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Statistical ensemble of scale-free random graphs
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A thorough discussion of the statistical ensemble of scale-free connected random tree graphs is presented.
Methods borrowed from field theory are used to define the ensemble and to study analytically its properties.
The ensemble is characterized by two global parameters, the fractal and the spectral dimensions, which are
explicitly calculated. It is discussed in detail how the geometry of the graphs varies when the weights of the
nodes are modified. The stability of the scale-free regime is also considered: when it breaks down, either a
scale is spontaneously generated or else, a ‘‘singular’’ node appears and the graphs become crumpled. A new
computer algorithm to generate these random graphs is proposed. Possible generalizations are also discussed.
In particular, more general ensembles are defined along the same lines and the computer algorithm is extended
to arbitrary~degenerate! scale-free random graphs.
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I. INTRODUCTION

Random graphs are entities one encounters in many fi
of research. Every time one has some objects or agen
mutual interaction, one can consider these objects or ag
as the nodes~vertices! of a graph and represent, pictoriall
the existence of the interaction by an abstract link~edge!
connecting two nodes. Hence, an epidemic can be rega
as a graph: the nodes are the infected people and the
connect those who have been infected with their infecto
Likewise, the science citation index can be represented
graph. Of course, the world-wide-web is a graph. There
many more such examples. Usually the graph structur
fairly random.

Consider a random graph. Letn denote the degree of
node andPn the corresponding bulk probability distribution
When Pn;n2b for n@1, it is common to call the graph
scale free. This class of graphs is not described by the cl
sical theory of random graphs@1#, wherePn is Poissonian.
The subject became popular recently, when data on la
graphs—in particular on the web network structu
@2#—became available.

Scale-free graphs are naturally generated by stocha
processes, where the graph size is growing and the add
of links is preferential: the probability to attach a link to
node is, roughly speaking, proportional to the node deg
Several models of growing networks have been propo
@4–11#. The prototype is the model worked out in a clas
paper by Simon@3#. This model does not really deal wit
graphs, but can easily be converted into a~directed! graph
model, as observed in@11#.

In studying random graphs one can adopt two comp
mentary approaches:

~1! The diachronic approach, where one focuses on t
time evolution of the graph. The main advantage of this
proach is that one stays close, in spirit at least, to the dyn
ics operating in nature. Furthermore, one can discuss
cesses, like aging, which are intimately related to the ti
1063-651X/2001/64~4!/046118~9!/$20.00 64 0461
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evolution. To our knowledge, this approach is the one co
monly used in works on scale-free graphs.

~2! The synchronicapproach, where one considers t
statistical ensemble of graphs at a fixed large time. Introd
ing a statistical ensemble enables one to use the conce
tools of statistical mechanics. The dynamics of proces
producing scale-free networks is presumably much m
complicated than that of the proposed simple models. T
resulting randomness is better implemented in the synchr
than in the diachronic approach. Generating graphs with aa
priori -given connectivity distribution seems also easier. T
is the approach adopted in this work.

Introducing a statistical ensemble of graphs meansipso
facto that the graphs are weighted. In our model, each gr
is given a weight proportional to the product of weights
tached to individual nodes and depending on node degr
The latter weights are chosen so as to generate the scale
behavior in the ensemble. Thus, in a sense, the graphs—
microstates of the ensemble—are given an ‘‘internal
ergy.’’ Our general results characterize, of course, the ‘‘ty
cal’’ graphs only, i.e., those contributing most significan
to the ensemble averages. The ‘‘typicality’’ of graphs resu
from the usual interplay of energy and entropy~see also Fig.
1!. This can be considered as a virtue or as a flaw of
approach, depending on the goal one is pursuing.

A rather general graph ensemble is defined in Sec. II.
definiteness, we consider undirected graphs only. We
techniques borrowed from field theory, which enable one
formulate the problem and to find a number of results in
rather elegant fashion. The ensemble is defined for a gi
set of input weights. We rapidly focus on scale-freecon-
nected treegraphs, i.e., connected graphs without cycl
This is the case we have fully under control and where m
results can be obtained analytically, so that a maximum c
ity is achieved and our approach is exposed the best.
discuss the condition that guarantees that ana priori-given
connectivity distribution is found in the ‘‘output,’’ i.e., when
the weights of graphs and their entropy are taken into
count. In Sec. III, we show that the ensemble can be i
©2001 The American Physical Society18-1
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variety of phases. For each of these phases, we calculate
important scaling exponents: the fractal and the spectra
mensions. In Sec. IV, we discuss what happens when
input weights are modified. We show that the scale-free
gime is unstable. Generically, the ensemble develops
responses: either a scale is spontaneously generated or
‘‘singular’’ node appears, which is connected to almost
other nodes~the ‘‘one-takes-it-all’’ scenario! @14#.

A graph model can be used as an event generato
Monte Carlo studies of the statistical properties of grap
themselves or of the ‘‘matter’’~e.g., Ising spins, complex
spins, etc.! living on the nodes@13#. Our discussion will also
lead to the formulation of a simple computer algorithm f
generating random graphs. Readers more interested in
aspect of this work than in the more formal discussion
follow can jump directly to Sec. V, where our algorithm
formulated, after reading the beginning of Sec. II to get
quainted with our notation. In Sec. VI, we present a sam
of curves representing the connectivity distributions cal
lated for finite systems using our code, compared to
analogous curves generated from the growing network re
of Refs. @4,8,7# and we briefly discuss some finite size e
fects.

In Sec. VII, we summarize our results and we discuss
problems related to the generalization of the present
proach to models more complicated than the connected
model discussed at length in the previous sections. We
list some open questions. In this paper, when necessary
make use of some results, found in a different context, s
tered in earlier publications we have coauthored@15–18#.
We believe that it is useful to adapt these results to
present context, putting them in another perspective
making them accessible to a different community.

II. MINIFIELD THEORY AND GRAPH ENSEMBLES

Our starting idea is to use a toy field theory in ze
dimensions—we call it a minifield theory—and to identi
the Feynman diagrams of this theory with the graphs of
ensemble. The weights attached to the graphs are the am
tudes calculated using the standard Feynman rules, the m

FIG. 1. Three graphs with the same number of identical no
and therefore, in our model, with the same weight. A Cayley t
~a! has always a diameter; log N, whereN5#nodes. A comblike
tree ~b! has a diameter;N. The generic trees, like~c!, are devoid
of any symmetry and can be drawn in a variety of manners,
have large entropy. Such trees made up with nodes of degree
and three have the Hausdorff dimensiondH52 ~cf @12#! and there-
fore, their diameter is typically;AN.
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being, of course, formulated in such a manner that th
weights are positive.

Let us define the minifield theory@17# by the following
formal integral:

Z5~2pkl!21/2E df exp
1

k F2f2/2l1 (
n.0

pnfnG . ~1!

By assumption, the real constantspn are non-negative.
Hence, strictly speaking, the integral does not exist. Ho
ever, expanding the exponential and performing the integ
tions overf one obtains an unambiguously defined seri
The terms of this series can be represented, as usual in
theory, by Feynman diagrams. The convergence of the se
is, in general, uncertain and requires some considerat
When the series converges, its sum, also denoted byZ, can
be regarded as the partition function of a graph ensembl

The content of the above paragraph will appear obviou
the practitioners of field theory, but may appear fortuitous
some readers working on networks, but not totally famil
with the former. We have no space to explain the point
length. Hopefully, a simple example may be of some he
Consider the following contribution toZ:

Zex.5~2pkl!21/2E df e2(1/2kl)f2 1

4!
@p2f2/k#4. ~2!

We need to calculate the eighth moment of a Gaussian.
shall do it in a fancy way. For book-keeping purposes,
distinguish by a label the four ‘‘interaction terms’’ that a
being multiplied above,

@f2#4→f~1!2f~2!2f~3!2f~4!2, ~3!

and we represent each label by a point in a plane. We
serve that every moment of a Gaussian is fully determin
by its second moment, which in our case equalskl. We
replace all binomials appearing in the integrand,f( i )f( j )
→kl and we join with a line the points representing t
labels i and j. The latter results in a specific graph, a Fey
man diagram. The moment to be calculated is obtained
summing over all possible matchings of four pairs of labe
All the connectedgraphs corresponding to our example a
shown in Fig. 2. One checks easily that to each of th
diagrams correspond 16 distinct matchings of the same
pairs of labels. Thus, the contribution to the right-hand s
~r.h.s.! of Eq. ~2! of each of these Feynman diagrams
l4@p22!#4/4!. The full result is obtained by taking into ac
count the disconnected diagrams, too. In some diagram
line connects a point to itself (i 5 j ), these are the so-calle
‘‘tadpoles.’’ We shall not list all these diagrams here.

s
e

.,
ne

FIG. 2. The labeled connected Feynman diagrams represen
the contributions to the right-hand side~r.h.s.! of ~2!. With each one
of these graphs is associated the weight 2@p2l#4/3.
8-2
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STATISTICAL ENSEMBLE OF SCALE-FREE RANDOM GRAPHS PHYSICAL REVIEW E64 046118
The point is that the Feynman diagrams of the minifie
theory are the graphs familiar to people working on n
works, except that there is a specific weight attached to e
such a graph. The graphs are not necessarily connected
cept if one imposes an appropriate extra constraint, defin
a graph subensemble.

We assume thatp1, which plays the role of an externa
current, is strictly positive. Hence, in our minifield theor
there exist graphs with nodes that are ‘‘external,’’ i.e., of u
degree.

The weightw associated with a Feynman diagram that
‘‘nondegenerate’’—i.e., does not have tadpoles and mult
connections between nodes—and whose nodes are label

w5kL2N
lL

N! )j 51

N

@pnj
nj ! #, ~4!

whereN andL denote the total number of nodes and link
respectively. When tadpoles and/or multiple connections
present, one has to multiply the r.h.s. by the usual symm
factors. In graph theory, some authors accept the existenc
degeneracies in the definition of what they mean by a gra
In most texts, the degeneracies are excluded. The clas
graph models we propose is fairly general, but not the m
general. Indeed, by construction, the weight of a graph
given in Eq. ~4! by a product of weights associated wi
individual nodes. A possible generalization will be propos
later on.

As is well known from field theory,W5k ln Z generates
the connected graphs. Only tree graphs survive in the ‘‘se
classical’’ limit k→0. From here on, we focus on the stat
tical ensemble ofconnected tree graphs. We shall return to
more general graphs in the last section.

In this paper, we are interested in models where the ra
of convergence of the series in the exponent on the r.h.s
Eq. ~1! is finite. It is not a loss of generality to set this radi
to unity. It is evident from Eq.~4! that this can always be
achieved by a multiplicative renormalization ofl andk.

The partition function of connected tree graphsWtrees is
given by the stationary value of the action atf5F, F being
defined implicitly by the saddle-point equation

F5l (
n.0

tnFn21, ~5!

where we have introduced a shorthand notationtn5npn .
One easily checks that

F5]Wtrees/]t1 . ~6!

Hence,F generates tree graphs with one marked exte
node. Equation~5!, with its nice graphical representatio
@12,19#—see Fig. 3—has a long history and is recurren
rediscovered in the literature.

It is easy to see thatF is singular. Indeed, Eq.~5! can
only be satisfied ifl is smaller than some critical valuelc
5lc(t1 ,t2 , . . . ,). Equation~5! can be rewritten as
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l215F~F![ (
n.0

tnFn22, ~7!

and by definition

lc
215F~F0!, ~8!

whereF5F0 is the point in the interval@0,1# whereF(F)
takes its minimal value. The critical behavior of the theory
found from the behavior ofF(F) in the vicinity of F0.

One observes that both the r.h.s. of Eq.~7! and its second
derivative are positive forF.0. Moreover,lc is finite ~be-
causet1.0). The concavity property ofF(F) implies that
one has, in general, the choice between only three poss
ties ~cf Refs.@15,17,12#!:

~A! F0,1 andF8(F0)50.
~B! F051 andF8(1)50.
~C! F051 andF8(1),0.

These three cases will be discussed in detail later on.
It is customary to introduce a susceptibility critical exp

nent g controlling the most singular part of the second d
rivative of the partition function. SinceF is the first deriva-
tive of the partition function, we write

F;~lc2l!12g. ~9!

The exponentg is finite in all cases of interest for us, as wi
be shown in the following sections, where it will be calc
lated.

A factor l is associated with every link of a tree grap
and has the physical significance of the fugacity of link
SinceL5N21, it can also be regarded as the fugacity
nodes. Hence,

Wtrees5(
N

WN
treeslN;~lc2l!22g. ~10!

Taking the inverse Laplace transform, one obtains for t
graphs the canonical partition function,

WN
trees;Ng23lc

2N N@1. ~11!

Hence, the ensemble of random trees behaves like a stan
statistical mechanical ensemble. In particular, the numbe
trees withN nodes is exponentially bounded inN and the
canonical ensemble has an extensive entropy.

We have not yet introduced the constraints associa
with the absence of a scale. The quantity of experimen
interest isPn , the bulk connectivity distribution. It isPn that
should exhibit a power-like fall at largen. The relevant ques-

FIG. 3. The graphical representation of Eq.~5!. With every node
in the figure—the open circles—is associated the factorltn . We
use the shorthand notationtn5npn .
8-3
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Z. BURDA, J. D. CORREIA, AND A. KRZYWICKI PHYSICAL REVIEW E64 046118
tion is how to choose the series of the bare couplingspn in
order to get a given scale-freePn . The rest of this section is
devoted to this problem. For tree graphs, the solution can
found mapping the model of graphs on another one, kno
in the literature as the balls-in-boxes model@16#.

In Sec. 2.7.7 of Ref.@20# a series solution of Eq.~5! is
given as

F5(
N

FNlN, ~12!

with

FN5
1

N (
$v j %

N!

v1!v2! . . . vN!
t1
v1 . . . tN

vN , ~13!

andv j being positive integers satisfying the constraints

(
j

v j5N (
j

j v j52N21. ~14!

Equation~13! can be further rewritten as

NFN5V~N,2N21!, ~15!

with

V~N,M !5(
$nj %

tn1
. . . tnN

dS (
j 51

N

nj2M D . ~16!

The summation is now on all sets ofN positive integers. The
r.h.s. is the partition function of a system ofM balls distrib-
uted at random and with weightstn amongN boxes, empty
boxes being forbidden. This model of weighted partitions
precisely the balls-in-boxes model@21#.

The effective box occupation distribution istnV(N
21,M2n)/V(N,M ). Using the integral representation o
the ~discrete! d-function, one easily finds an integral repr
sentation ofV(N,M ), which can be used to calculate it b
the saddle-point method in the limitN→`, r5M /N
5const. The effective box occupation distribution follow
Of course, the tree-graph model corresponds tor52. We
shall not repeat this calculation here, referring the reade
Ref. @16# for details and quoting the result forr52<^n& t
[(nntn /(ntn,

Pn;tnF0
n ~17!

up to an obvious normalization factor. Here,F0 is to be
found fromF8(F0)50. This last condition can be rewritte
as

(
n

ntnF0
n/(

n
tnF0

n52. ~18!

The left-hand side~l.h.s.! is an increasing function ofF0.
Consequentlŷn& t52 corresponds toF051 and, therefore,
to case~B! introduced earlier. Hence, for tree graphs and
the limit N→`,
04611
e
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Pn;tn iff ^n& t52. ~19!

This result can be understood intuitively. The shape of
two distributionsPn and tn differs because of the constrain
sN[(1/N)( jnj52. But for N→`, the constraint is satisfied
‘‘for free’’ when ^n& t52 andb.2 by virtue of Khintchin’s
law of large numbers.

The condition~19! solves our problem: the input cou
plings pn of the tree-graph model should be set topn
5Pn /n in order to get the scale-free connectivity distrib
tion Pn in the bulk. The distributionPn must, of course,
satisfy the constraint(nnPn52, otherwise it would not refer
to trees@22#.

III. GEOMETRY OF SCALE-FREE TREE GRAPHS

In this section, we discuss the geometry of graphs belo
ing to the statistical ensemble of scale-free trees. Hence
cording to the results of the preceding section, we assu
that tn;n2b for n→` and that^n& t52. We have already
stated in the preceding section that this situation correspo
to case~B!: F051 andF8(1)50.

It follows from general arguments thatF(F) has a branch
point atF51. The order of the singularity is determined b
the shape of the tail oftn . For nonintegerb one finds~cf
@15#! that @23#

F~F!5polynomial in ~12F!1~12F!b21

1higher-order terms. ~20!

The concavity ofF(F) impliesb.2. The linear term in the
polynomial is absent.

When 2,b,3, inverting Eq.~21! one finds the singular
part of F,

Fsing;~lc2l!1/(b21), ~21!

so thatg5(b22)/(b21).
Whenb.3 the inversion yields

Fsing;~lc2l!1/2. ~22!

Therefore,g51/2.
We now consider two scaling exponents that have a di

geometrical interpretation in terms of the average ‘‘dime
sion’’ of the ensemble graphs.

One can define a two-point correlation functionC(x,l)
equal, up to normalization, to the average number of pair
nodes separated by a distancex. Using a graphical represen
tation analogous to that of Fig. 3, one finds@12#

C~x,l!;Fl ]

]F
~FF~F!# x. ~23!

The fractal dimensiondH of the tree can be defined by

x21ln C~x,l!52const~lc2l!1/dH for x→`,
~24!
8-4
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STATISTICAL ENSEMBLE OF SCALE-FREE RANDOM GRAPHS PHYSICAL REVIEW E64 046118
where it is assumed thatulc2lu!1. Notice, that (lc
2l)21 is a measure of the average size of a graph@24#. One
finds finally

dH5
1

g
. ~25!

Another definition of dimension is obtained by conside
ing a diffusion process on the graph; as is well known, d
fusion can be mapped to a random walk. If we conside
walker departing from a certain point at timeT50, then the
return probability to the start of the walk is, for smallT,
proportional toT2ds /2 where ds is the spectral dimension
the dimension of the graph as seen by a random walker m
ing on the graph.

In was shown in@18,25# that the spectral dimensionds is
for g>0 given by

ds5
2

11g
. ~26!

Combining Eqs.~26! and ~26!, one obtains the nice relatio

ds5
2dH

11dH
. ~27!

For b.3, one findsdH52 andds54/3. These are the ge
neric values for a tree graph@12,25#, which would be found
also if there were only a finite number of nonvanishing co
plings tn . The typical graph is a fully developed tree, wi
many branching branches.

For 2,b,3 one obtains

dH5~b21!/~b22!, ~28!

ds52~b21!/~2b23!. ~29!

As b→2, the trees become increasingly crumpled, they lo
like a set of linked hedgehogs. Asb approaches 2 the ave
age distance between a pair of nodes starts growing
slowly with N. For example, whenb52.1, this distance is
;N1/dH5N1/6. The increase is not logarithmic, as is som
times claimed, but powerlike. Of course, in practice, t
does not make much difference, when the power is sma

The upshot of the above discussion is that a scale-
large-degree behaviorPn;n2b, b.2, is associated with a
variety of distinct graph geometries. It is quite remarkab
that at least for the tree graphs of the discussed ensem
one can give a complete catalogue of expected geometr

IV. INSTABILITY OF A SCALE-FREE REGIME

The logical next step of the discussion is to examine w
happens when the shape oftn is so distorted that the con
straint ^n& t52 is broken. We continue assuming thattn
;n2b at largen.

Consider, first, the casên& t,2. This condition is equiva-
lent to F8(1),0. We recover case~C! of Sec. II. Since the
linear term in the polynomial on the r.h.s. of Eq.~21! is now
present, inverting Eq.~21! one gets
04611
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Fsing;~lc2l!b21, ~30!

with b.2. An explicit calculation using Eq.~24! yields dH
5`. We also expectds52. A typical tree graph looks like a
set of linked hedgehogs. Moreover, as explained below
different feature shows up: a ‘‘singular’’ node with a fixe
degree ofO(N), a hedgehog even more spiky than the o
ers.

To see this, it is instructive to understand how the co
straint sN52 is satisfied. Notice that if we omit fromsN a
few terms, saynj 1

, . . . ,nj p
, the resulting sum will fluctuate

around^n& t . Hence, forN→`,

sN2
1

N
~nj 1

1, . . . ,1nj p
!5^n& t . ~31!

But, sincesN52, it is clear that at least some of the cont
butions to the sum on the l.h.s. must be of orderO(N). Since
the probability distribution falls like a power, it is most prob
able that there is only one such contribution. Thus, one
pects the appearance of a characteristic ‘‘singular’’ no
with degreen5(22^n& t)N. Other nodes have degree distr
bution ;tn:

Pn5
tn

(
k

tk

1
1

N
d@n2~22^n& t!N#. ~32!

The normalization factor in front ofd is determined by the
tree condition(nnPn52.

The other possible case iŝn& t.2. This condition is
equivalent toF8(1).0, which by virtue of the concavity of
F(F) implies thatF0,1. This is case~A! of Sec. II. Hence,
Pn equalstn times an exponentially falling factor. A scale i
the node-order distribution is spontaneously generated.
dramatic fluctuations of node degrees are absent.

ExpandingF(F) in the neighborhood ofF5F0, where
its derivative is bound to vanish and inverting the resulti
expansion in order to find the most singular part ofF, one
gets

Fsing;~lc2l!1/2. ~33!

Hence,g51/2 and one again obtains the generic valuesdH
52 andds54/3.

The above two scenarios are the only alternatives to
scale-free behavior of the discussed statistical ensembl
tree graphs.

One can show that the transitions between differ
phases of the model are continuous and that the degre
their softness varies when the couplingstn change. There is
no phase transition between the generic phase~A! and the
scale-free regime~B! with b.3.

V. COMPUTER ALGORITHM

In the synchronic approach, the construction of grap
does not mimic any real physical process. The emphas
on the flexibility and on the efficiency in producing a samp
8-5
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Z. BURDA, J. D. CORREIA, AND A. KRZYWICKI PHYSICAL REVIEW E64 046118
of graphs to work with. We use the following notatio
R(n)5pn /pn21.

We propose an algorithm working for a given fixedN and
L. It rewires links, generating Feynman diagrams of
minifield theory, proceeding as follows@26#:

~a! Pick a random oriented linki jW .
~b! Pick a random target nodek.
~c! Apply the Metropolis test: rewire the linki jW to ikW with

probability

Prob~rewiring!5~nk11!R~nk11!/njR~nj !. ~34!

These Feynman diagrams are properly weighted. The a
rithm is probing all possible connections within a set of d
tinguishable nodes. For nondegenerate diagrams, the
tropolis condition immediately follows from the detaile
balance equations together with the weight~4! given to mi-
crostates. For general diagrams, the symmetry factors
lated to the presence of tadpoles and multiple connec
between nodes, also come out correctly. This is again a
sequence of the detailed balance: if two nodes are conne
by m links, the transition to a state where the nodes
connected bym21 links can be done inm ways. The inverse
operation has only one realization. Whenpn51/n! the Me-
tropolis test is always positive and the nondegenerate lab
diagrams produced by the algorithm are equiprobable
they should be. We have checked the validity of the gen
argument on a variety of examples.

In order to produce connected tree graphs, one starts f
a connected tree configuration, e.g., a polyline with free e
and one adds, before the Metropolis test, a check insu
thatkÞ i , j andni51. It is easy to convince oneself that wit
this constraint the tree is never broken into parts. As
plained in Sec. II, the scale-free connectivity distribution
the bulk is obtained settingpn;Pn /n.

Notice that, with a constraint added before the Metropo
test, the algorithm explores a well-defined subensemble
graphs. However, because the detailed balance is satis
this subensemble is in equilibrium, or, more precisely flu
tuates around equilibrium~see also the remark on that matt
in the last section!. Thus, within the subensemble in questi
the algorithm tends to sample ‘‘typical’’ graphs.

VI. NUMERICAL EXAMPLES AND FINITE-SIZE EFFECTS

Since we propose an algorithm for generating rand
graphs, it may be of interest to the reader to see how
results compare to those obtained with an algorithm alre
existing on the market. As an example to compare with,
take the Growing Network model of Ref.@7#, which is a
slight generalization of the algorithm proposed originally
Ref. @4# and that also generates connected trees.
asymptotic analytic solution forPn is given by Eq.~12! in
the second paper of Ref.@7# ~see also@8#!:

Pn5~b21!
G~2b23!G~n1b23!

G~b22!G~n12b23!
. ~35!
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We use thisPn as input in our code. A sample result
shown in Fig. 4, where we compare the results of the ca
lation using the two algorithms, respectively. The calcula
points are practically indistinguishable and follow the inp
distribution, except for thosen where finite-size effects cu
and distort the distribution.

Indeed, whenN is finite, the distribution of node degree
cannot extend to infinity, there is an upper cutoff onn:n
,nmax. The cutoff can be estimated by imposing the con
tion that the expected number of nodes found abovenmax is
at most equal to unity. Then

N(
nmax

`

n2b5const. ~36!

The value of the constant on the r.h.s. depends on the
tailed shape ofPn . Equation~36! leads to the scaling law

nmax;N1/(b21), ~37!

analogous to the result of@7,9#, where instead ofN appears
the time. Beyondnmax, the node-distribution function falls
very abruptly and can be neglected for all practical purpos
Notice, thatnmax may be much smaller thanN. As noticed in
Ref. @9#, this explains why large scale-free graphs withb
significantly larger than three are not observed in nature

FIG. 4. Comparison of the connectivity distribution produced
our Monte Carlo algorithm~black! and that of Ref.@7# ~gray! for
N5214 andb52.1 and 3.0, respectively. The points are joined b
line to guide the eye. The almost straight lines correspond to
asymptoticPn given in Eq.~35!.

FIG. 5. The connectivity distribution calculated for our e
semble of tree graphs, at finiteN52k, k514,15,16,17, and forb
52.1 and 3.0. The almost straight lines correspond to
asymptoticPn given in Eq.~35!. The figure illustrates the finite-size
cutoff of the order distribution discussed in the text.
8-6
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In Fig. 5 we show the evolution ofPn with N. In order to
obtain a very precise result we use, instead of the Mo
Carlo, an analytic recursion formula satisfied by the equi
lent partition function given by Eq.~16! of Sec. II ~see Ref.
@21# in that section!. When the abscissa in Fig. 5 is rescale
for different N and using Eq.~37!, the curves correspondin
to the sameb are cut at the same place.

VII. SUMMARY AND DISCUSSION

A. Connected tree graphs: A tentative summary

Let us summarize what has been achieved so far. We h
started by introducing a fairly general ensemble of rand
graphs, but we have rapidly focused our attention on
sub-ensemble of connected tree graphs. We have found
conditions insuring that the latter are scale free. We h
discussed in detail the geometry of the connected
graphs. We have also constructed a computer algorithm
erating these graphs with an arbitrary bulk connectivity d
tribution Pn . Since our analytic discussion may sound som
what formal for some readers, let us illustrate it with
simple, but very instructive example.

Consider a two-parameter family of input weightstn
5npn : t151 andtn5(1/a)n2b, n.1. The condition insur-
ing that the trees are scale free was found in Sec. II an
^n& t5(nntn /(ntn52. In the example in question, it i
equivalent to the following relation between the paramet
a andb:

a511z~b21!22z~b!, ~38!

where z(b) is the Riemann Zeta function. The phase d
gram@15# is shown in Fig. 6: the line is calculated from E
~38!.

As one moves along this line in the direction of decre
ing b, the geometry remains generic down tob53 and be-
comes progressively more and more crumpled below
point. In particular, the fractal dimension increases from
initial value 2 to` @see Eq.~28!#. This behavior is easily
understood. Whenb is moved towards 2 the convergence
the series deteriorates. The only way to keep the average^n& t
constant, viz. equal to two, is to reduce the normalization
the tail. This means, however, that the relative weight

FIG. 6. Phase diagram for the simple two-parameter model
sented in Sec. VII:t151, tn5(1/a)n2b, n.1. The part of the
continuous line on the right of the black dot corresponds to
scale-free graphs belonging to the generic phase.
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nodes with unit degree gets larger. Eventually, the numbe
‘‘external’’ nodes increases withN much faster than the
number of large-degree nodes. The latter are usually c
nected to the former, building hedgehoglike structures.

Off the line ~38! one falls into one of the alternativ
phases discussed in Sec. IV: either a scale is generated s
taneously andPn falls exponentially, or else there appears
‘‘singular’’ node with huge connectivitynsing5N(22^n& t).
In the former case, the graphs have a typical extension;AN,
while in the latter case, they are crumpled and have infin
fractal dimension. Because of the constant presence of
‘‘singular’’ vertex, the diameter of the graph grows slow
than any power ofN for N→`.

Notice that the conditionb.2 appears often in our dis
cussion. Indeed, at least in the framework adopted in
paper, a scale-free graph with a different exponent can
exist. Actually, the arguments used towards the end of S
IV can also be used when̂n& t5` and one predicts an ex
ponentially fallingPn at the ‘‘output.’’

We have considered the stability of scale-free graphs w
respect to possible deformations of the sequence of weig
Indeed, in nature, a random graph does not exist in isolat
It is an open system, subject to interactions with, loos
speaking, a heat bath. It is, thus, interesting to know wha
expected to happen when this interaction becomes stron

Our results reflect the behavior of ‘‘typical’’ graphs. Bu
very ‘‘atypical’’ values of global parameters, for example,
the spectral dimension, can be found when a specific la
graph is analyzed@27#. Our algorithm makes it possible t
measure the degree of this ‘‘atypicality:’’ a numerical sim
lation enables one to estimate the probability of a given fl
tuation of the global parameter.

B. More general graph models

1. Weighted connections

Our graph model has been constructed in such a way
the weight of a graph is a product of weights associated w
individual nodes. A possible generalization could consist
replacing the starting graph generating function defined
Eq. ~1! by

Z;E dqf exp
1

k F2fAf1 (
n51

q

pnfn
nG , ~39!

where A is a positive definite matrix of rankq and f
5(f1 , . . . ,fq). The series expansion of the r.h.s. genera
graphs with nodes of degree 1,2, . . . ,q and a weight}Amn

21

attached to every link connecting a pair of nodes of degrem
and n. The limit q→` should be handled with care. In
study of tree graphs, the limitk→0 should be taken first
The investigation of this model goes, however, beyond
scope of the present paper@28#.

2. Matter on graphs

Another generalization would consist in putting ‘‘matter
fields on graphs. Ising spins on ‘‘small-world’’ graphs@29#
were already discussed in Ref.@30#. Ising spins living on the

e-

e
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nodes of quenched Feynman diagrams generated byf3 or
f4 interactions were studied by many people~see, for ex-
ample,@31# and the long list of references therein!, in par-
ticular, with the aim to determine the critical behavior of t
spin system. It would be very interesting to extend the
studies to scale-free graphs as defined in the present p
and to see, for example, what is the effect of changingb and
therefore also the fractal dimension of the graphs.

3. Graphs with cycles

The most important generalization consists in extend
the study to graphs with cycles. Introduction of a fixed nu
ber of cycles does not seem to be a big deal in the pre
context ~see, however, Ref.@17#!. For example, whenN
→` the Hausdorff dimension is expected to be insensitive
the presence of a fixed number of cycles. On the other h
the case where the ratioL/N is kept fixed at some arbitrar
value whenN→` is very challenging.

There are conceptual problems related to the ov
extensive nature of the ensemble. It is not difficult to cou
the number of nondegenerate graphs (N ) with given N and
L. It is sufficient to consider the number of distinct adjacen
matricesCi j 51 or 0, for i , j connected or not, respectively

N~N,L !5S 1/2N~N21!

L D . ~40!

In general, the r.h.s. behaves like exp~constN logN) when
N→`, L/N fixed. A similar result is easily obtained fo
degenerate graphs. The entropy is not extensive. This is
to understand. It is impossible to divide an arbitrary gra
into two parts separated by a ‘‘boundary’’ of negligible me
sure. Any two nodes can interact. Hence, it is not certain
general, that the bulk distributionPn calculated in the en-
semble coincides with that obtained from a single, su
ciently large graph. Tree graphs are a notable exception
the ‘‘semiclassical limit’’k→0, the entropy becomes exten
sive.

Our algorithm, in its most general version, generates
possible Feynman diagrams and can, in principle, be use
simulate arbitrary graphs. The problem is to find the co
strains on the couplingspn insuring that the bulk connectiv
ity distribution has a desired form.

The presence of the factor (nk11)/nj in Eq. ~34! means
that the rewired nodes are sampled independently of t
degree~without this factor, nodes belonging to a large nu
ber of links would be rewired preferentially!. If no extra
check is performed before the Metropolis one, the algorit
does not know about the underlying graph structure. It pl
with node degrees and nodes as it would play with balls
boxes in the balls-in-boxes model with occupation weig
pn . Hence, a scale-freePn is obtained settingpn;Pn ~and
L5 1

2 N^n&). The graphs produced that way are degenerat
there are tadpoles and multiple connections between no
They are, in general, not connected—it is very difficult
avoid producing disconnected graphs—but forb<3, most of
nodes belong to the giant component. The conditions o
appearance are well understood@32,19#. The connectivity
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distribution within the giant component has the same sc
free behavior at not too smalln.

Our present experience is that the algorithm has no d
culty equilibrating the ensemble. The algorithm defines
Markov process. We do not have any proof that the next
largest eigenvalue of the transition matrix is separated fr
unity by a gap remaining finite whenN→`, but it seems
very likely that it is, since we do not expect any collectiv
effects to occur.

A different algorithm, generating graphs with an arbitra
connectivity, is proposed and used in Refs.@19,32#. In this
algorithm a graph is generated in two steps. First, a list oN
degrees,n1 ,n2 , . . . ,nN , is sampled out of the distribution
Pn . In a sense, one creates firstN nodes with attached links
having the other end free. Then, in the second step,
connects together, at random, the free ends of links.
produced graph is, in general, not connected and degene
The ensemble is defined by repeating this procedure over
over. In the limitN→`, the connectivity distribution is iden
tical to Pn for individual graphs. Notice thatL is not fixed.

Our approach, rooted in field theory, is different. We st
with microstates weighted so that the connectivity distrib
tion becomes scale free afteraveraging over the ensemble.
But, as already mentioned, the scale-free connectivity wit
individual graphs is, strictly speaking, not guaranteed, exc
for the ensemble of trees: averaging within a single graph
infinite size is, in general, not equivalent to averaging o
the ensemble of graphs. This is perhaps a flaw, but on
whole, the virtues of the two approaches seem complem
tary. We hope to develop this point elsewhere.

In order to construct nondegenerate graphs, it suffice
verify, before performing the Metropolis check, that the pr
posed rewiring does not produce tadpoles and/or mult
connections. We have a code doing that efficiently. The r
problem, which we have not solved yet, is to find for nond
generate graphs, the set of couplingspn producing the de-
sired scale-free bulk distributionPn . Settingpn5Pn gives
for, sayb53, results that are encouraging, although the c
off nmax is smaller than in the degenerate case. Howev
when b is decreased things worsen. No doubt the probl
deserves more theoretical and numerical work.

We are tempted to conjecture that the degeneracy d
not matter for large-scale features of graphs. The absenc
any natural scale suggests that the graphs are self-simila
so, one can decimate nodes as follows: pick a node at
dom and shrink to a single point all its immediate neighbo
If the graph is really self-similar, decimating nodes shou
not alter its large-scale features. But such a decimation
necessarily produce degenerate graphs. For the moment
conjecture is a speculation. However, our experience w
simulating random surfaces suggests that this possib
should not be disregarded: degenerate randomly triangul
surfaces—those whose duals have ‘‘tadpoles’’ and ‘‘se
energy’’ insertions—turn out to fall into the same univers
ity class as the nondegenerate surfaces, but are much e
to simulate.

Finally, let us note that it is straightforward to produce
algorithm analogous to the one proposed in this paper
constructing directed graphs.
8-8
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