,~K?/E ds. It is accompanied by an
contribution of the orderA,~qV/Lg. The ratio N\ /A, increase of the surface energy BW;~ ads. Near the Grif-
~q3D/(L%V) is expected to be small if the velocityis of  fith thresholdW,,~W; the propagation velocity is arbitrarily
order of the Rayleigh speed. This corresponds only to themall; it corresponds to the temperature differendd)?
convective instability17]. In this sense, the tip motion itself ~ a/(bEa?). On the other hand, the characteristic wave-
is insensitive to the development of the instability behind thdength of the Grinfeld instability is of the ordetg
tip. Nevertheless, the drastic acceleration of the instability~ E«a/a?~b, in agreement with the above statement that all
and the refining of the length scale in the nonlinear regimdength scales are of ordds. By this means it should be
[9] make it still conceivable that also the tip motion could bepossible to observe the Grinfeld instability in a system of a
affected by the instability. slowly propagating or even stationary crack.

We also remark that crack growth by tip propagation is Alternatively, it could also be possible to observe the
more generally hampered not by surface enerdyut by the  Grinfeld instability in the following way: As it was shown in
so-called fracture energly that represents the resistance of Sec. 1V, it is possible to alter the critical length by applying
the material to crack advangg]. This material parameter is an additional stress in longitudinal direction together with
usually bigger than the surface energy, and therefore fothe perpendicular loading. This allows us, for example, to
some materials it is conceivable that the threshold of Grinkeep the crack exactly at the Griffith threshold, but still ex-
feld instability (which still depends on the smaller surface ceeding the critical length for the Grinfeld instability. It is a
energy «) and crack propagation are quite close to eaclcompletely unanswered question how the criterion of local
other. This increases the chance that the relatively slow tigymmetry and the contradicting result of divergent tip curva-
motion is yet influenced by the Grinfeld instability. ture come together in this regime. Further analysis of this

The main problem in observing the phenomenon of theproblem is required in the future.

Grinfeld instability is that it can be obscured by the fast Another unclear point is the exact behavior near the crack
crack propagation for crack lengths>L. It arises from tips. Basically we analyzed long wave perturbations of the
the fact that the crack lengttor the applied tensionis the  crack shape, where the wavelength is of the order of the
only tunable parameter, and the two effects cannot be sep&ngth of the crack itself. However, in our model of a math-
rated. However, this dilemma can be solved by another exematical crack we observed a divergence of the curvature
periment that has already been successfully used in the pastar the crack tips. This stimulates the suspicion of the im-
[18] and is sketched in Fig. 11. The observed instabilities ofportance of this region. In particular, one can speculate that
the crack shape were interpreted in the framework of theerturbations of a rounded tip, with a wavelength of the or-
principle of local symmetry and not as a result of the Grin-der of the tip radius, may lead to important new features,
feld instability. It turned out that at the threshold of instabil- including a tip splitting as a small scale instability. This re-
ity the energy of a wavy crack is already lower than of aquires the introduction of a new degree of freedom, the ra-
straight crack. dius of curvature of the blunt tip. We stress that even if

A long thin glass strip is pulled from a hot regidneatey  surface diffusion is slow on the macroscopic scale, it can still

to a cold ongwater bath at a slow and constant veloci®) be very efficient on the microscopic scale in the vicinity of

4aq
_ 2 k2
N=Dugk ('n’LG|k| ak
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FIG. 12. Geometry of the curved crack. The
branch cut of the analytic functions is indicated
by the thick line.

the tip. A similar idea has been introduced by Landed] to  analysis. Therefore we expandand i with respect to the
describe the plastic flow in the vicinity of a crack tip, where “smallness parameter¥,,; and retain only first order con-
he used an elliptic crack to incorporate the tip curvature. Atributions,

future goal is to include such a description into our model.
However, in the brittle theory of fracture a mechanism to
regularize the tip curvature is not present; consequently fur-

ther research is necessary in this direction to clear up thigore the function§;(z) andW,(z) are everywhere analytic

e(2)=Fo(2)+F1(2), #(2)=Wo(2)+Wy(2), (A4)

point. apart from the straight crack life-L,L] and are of order
in the expansion parametgy,, . We introduce the common
APPENDIX A: SLIGHTLY CURVED CRACKS abbreviation

The aim of this section is to derive expressions for the . ) )
stress field around a curved crack that is subjected to a mode e (X)= lim o(x+ie). (A5)
| loading. We generalize the results frdd to describe the om0=
case of nonparallel crack surfaces as depicted in Fig. 12. To first order one can write

Since we deal with a two-dimensional plane strain situa-
tion, Muskhelishvili's analytic function method can be used
[20]. The whole information is contained in two analytic e(X+iyy(x)=Fg (X)+iy (x) Fg ' (x)+F{(x),
functions ¢(z) and x(z). Stresses can be expressed as fol-

lows: . _ . _ _
e(X+iy(x))=Fq (x)+iy;(x) Fg " (X)+F1 (x),

oxxt oy =4 Rdo(2)], (A1)  and similarly for. Noting that expt2i9)=1—2iy/,(x) to
first order, the boundary values on the straight cut, (Bg),

) — become
Oy~ Oxxt 2i0y,=2[2¢'(2) + x(2)]. (A2)

As usual we reduce the elastic problem to the case of van-  LTnn~10n-Jun=Fo (X)Fiyun(x) Fo ' (x)+F1 (%)
ishing stresses at infinity and given loadings,,],,; and . == on k=

[on,]un @long upper and lower crack surfacgg,(x). For 21w (%) Fo "(x)+Wo (x)
convenience we introduce the function =iy ui(X) W3 " (X) + W (x)

_ — _ = 2iy/ (X) (WS (X) = F g (X)).
12)=e(2)+2¢' (2)+ X(2), VGO () =Fa(x))
Thus separating zero and first order give

where we used the notatian(z) :=¢(z). The boundary val-

ues can be expressed by Lo =it ]u=Fg5 (x)+Wg (%),
oon—ion.=o(2)+ o(2) F1(0)+WS (x)=[a{)=ia{D = (yu(x)[Fo (x)+Wg 1’
+e 2 (z—2)¢' (2)+ ¥(2) — ¢(2)]. + 21y ([ Fo () —Wg ()1}
(A3)

Here[ o], are the contributions of ordé@mwith respect to
As in Ref. [4] we allow only small deviations from the vy, to the prescribed stressgs],, . The boundary values of
straight crack, |y, (x)|<L, and perform a perturbation [Fy(x)+Wy(x)] and[Fy(x) —Wy(X)] are given by
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[Fo(X)+Wo(x)]" +[Fo(X) +Wq(x)]~

[0~ 0Q],+ [0~ 50,

[Fo(X) = Wo(x) T =[Fo(X) —Wo(x)]~

(00— i0Q],~ [0~ 50,

Using the formula of Muskhelishvili20],

PHYSICAL REVIEW B4 046120

[s81u =L\ 1'7T(L2_X2)1/2

L [o0],+[o0)
'PJ' [O-HT] [0- ]Imdt

L t—x

(A10)
o

T ()
+£7>fL “Lonctlondh

L t—X

In the same way one can calculate the first order contribu-
tion, but the result is quite lengthy. In our case we have a
uniform mode | loading at infinity, i.e., up to the first order

1
FO(Z)Z 4’7T(Z+ L)l/Z(Z_L)1/2 [O'nn]u”Z[US'I%)]U/I—’—[O-SH)]UH:_Py (All)
LTg®— 507 4 (0)_ (0) ,
9 i Th W T 2O 2y [ondun=[oTun+ [o0ui=—Pyi(0.  (AL2)
7L -
1 (L [0 Q-ig®],~[¢O—ig®, Thus the normal traction is constant and the shear stress has
P — d only a first order contribution. This simplifies the expressions
- X—z and one finally obtains, after some simple transformations,
a6)  [019],,=—P, as expected for the straight crack, and
L2
[U(l)]un:[s(flf)]uni(l_z—xz)m)’un(x)- (A13)
Wq(2)= N
O Am(z+ L)Yz L)
L [o0— 5 ©_ ;0 The final result is therefore as follows: A curved crack
Xf Lonn —onr Jut[omn ] _x2)Vzgy  loaded byoy, =P and o7j=0 for all other components at
—L X—z infinity exhibits total stresses at the interfaces of the crack
0)_; (0) (0) _; (0) given by
1 (L [ogn—ioy, u—lons—ioy ]
4mi )L X—2z [o{19],,=0, (A14)
(A7)
(o0 1un=0, (A15)
The second integral appearing in both of these two formulas [U(Im)]un:[(f(g)]un+[U(71¢)]u/| (A16)

does not exhibit the usual square root singularity and be-
comes only relevant in the case of nonparallel crack surfaces.

Basically we are interested in the tangential component ofo first order, using the expressio&9)—(A13). Here we
the stress tensor, have already added the homogeneous stress caused by the

@(2)]).
(A8)

0., =Re2e(2)—e 2 [(z—2)¢'(2)+ ¥(2) -

Evaluating the limiting values of EqgA6) and (A7), we
obtain to zeroth order

[0 =[52Tun (A9)

where we have defined the function

mode | loading at infinity.

APPENDIX B: EQUIVALENCE
OF ENERGY REPRESENTATIONS

To show the equivalence of the different approaches to
calculate the total energy of a wavy cra@ and the direct
integration of the chemical potenti@l0), it is sufficient to
derive the chemical potential from the first approach

vs oU
oy (x)

and to compare it with the original expressi@t0). Since
this is straightforward folJs andUs, we restrict our con-

[1s(X) Jun=+ (B1)
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siderations tdJ, and give only some brief hints for deduc- U, [y+ 8y]—Ug[Y]
tion. Using Eqs(7) and(8), we obtain

_2PA-A e [
U 17V 2P2f f f R it _TJ=—LW(t)fx=7L v
elu™ — L) x=—LJt=—LL+L’ L' —x

L2—xt—(L2—t?)(L?>—x?

x{ln )>—In|x—t|]dx dt,
i ! "(t)dtdxdL' (B2) :
X/ o (x)y' (1) : (B4)

The main idea is to interpret the triple integral as volumewhere only first order contributions have been taken into
integral. Rewriting it as account. Another integration by parfsotice thaty(*L)

=0] and further algebraic manipulations lead to
L ’ ’
J" fL fL co.dtdxdl 4P2(1_V2) L
Thhetiet ue|u[y+5y]—ue|u[y]=—TL_LM)

L L L
= ...dL"dxd B3
f?Lf?Lf " = max(t,x) xdt (B3 XJL y'(x) [L2—x2

x=—Lt—X L2—t?

dx dt

allows us to perform the explicit calculation of the innermost
integral. For simplicity we ignore the difficulties arising from

the exchange of the integration order. In fact, they are re-
sponsible for the appearance of the principal value integrals,

Now the functional derivative can be immediately read:

2vP?(1— u2)

but we treat all integrals a&livergen} ordinary integrals, [ ergu=* \/—dx
because we are basically interested in a structural agreement - ©"*"" TEVLZ—12 Jx=-L t—
of the expressions. However, all calculations can easily be
extended to overcome this limitation. It matches the third term in E10), of course apart from the
We conclude principal value. This completes the proof.
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