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Statistical ensemble of scale-free random graphs
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A thorough discussion of the statistical ensemble of scale-free connected random tree graphs is presented.
Methods borrowed from field theory are used to define the ensemble and to study analytically its properties.
The ensemble is characterized by two global parameters, the fractal and the spectral dimensions, which are
explicitly calculated. It is discussed in detail how the geometry of the graphs varies when the weights of the
nodes are modified. The stability of the scale-free regime is also considered: when it breaks down, either a
scale is spontaneously generated or else, a “singular” node appears and the graphs become crumpled. A new
computer algorithm to generate these random graphs is proposed. Possible generalizations are also discussed.
In particular, more general ensembles are defined along the same lines and the computer algorithm is extended
to arbitrary (degeneratescale-free random graphs.
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[. INTRODUCTION evolution. To our knowledge, this approach is the one com-
monly used in works on scale-free graphs.

Random graphs are entities one encounters in many fields (2) The synchronicapproach, where one considers the
of research. Every time one has some objects or agents Bstatistical ensemble of graphs at a fixed large time. Introduc-
mutual interaction, one can consider these objects or agenisg a statistical ensemble enables one to use the conceptual
as the nodesvertices of a graph and represent, pictorially, tools of statistical mechanics. The dynamics of processes
the existence of the interaction by an abstract ligklge  producing scale-free networks is presumably much more
connecting two nodes. Hence, an epidemic can be regardg@@mplicated than that of the proposed simple models. The
as a graph: the nodes are the infected people and the linkgsulting randomness is better implemented in the synchronic
connect those who have been infected with their infectorsthan in the diachronic approach. Generating graphs with an
Likewise, the science citation index can be represented by ariori'given ConnectiVity d-iStrik-)ution seems also easier. This
graph. Of course, the world-wide-web is a graph. There arés the approach adopted in this work.

many more such examples. Usually the graph structure is Introducing a statistical ensemble of graphs meipse
fairly random. factothat the graphs are weighted. In our model, each graph

is given a weight proportional to the product of weights at-
; P tached to individual nodes and depending on node degrees.
node ancP,, the corresponding bulk probability distribution. The latter weights are chosen so as to generate the scale-free

When P,~n"# for n>1, it is common to call the graphs L ) -
scale free This class of graphs is not described by the clas-bEh"jWIor In the ensemble. Thus, in a sense, the graphs—the

ical th f rand 41 whereP. is Poi ) microstates of the ensemble—are given an “internal en-
sical theory of random grapHd], whereP, is Poissonian. ergy.” Our general results characterize, of course, the “typi-

The subject became popular recently, when data on largg,» graphs only, i.e., those contributing most significantly
graphs—in particular on the web network structurey, the ensemble averages. The “typicality” of graphs results
[2]—became available. from the usual interplay of energy and entrggge also Fig.
Scale-free graphs are naturally generated by stochasti). This can be considered as a virtue or as a flaw of the
processes, where the graph size is growing and the additi%proach, depending on the goa| one is pursuing_
of links is preferential: the probability to attach a link to a A rather general graph ensemble is defined in Sec. Il. For
node is, roughly speaking, proportional to the node degreejefiniteness, we consider undirected graphs only. We use
Several models of growing networks have been proposetkchniques borrowed from field theory, which enable one to
[4—11]. The prototype is the model worked out in a classicformulate the problem and to find a number of results in a
paper by Simor{3]. This model does not really deal with rather elegant fashion. The ensemble is defined for a given
graphs, but can easily be converted intgdaected graph  set of input weights. We rapidly focus on scale-freen-

Consider a random graph. Latdenote the degree of a

model, as observed ii1]. nected treegraphs, i.e., connected graphs without cycles.
In studying random graphs one can adopt two compleThis is the case we have fully under control and where many
mentary approaches: results can be obtained analytically, so that a maximum clar-

(1) The diachronic approach, where one focuses on theity is achieved and our approach is exposed the best. We
time evolution of the graph. The main advantage of this apdiscuss the condition that guarantees thatgpriori-given
proach is that one stays close, in spirit at least, to the dynaneonnectivity distribution is found in the “output,” i.e., when
ics operating in nature. Furthermore, one can discuss prdhe weights of graphs and their entropy are taken into ac-
cesses, like aging, which are intimately related to the timecount. In Sec. Ill, we show that the ensemble can be in a
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FIG. 2. The labeled connected Feynman diagrams representing

the contributions to the right-hand si¢teh.s) of (2). With each one
of these graphs is associated the weighta ]*/3.
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FIG. 1. Three graphs with the same number of identical node?e'_ng' of COUI’S(-E',. formulated in such a manner that these
and therefore, in our model, with the same weight. A Cayley treeWelghts are POS'“Ve- L .
(a) has always a diameterlog N, whereN=#nodes. A comblike Let us define the minifield theoryd 7] by the following
tree (b) has a diameter-N. The generic trees, lik&), are devoid ~ formal integral:
of any symmetry and can be drawn in a variety of manners, i.e.,
have large entropy. Such trees made up with nodes of degree one Z:(ZWK)\)illzf deb expj—-
and three have the Hausdorff dimensihp=2 (cf [12]) and there- K
fore, their diameter is typically- VN.

— 2N+ 20 pad"|. (D)

By assumption, the real constangs, are non-negative.

variety of phases. For each of these phases, we calculate t#£NC€, strictly speaking, the integral does not exist. How-
important scaling exponents: the fractal and the spectral di€Ver, €xpanding the exponential and performing the integra-
mensions. In Sec. IV, we discuss what happens when thons over¢ one obtains an unambiguously defined series.
input weights are modified. We show that the scale-free reThe terms of this series can be represented, as usual in f|§ld
gime is unstable. Generically, the ensemble develops tw€0ry, by Feynman diagrams. The convergence of the series
responses: either a scale is spontaneously generated or elsiain general, uncertain and requires some consideration.
“singular’ node appears, which is connected to almost all'Vhen the series converges, its sum, also denoted, lpan
other nodesgthe “one-takes-it-all” scenarip[14]. be regarded as the partition function of a graph enser_nble.
A graph model can be used as an event generator in The cqntent of thg above paragraph will appear obylous to
Monte Carlo studies of the statistical properties of graphdhe practitioners of field theory, but may appear fortuitous to
themselves or of the “matter'(e.g., Ising spins, complex SOMe readers working on networks, but not t.otally fan_1|I|ar
spins, etd. living on the node$13]. Our discussion will also  With the former. We have no space to explain the point at
lead to the formulation of a simple computer algorithm for 1€ngth. Hopefully, a simple example may be of some help.
generating random graphs. Readers more interested in thfonsider the following contribution t2:
aspect of this work than in the more formal discussion to
follow can jump direct'ly to Sec. v, vyhere our algorithm is Zex_=(27-r/<>\)’1’2J’ d¢ef(1/2m)¢2i[p2¢2/,<]4_ 2)
formulated, after reading the beginning of Sec. Il to get ac- 41
quainted with our notation. In Sec. VI, we present a sample
of curves representing the connectivity distributions calcu\We need to calculate the eighth moment of a Gaussian. We
lated for finite systems using our code, compared to théhall do it in a fancy way. For book-keeping purposes, we
analogous curves generated from the growing network recipdistinguish by a label the four “interaction terms” that are
of Refs.[4,8,7] and we briefly discuss some finite size ef- Peing multiplied above,
fects. 214 2 2 2 2
In Sec. VI, we summarize our results and we discuss the [$7]"—= B(1)°h(2)°h(3)°h(4)%, ©)
problems related to the generalization of the present ap- o
proach to models more complicated than the connected tred'd We represent each label by a point in a plane. We ob-
model discussed at length in the previous sections. We alsgfTVe that every moment of a Gaussian is fully determined
list some open questions. In this paper, when necessary, W its second moment, which in our case equals We
make use of some results, found in a different context, scaf€Place all binomials appearing in the integragdi) ¢(j)
tered in earlier publications we have coauthofé—1g.  — &\ and we join with a line the points representing the
We believe that it is useful to adapt these results to thé@belsi andj. The latter results in a specific graph, a Feyn-
present context, putting them in another perspective anf'@n diagram. The moment to be calculated is obtained by

making them accessible to a different community. summing over all possible matching_s of four pairs of labels.
All the connectedyraphs corresponding to our example are

shown in Fig. 2. One checks easily that to each of these
diagrams correspond 16 distinct matchings of the same four
pairs of labels. Thus, the contribution to the right-hand side

Our starting idea is to use a toy field theory in zero(r.h.s) of Eq. (2) of each of these Feynman diagrams is
dimensions—we call it a minifield theory—and to identify A% p,2!]%4!. The full result is obtained by taking into ac-
the Feynman diagrams of this theory with the graphs of oucount the disconnected diagrams, too. In some diagrams, a
ensemble. The weights attached to the graphs are the ampline connects a point to itseli € j), these are the so-called
tudes calculated using the standard Feynman rules, the mod&hdpoles.” We shall not list all these diagrams here.

II. MINIFIELD THEORY AND GRAPH ENSEMBLES
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The point is that the Feynman diagrams of the minifield
theory are the graphs familiar to people working on net-
works, except that there is a specific weight attached to each = T + + +o.

such a graph. The graphs are not necessarily connected, ex-
cept if one imposes an appropriate extra constraint, defining

a graph subensemble. FIG. 3. The graphical representation of E§). With every node
We assume thap,, which plays the role of an external in the figure—the open circles—is associated the fatgr. We
current, is strictly positive. Hence, in our minifield theory, use the shorthand notatiep=np, .
there exist graphs with nodes that are “external,” i.e., of unit
degree.
The weightw associated with a Feynman diagram that is NTI=F(@)=2 t,0" 2 (7)
“nondegenerate”—i.e., does not have tadpoles and multiple n=0
connections between nodes—and whose nodes are labeledgigqy by definition

A e '=F(®y), ®)

w=kt NI Tpa 0t (@) | o
=1 where® =® is the point in the intervdl0,1] whereF (®)

takes its minimal value. The critical behavior of the theory is
whereN and L denote the total number of nodes and links,found from the behavior of (®) in the vicinity of @,
respectively. When tadpoles and/or multiple connections are One observes that both the r.h.s. of Ef.and its second
present, one has to multiply the r.h.s. by the usual symmetrgerivative are positive fo >0. Moreover,\. is finite (be-
factors. In graph theory, some authors accept the existence ofuset;>0). The concavity property of (®) implies that
degeneracies in the definition of what they mean by a graptone has, in general, the choice between only three possibili-
In most texts, the degeneracies are excluded. The class tiés (cf Refs.[15,17,132):
graph models we propose is fairly general, but not the most .
general. Indeed, by construction, the weight of a graph is (A) Po<1 andF,(CDO)ZO'
given in Eqg.(4) by a product of weights associated with (B) ®o=1 andF,(1)=0.
individual nodes. A possible generalization will be proposed (C) ®o=1 andF'(1)<O0.

later on. _ These three cases will be discussed in detail later on.
As is well known from field theoryW= « In Z generates It is customary to introduce a susceptibility critical expo-

the connected graphs. Only tree graphs survive in the “semiﬁemy controlling the most singular part of the second de-

classical” limit x<—0. From here on, we focus on the statis- jyative of the partition function. Sinc® is the first deriva-
tical ensemble otonnected tree graphsVe shall return to  ive of the partition function, we write

more general graphs in the last section.
In this paper, we are interested in models where the radius D~(N—N)1 9
of convergence of the series in the exponent on the r.h.s. of
Eq. (1) is finite. It is not a loss of generality to set this radius The exponent is finite in all cases of interest for us, as will
to unity. It is evident from Eq(4) that this can always be be shown in the following sections, where it will be calcu-

achieved by a multiplicative renormalization ®fand «. lated. .

The partition function of connected tree graphg®sis A factor \ is associated with every link of a tree graph
given by the stationary value of the actiongat ®, ® being arld has the physmal significance of the fugacity of lllnks.
defined implicitly by the saddle-point equation SinceL=N—1, it can also be regarded as the fugacity of

nodes. Hence,
— -1
CI)—)\nZO '[n(I)n , (5) Wtrees:% W}\rjee%\NN()\c_)\)ny_ (10)
where we have introduced a shorthand notatiganp,.  Taking the inverse Laplace transform, one obtains for tree
One easily checks that graphs the canonical partition function,
trees _pnjy—3y —N s
b =W gt . 6) Wy NY"°N\, N>1. (11

Hence, the ensemble of random trees behaves like a standard

Hence,® generates tree graphs with one marked externatatistical mechanical ensemble. In particular, the number of
node. Equation(5), with its nice graphical representation trees withN nodes is exponentially bounded i and the
[12,19—see Fig. 3—has a long history and is recurrentlycanonical ensemble has an extensive entropy.
rediscovered in the literature. We have not yet introduced the constraints associated

It is easy to see thaP is singular. Indeed, Eq5) can  with the absence of a scale. The quantity of experimental
only be satisfied i\ is smaller than some critical valde,  interest isP,,, the bulk connectivity distribution. It i®, that
=A¢(t1,t5, .. .,). Equation5) can be rewritten as should exhibit a power-like fall at large The relevant ques-
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tion is how to choose the series of the bare couplipgén
order to get a given scale-frég,. The rest of this section is
devoted to this problem. For tree graphs, the solution can bghis result can be understood intuitively. The shape of the
found mapping the model of graphs on another one, knowmwo distributionsP, andt, differs because of the constraint

Po~t, iff (n)=2. (19

in the literature as the balls-in-boxes mo{i&b].
In Sec. 2.7.7 of Ref[20] a series solution of Eq5) is
given as

cb=§N‘, DN, (12)

with

1 N!

by =— -
N N{;}-}Ul!vzl...UN!

LI S (13

andv; being positive integers satisfying the constraints
> v;=N X juj=2N-1. (14)
i i

Equation(13) can be further rewritten as
Ndy=Q(N,2N-1), (15

with

N
Q(N,M):{E} tn, - - .tnN5( 21 nj—M). (16)
n; =

The summation is now on all sets Wfpositive integers. The
r.h.s. is the partition function of a system Mf balls distrib-

sn=(1/N)Z;n;=2. But forN—o, the constraint is satisfied
“for free” when (n),=2 andB>2 by virtue of Khintchin’s
law of large numbers.

The condition(19) solves our problem: the input cou-
plings p, of the tree-graph model should be set pg
=P,/n in order to get the scale-free connectivity distribu-
tion P, in the bulk. The distributionP,, must, of course,
satisfy the constraint ,nP,=2, otherwise it would not refer
to trees[22].

Ill. GEOMETRY OF SCALE-FREE TREE GRAPHS

In this section, we discuss the geometry of graphs belong-
ing to the statistical ensemble of scale-free trees. Hence, ac-
cording to the results of the preceding section, we assume
thatt,~n# for n— and that(n);=2. We have already
stated in the preceding section that this situation corresponds
to case(B): ®y=1 andF’'(1)=0.

It follows from general arguments the(®) has a branch
point atd=1. The order of the singularity is determined by
the shape of the tail of,. For noninteger3 one finds(cf
[15]) that[23]

F(®d)=polynomial in (1—®)+(1—®)# 1

+ higher-order terms. (20

The concavity of (®) implies 3>2. The linear term in the

uted at random and with weights amongN boxes, empty ~Polynomial is absent. _ _
boxes being forbidden. This model of weighted partitions is When 2<g<3, inverting Eq.(21) one finds the singular

precisely the balls-in-boxes model].
The effective box occupation distribution is,Q2(N

—1M-n)/Q(N,M). Using the integral representation of
the (discrete S-function, one easily finds an integral repre-

part of &,

q)singw()\c_)\)ll(ﬁ_l)a (21

sentation ofQ(N,M), which can be used to calculate it by SO thaty=(8-2)/(8—1).

the saddle-point method in the IlimiN—«, p=M/N

=const. The effective box occupation distribution follows.

Of course, the tree-graph model correspondgto2. We

When 8>3 the inversion yields

Dging~ (A= N)M2 (22)

shall not repeat this calculation here, referring the reader to

Ref. [16] for details and quoting the result far=2<(n),
=Xnt, /2ty

intnq)g (17)

up to an obvious normalization factor. Herd, is to be

found fromF’(®,)=0. This last condition can be rewritten

as

> nt,dY D t,dh=2. (18)
n n

The left-hand sidél.h.s) is an increasing function ab,,.

Consequentlyn),=2 corresponds t@®,=1 and, therefore,
to case(B) introduced earlier. Hence, for tree graphs and in

the limit N— oo,

Therefore,y=1/2.

We now consider two scaling exponents that have a direct
geometrical interpretation in terms of the average “dimen-
sion” of the ensemble graphs.

One can define a two-point correlation functi@gx,\)
equal, up to normalization, to the average number of pairs of
nodes separated by a distancéJsing a graphical represen-
tation analogous to that of Fig. 3, one fiNd<]

Cc(x,\)~ xﬁ%(w(qﬁ]x, (23)

The fractal dimensiomy of the tree can be defined by

XN C(x,\)=—constA,—\)YdH  for

X—0

(24
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where it is assumed thaf\.—\|<1. Notice, that K. q;sing~()\c—)\)ﬁ—1, (30)
—\)~1is a measure of the average size of a grigd#). One
finds finally with 8>2. An explicit calculation using Eq24) yields dy
=o. We also expeatly;=2. A typical tree graph looks like a
d :E (25) set of linked hedgehogs. Moreover, as explained below, a
Ho oy different feature shows up: a “singular” node with a fixed

degree ofO(N), a hedgehog even more spiky than the oth-
Another definition of dimension is obtained by consider-ers,
ing a diffusion process on the graph; as is well known, dif-  To see this, it is instructive to understand how the con-
fusion can be mapped to a random walk. If we consider &traintsy=2 is satisfied. Notice that if we omit frorsy a
walker departing from a certain point at tirfie=0, then the  few terms, say; , ... ,n; , the resulting sum will fluctuate
return probability to the start of the walk is, for smdl around(n) Henlce foer—m
proportional toT~ %2 whered, is the spectral dimension: v ' ’
the dimension of the graph as seen by a random walker mov-
ing on the graph. SN—
In was shown ir{18,25 that the spectral dimensiaf, is
for y=0 given by

N(nil+’ ...,+njp)=(n>t. (3D
But, sincesy=2, it is clear that at least some of the contri-
> butions to the sum on the I.h.s. must be of or@¢N). Since
= (26)  the probability distribution falls like a power, it is most prob-
1+y able that there is only one such contribution. Thus, one ex-
pects the appearance of a characteristic “singular” node

Combining Eqs(26) and(26), one obtains the nice relation with degreen=(2—(n);)N. Other nodes have degree distri-

2dy bution ~t,:
ds: l"’dH ' (27) tn 1
P,= + =38[n—(2—(n))N]. (32
For 8>3, one findsdy=2 andd;=4/3. These are the ge- " E t N t
neric values for a tree gragi2,25, which would be found K

also if there were only a finite number of nonvanishing cou- o _ _ '
plingst, . The typical graph is a fully developed tree, with The normalization factor in front o6 is determined by the

many branching branches. tree conditionz,,nP,,=2.
For 2<3<3 one obtains The other possible case i:1),>2. This condition is
equivalent toF'(1)>0, which by virtue of the concavity of
dy=(B—1)/(B—2), (28)  F(®) implies that®,<1. This is cas€A) of Sec. II. Hence,
P, equalst,, times an exponentially falling factor. A scale in
ds=2(B—1)/(2B8-3). (29 the node-order distribution is spontaneously generated. The

) ) dramatic fluctuations of node degrees are absent.
As B— 2, the trees become increasingly crumpled, they look ExpandingF (®) in the neighborhood o =®,, where

like a set of linked hedgehogs. A& approaches 2 the aver- jis gerivative is bound to vanish and inverting the resulting

age distance between a pair of nodes starts growing Veré‘xpansion in order to find the most singular partdafone
slowly with N. For example, wherB=2.1, this distance is gets

~N¥H=N6 The increase is not logarithmic, as is some-
times claimed, but powerlike. Of course, in practice, this q;SmQN()\C_)\)l/Z_ (33
does not make much difference, when the power is small.
The upshot of the above discussion is that a scale-freklence,y=1/2 and one again obtains the generic valdgs
large-degree behavid®,~n"#, 3>2, is associated with a =2 andd.=4/3.
variety of distinct graph geometries. It is quite remarkable, The above two scenarios are the only alternatives to the
that at least for the tree graphs of the discussed ensemblsgale-free behavior of the discussed statistical ensemble of
one can give a complete catalogue of expected geometriesree graphs.
One can show that the transitions between different
IV. INSTABILITY OF A SCALE-FREE REGIME phases of the model are continuous and that the degree of
their softness varies when the couplintgschange. There is

The logical next step of the discussion is to examine whahg phase transition between the generic ph@seand the
happens when the shape tfis so distorted that the con- gcale-free regiméB) with 8> 3.

straint (n);=2 is broken. We continue assuming thiat
~n~# at largen.

. - . o . V. COMPUTER ALGORITHM
Consider, first, the cag@);<2. This condition is equiva-

lent toF’(1)<0. We recover cas€C) of Sec. Il. Since the In the synchronic approach, the construction of graphs
linear term in the polynomial on the r.h.s. of HG1) is now  does not mimic any real physical process. The emphasis is
present, inverting Eq.21) one gets on the flexibility and on the efficiency in producing a sample
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of graphs to work with. We use the following notation:
R(N)=pn/pn-1.

We propose an algorithm working for a given fixidand B=2.1
L. It rewires links, generating Feynman diagrams of the 10™ S
minifield theory, proceeding as followW&6:

(a) Pick a random oriented Iinﬁ. 107 N
(b) Pick a random target node B=3.0
(c) Apply the Metropolis test: rewire the lini to ik with D \
" 10
probability 0100 100 100 10
Prolrewiring) = (n,+ 1)R(n,+1)/n;R(n;). (34 FIG. 4. Comparison of the connectivity distribution produced by

our Monte Carlo algorithm{black and that of Ref[7] (gray) for

. . =2%andB=2.1 and 3.0, respectively. The points are joined by a
These Feynman diagrams are properly weighted. The alg ine to guide the eye. The almost straight lines correspond to the

rithm is probing all possible connections within a set of dis—as mptoticP., given in Eq.(35)

tinguishable nodes. For nondegenerate diagrams, the MmESYMP n9 -89

tropolis condition immediately follows from the detailed We use thisP, as input in our code. A sample result is
n .

balance equations together with the weighi given to mi- shown in Fig. 4, where we compare the results of the calcu-

crostates. For general diagrams, the symmetry factors, 1§50 sing the two algorithms, respectively. The calculated

L?t?d to thed pres&lance of tadp;oles art1|d r_rl]ﬁ_ltlple ConneCt'O%oints are practically indistinguishable and follow the input
etween nodes, also come out correctly. This 1S again a Colygyiytion, except for thosa where finite-size effects cut
sequence of the detailed balance: if two nodes are connected 4 yistort the distribution
by m Imkj,bthe_ 'irzli_nskmon t(l; adstate_z where ';_hhe '?00'95 ar€  |ndeed, wherN is finite, the distribution of node degrees
connetc_:te h yn I n scanl_et_one\l,%waysl./ | ?h'n\ﬁrse cannot extend to infinity, there is an upper cutoff om
operation has only one realization. BA=Ln: the Me- Nmax- The cutoff can be estimated by imposing the condi-
tropolis test is always positive and the nondegenerate Iabele[ n that the expected number of nodes found ahmyg, is
diagrams produced by the algorithm are equiprobable, a

they should be. We have checked the validity of the genera t most equal to unity. Then

argument on a variety of examples. o
In order to produce connected tree graphs, one starts from N>, n~#=const. (36)
a connected tree configuration, e.g., a polyline with free ends Mmax

and one adds, before the Metropolis test, a check insuring, .\ .o ¢ the constant on the r.h.s depends on the de-

thatk=i,j andn;=1. It is easy to convince oneself that with __. : .
this constraint the tree is never broken into parts. As ex:[":lllecl shape 0P, . Equation(36) leads to the scaling law

plained in Sec. Il, the scale-free connectivity distribution in Ninax—~ NYE~1), (37)
the bulk is obtained setting,,~P,/n.

Notice that, with a constraint added before the Metropolisanalogous to the result §7,9], where instead oN appears
test, the algorithm explores a well-defined subensemble ahe time. Beyond,,.,, the node-distribution function falls
graphs. However, because the detailed balance is satisfiegery abruptly and can be neglected for all practical purposes.
this subensemble is in equilibrium, or, more precisely fluc-Notice, thatn,,,, may be much smaller thad. As noticed in
tuates around equilibriurtsee also the remark on that matter Ref. [9], this explains why large scale-free graphs wgh
in the last section Thus, within the subensemble in question significantly larger than three are not observed in nature.
the algorithm tends to sample “typical” graphs.

0

10
VI. NUMERICAL EXAMPLES AND FINITE-SIZE EFFECTS B
5

=2.1

Since we propose an algorithm for generating random 10 B

graphs, it may be of interest to the reader to see how our .

results compare to those obtained with an algorithm already 107

existing on the market. As an example to compare with, we B=3.0

take the Growing Network model of Ref7], which is a

slight generalization of the algorithm proposed originally in 10 b : ’ , L S

Ref. [4] and that also generates connected trees. The 10 10 10 a 100 100 10

asymptotic analytic solution foP,, is given by Eq.(12) in

the second paper of Rf7] (see alsd8]): FIG. 5. The connectivity distribution calculated for our en-
semble of tree graphs, at finitée=2, k=14,15,16,17, and fop
=2.1 and 3.0. The almost straight lines correspond to the

(35) asymptoticP, given in Eq.(35). The figure illustrates the finite-size
cutoff of the order distribution discussed in the text.

- I(28-3)(n+5-3)
=BV (32T (n+26-3)"
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nodes with unit degree gets larger. Eventually, the number of
crumpled “external” nodes increases wittN much faster than the
number of large-degree nodes. The latter are usually con-
nected to the former, building hedgehoglike structures.

Off the line (38) one falls into one of the alternative
phases discussed in Sec. IV: either a scale is generated spon-
taneously andP,, falls exponentially, or else there appears a
“singular” node with huge connectivityig,e=N(2—(n),).
generic In the former case, the graphs have a typical extensigi\,

-2 1 2 3 p 4 while in the latter case, they are crumpled and have infinite
fractal dimension. Because of the constant presence of the

FIG. 6. Phase diagram for the simple two-parameter model pre-singular” vertex, the diameter of the graph grows slower
sented in Sec. VIlt;=1, t,=(1/a)n"#, n>1. The part of the than any power oN for N—c.
continuous line on the right of the black dot corresponds to the Notice that the conditiorB>2 appears often in our dis-
scale-free graphs belonging to the generic phase. cussion. Indeed, at least in the framework adopted in this

paper, a scale-free graph with a different exponent cannot

In Fig. 5 we show the evolution d?,, with N. In order to  exist. Actually, the arguments used towards the end of Sec.
obtain a very precise result we use, instead of the MontéV can also be used whefm),= and one predicts an ex-
Carlo, an analytic recursion formula satisfied by the equivaponentially fallingP,, at the “output.”
lent partition function given by Eq16) of Sec. Il (see Ref. We have considered the stability of scale-free graphs with
[21] in that section When the abscissa in Fig. 5 is rescaled,respect to possible deformations of the sequence of weights.
for differentN and using Eq(37), the curves corresponding Indeed, in nature, a random graph does not exist in isolation.

_—scale—free

to the sameB are cut at the same place. It is an open system, subject to interactions with, loosely
speaking, a heat bath. It is, thus, interesting to know what is

VII. SUMMARY AND DISCUSSION expected to happen when this ipteraction_becomes strong.

. Our results reflect the behavior of “typical” graphs. But

A. Connected tree graphs: A tentative summary very “atypical” values of global parameters, for example, of

Let us summarize what has been achieved so far. We haJg€ Spectral dimension, can be found when a specific large
started by introducing a fairly general ensemble of randon@faph is analyzed27]. Our algorithm makes it possible to
graphs, but we have rapidly focused our attention on théneasure the degree of this “atypicality:” a numerical simu-
sub-ensemble of connected tree graphs. We have found ﬂl@thn enables one to estimate the probability of a given fluc-
conditions insuring that the latter are scale free. We havéuation of the global parameter.
discussed in detail the geometry of the connected tree
graphs. We have also constructed a computer algorithm gen- B. More general graph models
erating these graphs with an arbitrary bulk connectivity dis-
tribution P,,. Since our analytic discussion may sound some-
what formal for some readers, let us illustrate it with a  Our graph model has been constructed in such a way that
simple, but very instructive example. the weight of a graph is a product of weights associated with

Consider a two-parameter family of input weights individual nodes. A possible generalization could consist in
=np,: t;=1 andt,=(1/a)n #, n>1. The condition insur- replacing the starting graph generating function defined in
ing that the trees are scale free was found in Sec. Il and iEQ. (1) by
(n);==,nt,/Z,t,=2. In the example in question, it is

equivalent to the following relation between the parameters q 1
« and B Z~ | di¢exp-

a=1+L(B—1)—2{(p), (39)

1. Weighted connections

: (39

q
—¢A¢>+n§1 P

where A is a positive definite matrix of rankg and ¢

where {(B) is the Riemann Zeta function. The phase dia-:(¢1’ e $q). The series expansion of the r.h.s. gerlelrates
gram[15] is shown in Fig. 6: the line is calculated from Eq. graphs with nodes. of degree 12 4 a}nd a weight<Ap,
(39). attached to every link connecting a pair of nodes of degree
As one moves along this line in the direction of decreas-21d N- The limit g—o should be handled with care. In a
ing B, the geometry remains generic downge-3 and be- study of tree graphs, t.he limk— 0 should be taken first.
comes progressively more and more crumpled below thal Ne investigation of this model goes, however, beyond the
point. In particular, the fractal dimension increases from the>cOP€ Of the present papies].
initial value 2 to~ [see EQ.(28)]. This behavior is easily
understood. Wheg is moved towards 2 the convergence of
the series deteriorates. The only way to keep the average Another generalization would consist in putting “matter”
constant, viz. equal to two, is to reduce the normalization ofields on graphs. Ising spins on “small-world” grapf9]
the tail. This means, however, that the relative weight ofwere already discussed in REBO]. Ising spins living on the

2. Matter on graphs
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nodes of quenched Feynman diagrams generategp®ogr  distribution within the giant component has the same scale-
¢* interactions were studied by many peogéee, for ex- free behavior at not too smail

ample,[31] and the long list of references thergiin par- Our present experience is that the algorithm has no diffi-
ticular, with the aim to determine the critical behavior of the culty equilibrating the ensemble. The algorithm defines a
spin system. It would be very interesting to extend theseviarkov process. We do not have any proof that the next-to-
studies to scale-free graphs as defined in the present papgfgest eigenvalue of the transition matrix is separated from
and to see, for example, what is the effect of changirand  unity by a gap remaining finite wheN—o, but it seems

therefore also the fractal dimension of the graphs. very likely that it is, since we do not expect any collective
effects to occur.
3. Graphs with cycles A different algorithm, generating graphs with an arbitrary

The most important generalization consists in extending?®nNectivity, is proposed and used in Refs9,32. In this
the study to graphs with cycles. Introduction of a fixed num-2/90rithm a graph is generated in two steps. First, a list of
ber of cycles does not seem to be a big deal in the presef€9reéesNL.Nz, ... Ny, is sampled out of the distribution
context (see, however, Refi17]). For example, wherN  Pn- In & sense, one creates fikinodes with attached links
.= the Hausdorff dimension is expected to be insensitive t412Ving the other end free. Then, in the second step, one
the presence of a fixed number of cycles. On the other han§CNNects together, at random, the free ends of links. The

the case where the ratl/N is kept fixed at some arbitrary Produced graph is, in general, not connected and degenerate.
value whenN— = is very challenging. The ensemble is defined by repeating this procedure over and

There are conceptual problems related to the overOVer- In the limitN— o, the connectivity distribution is iden-

extensive nature of the ensemble. It is not difficult to countlic@ t0 Py for individual graphs Notice thatl is not fixed.

the number of nondegenerate graphé) (with given N and _ Our.approach, roc_)ted in field theory, is differgrjt. We s_tart
L. It is sufficient to consider the number of distinct adjacency!Vith microstates weighted so that the connectivity distribu-

matricesC;; =1 or 0, fori,j connected or not, respectively: tion becomes scale free aftaveraging over the ensemble
But, as already mentioned, the scale-free connectivity within
individual graphs is, strictly speaking, not guaranteed, except
(40  for the ensemble of trees: averaging within a single graph of
infinite size is, in general, not equivalent to averaging over
the ensemble of graphs. This is perhaps a flaw, but on the
In general, the r.h.s. behaves like efgonstN logN) when  whole, the virtues of the two approaches seem complemen-
N—o, L/N fixed. A similar result is easily obtained for tary. We hope to develop this point elsewhere.
degenerate graphs. The entropy is not extensive. This is easy In order to construct nondegenerate graphs, it suffices to
to understand. It is impossible to divide an arbitrary graphverify, before performing the Metropolis check, that the pro-
into two parts separated by a “boundary” of negligible mea-posed rewiring does not produce tadpoles and/or multiple
sure. Any two nodes can interact. Hence, it is not certain, irconnections. We have a code doing that efficiently. The real
general, that the bulk distributioR,, calculated in the en- problem, which we have not solved yet, is to find for nonde-
semble coincides with that obtained from a single, suffi-generate graphs, the set of couplingsproducing the de-
ciently large graph. Tree graphs are a notable exception: igired scale-free bulk distributioR,,. Settingp,= P, gives
the “semiclassical limit” «— 0, the entropy becomes exten- for, say3= 3, results that are encouraging, although the cut-
sive. off nmay is smaller than in the degenerate case. However,
Our algorithm, in its most general version, generates allvhen 8 is decreased things worsen. No doubt the problem
possible Feynman diagrams and can, in principle, be used t@eserves more theoretical and numerical work.
simulate arbitrary graphs. The problem is to find the con- We are tempted to conjecture that the degeneracy does
strains on the couplings, insuring that the bulk connectiv- not matter for large-scale features of graphs. The absence of
ity distribution has a desired form. any natural scale suggests that the graphs are self-similar. If
The presence of the facton(+1)/n; in Eq. (34) means so, one can decimate nodes as follows: pick a node at ran-
that the rewired nodes are sampled independently of theidlom and shrink to a single point all its immediate neighbors.
degree(without this factor, nodes belonging to a large num-If the graph is really self-similar, decimating nodes should
ber of links would be rewired preferentiallylf no extra not alter its large-scale features. But such a decimation will
check is performed before the Metropolis one, the algorithrmecessarily produce degenerate graphs. For the moment, this
does not know about the underlying graph structure. It playgonjecture is a speculation. However, our experience with
with node degrees and nodes as it would play with balls andimulating random surfaces suggests that this possibility
boxes in the balls-in-boxes model with occupation weightsshould not be disregarded: degenerate randomly triangulated
p,. Hence, a scale-freB,, is obtained setting,,~P,, (and  surfaces—those whose duals have “tadpoles” and “self-
L=3N(n)). The graphs produced that way are degenerate—energy” insertions—turn out to fall into the same universal-
there are tadpoles and multiple connections between nodeisy class as the nondegenerate surfaces, but are much easier
They are, in general, not connected—it is very difficult toto simulate.
avoid producing disconnected graphs—butfes 3, most of Finally, let us note that it is straightforward to produce an
nodes belong to the giant component. The conditions of italgorithm analogous to the one proposed in this paper but
appearance are well understof@R,19. The connectivity —constructing directed graphs.

N_(N'L):(UZN(:\I—l) .
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