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We present a finite volume Lagrangian discretization of the continuum equations of hydrodynamics through
the Voronoi tessellation. We then show that a slight modification of these discrete equations satisfies the first
and second laws of thermodynamics. This is done by casting the model inteettErIC structure. The
GENERIC structure ensures thermodynamic consistency and allows for the introduction of correct thermal
fluctuations in simple terms. In this way, we obtain a consistent discrete model for Lagrangian fluctuating
hydrodynamics. Simulation results are presented that show the validity of the model for simulating hydrody-
namic problems at mesoscopic scales.
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[. INTRODUCTION however, a conceptual problem. The thermodynamic behav-
ior of the model is determined by the conservative forces
The behavior of complex fluids like colloids, emulsions, introduced in the model. These forces are assumed to be soft
polymers or multiphasic fluids is affected by the strong couforces in counter distinction to the singular forces of the
pling between the microstructure of these fluids and the mad-ennard-Jones type used in molecular dynamics. But there is
roscopic flow. The complexity of these systems requires th@o well-defined procedure to relate the shape and amplitude
use of novel computer simulation techniques and algorithmsof the conservative forces with a prescribed thermodynamic
Macroscopic approaches that solve partial differential equabehavior(although attempts in that direction have been un-
tions are useful only if the constitutive equation of the fluid dertaken, see Ref10]). Also, it is not clear which physical
is known, which is not the case for many complex fluids.time and length scales the model actually describes, even
Also, these approaches neglect the presence of thermal noighpugh the presence of thermal noise suggests the foggy area
which is the responsible for the Brownian motion of small of the mesoscopic realm. We will see that both problems are
suspended objects and therefore for the diffusive processetosely related.
that affect the microstructure of the fluid. In recent years, Dissipative particle dynamics is very similar in spirit to
there has been a great effort in order to develop mesoscoptbhe popular method of smoothed particle hydrodynamics
techniques in order to tackle the problems arising in thg SPH. The method was introduced in the context of astro-
simulation of complex fluids. physics computation in the early 1970%3] and very re-
One of these mesoscopic techniques is dissipative particleently it has been applied to the study of laboratory scale
dynamics(DPD), a particle based simulation method thatviscous[14] and thermal flowq15] in simple geometries.
allows one to model hydrodynamic behavior with thermalSPH is essentially a Lagrangian discretization of the Navier-
fluctuations. DPD was introduced by Hoogerbrugge andstokes equations by means of a weight function. The proce-
Koelman in 1992 under the motivation of designing an off-dure transforms the partial differential equations of con-
lattice algorithm inspired by the ideas behind the lattice-gasinuum hydrodynamics into ordinary differential equations.
method[1]. Since then, the model has received a great dealhese equations can be further interpreted as the equations of
of attention. From a theoretical point of view, the model hasmotion for a set of particles interacting with prescribed laws
been given a solid background as a statistical mechaniasf force. The technique thus allows one to solve partial dif-
model [2]. The hydrodynamic behavior has been analyzederential equations with molecular dynamics codes. Again,
[2,3] and the methods of kinetic theory have provided ex-these particles can be understood as physical portions of the
plicit formulas for the transport coefficients in terms of thefluid that evolve coherently along the flow. Smoothed par-
model parameteifgl]. A generalization of DPD has also been ticle hydrodynamics, however, does not include thermal fluc-
presented in order to conserve enef§y. From the side of tuations in the form of a random stress tensor and heat flux
applications, the method is very versatile and has proven tas in the Landau and Lifshitz theory of hydrodynamic fluc-
be useful in the simulation of flows in porous med#, tuations[16]. Therefore the validity of SPH to the study of
rheology of colloidal suspensiofi§,7], ordering in colloidal complex fluids at mesoscopic scales where these fluctuations
suspension§8], polymer suspensior[®], microphase sepa- are important is debatabl&7].
ration of copolymerg10], multicomponent flowg11], and We have recently shown that the conceptual problems in
thin-film evolution[12]. DPD and the inclusion of thermal fluctuations in SPH can be
The physical picture behind the dissipative particles usedesolved by formulating convenient generalizations of both
in the model is that they represent mesoscopic portions afhethods under the general framework GENERIC [18]. In
real fluid, say clusters of molecules moving in a coherent andhe present paper, we take a further look at the problem of
hydrodynamic fashion. The interactions between these pafermulating consistent models for the simulation of hydrody-
ticles are postulated from simplicity and symmetry principlesnamic problems at mesoscopic scales. We construct a La-
that ensure the correct hydrodynamic behavior. DPD facegrangian finite volume model based on the Voronoi tessella-

1063-651X/2001/641)/04611518)/$20.00 64 046115-1 ©2001 The American Physical Society



MAR SERRANO AND PEP ESPABL PHYSICAL REVIEW E 64 046115

tion for discrete hydrodynamic variables that conservegsated by the very structure of the continuum equations. Our
mass, momentum, and energy, and in which the entropy is aapproach is similar to that in Reff21]. We make a further
increasing function of time. We show analytically and by requirement on the resulting finite volume discretization,
means of computer simulations that the proposed model repvhich is that the resulting equations must have ¢GE&ERIC
resents a thermodynamically consistent discrete version dftructure, in order to fully comply with the laws of thermo-
Navier-Stokes equations. Most importantly, we show how todynamics. This enforces the addition of a tiny bit into the
include thermal noise in a consistent way, that is, producingn®mentum equation. Apart from ensuring thermodynamic
the Einstein distribution function. We end up therefore with€onsistency, theseNeriC framework summarizes in very

an algorithm for simulating fluctuating hydrodynamics in aSimPle terms the fluctuation-dissipation theorem. The
Lagrangian way19]. GENERIC framework facilitates enormously the task of con-

The main purpose of this paper is the formulation of thes?rus:ting the_: proper thermal fluctuati(_)ns_ consister_1t With_the
model and its implementation in order to check for the sim-dissipation in the discrete model. This is our basic motiva-
plest cases it works in. This is a necessary step in order to HiPn for using this framework.
able to apply the model in more interesting situations involv-

The approach presented in this work has also a strong
ing complex fluids. Two immediate instances that we have if€seémblance with Yuan and Doi simulation method that also

mind are the simulation of colloidal suspensions and the/S€S the Voronoi tessellation in the Lagrangian fdg]
study of nonequilibrium liquid-vapor transitions. In the first (S€€ @lsd23]). They have applied the method to the simula-
case, the Lagrangian nature of the algorithm makes it veryon pf c.oncentrated emuIS|_ons under flc_)w, and severa_l other
convenient for dealing with the geometrically complex inter- 2PPlications to complex fluids are mentioned. The main dif-
stitial domains between colloidal particles. Note that for thisférénce between our work and that of RE2] is the ther-

problem, thermal fluctuations in the fluid are indispensable ifnedynamic consistency ensured by ENERIC formalism.
order to describe the Brownian motion of the colloidal par- 'S allows, among other things, to include correct thermal

ticles. In the second problem, the intimate connection pehoise that allows to describe diffusive aspects produced by

tween the thermodynamics of the system and hydrodynamic%rownia“ motion on mesoscopic_ object.s. _Another difference
makes necessary a thermodynamically consistent formuldS that we deal with a compressible fluid in which the pres-
tion of the discrete hydrodynamics, which is achieved her&U® iS given through the equation of state as a function of
by casting the model within theENERIC formalism. With ~ Mass and entropy densities, in counter distinction with Ref.

the model presented it might be possible to study the effecte?2] Where the pressure is obtained by satisfying the incom-

of thermal fluctuations on the dynamics of phase separatioRr€Ssibility condition.
and on the dynamics of bubbles and droplets.
In order to construct the Voronoi algorithm we have been Il. FINITE VOLUME METHOD WITH LAGRANGIAN
strongly inspired by the work of Fleklgo Coveney, and De VORONOI CELLS
Fabritiis [20]. In that paper, the authors present a “bottom-

up” (that is, starting from microdynamicserivation of dis- for the numerical integration of the equations of continuum

sipative particle dynamics. Physical space is divided Inmnydrodynamics. The objective is to derive a set of equations

Voronoi cells and explicit definitions for the mass, momen-¢ " Jiscrete hydrodynamic variables defined on a moving

:juem’re?agdof Ri;gdyor?;cfzieﬂoﬁz";g rtrfcr)m;?; tc)r}ethn;'(ég]ssiﬁﬁﬁagrangian grid defined through the Voronoi tessellation.
9 The equations of hydrodynamics di4]

ent molecules of the flujdare given. The time derivatives of

these phase func_tions have the structure of “micr_oscopic bal- ap(r,t)=—V-p(r,Hv(r,b),

ance equations” in a discrete form. These equations are then

divided into “average” and ‘“stochastic” parts. To further —

advance into the formulation of a practical algorithm, the ag(r,t)=—=V-g(r,t)jv(r,t) - V- (P1+1+111),

authors then proposghenomenologicalphysically sensible L ) (1)

expressions for the average part and require the fulfillment of sl

thelz3 fluctuation-dissipatior? thpeorem forqthe stochastic part. ats(r,t)——V~s(r,t)v(r,t)—?V-J‘“r? Vv: Vv

Because of the use of the phenomenological expressions, we

cannot consider this a microscopic derivation. Strictly speak- + E(V V)2

ing, such a microscopic derivation would require the use of a T '

projection operator technique or kinetic theory in order to

relate the transport coefficients with the microscopic dynamHere,p(r,t) is the mass density field(r,t) = p(r,t)v(r,t) is

ics of the systenin the form of Green-Kubo formulas, for the momentum density field, whergr,t) is the velocity

example. Also, explicit molecular expressions for the equa-field, ands(r,t) is the entropy density fieltentropy per unit

tions of state would be also required. volume. The pressure fiel@= P(r,t) is given, according to
Instead, we propose in this paper a conspicuous “topthe  local  equilibrium  assumption, by P(r,t)

down” approach in which the deterministic continuum equa-= P*Yp(r,t),s(r,t)) where P*{p,s) is the equilibrium

tions of hydrodynamics are the starting point. By makingequation of state that gives the macroscopic pressure in terms

intensive use of the smooth Voronoi tessellation introduceaf the mass and entropy densities. A similar statement holds

by Flekkty et al. the form of the discrete equations is dic- for the temperature field'(r,t). The double dot implies

In this section, we consider the method of finite volumes
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We require that the cell centers move according to

R, (D)=[V],(1), 4

where[ V] ,(t) is the average of the velocity field over cgll
Therefore the Voronoi cells “follow” the flow field in a
Lagrangian way. Here and in what follows, we denote with
[---],. the spatial average of an arbitrary field over the
Voronoi cell u.

After multiplying Egs.(1) with the characteristic function
X (1) of cell x and using the mathematical tricks described
in the Appendix, plus the gradient approximation also de-
FIG. 1. Voronoi tessellation in a periodic box. scribed there, it is straightforward to arrive at the following

. . ) ) set of equations:
double contraction and is the unit tensor. These equations

have to be supplemented with the constitutive equations for

the traceless symmetric pdi of the viscous stress tensor,
the tracell of the viscous stress tensor, and the heat Jfux

M= Auv Lplutlpl,

R 2 C,LLV'([V]/,L_[V]V)v
v

They are AL
: v Lplutlpl, [VI+IV],
—_— P/,LZZ R,u #2 MZ C/,LV.([V],U,_[V]V)
H:_27]VV, v ya%
I=={V-v, +2 Q- ([P],L+11,+11,1),
Ji=—kVT= TZV1 2
=—kVT=«T?V, (2) o3 Awlsltlsl o
: : . Lo4<R 2 (e m v
where the traceless symmetric part of the velocity gradient wy
tensor is 1 . 29, — — Ly
o, o +T—M E Q,,-[39,+ —TMVMG”'G“JF —TMVMD"'
Vv=-[Vv+(VvVv)']-<V.v. 3
SV (VV)T]- 5 3 )

Here,D is the dimension of physical space. In principle, the  \we have introduced in these equations the following
shear viscosityy, the bulk viscosity/, and the thermal con- g antities: total mass of celt M ,=V,[p],, total momen-
.. . - : 2 14 o
ductivity « might depend on the state of the fluid through ¢,y P,=V,[dl,, and total entropys,=V,[s],, pressure
p:S. . ) ) ) and temperature of celk through[P],=P*{[p],.[s],)
The finite volume method consists of integrating EA3.  gng [T1,=T([p], [s],). Also, we introduced discrete

in a finite region of spaceor finite volumeg in such a way yersions of the constitutive equatiof® through
that ordinary differential equations for the average fields over

the finite regions emerge. We present a finite volume method _ 2[7]—

that uses the Voronoi construction as a conceptually and H,ﬁ—v— u

mathematically elegant method for discretizing the con- m

tinuum equations of hydrodynamics. The details are given in

the Appendix where we use the smoothed characteristic I :_@D (6)
function of the Voronoi cells introduced by Flekket al. K’ v,

[20] as a convenient mathematical td@5]. Without the

help of this smoothed characteristic function it is very diffi- 0 [«], 22 1

cult to figure out the effects of the Lagrangian moving grid in [I=— Vv T ~ Q“VT_V'

the final discrete equations. In the Appendix, we show how .

the method can be applied to a general balance equation, $fsre, the discrete versions of the symmetric part of the trace-

we will simply quote in the present section the final resultsiess velocity gradient tensor and the divergence of the veloc-
for the case of the set of equatio(ts. ity are defined

The Voronoi tessellation is a way of partitioning space
around a set of “cell centers” located &, by associating _ 1 1
the region of space that is closer to that cell center than to GZ5= ~|3 > [szv’er Qﬁyvﬁ ) 5P, Qv
any other center of the set. Each cell will have a volure ! !
that depends parametrically on the positions of the cell cen- @
ters. Figure 1 shows a two-dimensioi2D) tessellation in a D =— 2 Q v

. . " pv Yo
periodic box. v
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The geometrical objects introduced in EdS) are the damental equation. The fundamental equation relates the in-
areaA,,, between cellsu,» and the(half) normal surface ternal energyf, of the fluid particle with its mas ,,

vector vqumeVM_, and entropye_ﬂ, this i§5M=5(MM Vi Su)-
L Regarding the dynamical invariants of the system, we re-
_ quire that the total madgl (x) == ,M , and total momentum
QM—EAWeW, (8) MR

P(x)=Z%,P, are the only dynamical invariants. Conserva-
tion of angular momentum would require the introduction of
where eMV=(R#—RV)/RMV is a unit vector normal to the spin variables in this discrete modé].
face u,v. Finally, the vectorc,, is a vector parallel to the Now the basic question we pose is, what dynamical equa-
face u,v as discussed in the Appendix. tions should we have for these discrete hydrodynamic vari-
Despite its formidable aspect, EdS) are quite natural if ablesx such that strict respect to the first and second laws of
one looks at),, as a sort of negative discrete gradient op-thermodynamics is guaranteed? In order to answer this ques-
erator[see Eq.(A25) in the Appendi}. In this way, every tion, we resort to the thermodynamically consisteBNERIC
term in Eqgs.(1) and(2) has its counterpart in Eq$5) and  formalism introduced by Grmela andttibger [27]. The
(6). One would expect that the convective terms of the coneeNeRIC dynamic equations are given by
tinuum equationg1) must disappear in a Lagrangian de-
scription. Rather, they are replaced by the terms involving dX_L JE M ) 1
c,,- These terms are associated with the rate of change of at tox TMox (10
the extensive variables due to the changstapeof the cell
as it moves, rather than to the maonvectivé motion of ~ The first term in the right-hand side corresponds to rihe
the cell. versible part of the dynamics and the second term corre-
sponds to thérreversible part. The matrix. is antisymmet-
lIl. GENERIC MODEL OF ELUID PARTICLES ric whereadMl is symmetric and positive semidefinite. Most
important, the followingdegeneracyonditions should hold
We could already use Eq&) for a numerical simulation
of the continuum equationd). Because of the gradient ap- S oE
proximation used in the derivation, these equations are accu- Lﬂ_o’ M ax
rate to first order in gradients. However, one can easily show
that the energy at the discrete level is not strictly conservedhese properties ensure that the energy is a dynamical in-

by the above equations. In order to solve this problem andyariant,E=0, and that the entropy is a nondecreasing func-
most importantly, to introduce correct thermal fluctuations insion of time S=0. as can be proved by a simple application

the model, we cast in this section the previous equation§s the chain rule and the equations of motict0). In the

within the GENERIC framework. Our point of view is that the  .,qa that other dynamical invarian() exist in the system
Voronoi cells serve not only as a discretization tool for the(as for example, linear or angular momenjuthen further

hydrodynamic equations but also as a way of properly deﬁnéonditions must be satisfied ly,M. In particular,
ing the concept of dluid particle In this paper, a fluid par-

0. (11

ticle is understood as a thermodynamic subsystem of definite Il O9E J 9S
shape(given by the Voronoi cellthat moves following the w0 Mo =0, (12)
flow [18].

The state of the fluid is given by the sex

={R,.P,.M,,S,} whereu labels each of th& Voronoi

fluid particles in the system arfd, is the positionpP,, is the

which ensure thak=0.

The deterministic equatiorid0) are, actually, an approxi-
. . mation in which thermal fluctuations are neglected. If ther-
momentumM,, is the mass, an, is the entropy of the:th mal fluctuations are not neglected, the dynamics is described

f!Uid particle. The VO_“_Jme)# of the fluid par_ticles is_a func- by the following stochastic differential equations interpreted
tion of the positions of the particles, ie.V, in Itd sensd27]:

=V,(Ry, ... ,Ry) and it is not an independent variable
[26]. The energy and entropy functions are postulated to

dx= LaE+MaS+k i M |dt+dXx 13
have the form x=|L— > ke oy X, (13

p? . o .
E(x)=2 “ +EM,,S,, V), to be compared with the deterministic equatidtf). The
Y23

2M, stochastic terndX in Eqg. (13 is a linear combination of
9) independent increments of the Wiener process. It satisfies the

It0 rule
Sx)=2> S,,
"

dxdx"=2kgMdt, (14)
whereV, is an implicit function of the positions of the fluid 3
particles, and(M ,,S, ,V,) is the internal energy function. which means thatlx is an infinitesimal of order 1/228].
Because each fluid particle is understood as a thermodyEquation (14) is a compact and formal statement of the
namic subsystem, it has a well-defined thermodynamic funfluctuation-dissipation theorem. Formally, the size of the
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fluctuations is governed by the Boltzmann constagntIf we A. Reversible dynamics
takekg—0, the stochastic differential equatittB) becomes In this section we consider the reversible part of the dy-
the deterministic equatior{d.0). namics for the fluid particle model. The mattixis made of

When formulating new models it might be convenient to 1« M blocks L, of size 8<8. The antisymmetry oL
specn‘ydx directly instead oM. This ensures tha#l through  translates intd.,,=—L,,.
Eq. (14) automatically satisfies the symmetry and positive e have first strong requirements for the formLofwe
definite character. In order to guarantee that the total energyish that the reversible part of the dynamics produces the
and dynamical invariants do not change in time, a strongollowing equations of motion for the positions:
requirement on the form afx holds, ,

M R,=V,. (19

—dx 0. &dx:o' (15 The simplest nontrivial reversible part that produces the
above equation has the following form:
The geometrical meaning of E¢L5) is clear. The random

kicks produced bydx on the statex are orthogonal to the

gradients ofg,l. These gradients are perpendicular vectors RM
(strictly speaking they are one forint the hypersurface
E(X)=Egp, I(X)=1y. Therefore the kicks let the staieal- p v,
ways within the hypersurface of dynamical invariants. a _ Z L (20)
For future reference, the derivatives with respect to the Y e V2 ’
state variables of the energy and entropy are given by m - 3”+ My
v, S,
-> IRy 0 T,
Y v
v 0 where the block ,, has the structure
JE _ v &S_ (16)
IX V% B¢ 0 ' 0 15,, 0 0
oty
1 —16,, A A, r,.
L =
Ty p 0 A,, 0 0
where we have introduced the velocity,, pressureP,,,
i . . 0 -T, 0 0
chemical potential per unit mass,, and temperaturd, ©
according to the usual definitions, (21
v :i The first row ofL ,, ensures the equation of motida9).
M, The first column is fixed by antisymmetry bf Note that in
order to have antisymmetry df,, (Which in turn, ensures
dE, energy conservationit is necessary thak -A,,. Per-
Y forming the matrix multiplication in Eq(20) the reversible
14 M S .
17) part of the dynamics takes the form
€, .
M= R =V !
M v SV I M
2
o€ . P P A%
T,= - . PMZE A,uveu - +E AMVVV_AMVE
aSV v v
M,V
We can develop the pressure ternvi/ dx by using Egs. + E Aﬂcﬂv(p —P)+A,,u,+T,,T,
(A32) and (A34) in the Appendix, 7 [Ruw
(22)
v, P,—
+ N o—
2 R P 2 A EM R, Cu(Pu=P0)- M,=-3 A
(18)
We are now in position to formulate the dynamical equa- S = _2 r v
tions. "
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What forms forA,,, A,,, andI',, should we use in “ putp,
order to consider Eqg22) as a discrete version dfviscid > = -P,) 5 (M=)
hydrodynamics? In what follows we will propose forms for : g
these quantities in such a way that E¢&2) and (5) (with s +

s
zero transport coefficientgoincide as much as possible. - Mz (T,=T,)|. (25
The vectorsA ,, andI',, are easily identified by compar-
ing the mass and entropy equations in E§s.and(22). The
matrix A, is obtained by inspection from the comparison
between the momentum equation in E¢S. and (22). Our

proposals are therefore,

This term is strongly reminiscent of the Gibbs-Duhem rela-
tion that, in differential form, isdP—pdw—sdT=0. For

this reason, we expect that this tef@b), although not ex-
actly zero, will be very small. Therefore Eq&4) can be
considered as a proper discretization of the continuum equa-

A AL pute, E Ao Putpg tions of inviscid hydrodynamics. Total mass, momentum,
MV_R_MV TC,W & R_;w Tc,w, and energy are conservedactlyand the total entropy does
not change in time due to this reversible motion.
r :Auv s#+s ey 2 Auo SutSy Su™ S0 B. Irreversible dynamics
KR 2 e 2 re . . . : .
my Ruo In this section we consider the irreversible part of the
23 dynamicsM 3S/ax. We will postulate the random ternux
AL putp,|Vuty, v, tv, for the discrete equations and will construct, through the
Ap=— R 2 7 w5 fluctuation-dissipation theorertl4), the matrixM and the
r irreversible part of the dynamics. If we guess correctly the
Auo PutpPo|VutVe V1V, random terms, the resulting discrete equations should consis-
+ 5;w§ R0 5 |7 2 G G5 tently produce the correct dissipative part of the dynamics.

According to Landau and Lifshitz, thermal fluctuations
Note thatAT =—A,,=—A,, and therefore the anti- &€ introduced into the continuum equations of hydrodynam-
ics through the divergence of a random stress tensor and a

symmetry ofL is ensured. Note also that,I',,=0 and . .
therefore the degeneracy conditibdS/9x=0 is satisfied. random heat flux16,29. In our discrete case, the noise term

By substitution of these form@3) into Eq. (22) one ob- in the equation of motioi(13) is postulated to h~ave ihe form
tains the proposedENERIC equations for the reversible part dx'—(0,dP,,0dS,), where the random ternuP,, ,d'S, are

of the evolution ofR, ,P,,M,,S,, that is, the dlscrete dlvergences of a random flux, i.e.,
R,=V,, dﬁM—E Q,,-do,,
P,—P A + - (29
- v v y V Vy,
p=SA e 2 £ > DurPutlylu & 1
,u v v 2 v R v 2 2 ds, = 2 - d Z Q
» ;L_T_ ~ v _,u o, vuVy -
+ 14
XCppr (V,—V +E (P —P)—p” P 5 5
2 The random stresdo,, and random heat qudefL are de-
fined by
S,ts,
X(M[.L_MV)_T(T,M_TV) ) (24)
— 1
~ _ s
. N daM—aMdWMerMBtr[dWM],
_ uv p/.L Py
M#—EV: R, 2 Cuv (V= V), i (27)
dJl=c,dv,
. A, s, ts . ;
_ wv Sp v The coefficientaa, b, ,c, are given by
Sy EV:RW 20 (Vu—V,). piPurbu
1/2
Here,v,=P,/M,, p,=M,/V,, ands,=S,/V,. These a,=|aksT, 22|
GENERIC equationg24) for the reversible part of the dynam- . kY,

ics are identical to the finite volume discretization of the
continuum equations of inviscid hydrodynamics, E¢S).
with zero transport coefficients, except for the following b —(ZDkBT ﬁ
term in the momentum equation:
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1/2
— Ku _ kB 277#«_ = Z# 2
CM—T;L(ZKBV—M) . (28) TMdSM|i”— 1- C_M) VM G#GM+ V—MDM dt
k
Here,D is the physical dimension of spacg, is the shear +> Q,, Jdt— T é > wagTﬁdt
v w=p v v

viscosity, ¢, is the bulk viscosity, and¢, is the thermal

conductivity. These transport coefficient might depend in D2+D—2\2 ’ 02
general on the thermodynamic state of the fluid particle —ksT, (—)ﬂ 2RI Ry
The particular form of the coefficients in E¢28) might 2D Vo VU5 M,

appear somehow arbitrary. Actually, it is only after writing
up the final discrete equations and comparing them with the
finite volume equation&b) that we could extract the particu- . ] ]
lar functional form of these coefficients. Finally, note thatthe N these equations, we have introduced the same quanti-
noise amplitudes scale as the inverse square root of the vdies as in Eq(7). The heat fluxJ} is defined by

ume, impliying that for very large cells the noise can be

+T,dS,.

neglected. L a__t2Ku 1 ks
The traceless symmetric random math/i is given by =T V, 2,, Q*“’TV 1 C,)’ (33
— 1 01 Finally, the heat capacity at constant volume of fluid particle
dW =5 [dW,,+dW |- 5tldW,]1. (29 4 is defined by
. . . . . aT,\ 7t
dW, is a matrix of independent Wiener increments. The C,=T, _K (34)
vectordV, is also a vector of independent Wiener incre- ISy,

ments. They satisfy the ltaules of stochastic calculus ) )
We observe that, quite remarkably, the above equations

are in the limitkg— O identical to the irreversible part of the
dW'lL dwl =46,,86/.dt, particular finite volume discretization of the continuum hy-
drodynamic equations presented in Sec. Il. We have there-
oo fore shown that these equatiof®2) are a proper discretiza-
dv,dv,=4,,d;dt, (300 tion of the irreversible part of hydrodynamics with thermal
noise included consistently. By collecting the reversible part
: o in Eqg. (24) and the irreversible part in Eq32), the final
dv,dw} =0, equations of motion for the discrete hydrodynamic variables
can be finally written.
where Latin indices denote tensorial components. Note that

the postulated forms fadP, ,dS, in Eq. (26) satisfy IV. SIMULATION RESULTS

We have implemented a code in which E(&) together
> V. d”|5#+-r#d“g#: 0, with the irreversible termé32) are simulated. A 2D box with
u periodic boundary conditions has been tessellated according
(31) to the Voronoi construction. Because no forcing boundary
conditions are considered in this paper, the typical experi-
E dF’MZO, ments consist of a decay of an initial state towards the equi-
# librium state.

and therefore Eqs(15) are satisfied. This means that the
postulated noise terms conserve momentum and energy ex- ) ] .
actly. It is now a matter of algebra to construct the dyadic The fluid has been assumed to be an ideal gas, for which

dxdx" and from Eq.(14) extract the matrixM. The proce- the fundamental equation is given by

A. ldeal gas

dure is rather cumbersome but standard. DNh2/N\ 2P 2/ D+2
OnceM is constructed, the termd - 9S/9x in the equa- E(N,V,S)= pp V) eXp[B(N_kB_ T)

tion of motion(10) can be written up. By assuming that the
transport coefficients do not depend on the entropy density
(but they might depend on the mass densitiie resulting
equations of motion are

(39

Here,N is the number of moleculeso Nmy is the mass of

the system andh, is the mass of a molecyleh is Planck’s

constant, andD is the number of space dimensions. The

dPﬂ|m=E QW.(HVJFHVl)deTpM' (32) equations of state give the temperature, chemical potential
v per particle, and the pressure as
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3 (95) 2 e 3 S
RS vy DNkg™’ " kgNpic’
o€ 2+D1 2S E= _t
x=| | = — ~ KgNpicTe’
M (aN)V'S D N DNZkB>’ (36) B'¥mic'e
~ V
ol (%) N, - V=12
-l Ns_v o )
' If N, is the number of molecules in the mesoscopic gell
M . .
The specific heat at constant volume is (we haveZ,_;N,=Nm) the dimensionless mass of cil
is
dE D
N,V K’ my NmicmO Nmic’

It must be remarked that we assume tkath cellhas  Wwhich is the fraction of the molecules or atoms of the whole
associated with it a fundamental equati@®3) and therefore sample that are in the cell. With these reduced units, one
the intensive paramete(86). The N in Eq. (35) thus refers can write the thermodynamic relatio35) and (36) in di-
to the number of molecules in a given cell. These cell intenmensionless form,
sive parameters are the quantities that enter the equations of e
motion of the system. We amot assuminghat the system (M,SV)=MT(M,S,V),
considered as a whole will behave as an ideal gas. Even

though physically we expect that this is the case we must S Y S
check that our simulations do satisfy this requiremesete TM,S,V)=— T & ﬁ_z ,
Sec. IVG. - (40
~ MT
B. Reduced units P= T,
The four basic units selected are the mass umit
=NpicMp, the entropy unitS,=N kg, the length unit_, =M.

= Nlrﬂ?ch, and the temperature uriit,=T.. Any other unitis

derived from these ones. Hem, is the mass of one mol- The dimensionless chemical potential per unit mass is given
ecule (or atom of the ideal gash is the typical distance by

between molecules at room conditions, dng 273 K is the

room temperatureN . is an arbitrary number. If we choose ~
Nnic to be equal to the total number of molecules in the =
sample being simulated, then the total mass of the system is

1 in these units. If the system is at room temperature, the ; : :

T=1 in these units, the mass density is 1 and the box size iTsh Egs.(40), we have introduced the dimensionless constant

i . . that depends only on microscopic parameters through
also 1. We introduce these units that refer essentially to thé P Y pic P g

2 'S
M M2

Y . 41

Vs

2_ )\ZZWmokBTe

global quantities of the sample being simulated. We could N
select units referred to the Voronoi cell in such a way that the a= (_) = (42)
typical mass of a cell would take value 1. This would imply A h?
that simulations with different number of cells would corre- ]
spond to samples of different sizes rather than to the sam@hereA is the thermal wavelength. )
sample with different resolution. _ With t_hese_dlmensmnless quantities, the equations of mo-
We introduce the following reduced quantities: t|on_ are identical to Eqg24) and(32) with a tilde on every
variable.
~ T
T= T_e C. Parameters used in the simulations
We want to simulate a sample of argon, assumed to be an
~ PL? ideal gas, whose molecules have a massg,
P= KaNpoTo" =6.6325<10 26 kg. The system is assumed to be at room
temperature. The number of molecules in the sample is
Npmic=4Xx 10%. We useM =400 mesoscopic Voronoi cells to
= s , (39) discretize the 2D box, which lead to typically 100 argon
KeNmicTe atoms in each cell. The typical distance between molecules
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in an ideal gas at room temperature and pressure in three = 12.59345
dimensions is.=3x10"° m. If in two dimensions we want

to keep this typical distance, then the linear dimensions of
our simulation box should bBI¥23x 107° m=6.67x10""

m. The constanta in Eq. (42) takes the valuea
=3.9871389% 10*. The dimensionless shear and bulk vis- S 1259343 |
cosities and thermal conductivity are taken as- (=«
=0.01. 12.59342 |

12.59344

D. Deterministic simulations

12.59341
As a first test of the algorithm, we have conducted simu- °

lations in which the terms proportional tq; in Egs. (32

have been neglected. This resultsdieterministicequations FIG. 3. Temporal evolution of the total entropy of the system
that should reproduce the results of continuum hydrodynamfor the transverse perturbation experiment. It is a strictly increasing
ics. The time integrator scheme that we have used in thiginction of time.

deterministic case is a Runge-Kutta method of fourth order.

We have also devised a generalization of the time reversibleound speedl” is the sound absorption coefficient, and
velocity-Verlet algorithm(that conserves total enengyrhis = »/p is the kinematic shear viscosity. If the initial pertur-
generalization has been constructed as an application of tH®tions fields are

Tuckerman formalism, which makes extensive use of the

Trotter expansio30]. The Runge-Kutta method has fourth p(r,00=0,
order precision in front of the second order precision of the (44)
generalized velocity Verlet. In spite of the longer CPU time g(r,00=expliko-r}go,

required by the Runge-Kutta method, it can use longer time
steps to get the same precision. Most of the results presentegbn in Fourier space, we will have
below are obtained with the Runge-Kutta method with a time ’

Stepd~f=0_.01. _ _ _ p(k,00=0,
According to the results of the linearized hydrodynamic (45)
equations, the evolution of the Fourier transforms of the per- (2m)P
turbation from e_quil_ibrium for the mags(k,t) and momen- g(k,00= 5 [8(k—kq)+ 8(k+Ko) 100,
tum g(k,t) density fields have the form
cp(k,t)=—i exp{— 'k?t}sin(ckt)k-g(k,0), where go=pVvy, With vo=(v4,0,0). Including these initial
(43) conditions in Eqs(43) we see that the non vanishing results
g(k,t)=exp{ — Tk2t}cos ckt)kk - g(k,0) + exp{ — vk2t} are for thek= *k,. Selecting the longitudindt"=(k,,0,0)
and transvers&'=(0k,,0) wave vectors, it is possible to
><[1—|2I2]-g(k,0), disentangle the effects of diffusion of vorticity and the

propagation of sound. In the longitudinal case we have
wherek is the unit vector along the wave vectarjs the

D
0.006 ‘ cp(k-,t)=—1iexp{—I'kgt}sin(ckqt) 5 pk=-vg, (46
0.005
0.004
. 0.003 |
gk,n
0.002 |
0.001 | P,
0.000 |
-0.001
0 5 10 15 20
t
o . 0.99994 : : ' .
FIG. 2. Dots are for the transverse momentum field in Fourier 0 10 20 30 40 50 60
space as a function of time. The theoretical fit in continuum line t
(invisible under the dojscorresponds ta/=0.009 680(the input FIG. 4. Temporal evolution of the individual pressures of 20
value isy=0.01). The resolution is for a typical number of 20 cells particles for the transverse perturbation experiment. At equilibrium
per box lengthL. all the particles have the same pressure. Solid line is for particle 1.
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100005 [+ ¢ 12.59344 |
1.00003
12.59343 |
T, S
1.00001
12.59342
0.99999
99997 L ' ‘ 12.59341 :
099997 5 10 20 30 40 50 60 0 2 4 6 8 10

t t

FIG. 5. Temporal evolution of the individual temperatures of  FIG. 7. Temporal evolution of the total entropy of the system
20 particles for the transverse perturbation experiment. At equilibfor the longitudinal perturbation experiment. Despite slight oscilla-
rium all the particles have the same temperature. Solid line is fotions due to the wave character of the perturbation, the entropy is a
particle 1. strictly increasing function of time.

L 2 (2m)° oL E. Transverse wave
g(k=,t)=exp{—I'kjt}cog ckot) 5 pk-K"-vq.

In Fig. 2 we plot the transverse momentum field in Fou-
rier space as a function of time. We get an excellent agree-
ment with the theoretical exponential decay predicted by Eq.

In the transversal case we have (47). For the case of the transverse perturbation, we have
recorded the total energy evolution as a function of time and
p(kT,t)=0, have checked that it is a conserved quantity with an error that

(47) is 1% smaller than the total value. The total entropy evolu-
tion is reflected in Fig. 3. It is clearly a nondecreasing func-
. ,..(2m)P tion of time.

g(k’,t) =exp{ — vkgti——pVo. We have also monitored the pressures in Fig. 4 and the
temperatures in Fig. 5 of a subset of 20 particles as the sys-
tem approaches equilibrium. We can appreciate that the sys-

In the simulations, the reduced temperature is initially setem reaches the equilibrium when all the particles take the
to T=1 and the reduced density jo=1. The initial value of ~same values for these intensive variables.
the velocities of every cell is given by a longitudinal or trans-
versal plane wave with a velocity amplitudg=0.01, and a
wave vectorko=(27)/L. We measure the Fourier compo-  For the longitudinal experiment, we plot in Fig. 6 the
nents of the mass and momentum density fields and fit itinaginary part of the longitudinal density field in Fourier
evolution with the theoretical predictiongl6) and (47).  space as a function of time along with the theoretical predic-
From this fit, we measure the kinematic viscosity, the soundion (46).
speed, and the sound absorption coefficient. In this simulation, the total energy is conserved with an

error that is 18 times smaller than the total value. The total

F. Longitudinal wave

0.004
0.002 1010 b
100s Pl AL
ek 0000 '“.‘;V\NV\M ; %1 f§ ;ﬂﬁ AA
P, 1000 §§ i %jVgéf@{‘,xﬁmmwmwW.M
PV '
-0.002 | . 0995 i {1V
N
0990 [V
-0.004
0 2 4 s 8 10
X 0985
0 5 10

FIG. 6. In dots, the imaginary part of the longitudinal density '

field in Fourier space as a function of time. The continuum line is  FIG. 8. Temporal evolution of the individual pressures of 20
the theoretical expression witH=0.012 27 andc=1.3937. The particles of the total system for the longitudinal perturbation experi-
resolution is for a typical number of 20 cells per box length ment. Solid line is for particle 1.
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1.008
- TR »
1.40 | »
.’Y ’
1.35 .
*
T, c :
130 |
125+
i
0.992 . 1.20 '
] 5 10 0 20 40 60 80
t M'P/L

FIG. 9. Temporal evolution of the individual temperatures of 20 FIG. 11. The sound velocity measured through the oscillation
particles of the total system for the longitudinal perturbation experi-of the imaginary part of the density field in Fourier space for dif-

ment. Solid line is for particle 1. ferent resolutions\1 */°/L). The predicted value &= v2T in con-
) ) ) ) ) ~ tinuum line.
entropy is again a strictly nondecreasing function of time,
see Fig. 7. an accuracy of 2% of the input viscosity and 1% of the input

We again plot the time evolution of the pressures in Fig. 8sound speed. These results provide a very satisfactory test of
and thermodynamic temperatures in Fig. 9 for a subset of 28,r deterministic code.

particles. The equilibrium state is established when all the
particles take identical values for these variables.

It is interesting to make a systematic study of the transport
coefficients in terms of theesolution We define the resolu- A very interesting observation about the previous shear
tion as the typical number of cells per unit lengt{®/L).  and sound wave simulations is that the time evolution of the
In Fig. 10 we plot the kinematic viscosity measured in simu-entropy in Figs. 3 and 7 is such that the final values of the
lations of decaying transverse waves for different number ofotal entropy in each simulation are exactly the same. The
cells in the box. The input value is given by the solid line. Asinitial value of the entropy is fixed by the initial conditions.
we increase the resolution we obtain an excellent agreemefecause the only difference in both initial conditions is in

G. Proof of the local equilibrium assumption

between measured and input values. the velocity variable, and the entropy is independent of the
The sound speed for the ideal gas is given by velocity, the initial total entropy of both simulations are the
same. At the same time, both simulations have initial condi-
JP tions such that the global conserved quantifiesss, vol-
c= _V<ﬁ;) : (48) ume, energyare exactly the same. Therefore the final value
S

of the total entropy is seen to depend only on the global
o ] ~ = ] conserved quantities and not on the way the system evolves
which in reduced units becomes- \E In Fig. 11 we plot iy order to reach the equilibrium state. This is, of course, the
the measured sound speed and the input value. ~ requirement of equilibrium thermodynamics. In order to bet-
Our simulations results agree very well with the linearer ciarify this point, we plot in Fig. 12 the time evolution of
solutions of the hydrodynamic equations and show that gne total entropy for the decay of a shear wave in two simu-
resolution of typically 25 particles per box lendttprovides  |ations differing only on the value of the transport coeffi-

12.59345

0.010 | o .

- 12.59344 0y —g-gee
. ] d P

0.009 | p s
' , S 12s03a3| "

0.008 o

N :’.(/
0.007 | ] 12.59342
‘
0.006
0 20 40 60 80 1259341 - . .
ML .

FIG. 10. Dots correspond to the kinematic viscosityneasured FIG. 12. Total entropy6==x,S,, as a function of time. Circles

through the exponential decay of the momentum field in Fourierare for shear, bulk, and thermal conductivity equal to 0.01, squares
space for different resolutiord *®/L). The solid line is the input  for 0.03. Solid line is the total entropy computed from the thermo-
kinematic viscosity. dynamic equation of the ideal gas.
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2107
AE(M  4x107p 5 log[AE(AD]
6x107 |11

8x107 11 3§

10
0.000 0.005 0.010 0.015

At

FIG. 13. Instantaneous evolution of the total energy in time. The  FIG. 14. The conservation of energy as a function of time step,
dotted line corresponds to the model without the Gibbs-Duhenfor the model without the Gibbs-Duhem tefiniangles and for the
term (25) and the continuum line to theeneric model, for a time  full model (circles. The logarithm is in base 10.
stepAt=0.005.

velocities, depending on thejrposition. The upper half cells

cients. We observe that both simulations start at the samg., . temperatur=1 while the lower half are at tempera-
value (because the initial conditions are identicahd that o T—5 "An initial shear wave provides the initial veloci-
th:ayl_apprpacr;]to thel samef varllue of the entropy. Thedh?rlzoql-es of the particles. Rather than focusing on measurements
tal fine is the hva ue of the entr?]py colmpute rorln of thermal conductivities, we are interested in quantifying
S(:\AO’VO'EO()j’ w elreMO'VO’EfO ?{e the tota _rlphassf, total e actual size of the Gibbs-Duhem te(@b). Note that this
volume, - an _tota energy o t.e system. e functionyg y, jg very small in the previous simulations because of the
S(Mo,Vo,Eo) is the inverse function of EG35). The fact  er small differences between the intensive parameters of
that the total entropy increases to the value predicted by thefne”cejis. For this reason, we consider here the situation in
modynamicsis a nontrivial result Physically, we certainly \pich potentially this term is larger. We recall that this term
expect that the total entropyt equilibriumis a function of 5 regponsible for the exact energy conservation of the
state depending only on the extensive variables of the whol ENERIC algorithm. For this reason, we compare two simu-
system. That our simulation technique obeys this physicabjong in the two-temperature configuration in which the
requirement is a very pleasant outcome, which was not eng;jpns puhem termi25) is included or removed in the mo-
tirely expected beforehand. Another way to look at this issug,anium equation. In Fig. 13, we plot the instantaneous evo-

is as follows. Even though in the technique we only Specify| sion of the total energy about the initial value for the two
the thermodynamic behavior of each célle., each sub- models. That is, we plot

system, the postulated dynamics is such that the final equi-

librium thermodynamic behavior dhe whole systeris ex- E(t)—E(0)

actly the same as that of its subsystems. In other words, our AE(t)= TEO) (49
techniquerespectsthe local equilibrium assumption. Once

we have checked this property, we have a route to specify the

internal energy function of each cell if we know the funda- \We observe a cooling effect in the model without the

mental equation of the whole system. Gibbs-Duhem term due to the nonconservation of the energy.
Note that the final value of the entropy in Fig. 12 does notThere is still a slight increase in the energy in theNERIC

depend on the actual values of the transport coefficientsnodel that is due to numerical integration errors. In order to

Higher the dissipation, faster is the approach to shene  quantify these errors as a function of the timestep we

equilibrium state. If the dissipation decreases, the equilibrameasure the quantity

tion time increases. In the limit of zero dissipation, the en-

tropy is a constant of motion, equal to the value at the initial

time, and the system will never reach the equilibrium state . 1 N E(kAt)—E(0)

predicted by thermodynamics. The Euler equations for an AE(AUZN Z ’T‘

inviscid fluid are clearly inconsistent with the principles of k=t

equilibrium thermodynamics. A dissipation is required, no

matter how small, in order to drive the system towards the fixed total time ofNAt=4 is chosen. In Fig. 14, we plot
equilibrium state predicted by thermodynamics. ’

(50

the dependence a&fE on At for the two models. The result

is very revealing. For th&ENERIC model, we achieve any

desired improvement of the energy conservation as the time
In the previous sound and shear wave simulations, thetep tends to zero. For the model without the Gibbs-Duhem

variation of the intensive parameters is very snisdle Figs. term, the energy conservation is not improved as the time

4 and 5, and 8 and)9We have conducted another simulation step goes to zero, but rather it converges to a typical value of

in which the cells are initially at different temperatures and10® for this particular simulation.

H. Decay of temperature inhomogeneities
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FIG. 17. Mass equilibrium distribution function. Dots corre-
spond to simulation results. The continuum line is the theoretical
prediction according to the Einstein distribution function.

Note that the Gibbs-Duhem energy producing term is very
small, as concluded from these plots. Actually, if large timeof both centers of each boundary pair to be prescribed. We
steps are used, the numerical error in the full model is alexpect to present results on the implementation of boundary
ready as large as this term. conditions in the near future.

FIG. 15. How to tailor a solid horizontal flat wall boundary with
the Voronoi tessellation by using pair boundary points.

I. Boundary conditions J. Fluctuations included

In this paper we only consider systems with periodic We have also performed a test of the full algorithm in
boundary conditions. However, it is rather easy to implemenwhich thermal fluctuations are included. The evolution equa-
other boundary conditions on given solid boundaries. Thdions are now the stochastic differential equati¢®4) and
first issue to resolve is how to tessellate the space in order t®2). We modify consequently the integrator scheme. We
conform with the prescribed geometric boundaries. In Figchoose an Euler algorithm that conserves total momentum
15 we show that by collecting boundary pairs of fixed celland energy with a time steﬁ=0.000 001.
centers, one can easily construct flat walls. Other geometric The initial state is set as follows. From a random distri-
shapes can be tailored in a similar way. Every pair has &ution of cell positions in the box, we construct the Voronoi
center “within” the fluid domain and a center “outside” the cells. Every cell has a given volume and we select its initial
fluid domain. If the bound_ary conditions are of the _Neumanr}mass in order to have a constant dengity1. The initial
type, one needs to specify fluxes at the boundaries. In thige|qcity of the cells is zero. The initial entropy of each cell is
case, for every “within” cell center of the pair, one has that se|ected in such a way that the temperature of every cell is
the interaction with the “outside” cell center is fixed in F—1_ Note that this initial state althouah close to equilib-
terms of the prescribed flux. In the case that Dirichlet bound- ' 9 d

. - ! ; rium is not a typical equilibrium state. We let the system
ary conditions must be satisfigtike in a no-slip boundary evolve and aftgrpa dec?:\y time we measure the equi%ibrium

condition, one enforces the value of the hydrodynamic fields e ;
momentum, mass, and volume distribution functions for a
single cell. The results are presented in Figs. 16,17,18,19,

2000 _ _ !
where the simulation results are presented along with the
" theoretical prediction obtained from the Einstein distribution
1500 | /
3 a0 f
PP 000 | ; Xl, 1 g
&
[ 300
500 [ ! \
-80010 ] -0.0005 0.0000 0.0005 0.0010 A
P 100 %
%,

FIG. 16. Equilibrium momentum distribution function. Dots
correspond to the simulation results and the continuum line corre- 0 :
sponds to the theoretical prediction obtained from the Einstein dis- 0.000 0.002 0‘(\),04 0.006 0.008
tribution function. The dot-dashed line correspond to the best
Gaussian and shows that the momentum distribution function is not FIG. 18. Volume equilibrium distribution function. Dots corre-
strictly Gaussian. This is due to the fact that the mass of the fluidpond to simulation results. The continuum line is the theoretical
particles is allowed to evolve. prediction according to the Einstein distribution function.
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S[pt]=f S(X)p(X.t)dX—kBJ p(x,t)Inp(x,t)dx,
(52)
which is a functional of the time-dependent probability dis-

%
\
i
2t ! E ] tribution functionp(x,t), it is possible to prove by using the
{ Fokker-Planck equation corresponding to E@§3) that
3

. ; ] S p¢]=0. In other WOI’d_S, the entropy functional plays the
H role of a Lyapunov function.
5
o e N
0.0 05 1;’ 1> 20 V. SUMMARY AND CONCLUSIONS
FIG. 19. Density equilibrium distribution function. Dots corre- In this paper we h")?"e considered a Le_lgrange finite vol-
i X : L - _pume model for simulating hydrodynamics in the presence of
spond to simulation results. The continuum line is the theoretical h | fluctuati We h id ial attention to th
value obtained from the Einstein distribution function. ermal fluctuations. VVe have paid special attention to the

thermodynamic consistency of the model by casting it within

the GENERIC framework. The obtained equations conserve

fltlnction (51) The agl’eemen_t is quite remarkable and prO'maSS, momentum, energy, and volume and the entropy is a
vides confidence on the coding of the model.

. ce on the T { strictly increasing function of time in the absence of fluctua-
The Einstein distribution functiofin the presence of dy- tions. Thermal fluctuations are consistently included, which
namical invariant§$31]) is given by lead to the strict increase of the entropy functional and to the
correct Einstein distribution function.
€Y x) = S(E(X) ~Eo)dll ()~ 10) exp{kg 'S(x)}, (51) The size of the thermal fluctuations is given by the typical
P Q E..l B ’ . . . .
(Eo.lo) size of the volumes of the particles, arguably scaling like the
square root of this volume. The need of incorporating ther-
) o mal fluctuations in a particular system will be determined by
where(Eo,l0) is the normalization. It can be shown that he external length scales that need to be resolved. For ex-
the Fokker-Planck equation that is mathematically equivalenjmpie, if submicron colloidal particles are considered, we
to the stochastic equatiori$3) has as equilibrium solution neeq to resolve the size of the colloidal particle with fluid

tion of the theoretical predictions for the single cell distribu-than the diameter of the colloidal particle. For these small
tion functions from theM-particle Einstein distribution func-

! ) ! A st volumes, fluctuations are important and lead to the Brownian
tion (51) will be given in a separate publicatidB2].

; ) > ! _motion of the particle. A ping-pong ball, on the other hand,
An interesting observation is the fact that in the stochastiGequires fluid particles much larger, for which thermal fluc-

simulation the total entropy of the system is a fluctuatingyations are negligible. Of course, one could use a very large
quantity that is not strictly an increasing function of time. In ,ymper of small fluid particles to deal with the ping-pong

an equilibrium situation it fluctuates around a constant valuq,a”' but in this case thdarge thermal fluctuations on each
as shown in Fig. 2_0. It must be clearly understood that t_hi9f|uid particle average out among tierge number of fluid
does not contradict the second law of thermodynamicspariicles. The original formulations of dissipative particle
which is a macroscopic law. Note that the fluctuations in th_edynamics lack this effect of switching off thermal fluctua-
entropy are of the order of the Boltzmann constant, which igjons depending on the size of the fluid particles. This is due
negligible in macroscopic terms. Actually, if one considersyg the fact that early formulations did not include the volume
the entropyfunctional and/or the mass of the particles as a relevant dynamical vari-
able.

The main difference of our approach from that of Flékko
et al. [20] is the different form of the actual dissipative
12592 | forces between the fluid particles. As a consequence, the ex-
plicit form of the thermal fluctuations is also different. In our
case, the forces are given in terms of discrete versions of the

S 12.588 W : gradient of the stress tensor, which are given, in turn, by
Wr\y M discrete versions of the velocity gradients. Therefore, the vis-
12.586 | vw 1

12.590

cous forces between a pair of fluid particles depend not only

12584 | on the velocities of the pair but also on the velocity of the

’ neighbors of both particles. Therefore, the amount of infor-

12.582 . mation about the fluid state around the pair of cells is quite
5 8 10 12 15

) large. In Ref.[20] the forces are given directly in terms of
velocity differences between the particles of the pair. Al-
FIG. 20. Time evolution of the total entropy in an equilibrium though it can be shown that the proposed equations in Ref.

state for a system with thermal fluctuations. [20] can be understood as a discretization of Navier-Stokes
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[33], and that the resulting equations of Rg#0] have actu- Some useful properties of the smoothed characteristic
ally the GENERIC structure, it remains to be investigated to function will be needed later. First, due to the Gaussian form
what degree both algorithms compare in terms of the numbeaf A(r),

of particles needed to obtain a good resolution of given

flows. 1

The notion of Voronoi cells allows for a very clear state- VA(r)=——A(r)r. (A6)
ment of the problem of coupling continuum equations and 7

molecular dynamics, which is important when the c:ontinuuml.herefore

description breaks down due to complex molecular details in

certain regions as the contact line of two fluids and a solid, or P 1 1

the tip singularity in dynamic fracture. A promising approach _ N _ il

has t?een%akenyin Ré/j34] in that directi(fn. 7P ar Xull) UZX“(r)(r Ru)* szﬂ(f)
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which can be proved by using the definitigal), one can

APPENDIX: SMOOTH VORONOI TESSELLATION rewrite Eq.(A7) as
Following Flekkty and Covene)f20], we introduce the
L : ; d 1
smoothed characteristic function of the Voronoi gell EX“(r) :; EV: Xu(DXAD(R,—R,). (A9)
A(lr=R,D
Xu(1)= — (A1) 1. Balance equations
> A(lr=R,)) _ ' . o
v We illustrate how the smooth Voronoi characteristic func-

tion can be used for deriving a finite volume discretization of

where the functionA(r)=exp{~r%2¢?} is a Gaussian of 5 paiance equation for a fiel(r,1)

width o. Wheno—0, the smoothed characteristic function
tends to the actual characteristic function of the Voronoi cell, op(r,t)y=—V-J(r,t), (A10)
that is,
where J(r,t) is an appropriate current density, which will
depend, through a constitutive equation ¢fr,t) itself.

First, we introduce the cell averadep],(t) over the
Voronoi cell u of the field ¢(r,t)

limx,(N=I1 6(r—=R,|—=|r=R,]), (A2)

o—0 4

where 6(x) is the Heaviside step function. The Voronoi 1

characteristic functiofA2) takes the value 1 if is nearer to _

R, than to any otheR, with v# . Note that the character- (1.0 V,J Arér,Hxu(r)- (A1D)

istic function produces a covering of all spa@e., a parti-

tion of unity), that is, We will refer to[ ¢],(t) as a cell variable. The cell variable
is an approximation for the value of the field at the discrete
points given by the cell centers.

2}; Xu(r)=1. (A3) In principle, the Voronoi cell centers are allowed to move
in an arbitrary way, that iR ,(t) are prescribed functions of
We introduce the volume of the Voronoi cell through time. The time derivative of the cell averages is given by
d v 1 d
V,= J dry (1), A4 _ =__* _ J —
which satisfies the closure condition 1
+ V_J drx,(t)dé(r,t), (A12)
o
2,:’ Ve=Vr, (A5) where the dot means the time derivative. We see that
[ ¢],.(t) changes due to both, the motion of the cells and the
whereV7 is the total volume. intrinsic dependence of the field(r,t) on time.
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By integration by parts of the nabla operator and use of 2. Gradient expansion

Egs.(A9), (A8), and(A10) one arrives easily at the follow-

ing expression:

V()
V/-L

d
GilAlu0=— 51,

1 R,+R,
+ V_ 2 A,uVe,uv' [J]Mv_[¢]MVﬂT:|
mov

1 <A, .
2 R Ll R, (A13)

o 14

where

R.,=R,—R,, (A14)
R/.LV: | R,u_ RV| ’
and we have introduced the face averages

R,, [ dr
[..']/LV:AM J'EXy(r)Xu(r)

v

(A15)
R,, [ dr R,+
[])“/:A_va ;X/.L(r)XV(r)<r_ 2 £

We have also introduced the following two quantities

dr
A,U.VE R;.va ;Xﬂ(r)){v(r)a

(Al6)

- wa dr R,+R,
C,U.V=A ?X,u(r)Xv(r) r— 2 ,

y72%

whereR,,=|R,—R,|. We can write Eq(A13) in the form
R,+R,

[‘]]/.LV_[qs]/.LV 2

d
a(VM[ ¢]l’«) = EV A;Lve,uv

A, .
+2 gLl R (AL7)

wv

which satisfies

d
5(2 vﬂw]ﬂ):o, (AL8)
M

due to the symmetries[---],,=[--],,, ['"]‘;lw
=[-- -]‘V'# of the face averages. EquatioA18) shows that
the Voronoi discretization of the balance equati@xlO0)
conservesxactly the extensivevariables(which are of the
form density< volume).

If the field ¢(r,t) does not change strongly in a typical
cell dimension, we can write the cell average as

1 1
[¢].= V_,J drx,(r)¢(r)= V_,J drx.(r¢(r—-R,+R,)

1
=¢(R,)+ V—J drx,(N(r=R,V¢(R,)+0O(V?)
=¢(R,)+O(V), (A19)

where O(V) denote terms of order of the gradient of the
field. Performing similar Taylor expansions we obtain easily

R,+R,
[&]u= ¢>( > )+O(V)- (A20)
Also
RAR)_#RITER) oo o
2 2
and therefore
+
[¢]#V=M+O(V). (A22)
After some algebra it is easy to show that
[¢) =[] sl #] st O(V?). (A23)
Finally,
[~ [d’]"zﬂcﬂﬁom (A24)

All these properties relating face averages with cell aver-
ages should suffice for expressing the terfd¢s)],,,
[¢],, in Eq. (AL7) in in terms of[ ¢],. In this way, one
finally obtains aclosedequation for the set of cell averages

(&1

Note that for any quantityp we have

1
[Volu=—5 2 Q.[¢4],+0(V),  (A25)
M v
where

1
Q A, e

/.LVZE YAATTRTE

(A26)

Therefore we see th&,, is a sort of discrete version of the
gradient operator. An essential property of this vector is

J Jd
OZJ erM(r)EZL:—f drEX,u,(r):_ ; A,uve,uvl
Y (a27)

where Eq.(A9) has been used in the last equality. This is
essentially the statement of the divergence theorem.
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3. More Voronoi properties where the vectoc,, is, by definition, the position of the

Now we show that in the limit/— 0 the quantityA,,, is center of mass of the face between Voronoi cgllg with
actually the area of the contact fagev between Voronoi 'eSPect to the pointR, +R,)/2. _ 0
cells 4 and v, whereas the vectar,, is the position of the Note that in the limit of sharp boundaries—0, ¢, in
center of mass of the fager with respect to the “center” of ~ Ed. (A15) is a vector that is parallel to the fagev, whereas
the face R,+R,)/2. The first task is to compute the limit €u» 'S perpendicular to the face. o
o—0 for the integral§A16). For this reason, it is instructive Y€ now explicitly compute the derivative of the volume
to work out the actual forms of,(R) andx,,(R)x,(R) for of cell u with respect to the positioR,, of cell v, that is,
the case that only two particles are present in the system, as

has been done by Flekk@and Coveney20]. Simple algebra v, 1
leads to G‘”:&_RV:?LTdRX“(R)[5“V_X”(R)](R_R”)'
1 (A31)
Xu(R)=

" 1+exp—R,, [R—(R,+R,)/2]/c?}’
XA~ Ry [R=(Ru+R,)/2)/ 07} It's worth considering the casgs+ v and w= v explicitly.

(A28)
(R)x»(R) -
Xu(R)X,(R)= > 1
4 cosf{R,,, [R—(R,+R,)/2J20% Gu=— fv Ry, (RIX(RIR=R,),  v#p,
g
Note thaty ,(R) x,(R) is different from zero only around the !
boundary of the Voronoi cells of particlgs,v. In the limit
of small o this is even more true. The integrals in E416) 1
therefore can be performed not over the full volukiebut Gw_; v dRX,(R)[1-x,(R](R-R,)
only over a regions,,,, “around” the boundary of theu,v !
cells. In this region, we can further substitute the expression 1
of x,(R)x,(R), which depend on the positions of all the => —2f dRx (R x,(R)(R=R,)
center cells, by Eq(A28), which depends only on the posi- vEiu 07V
tion of the centers of cellg,v. Actually, we can make a
translation fromR to R"=R—(R,+R,)/2 (we put the ori- =—> G- (A32)
gin exactly at the boundary between cgll§Ve can also vEu
make a rotation in such a way that thexis is along the line
joining the cell centers. In this way, we can write It is convenient to rewrite EqA32) for v+ u as
1de (R) (R)—lJ’ dr’ 1 R,+
o2y Ty 2], 7 cosi(R! R, /207) Gu="— fVTde,AR)xV(R)( R——5—"
o 1
:_ZA"“"[ dx 2 1
4o —=  costf(xR,,/20?) —RW; dRx,(R)x,(R), (A33)
g VT
ALy
=—_. (A29) ) _
Ruv with R,,=R,—R,. By collecting Egs.(A33), (A30), and
" , ) (A29) one finally obtains
Note thatf, cosh 9(X)dx=1. Here,A ,, is the actual area of
the boundary between Voronoi cells of particlesy.
In a similar way, one computes the integral G~ _AW( ;;w N %) vt i, (A34)
y1a%
! f dRy,(R) (R)( R R"+R”) B
Y v - = Cuvs
g2y XX 2 R, “ Note thats ,G,,, =0 due to Eq(A32). Also 3,G,,,=0 be-

(A30) cause of Eq(A27).
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