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Thermodynamically consistent mesoscopic fluid particle model
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We present a finite volume Lagrangian discretization of the continuum equations of hydrodynamics through
the Voronoi tessellation. We then show that a slight modification of these discrete equations satisfies the first
and second laws of thermodynamics. This is done by casting the model into theGENERIC structure. The
GENERIC structure ensures thermodynamic consistency and allows for the introduction of correct thermal
fluctuations in simple terms. In this way, we obtain a consistent discrete model for Lagrangian fluctuating
hydrodynamics. Simulation results are presented that show the validity of the model for simulating hydrody-
namic problems at mesoscopic scales.
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I. INTRODUCTION

The behavior of complex fluids like colloids, emulsion
polymers or multiphasic fluids is affected by the strong co
pling between the microstructure of these fluids and the m
roscopic flow. The complexity of these systems requires
use of novel computer simulation techniques and algorith
Macroscopic approaches that solve partial differential eq
tions are useful only if the constitutive equation of the flu
is known, which is not the case for many complex fluid
Also, these approaches neglect the presence of thermal n
which is the responsible for the Brownian motion of sm
suspended objects and therefore for the diffusive proce
that affect the microstructure of the fluid. In recent yea
there has been a great effort in order to develop mesosc
techniques in order to tackle the problems arising in
simulation of complex fluids.

One of these mesoscopic techniques is dissipative par
dynamics~DPD!, a particle based simulation method th
allows one to model hydrodynamic behavior with therm
fluctuations. DPD was introduced by Hoogerbrugge a
Koelman in 1992 under the motivation of designing an o
lattice algorithm inspired by the ideas behind the lattice-
method@1#. Since then, the model has received a great d
of attention. From a theoretical point of view, the model h
been given a solid background as a statistical mecha
model @2#. The hydrodynamic behavior has been analyz
@2,3# and the methods of kinetic theory have provided e
plicit formulas for the transport coefficients in terms of t
model parameters@4#. A generalization of DPD has also bee
presented in order to conserve energy@5#. From the side of
applications, the method is very versatile and has prove
be useful in the simulation of flows in porous media@6#,
rheology of colloidal suspensions@6,7#, ordering in colloidal
suspensions@8#, polymer suspensions@9#, microphase sepa
ration of copolymers@10#, multicomponent flows@11#, and
thin-film evolution @12#.

The physical picture behind the dissipative particles u
in the model is that they represent mesoscopic portions
real fluid, say clusters of molecules moving in a coherent
hydrodynamic fashion. The interactions between these
ticles are postulated from simplicity and symmetry princip
that ensure the correct hydrodynamic behavior. DPD fa
1063-651X/2001/64~4!/046115~18!/$20.00 64 0461
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however, a conceptual problem. The thermodynamic beh
ior of the model is determined by the conservative forc
introduced in the model. These forces are assumed to be
forces in counter distinction to the singular forces of t
Lennard-Jones type used in molecular dynamics. But ther
no well-defined procedure to relate the shape and amplit
of the conservative forces with a prescribed thermodyna
behavior~although attempts in that direction have been u
dertaken, see Ref.@10#!. Also, it is not clear which physica
time and length scales the model actually describes, e
though the presence of thermal noise suggests the foggy
of the mesoscopic realm. We will see that both problems
closely related.

Dissipative particle dynamics is very similar in spirit t
the popular method of smoothed particle hydrodynam
~SPH!. The method was introduced in the context of ast
physics computation in the early 1970s@13# and very re-
cently it has been applied to the study of laboratory sc
viscous @14# and thermal flows@15# in simple geometries.
SPH is essentially a Lagrangian discretization of the Nav
Stokes equations by means of a weight function. The pro
dure transforms the partial differential equations of co
tinuum hydrodynamics into ordinary differential equation
These equations can be further interpreted as the equatio
motion for a set of particles interacting with prescribed la
of force. The technique thus allows one to solve partial d
ferential equations with molecular dynamics codes. Aga
these particles can be understood as physical portions o
fluid that evolve coherently along the flow. Smoothed p
ticle hydrodynamics, however, does not include thermal fl
tuations in the form of a random stress tensor and heat
as in the Landau and Lifshitz theory of hydrodynamic flu
tuations@16#. Therefore the validity of SPH to the study o
complex fluids at mesoscopic scales where these fluctuat
are important is debatable@17#.

We have recently shown that the conceptual problem
DPD and the inclusion of thermal fluctuations in SPH can
resolved by formulating convenient generalizations of b
methods under the general framework ofGENERIC @18#. In
the present paper, we take a further look at the problem
formulating consistent models for the simulation of hydrod
namic problems at mesoscopic scales. We construct a
grangian finite volume model based on the Voronoi tesse
©2001 The American Physical Society15-1
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MAR SERRANO AND PEP ESPAN˜OL PHYSICAL REVIEW E 64 046115
tion for discrete hydrodynamic variables that conser
mass, momentum, and energy, and in which the entropy i
increasing function of time. We show analytically and
means of computer simulations that the proposed model
resents a thermodynamically consistent discrete versio
Navier-Stokes equations. Most importantly, we show how
include thermal noise in a consistent way, that is, produc
the Einstein distribution function. We end up therefore w
an algorithm for simulating fluctuating hydrodynamics in
Lagrangian way@19#.

The main purpose of this paper is the formulation of t
model and its implementation in order to check for the si
plest cases it works in. This is a necessary step in order t
able to apply the model in more interesting situations invo
ing complex fluids. Two immediate instances that we have
mind are the simulation of colloidal suspensions and
study of nonequilibrium liquid-vapor transitions. In the fir
case, the Lagrangian nature of the algorithm makes it v
convenient for dealing with the geometrically complex inte
stitial domains between colloidal particles. Note that for t
problem, thermal fluctuations in the fluid are indispensable
order to describe the Brownian motion of the colloidal p
ticles. In the second problem, the intimate connection
tween the thermodynamics of the system and hydrodynam
makes necessary a thermodynamically consistent form
tion of the discrete hydrodynamics, which is achieved h
by casting the model within theGENERIC formalism. With
the model presented it might be possible to study the eff
of thermal fluctuations on the dynamics of phase separa
and on the dynamics of bubbles and droplets.

In order to construct the Voronoi algorithm we have be
strongly inspired by the work of Flekko”y, Coveney, and De
Fabritiis @20#. In that paper, the authors present a ‘‘botto
up’’ ~that is, starting from microdynamics! derivation of dis-
sipative particle dynamics. Physical space is divided i
Voronoi cells and explicit definitions for the mass, mome
tum, and energy of the cells in terms of the microsco
degrees of freedom~positions and momenta of the constit
ent molecules of the fluid! are given. The time derivatives o
these phase functions have the structure of ‘‘microscopic
ance equations’’ in a discrete form. These equations are
divided into ‘‘average’’ and ‘‘stochastic’’ parts. To furthe
advance into the formulation of a practical algorithm, t
authors then proposephenomenological, physically sensible
expressions for the average part and require the fulfillmen
the fluctuation-dissipation theorem for the stochastic p
Because of the use of the phenomenological expressions
cannot consider this a microscopic derivation. Strictly spe
ing, such a microscopic derivation would require the use o
projection operator technique or kinetic theory in order
relate the transport coefficients with the microscopic dyna
ics of the system~in the form of Green-Kubo formulas, fo
example!. Also, explicit molecular expressions for the equ
tions of state would be also required.

Instead, we propose in this paper a conspicuous ‘‘t
down’’ approach in which the deterministic continuum equ
tions of hydrodynamics are the starting point. By maki
intensive use of the smooth Voronoi tessellation introdu
by Flekko”y et al. the form of the discrete equations is di
04611
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tated by the very structure of the continuum equations. O
approach is similar to that in Ref.@21#. We make a further
requirement on the resulting finite volume discretizatio
which is that the resulting equations must have theGENERIC

structure, in order to fully comply with the laws of thermo
dynamics. This enforces the addition of a tiny bit into t
momentum equation. Apart from ensuring thermodynam
consistency, theGENERIC framework summarizes in very
simple terms the fluctuation-dissipation theorem. T
GENERIC framework facilitates enormously the task of co
structing the proper thermal fluctuations consistent with
dissipation in the discrete model. This is our basic motiv
tion for using this framework.

The approach presented in this work has also a str
resemblance with Yuan and Doi simulation method that a
uses the Voronoi tessellation in the Lagrangian form@22#
~see also@23#!. They have applied the method to the simu
tion of concentrated emulsions under flow, and several o
applications to complex fluids are mentioned. The main d
ference between our work and that of Ref.@22# is the ther-
modynamic consistency ensured by theGENERIC formalism.
This allows, among other things, to include correct therm
noise that allows to describe diffusive aspects produced
Brownian motion on mesoscopic objects. Another differen
is that we deal with a compressible fluid in which the pre
sure is given through the equation of state as a function
mass and entropy densities, in counter distinction with R
@22# where the pressure is obtained by satisfying the inco
pressibility condition.

II. FINITE VOLUME METHOD WITH LAGRANGIAN
VORONOI CELLS

In this section, we consider the method of finite volum
for the numerical integration of the equations of continuu
hydrodynamics. The objective is to derive a set of equati
for discrete hydrodynamic variables defined on a mov
Lagrangian grid defined through the Voronoi tessellation

The equations of hydrodynamics are@24#

] tr~r ,t !52“•r~r ,t !v~r ,t !,

] tg~r ,t !52“•g~r ,t !v~r ,t !2“•~P11P̄1P1!,
~1!

] ts~r ,t !52“•s~r ,t !v~r ,t !2
1

T
“•Jq1

2h

T
“v : “v

1
z

T
~“•v!2.

Here,r(r ,t) is the mass density field,g(r ,t)5r(r ,t)v(r ,t) is
the momentum density field, wherev(r ,t) is the velocity
field, ands(r ,t) is the entropy density field~entropy per unit
volume!. The pressure fieldP5P(r ,t) is given, according to
the local equilibrium assumption, by P(r ,t)
5Peq

„r(r ,t),s(r ,t)… where Peq(r,s) is the equilibrium
equation of state that gives the macroscopic pressure in te
of the mass and entropy densities. A similar statement ho
for the temperature fieldT(r ,t). The double dot implies
5-2
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THERMODYNAMICALLY CONSISTENT MESOSCOPIC . . . PHYSICAL REVIEW E 64 046115
double contraction and1 is the unit tensor. These equation
have to be supplemented with the constitutive equations

the traceless symmetric partP̄ of the viscous stress tenso
the traceP of the viscous stress tensor, and the heat fluxJq.
They are

P̄522h“ v̄,

P52z“•v,

Jq52k“T5kT2
“

1

T
, ~2!

where the traceless symmetric part of the velocity grad
tensor is

“v5
1

2
@“v1~“v!T#2

1

D
“•v. ~3!

Here,D is the dimension of physical space. In principle, t
shear viscosityh, the bulk viscosityz, and the thermal con
ductivity k might depend on the state of the fluid throu
r,s.

The finite volume method consists of integrating Eqs.~1!
in a finite region of space~or finite volume! in such a way
that ordinary differential equations for the average fields o
the finite regions emerge. We present a finite volume met
that uses the Voronoi construction as a conceptually
mathematically elegant method for discretizing the co
tinuum equations of hydrodynamics. The details are given
the Appendix where we use the smoothed character
function of the Voronoi cells introduced by Flekko”y et al.
@20# as a convenient mathematical tool@25#. Without the
help of this smoothed characteristic function it is very dif
cult to figure out the effects of the Lagrangian moving grid
the final discrete equations. In the Appendix, we show h
the method can be applied to a general balance equatio
we will simply quote in the present section the final resu
for the case of the set of equations~1!.

The Voronoi tessellation is a way of partitioning spa
around a set of ‘‘cell centers’’ located atRm by associating
the region of space that is closer to that cell center than
any other center of the set. Each cell will have a volumeVm
that depends parametrically on the positions of the cell c
ters. Figure 1 shows a two-dimensional~2D! tessellation in a
periodic box.

FIG. 1. Voronoi tessellation in a periodic box.
04611
or

t

r
d
d
-
in
ic

so
s

to

n-

We require that the cell centers move according to

Ṙm~ t !5@v#m~ t !, ~4!

where@v#m(t) is the average of the velocity field over cellm.
Therefore the Voronoi cells ‘‘follow’’ the flow field in a
Lagrangian way. Here and in what follows, we denote w
@•••#m the spatial average of an arbitrary field over t
Voronoi cell m.

After multiplying Eqs.~1! with the characteristic function
xm(r ) of cell m and using the mathematical tricks describ
in the Appendix, plus the gradient approximation also d
scribed there, it is straightforward to arrive at the followin
set of equations:

Ṁm5(
n

Amn

Rmn

@r#m1@r#n

2
cmn•~@v#m2@v#n!,

Ṗm5(
n

Amn

Rmn

@r#m1@r#n

2

@v#m1@v#n

2
cmn•~@v#m2@v#n!

1(
n

Vmn•~@P#n11Pn1Pn1!,

Ṡm5(
n

Amn

Rmn

@s#m1@s#n

2
cmn•~@v#m2@v#n!

1
1

Tm
(

n
Vmn•@Jq#n1

2hm

TmVm
Ḡm :Ḡm1

zm

TmV m
Dm

2 .

~5!

We have introduced in these equations the followi
quantities: total mass of cellm Mm5Vm@r#m , total momen-
tum Pm5Vm@g#m , and total entropySm5Vm@s#m , pressure
and temperature of cellm through @P#m5Peq(@r#m ,@s#m)
and @T#m5Teq(@r#m ,@s#m). Also, we introduced discrete
versions of the constitutive equations~2! through

P̄m52
2@h#m

Vm
Ḡm ,

Pm52
@z#m

Vm
Dm , ~6!

@Jq#m52
@k#m

Vm
Tm

2 (
n

Vmn

1

Tn
.

Here, the discrete versions of the symmetric part of the tra
less velocity gradient tensor and the divergence of the ve
ity are defined

Ḡm
ab52F1

2 (
n

@Vmn
a vn

b1Vmn
b vn

a#2
1

D
dab(

n
Vmn•vnG ,

~7!

Dm52(
n

Vmn•vn ,
5-3
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MAR SERRANO AND PEP ESPAN˜OL PHYSICAL REVIEW E 64 046115
The geometrical objects introduced in Eqs.~5! are the
areaAmn between cellsm,n and the~half! normal surface
vector

Vmn5
1

2
Amnemn , ~8!

where emn5(Rm2Rn)/Rmn is a unit vector normal to the
face m,n. Finally, the vectorcmn is a vector parallel to the
facem,n as discussed in the Appendix.

Despite its formidable aspect, Eqs.~5! are quite natural if
one looks atVmn as a sort of negative discrete gradient o
erator @see Eq.~A25! in the Appendix#. In this way, every
term in Eqs.~1! and ~2! has its counterpart in Eqs.~5! and
~6!. One would expect that the convective terms of the c
tinuum equations~1! must disappear in a Lagrangian d
scription. Rather, they are replaced by the terms involv
cmn . These terms are associated with the rate of chang
the extensive variables due to the change ofshapeof the cell
as it moves, rather than to the main~convective! motion of
the cell.

III. GENERIC MODEL OF FLUID PARTICLES

We could already use Eqs.~5! for a numerical simulation
of the continuum equations~1!. Because of the gradient ap
proximation used in the derivation, these equations are a
rate to first order in gradients. However, one can easily sh
that the energy at the discrete level is not strictly conser
by the above equations. In order to solve this problem a
most importantly, to introduce correct thermal fluctuations
the model, we cast in this section the previous equati
within the GENERIC framework. Our point of view is that the
Voronoi cells serve not only as a discretization tool for t
hydrodynamic equations but also as a way of properly de
ing the concept of afluid particle. In this paper, a fluid par-
ticle is understood as a thermodynamic subsystem of defi
shape~given by the Voronoi cell! that moves following the
flow @18#.

The state of the fluid is given by the setx
5$Rm ,Pm ,Mm ,Sm% wherem labels each of theM Voronoi
fluid particles in the system andRm is the position,Pm is the
momentum,Mm is the mass, andSm is the entropy of themth
fluid particle. The volumeVm of the fluid particles is a func-
tion of the positions of the particles, i.e.,Vm
5Vm(R1 , . . . ,RM) and it is not an independent variab
@26#. The energy and entropy functions are postulated
have the form

E~x!5(
m

Pm
2

2Mm
1E~Mm ,Sm ,Vm!,

~9!

S~x!5(
m

Sm ,

whereVm is an implicit function of the positions of the fluid
particles, andE(Mm ,Sm ,Vm) is the internal energy function
Because each fluid particle is understood as a thermo
namic subsystem, it has a well-defined thermodynamic f
04611
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damental equation. The fundamental equation relates the
ternal energyEm of the fluid particle with its massMm ,
volumeVm , and entropySm , this isEm5E(Mm ,Vm ,Sm).

Regarding the dynamical invariants of the system, we
quire that the total massM (x)5(mMm and total momentum
P(x)5(mPm are the only dynamical invariants. Conserv
tion of angular momentum would require the introduction
spin variables in this discrete model@3#.

Now the basic question we pose is, what dynamical eq
tions should we have for these discrete hydrodynamic v
ablesx such that strict respect to the first and second laws
thermodynamics is guaranteed? In order to answer this q
tion, we resort to the thermodynamically consistentGENERIC

formalism introduced by Grmela and O¨ ttinger @27#. The
GENERIC dynamic equations are given by

dx

dt
5L

]E

]x
1M

]S

]x
. ~10!

The first term in the right-hand side corresponds to there-
versible part of the dynamics and the second term cor
sponds to theirreversiblepart. The matrixL is antisymmet-
ric whereasM is symmetric and positive semidefinite. Mo
important, the followingdegeneracyconditions should hold

L
]S

]x
50, M

]E

]x
50. ~11!

These properties ensure that the energy is a dynamica
variant,Ė50, and that the entropy is a nondecreasing fu
tion of time, Ṡ>0, as can be proved by a simple applicati
of the chain rule and the equations of motion~10!. In the
case that other dynamical invariantsI (x) exist in the system
~as, for example, linear or angular momentum!, then further
conditions must be satisfied byL,M . In particular,

]I

]x
L

]E

]x
50,

]I

]x
M

]S

]x
50, ~12!

which ensure thatİ 50.
The deterministic equations~10! are, actually, an approxi

mation in which thermal fluctuations are neglected. If th
mal fluctuations are not neglected, the dynamics is descr
by the following stochastic differential equations interpret
in Itô sense@27#:

dx5FL
]E

]x
1M

]S

]x
1kB

]

]x
M Gdt1dx̃, ~13!

to be compared with the deterministic equations~10!. The
stochastic termdx̃ in Eq. ~13! is a linear combination of
independent increments of the Wiener process. It satisfies
Itô rule

dx̃dx̃T52kBMdt, ~14!

which means thatdx̃ is an infinitesimal of order 1/2@28#.
Equation ~14! is a compact and formal statement of th
fluctuation-dissipation theorem. Formally, the size of t
5-4
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fluctuations is governed by the Boltzmann constantkB . If we
takekB→0, the stochastic differential equation~13! becomes
the deterministic equations~10!.

When formulating new models it might be convenient
specifydx̃ directly instead ofM. This ensures thatM through
Eq. ~14! automatically satisfies the symmetry and posit
definite character. In order to guarantee that the total ene
and dynamical invariants do not change in time, a stro
requirement on the form ofdx̃ holds,

]E

]x
dx̃50,

]I

]x
dx̃50. ~15!

The geometrical meaning of Eq.~15! is clear. The random
kicks produced bydx̃ on the statex are orthogonal to the
gradients ofE,I . These gradients are perpendicular vect
~strictly speaking they are one forms! to the hypersurface
E(x)5E0 , I (x)5I 0. Therefore the kicks let the statex al-
ways within the hypersurface of dynamical invariants.

For future reference, the derivatives with respect to
state variables of the energy and entropy are given by

]E

]x
5S 2(

g

]Vg

]Rn
Pg

vn

2
vn

2

2
1mn

Tm

D ,
]S

]x
5S 0

0

0

1

D , ~16!

where we have introduced the velocityvn , pressurePn ,
chemical potential per unit massmn , and temperatureTn

according to the usual definitions,

vn5
Pn

M n
,

2Pn5
]En

]Vn
U

M ,S

,

~17!

mn5
]En

]M n
U

S,V
,

Tn5
]En

]Sn
U

M ,V
.

We can develop the pressure term in]E/]x by using Eqs.
~A32! and ~A34! in the Appendix,

(
n

]Vn

]Rm
Pn5 (

nÞm
Amnemn

Pn2Pm

2
1 (

nÞm

Amn

Rmn
cmn~Pm2Pn!.

~18!

We are now in position to formulate the dynamical equ
tions.
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A. Reversible dynamics

In this section we consider the reversible part of the d
namics for the fluid particle model. The matrixL is made of
M3M blocks Lmn of size 838. The antisymmetry ofL
translates intoLmn52L nm .

We have first strong requirements for the form ofL. We
wish that the reversible part of the dynamics produces
following equations of motion for the positions:

Ṙm5vm . ~19!

The simplest nontrivial reversible part that produces
above equation has the following form:

S Ṙm

Ṗm

Ṁm

Ṡm

D 5(
n

LmnS 2(
g

]Vg

]Rn
Pg

vn

2
vn

2

2
1mn

Tn

D , ~20!

where the blockLmn has the structure

Lmn5S 0 1dmn 0 0

21dmn Lmn Dmn Gmn

0 2Dnm 0 0

0 2Gnm 0 0

D .

~21!

The first row of Lmn ensures the equation of motion~19!.
The first column is fixed by antisymmetry ofL. Note that in
order to have antisymmetry ofLmn ~which, in turn, ensures
energy conservation!, it is necessary thatLmn

T 52Lnm . Per-
forming the matrix multiplication in Eq.~20!, the reversible
part of the dynamics takes the form

Ṙm5vm ,

Ṗm5(
n

Amnemn

Pn2Pm

2
1(

n
S Lmnvn2Dmn

vn
2

2 D
1(

n
FAmn

Rmn
cmn~Pm2Pn!1Dmnmn1GmnTnG ,

~22!

Ṁm52(
n

Dnmvn ,

Ṡm52(
n

Gnmvn .
5-5
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What forms forLmn , Dmn , and Gmn should we use in
order to consider Eqs.~22! as a discrete version ofinviscid
hydrodynamics? In what follows we will propose forms f
these quantities in such a way that Eqs.~22! and ~5! ~with
zero transport coefficients! coincide as much as possible.

The vectorsDmn andGmn are easily identified by compar
ing the mass and entropy equations in Eqs.~5! and~22!. The
matrix Lmn is obtained by inspection from the comparis
between the momentum equation in Eqs.~5! and ~22!. Our
proposals are therefore,

Dmn5
Amn

Rmn

rm1rn

2
cmn2dmn(

s

Ams

Rms

rm1rs

2
cms ,

Gmn5
Amn

Rmn

sm1sn

2
cmn2dmn(

s

Ams

Rms

sm1ss

2
cms ,

~23!

Lmn52
Amn

Rmn

rm1rn

2 Fvm1vn

2
cmn2cmn

vm1vn

2 G
1dmn(

s

Ams

Rms

rm1rs

2 Fvm1vs

2
cms2cms

vm1vs

2 G .
Note that Lmn

T 52Lmn52Lnm and therefore the anti
symmetry of L is ensured. Note also that(nGmn50 and
therefore the degeneracy conditionL]S/]x50 is satisfied.

By substitution of these forms~23! into Eq. ~22! one ob-
tains the proposedGENERIC equations for the reversible pa
of the evolution ofRm ,Pm ,Mm ,Sm , that is,

Ṙm5vm ,

Ṗm5(
n

Amnemn

Pn2Pm

2
1(

n

Amn

Rmn

rm1rn

2

vm1vn

2

3cmn•~vm2vn!1(
n

Amn

Rmn
cmnF ~Pm2Pn!2

rm1rn

2

3~mm2mn!2
sm1sn

2
~Tm2Tn!G , ~24!

Ṁm5(
n

Amn

Rmn

rm1rn

2
cmn•~vm2vn!,

Ṡm5(
n

Amn

Rmn

sm1sn

2
cmn•~vm2vn!.

Here, vm5Pm /Mm , rm5Mm /Vm , and sm5Sm /Vm . These
GENERICequations~24! for the reversible part of the dynam
ics are identical to the finite volume discretization of t
continuum equations of inviscid hydrodynamics, Eqs.~5!
with zero transport coefficients, except for the followin
term in the momentum equation:
04611
(
n

Amn

Rmn
cmnF ~Pm2Pn!2

rm1rn

2
~mm2mn!

2
sm1sn

2
~Tm2Tn!G . ~25!

This term is strongly reminiscent of the Gibbs-Duhem re
tion that, in differential form, isdP2rdm2sdT50. For
this reason, we expect that this term~25!, although not ex-
actly zero, will be very small. Therefore Eqs.~24! can be
considered as a proper discretization of the continuum eq
tions of inviscid hydrodynamics. Total mass, momentu
and energy are conservedexactlyand the total entropy doe
not change in time due to this reversible motion.

B. Irreversible dynamics

In this section we consider the irreversible part of t
dynamicsM]S/]x. We will postulate the random termsdx̃
for the discrete equations and will construct, through
fluctuation-dissipation theorem~14!, the matrix M and the
irreversible part of the dynamics. If we guess correctly t
random terms, the resulting discrete equations should con
tently produce the correct dissipative part of the dynamic

According to Landau and Lifshitz, thermal fluctuation
are introduced into the continuum equations of hydrodyna
ics through the divergence of a random stress tensor a
random heat flux@16,29#. In our discrete case, the noise ter
in the equation of motion~13! is postulated to have the form
dx̃T→(0,dP̃m,0,dS̃m), where the random termsdP̃m ,dS̃m are
the discrete divergences of a random flux, i.e.,

dP̃m5(
n

Vmn•ds̃n ,

~26!

dS̃m5
1

Tm
(

n
Vmn•dJ̃n

q2
1

Tm
ds̃m :(

n
Vnmvn

T .

The random stressds̃m and random heat fluxdJ̃m
q are de-

fined by

ds̃m5amdWm
S1bm

1

D
tr@dWm#,

~27!

dJ̃m
q 5cmdVm .

The coefficientsam ,bm ,cm are given by

am5S 4kBTm

hm

Vm
D 1/2

,

bm5S 2DkBTm

zm

Vm
D 1/2

,

5-6
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cm5TmS 2kB

km

Vm
D 1/2

. ~28!

Here,D is the physical dimension of space,hm is the shear
viscosity, zm is the bulk viscosity, andkm is the thermal
conductivity. These transport coefficient might depend
general on the thermodynamic state of the fluid particlem.
The particular form of the coefficients in Eq.~28! might
appear somehow arbitrary. Actually, it is only after writin
up the final discrete equations and comparing them with
finite volume equations~5! that we could extract the particu
lar functional form of these coefficients. Finally, note that t
noise amplitudes scale as the inverse square root of the
ume, impliying that for very large cells the noise can
neglected.

The traceless symmetric random matrixdWm
S is given by

dWm
S5

1

2
@dWm1dWm

T #2
1

D
tr@dWm#1. ~29!

dWm is a matrix of independent Wiener increments. T
vector dVm is also a vector of independent Wiener incr
ments. They satisfy the Itoˆ rules of stochastic calculus

dWm
i i 8dWn

j j 85dmnd i j d i 8 j 8dt,

dVm
i dVn

j 5dmnd i j dt, ~30!

dVm
i dWn

j j 850,

where Latin indices denote tensorial components. Note
the postulated forms fordP̃m ,dS̃m in Eq. ~26! satisfy

(
m

vm•dP̃m1TmdS̃m50,

~31!

(
m

dP̃m50,

and therefore Eqs.~15! are satisfied. This means that th
postulated noise terms conserve momentum and energy
actly. It is now a matter of algebra to construct the dya
dx̃dx̃T and from Eq.~14! extract the matrixM. The proce-
dure is rather cumbersome but standard.

OnceM is constructed, the termsM•]S/]x in the equa-
tion of motion ~10! can be written up. By assuming that th
transport coefficients do not depend on the entropy den
~but they might depend on the mass density!, the resulting
equations of motion are

dPmu irr5(
n

Vmn•~Pn1Pn1!dt1dP̃m , ~32!
04611
n

e

ol-

at

x-
c

ty

TmdSmu irr5S 12
kB

Cm
D F2hm

Vm
Ḡm :Ḡm1

zm

Vm
Dm

2 Gdt

1(
n

Vmn•Jn
qdt2

kB

TmCm
(

n
Vmn

2 kn

Vn
Tn

2dt

2kBTmF S D21D22

2D D2hm

Vm
1

zm

Vm
G(

n

Vnm
2

M n
dt

1TmdS̃m .

In these equations, we have introduced the same qua
ties as in Eq.~7!. The heat fluxJm

q is defined by

Jm
q 52Tm

2 km

Vm
(

n
Vmn

1

Tn
S 12

kB

Cn
D . ~33!

Finally, the heat capacity at constant volume of fluid parti
m is defined by

Cm5TmS ]Tm

]sm
D 21

. ~34!

We observe that, quite remarkably, the above equati
are in the limitkB→0 identical to the irreversible part of th
particular finite volume discretization of the continuum h
drodynamic equations presented in Sec. II. We have th
fore shown that these equations~32! are a proper discretiza
tion of the irreversible part of hydrodynamics with therm
noise included consistently. By collecting the reversible p
in Eq. ~24! and the irreversible part in Eq.~32!, the final
equations of motion for the discrete hydrodynamic variab
can be finally written.

IV. SIMULATION RESULTS

We have implemented a code in which Eqs.~24! together
with the irreversible terms~32! are simulated. A 2D box with
periodic boundary conditions has been tessellated accor
to the Voronoi construction. Because no forcing bound
conditions are considered in this paper, the typical exp
ments consist of a decay of an initial state towards the e
librium state.

A. Ideal gas

The fluid has been assumed to be an ideal gas, for wh
the fundamental equation is given by

E~N,V,S!5
DNh2

4pm0
S N

VD 2/D

expH 2

D S S

NkB
2

D12

2 D J .

~35!

Here,N is the number of molecules~so Nm0 is the mass of
the system andm0 is the mass of a molecule!, h is Planck’s
constant, andD is the number of space dimensions. T
equations of state give the temperature, chemical poten
per particle, and the pressure as
5-7
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T5S ]E
]SD

N,V

5
2

DNkB
E,

m* 5S ]E
]ND

V,S

5ES 21D

D

1

N
2

2S

DN2kB
D , ~36!

P52S ]E
]VD

N,S

5
N

V
kBT.

The specific heat at constant volume is

C5S ]E
]TD

N,V

5
D

2
NkB . ~37!

It must be remarked that we assume thateach cellhas
associated with it a fundamental equation~35! and therefore
the intensive parameters~36!. The N in Eq. ~35! thus refers
to the number of molecules in a given cell. These cell int
sive parameters are the quantities that enter the equatio
motion of the system. We arenot assumingthat the system
considered as a whole will behave as an ideal gas. E
though physically we expect that this is the case we m
check that our simulations do satisfy this requirement~see
Sec. IV G!.

B. Reduced units

The four basic units selected are the mass unitmu
5Nmicm0, the entropy unitSu5N mickB , the length unitLu

5N mic
1/D l, and the temperature unitTu5Te . Any other unit is

derived from these ones. Here,m0 is the mass of one mol
ecule ~or atom! of the ideal gas,l is the typical distance
between molecules at room conditions, andTe5273 K is the
room temperature.N mic is an arbitrary number. If we choos
Nmic to be equal to the total number of molecules in t
sample being simulated, then the total mass of the syste
1 in these units. If the system is at room temperature, t
T51 in these units, the mass density is 1 and the box siz
also 1. We introduce these units that refer essentially to
global quantities of the sample being simulated. We co
select units referred to the Voronoi cell in such a way that
typical mass of a cell would take value 1. This would imp
that simulations with different number of cells would corr
spond to samples of different sizes rather than to the s
sample with different resolution.

We introduce the following reduced quantities:

T̃5
T

Te
,

P̃5
PLu

2

kBNmicTe
,

m̃5
m

kBNmicTe
, ~38!
04611
-
of

en
st

is
n
is
e

d
e

e

S̃5
S

kBNmic
,

Ẽ5
E

kBNmicTe
,

Ṽ5
V

Lu
2

.

If Nm is the number of molecules in the mesoscopic cellm
~we have(m51

M Nm5Nmic) the dimensionless mass of cellm
is

M̃m5
mm

mu
5

Nmm0

Nmicm0
5

Nm

Nmic
, ~39!

which is the fraction of the molecules or atoms of the who
sample that are in the cellm. With these reduced units, on
can write the thermodynamic relations~35! and ~36! in di-
mensionless form,

Ẽ~M̃ ,S̃,Ṽ!5M̃ T̃~M̃ ,S̃,Ṽ!,

T̃~M̃ ,S̃,Ṽ!5
1

a

M̃

Ṽ
expH S̃

M̃
22J ,

~40!

P̃5
M̃ T̃

Ṽ
,

C̃5M̃ .

The dimensionless chemical potential per unit mass is gi
by

m̃5S ] Ẽ
]M̃

D
Ṽ,S̃

5 ẼS 2

M̃
2

S̃

M̃2D . ~41!

In Eqs.~40!, we have introduced the dimensionless const
a that depends only on microscopic parameters through

a5S l

L D 2

5
l22pm0kBTe

h2
, ~42!

whereL is the thermal wavelength.
With these dimensionless quantities, the equations of m

tion are identical to Eqs.~24! and~32! with a tilde on every
variable.

C. Parameters used in the simulations

We want to simulate a sample of argon, assumed to be
ideal gas, whose molecules have a massm0
56.6325310226 kg. The system is assumed to be at roo
temperature. The number of molecules in the sample
Nmic543104. We useM5400 mesoscopic Voronoi cells t
discretize the 2D box, which lead to typically 100 argo
atoms in each cell. The typical distance between molecu
5-8
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in an ideal gas at room temperature and pressure in t
dimensions isl5331029 m. If in two dimensions we wan
to keep this typical distance, then the linear dimensions
our simulation box should beNmic

1/2331029 m56.6731027

m. The constanta in Eq. ~42! takes the valuea
53.987 138 933104. The dimensionless shear and bulk v
cosities and thermal conductivity are taken ash̃5 z̃5k̃
50.01.

D. Deterministic simulations

As a first test of the algorithm, we have conducted sim
lations in which the terms proportional tokB in Eqs. ~32!
have been neglected. This results indeterministicequations
that should reproduce the results of continuum hydrodyn
ics. The time integrator scheme that we have used in
deterministic case is a Runge-Kutta method of fourth ord
We have also devised a generalization of the time revers
velocity-Verlet algorithm~that conserves total energy!. This
generalization has been constructed as an application o
Tuckerman formalism, which makes extensive use of
Trotter expansion@30#. The Runge-Kutta method has four
order precision in front of the second order precision of
generalized velocity Verlet. In spite of the longer CPU tim
required by the Runge-Kutta method, it can use longer t
steps to get the same precision. Most of the results prese
below are obtained with the Runge-Kutta method with a ti
stepd t̃50.01.

According to the results of the linearized hydrodynam
equations, the evolution of the Fourier transforms of the p
turbation from equilibrium for the massr(k,t) and momen-
tum g(k,t) density fields have the form

cr~k,t !52 i exp$2Gk2t%sin~ckt!k̂•g~k,0!,
~43!

g~k,t !5exp$2Gk2t%cos~ckt!k̂k̂•g~k,0!1exp$2nk2t%

3@12 k̂k̂#•g~k,0!,

where k̂ is the unit vector along the wave vector,c is the

FIG. 2. Dots are for the transverse momentum field in Fou
space as a function of time. The theoretical fit in continuum l

~invisible under the dots! corresponds toñ50.009 680~the input

value isñ50.01). The resolution is for a typical number of 20 ce
per box lengthL.
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sound speed,G is the sound absorption coefficient, andn
5h/r is the kinematic shear viscosity. If the initial pertu
bations fields are

r~r ,0!50,
~44!

g~r ,0!5exp$ ik0•r%g0 ,

then, in Fourier space, we will have

r~k,0!50,
~45!

g~k,0!5
~2p!D

2
@d~k2k0!1d~k1k0!#g0 ,

where g05rv0, with v05(v0,0,0). Including these initial
conditions in Eqs.~43! we see that the non vanishing resu
are for thek56k0. Selecting the longitudinalkL5(k0,0,0)
and transversekT5(0,k0,0) wave vectors, it is possible t
disentangle the effects of diffusion of vorticity and th
propagation of sound. In the longitudinal case we have

cr~kL,t !52 i exp$2Gk0
2t%sin~ck0t !

~2p!D

2
r k̂L

•v0 , ~46!

r

FIG. 3. Temporal evolution of the total entropy of the syste
for the transverse perturbation experiment. It is a strictly increas
function of time.

FIG. 4. Temporal evolution of the individual pressures of
particles for the transverse perturbation experiment. At equilibri
all the particles have the same pressure. Solid line is for particl
5-9
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g~kL,t !5exp$2Gk0
2t%cos~ck0t !

~2p!D

2
r k̂Lk̂L

•v0 .

In the transversal case we have

r~kT,t !50,
~47!

g~kT,t !5exp$2nk0
2t%

~2p!D

2
rv0 .

In the simulations, the reduced temperature is initially
to T̃51 and the reduced density tor̃51. The initial value of
the velocities of every cell is given by a longitudinal or tran
versal plane wave with a velocity amplitudeṽ050.01, and a
wave vectork̃05(2p)/L̃. We measure the Fourier compo
nents of the mass and momentum density fields and fi
evolution with the theoretical predictions~46! and ~47!.
From this fit, we measure the kinematic viscosity, the sou
speed, and the sound absorption coefficient.

FIG. 5. Temporal evolution of the individual temperatures
20 particles for the transverse perturbation experiment. At equ
rium all the particles have the same temperature. Solid line is
particle 1.

FIG. 6. In dots, the imaginary part of the longitudinal dens
field in Fourier space as a function of time. The continuum line

the theoretical expression withG̃50.012 27 andc̃51.3937. The
resolution is for a typical number of 20 cells per box lengthL.
04611
t

-

ts

d

E. Transverse wave

In Fig. 2 we plot the transverse momentum field in Fo
rier space as a function of time. We get an excellent agr
ment with the theoretical exponential decay predicted by
~47!. For the case of the transverse perturbation, we h
recorded the total energy evolution as a function of time a
have checked that it is a conserved quantity with an error
is 108 smaller than the total value. The total entropy evo
tion is reflected in Fig. 3. It is clearly a nondecreasing fun
tion of time.

We have also monitored the pressures in Fig. 4 and
temperatures in Fig. 5 of a subset of 20 particles as the
tem approaches equilibrium. We can appreciate that the
tem reaches the equilibrium when all the particles take
same values for these intensive variables.

F. Longitudinal wave

For the longitudinal experiment, we plot in Fig. 6 th
imaginary part of the longitudinal density field in Fourie
space as a function of time along with the theoretical pred
tion ~46!.

In this simulation, the total energy is conserved with
error that is 108 times smaller than the total value. The tot

f
-
r

s

FIG. 7. Temporal evolution of the total entropy of the syste
for the longitudinal perturbation experiment. Despite slight oscil
tions due to the wave character of the perturbation, the entropy
strictly increasing function of time.

FIG. 8. Temporal evolution of the individual pressures of
particles of the total system for the longitudinal perturbation exp
ment. Solid line is for particle 1.
5-10
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entropy is again a strictly nondecreasing function of tim
see Fig. 7.

We again plot the time evolution of the pressures in Fig
and thermodynamic temperatures in Fig. 9 for a subset o
particles. The equilibrium state is established when all
particles take identical values for these variables.

It is interesting to make a systematic study of the transp
coefficients in terms of theresolution. We define the resolu
tion as the typical number of cells per unit length (M1/D/L).
In Fig. 10 we plot the kinematic viscosity measured in sim
lations of decaying transverse waves for different numbe
cells in the box. The input value is given by the solid line.
we increase the resolution we obtain an excellent agreem
between measured and input values.

The sound speed for the ideal gas is given by

c5A2V S ]P

]VD
s

. ~48!

which in reduced units becomesc̃5A2T̃. In Fig. 11 we plot
the measured sound speed and the input value.

Our simulations results agree very well with the line
solutions of the hydrodynamic equations and show tha
resolution of typically 25 particles per box lengthL provides

FIG. 9. Temporal evolution of the individual temperatures of
particles of the total system for the longitudinal perturbation exp
ment. Solid line is for particle 1.

FIG. 10. Dots correspond to the kinematic viscosityñ measured
through the exponential decay of the momentum field in Fou
space for different resolutionsM1/D/L). The solid line is the input
kinematic viscosity.
04611
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an accuracy of 2% of the input viscosity and 1% of the inp
sound speed. These results provide a very satisfactory te
our deterministic code.

G. Proof of the local equilibrium assumption

A very interesting observation about the previous sh
and sound wave simulations is that the time evolution of
entropy in Figs. 3 and 7 is such that the final values of
total entropy in each simulation are exactly the same. T
initial value of the entropy is fixed by the initial conditions
Because the only difference in both initial conditions is
the velocity variable, and the entropy is independent of
velocity, the initial total entropy of both simulations are th
same. At the same time, both simulations have initial con
tions such that the global conserved quantities~mass, vol-
ume, energy! are exactly the same. Therefore the final val
of the total entropy is seen to depend only on the glo
conserved quantities and not on the way the system evo
in order to reach the equilibrium state. This is, of course,
requirement of equilibrium thermodynamics. In order to b
ter clarify this point, we plot in Fig. 12 the time evolution o
the total entropy for the decay of a shear wave in two sim
lations differing only on the value of the transport coef

i-

r

FIG. 11. The sound velocityc measured through the oscillatio
of the imaginary part of the density field in Fourier space for d

ferent resolutions (M1/D/L). The predicted value isc̃5A2T̃ in con-
tinuum line.

FIG. 12. Total entropyS5(mSm as a function of time. Circles
are for shear, bulk, and thermal conductivity equal to 0.01, squ
for 0.03. Solid line is the total entropy computed from the therm
dynamic equation of the ideal gas.
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cients. We observe that both simulations start at the s
value ~because the initial conditions are identical! and that
they approach to the same value of the entropy. The horiz
tal line is the value of the entropy computed fro
S(M0 ,V0 ,E0), where M0 ,V0 ,E0 are the total mass, tota
volume, and total energy of the system. The funct
S(M0 ,V0 ,E0) is the inverse function of Eq.~35!. The fact
that the total entropy increases to the value predicted by t
modynamicsis a nontrivial result. Physically, we certainly
expect that the total entropyat equilibrium is a function of
state depending only on the extensive variables of the wh
system. That our simulation technique obeys this phys
requirement is a very pleasant outcome, which was not
tirely expected beforehand. Another way to look at this iss
is as follows. Even though in the technique we only spec
the thermodynamic behavior of each cell~i.e., each sub-
system!, the postulated dynamics is such that the final eq
librium thermodynamic behavior ofthe whole systemis ex-
actly the same as that of its subsystems. In other words,
techniquerespectsthe local equilibrium assumption. Onc
we have checked this property, we have a route to specify
internal energy function of each cell if we know the fund
mental equation of the whole system.

Note that the final value of the entropy in Fig. 12 does n
depend on the actual values of the transport coefficie
Higher the dissipation, faster is the approach to thesame
equilibrium state. If the dissipation decreases, the equilib
tion time increases. In the limit of zero dissipation, the e
tropy is a constant of motion, equal to the value at the ini
time, and the system will never reach the equilibrium st
predicted by thermodynamics. The Euler equations for
inviscid fluid are clearly inconsistent with the principles
equilibrium thermodynamics. A dissipation is required,
matter how small, in order to drive the system towards
equilibrium state predicted by thermodynamics.

H. Decay of temperature inhomogeneities

In the previous sound and shear wave simulations,
variation of the intensive parameters is very small~see Figs.
4 and 5, and 8 and 9!. We have conducted another simulatio
in which the cells are initially at different temperatures a

FIG. 13. Instantaneous evolution of the total energy in time. T
dotted line corresponds to the model without the Gibbs-Duh
term ~25! and the continuum line to theGENERIC model, for a time
stepDt50.005.
04611
e

n-

r-

le
al
n-
e
y

i-

ur

he

t
s.

-
-
l
e
n

e

e

velocities, depending on theiry position. The upper half cells
are at temperatureT51 while the lower half are at tempera
ture T52. An initial shear wave provides the initial veloc
ties of the particles. Rather than focusing on measurem
of thermal conductivities, we are interested in quantifyi
the actual size of the Gibbs-Duhem term~25!. Note that this
term is very small in the previous simulations because of
very small differences between the intensive parameter
the cells. For this reason, we consider here the situatio
which potentially this term is larger. We recall that this ter
is responsible for the exact energy conservation of
GENERIC algorithm. For this reason, we compare two sim
lations in the two-temperature configuration in which t
Gibbs-Duhem term~25! is included or removed in the mo
mentum equation. In Fig. 13, we plot the instantaneous e
lution of the total energy about the initial value for the tw
models. That is, we plot

DE~ t !5
E~ t !2E~0!

E~0!
~49!

We observe a cooling effect in the model without t
Gibbs-Duhem term due to the nonconservation of the ene
There is still a slight increase in the energy in theGENERIC

model that is due to numerical integration errors. In order
quantify these errors as a function of the timestepDt, we
measure the quantity

DÊ~Dt !5
1

N (
k51

N UE~kDt !2E~0!

E~0!
U. ~50!

A fixed total time ofNDt54 is chosen. In Fig. 14, we plo
the dependence ofDÊ on Dt for the two models. The resul
is very revealing. For theGENERIC model, we achieve any
desired improvement of the energy conservation as the t
step tends to zero. For the model without the Gibbs-Duh
term, the energy conservation is not improved as the t
step goes to zero, but rather it converges to a typical valu
1026 for this particular simulation.

e FIG. 14. The conservation of energy as a function of time st
for the model without the Gibbs-Duhem term~triangles! and for the
full model ~circles!. The logarithm is in base 10.
5-12
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Note that the Gibbs-Duhem energy producing term is v
small, as concluded from these plots. Actually, if large tim
steps are used, the numerical error in the full model is
ready as large as this term.

I. Boundary conditions

In this paper we only consider systems with period
boundary conditions. However, it is rather easy to implem
other boundary conditions on given solid boundaries. T
first issue to resolve is how to tessellate the space in orde
conform with the prescribed geometric boundaries. In F
15 we show that by collecting boundary pairs of fixed c
centers, one can easily construct flat walls. Other geome
shapes can be tailored in a similar way. Every pair ha
center ‘‘within’’ the fluid domain and a center ‘‘outside’’ th
fluid domain. If the boundary conditions are of the Neuma
type, one needs to specify fluxes at the boundaries. In
case, for every ‘‘within’’ cell center of the pair, one has th
the interaction with the ‘‘outside’’ cell center is fixed i
terms of the prescribed flux. In the case that Dirichlet bou
ary conditions must be satisfied~like in a no-slip boundary
condition!, one enforces the value of the hydrodynamic fie

FIG. 15. How to tailor a solid horizontal flat wall boundary wit
the Voronoi tessellation by using pair boundary points.

FIG. 16. Equilibrium momentum distribution function. Do
correspond to the simulation results and the continuum line co
sponds to the theoretical prediction obtained from the Einstein
tribution function. The dot-dashed line correspond to the b
Gaussian and shows that the momentum distribution function is
strictly Gaussian. This is due to the fact that the mass of the fl
particles is allowed to evolve.
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of both centers of each boundary pair to be prescribed.
expect to present results on the implementation of bound
conditions in the near future.

J. Fluctuations included

We have also performed a test of the full algorithm
which thermal fluctuations are included. The evolution eq
tions are now the stochastic differential equations~24! and
~32!. We modify consequently the integrator scheme. W
choose an Euler algorithm that conserves total momen
and energy with a time stepd t̃50.000 001.

The initial state is set as follows. From a random dist
bution of cell positions in the box, we construct the Voron
cells. Every cell has a given volume and we select its ini
mass in order to have a constant densityr̃51. The initial
velocity of the cells is zero. The initial entropy of each cell
selected in such a way that the temperature of every ce
T̃51. Note that this initial state although close to equili
rium is not a typical equilibrium state. We let the syste
evolve and after a decay time we measure the equilibr
momentum, mass, and volume distribution functions fo
single cell. The results are presented in Figs. 16,17,18
where the simulation results are presented along with
theoretical prediction obtained from the Einstein distributi

e-
s-
t

ot
id

FIG. 17. Mass equilibrium distribution function. Dots corre
spond to simulation results. The continuum line is the theoret
prediction according to the Einstein distribution function.

FIG. 18. Volume equilibrium distribution function. Dots corre
spond to simulation results. The continuum line is the theoret
prediction according to the Einstein distribution function.
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function ~51!. The agreement is quite remarkable and p
vides confidence on the coding of the model.

The Einstein distribution function~in the presence of dy
namical invariants@31#! is given by

req~x!5
d„E~x!2E0…d„I ~x!2I 0…

V~E0 ,I 0!
exp$kB

21S~x!%, ~51!

whereV(E0 ,I 0) is the normalization. It can be shown th
the Fokker-Planck equation that is mathematically equiva
to the stochastic equations~13! has as equilibrium solution
the Einstein distribution function. The details of the deriv
tion of the theoretical predictions for the single cell distrib
tion functions from theM-particle Einstein distribution func
tion ~51! will be given in a separate publication@32#.

An interesting observation is the fact that in the stocha
simulation the total entropy of the system is a fluctuat
quantity that is not strictly an increasing function of time.
an equilibrium situation it fluctuates around a constant va
as shown in Fig. 20. It must be clearly understood that
does not contradict the second law of thermodynam
which is a macroscopic law. Note that the fluctuations in
entropy are of the order of the Boltzmann constant, which
negligible in macroscopic terms. Actually, if one conside
the entropyfunctional

FIG. 19. Density equilibrium distribution function. Dots corre
spond to simulation results. The continuum line is the theoret
value obtained from the Einstein distribution function.

FIG. 20. Time evolution of the total entropy in an equilibriu
state for a system with thermal fluctuations.
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S@r t#5E S~x!r~x,t !dx2kBE r~x,t !lnr~x,t !dx,

~52!

which is a functional of the time-dependent probability d
tribution functionr(x,t), it is possible to prove by using th
Fokker-Planck equation corresponding to Eqs.~13! that
] tS@r t#>0. In other words, the entropy functional plays th
role of a Lyapunov function.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered a Lagrange finite v
ume model for simulating hydrodynamics in the presence
thermal fluctuations. We have paid special attention to
thermodynamic consistency of the model by casting it with
the GENERIC framework. The obtained equations conser
mass, momentum, energy, and volume and the entropy
strictly increasing function of time in the absence of fluctu
tions. Thermal fluctuations are consistently included, wh
lead to the strict increase of the entropy functional and to
correct Einstein distribution function.

The size of the thermal fluctuations is given by the typic
size of the volumes of the particles, arguably scaling like
square root of this volume. The need of incorporating th
mal fluctuations in a particular system will be determined
the external length scales that need to be resolved. For
ample, if submicron colloidal particles are considered,
need to resolve the size of the colloidal particle with flu
particles of size, say, an order of magnitude or two sma
than the diameter of the colloidal particle. For these sm
volumes, fluctuations are important and lead to the Brown
motion of the particle. A ping-pong ball, on the other han
requires fluid particles much larger, for which thermal flu
tuations are negligible. Of course, one could use a very la
number of small fluid particles to deal with the ping-pon
ball, but in this case the~large! thermal fluctuations on eac
fluid particle average out among the~large! number of fluid
particles. The original formulations of dissipative partic
dynamics lack this effect of switching off thermal fluctu
tions depending on the size of the fluid particles. This is d
to the fact that early formulations did not include the volum
and/or the mass of the particles as a relevant dynamical v
able.

The main difference of our approach from that of Flekk”y
et al. @20# is the different form of the actual dissipativ
forces between the fluid particles. As a consequence, the
plicit form of the thermal fluctuations is also different. In ou
case, the forces are given in terms of discrete versions of
gradient of the stress tensor, which are given, in turn,
discrete versions of the velocity gradients. Therefore, the
cous forces between a pair of fluid particles depend not o
on the velocities of the pair but also on the velocity of t
neighbors of both particles. Therefore, the amount of inf
mation about the fluid state around the pair of cells is qu
large. In Ref.@20# the forces are given directly in terms o
velocity differences between the particles of the pair. A
though it can be shown that the proposed equations in R
@20# can be understood as a discretization of Navier-Sto

l
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@33#, and that the resulting equations of Ref.@20# have actu-
ally the GENERIC structure, it remains to be investigated
what degree both algorithms compare in terms of the num
of particles needed to obtain a good resolution of giv
flows.

The notion of Voronoi cells allows for a very clear stat
ment of the problem of coupling continuum equations a
molecular dynamics, which is important when the continu
description breaks down due to complex molecular detail
certain regions as the contact line of two fluids and a solid
the tip singularity in dynamic fracture. A promising approa
has been taken in Ref.@34# in that direction.
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APPENDIX: SMOOTH VORONOI TESSELLATION

Following Flekko”y and Coveney@20#, we introduce the
smoothed characteristic function of the Voronoi cellm,

xm~r !5
D~ ur2Rmu!

(
n

D~ ur2Rnu!
, ~A1!

where the functionD(r )5exp$2r2/2s2% is a Gaussian of
width s. Whens→0, the smoothed characteristic functio
tends to the actual characteristic function of the Voronoi c
that is,

lim
s→0

xm~r !5)
n

u~ ur2Rnu2ur2Rmu!, ~A2!

where u(x) is the Heaviside step function. The Voron
characteristic function~A2! takes the value 1 ifr is nearer to
Rm than to any otherRn with n5” m. Note that the character
istic function produces a covering of all space~i.e., a parti-
tion of unity!, that is,

(
m

xm~r !51. ~A3!

We introduce the volume of the Voronoi cell through

Vm5E
VT

drxm~r !, ~A4!

which satisfies the closure condition

(
m

Vm5VT , ~A5!

whereVT is the total volume.
04611
er
n

d

in
r

s.

.
n

l,

Some useful properties of the smoothed characteri
function will be needed later. First, due to the Gaussian fo
of D(r ),

“D~r !52
1

s2
D~r !r . ~A6!

Therefore

]

]r
xm~r !52

1

s2
xm~r !~r2Rm!1

1

s2
xm~r !

3(
n

xn~r !~r2Rn!. ~A7!

By using the following property

xm~r !@12xm~r !#5 (
n5” m

xm~r !xn~r !, ~A8!

which can be proved by using the definition~A1!, one can
rewrite Eq.~A7! as

]

]r
xm~r !5

1

s2 (
n

xm~r !xn~r !~Rm2Rn!. ~A9!

1. Balance equations

We illustrate how the smooth Voronoi characteristic fun
tion can be used for deriving a finite volume discretization
a balance equation for a fieldf(r ,t),

] tf~r ,t !52“•J~r ,t !, ~A10!

where J(r ,t) is an appropriate current density, which w
depend, through a constitutive equation onf(r ,t) itself.

First, we introduce the cell average@f#m(t) over the
Voronoi cell m of the fieldf(r ,t)

@f#m~ t !5
1

Vm
E drf~r ,t !xm~r !. ~A11!

We will refer to @f#m(t) as a cell variable. The cell variabl
is an approximation for the value of the field at the discr
points given by the cell centers.

In principle, the Voronoi cell centers are allowed to mo
in an arbitrary way, that is,Rm(t) are prescribed functions o
time. The time derivative of the cell averages is given by

d

dt
@f#m~ t !52

V̇m

Vm
@f#m~ t !1

1

Vm
E drf~r ,t !

d

dt
xm~r !

1
1

Vm
E drxm~ t !] tf~r ,t !, ~A12!

where the dot means the time derivative. We see t
@f#m(t) changes due to both, the motion of the cells and
intrinsic dependence of the fieldf(r ,t) on time.
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By integration by parts of the nabla operator and use
Eqs.~A9!, ~A8!, and~A10! one arrives easily at the follow
ing expression:

d

dt
@f#m~ t !52

V̇m~ t !

Vm
@f#m~ t !

1
1

Vm
(

n
Amnemn•F @J#mn2@f#mn

Ṙm1Ṙn

2
G

1
1

Vm
(

n

Amn

Rmn
@f#mn

uu
•Ṙmn , ~A13!

where

emn5
Rmn

Rmn
,

Rmn5Rm2Rn , ~A14!

Rmn5uRm2Rnu,

and we have introduced the face averages

@•••#mn5
Rmn

Amn
E dr

s2
xm~r !xn~r !•••

~A15!

@•••#mn
uu 5

Rmn

Amn
E dr

s2
xm~r !xn~r !S r2

Rn1Rm

2 D •••.

We have also introduced the following two quantities

Amn[RmnE dr

s2
xm~r !xn~r !,

~A16!

cmn[
Rmn

Amn
E dr

s2
xm~r !xn~r !S r2

Rm1Rn

2 D ,

whereRmn5uRm2Rnu. We can write Eq.~A13! in the form

d

dt
~Vm@f#m!5(

n
AmnemnF @J#mn2@f#mn

Ṙm1Ṙn

2
G

1(
n

Amn

Rmn
@f#mn

uu
•Ṙmn , ~A17!

which satisfies

d

dt S (m Vm@f#mD 50, ~A18!

due to the symmetries @•••#mn5@•••#nm , @•••#mn
uu

5@•••#nm
uu of the face averages. Equation~A18! shows that

the Voronoi discretization of the balance equation~A10!
conservesexactly the extensivevariables~which are of the
form density3volume).
04611
f 2. Gradient expansion

If the field f(r ,t) does not change strongly in a typic
cell dimension, we can write the cell average as

@f#m[
1

Vm
E drxm~r !f~r !5

1

Vm
E drxm~r !f~r2Rm1Rm!

5f~Rm!1
1

Vm
E drxm~r !~r2Rm!“f~Rm!1O~“2!

5f~Rm!1O~“ !, ~A19!

where O(“) denote terms of order of the gradient of th
field. Performing similar Taylor expansions we obtain eas

@f#mn5fS Rm1Rn

2 D1O~“ !. ~A20!

Also

fS Rm1Rn

2 D5
f~Rm!1f~Rn!

2
1O~“2!, ~A21!

and therefore

@f#mn5
@f#m1@f#n

2
1O~“ !. ~A22!

After some algebra it is easy to show that

@fc#mn5@f#mn@c#mn1O~“2!. ~A23!

Finally,

@f#mn
uu 5

@f#m1@f#n

2
cmn1O~“ !. ~A24!

All these properties relating face averages with cell av
ages should suffice for expressing the terms@J(f)#mn ,
@f#mn in Eq. ~A17! in in terms of @f#m . In this way, one
finally obtains aclosedequation for the set of cell average
@f#m .

Note that for any quantityf we have

@“f#m52
1

Vm
(

n
Vmn@f#n1O~“ !, ~A25!

where

Vmn5
1

2
Amnemn . ~A26!

Therefore we see thatVmn is a sort of discrete version of th
gradient operator. An essential property of this vector is

05E drxm~r !
]

]r
152E dr

]

]r
xm~r !52 (

n5” m
Amnemn ,

~A27!

where Eq.~A9! has been used in the last equality. This
essentially the statement of the divergence theorem.
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3. More Voronoi properties

Now we show that in the limits→0 the quantityAmn is
actually the area of the contact facemn between Voronoi
cells m andn, whereas the vectorcmn is the position of the
center of mass of the facemn with respect to the ‘‘center’’ of
the face (Rm1Rn)/2. The first task is to compute the lim
s→0 for the integrals~A16!. For this reason, it is instructive
to work out the actual forms ofxm(R) andxm(R)xn(R) for
the case that only two particles are present in the system
has been done by Flekko”y and Coveney@20#. Simple algebra
leads to

xm~R!5
1

11exp$2Rmn•@R2~Rm1Rn!/2#/s2%
,

~A28!

xm~R!xn~R!5
1

4 cosh2$Rmn•†R2~Rm1Rn!/2#/2s2%
.

Note thatxm(R)xn(R) is different from zero only around th
boundary of the Voronoi cells of particlesm,n. In the limit
of smalls this is even more true. The integrals in Eq.~A16!
therefore can be performed not over the full volumeVT but
only over a region]mn ‘‘around’’ the boundary of them,n
cells. In this region, we can further substitute the express
of xm(R)xn(R), which depend on the positions of all th
center cells, by Eq.~A28!, which depends only on the pos
tion of the centers of cellsm,n. Actually, we can make a
translation fromR to R85R2(Rm1Rn)/2 ~we put the ori-
gin exactly at the boundary between cells!. We can also
make a rotation in such a way that thex axis is along the line
joining the cell centers. In this way, we can write

1

s2EVT

dRxm~R!xn~R!5
1

4s2E]mn

dR8
1

cosh2~R8•Rmn/2s2!

5
1

4s2
AmnE

2`

`

dx
1

cosh2~xRmn/2s2!

5
Amn

Rmn
. ~A29!

Note that*0
` cosh22(x)dx51. Here,Amn is the actual area o

the boundary between Voronoi cells of particlesm,n.
In a similar way, one computes the integral

1

s2EVT

dRxm~R!xn~R!S R2
Rm1Rn

2 D5
Amn

Rmn
cmn ,

~A30!
ett
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where the vectorcmn is, by definition, the position of the
center of mass of the face between Voronoi cellsm,n with
respect to the point (Rm1Rn)/2.

Note that in the limit of sharp boundariess→0, fmn
uu in

Eq. ~A15! is a vector that is parallel to the facemn, whereas
emn is perpendicular to the face.

We now explicitly compute the derivative of the volum
of cell m with respect to the positionRn of cell n, that is,

Gmn5
]Vm

]Rn
5

1

s2EVT

dRxm~R!@dmn2xn~R!#~R2Rn!.

~A31!

It’s worth considering the casesm5” n andm5n explicitly.

Gmn52
1

s2EVT

dRxm~R!xn~R!~R2Rn!, n5” m,

Gmm5
1

s2EVT

dRxm~R!@12xm~R!#~R2Rm!

5 (
n5” m

1

s2EVT

dRxm~R!xn~R!~R2Rm!

52 (
n5” m

Gnm . ~A32!

It is convenient to rewrite Eq.~A32! for n5” m as

Gmn52
1

s2EVT

dRxm~R!xn~R!S R2
Rm1Rn

2 D
2Rmn

1

2s2EVT

dRxm~R!xn~R!, ~A33!

with Rmn5Rm2Rn . By collecting Eqs.~A33!, ~A30!, and
~A29! one finally obtains

Gmn52AmnS cmn

Rmn
1

emn

2 D , n5” m, ~A34!

Note that(mGmn50 due to Eq.~A32!. Also (nGmn50 be-
cause of Eq.~A27!.
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