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Topology of event distributions as a generalized definition of phase transitions in finite systems
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We propose a definition of first order phase transitions in finite systems based on topology anomalies of the
event distribution in the space of observations. This generalizes the definitions based on the curvature anoma-
lies of thermodynamical potentials, provides a natural definition of order parameters, and can be related to the
Yang-Lee theorem in the thermodynamical limit. It is directly operational from the experimental point of view.

It allows to study phase transitions in Gibbs equilibria as well as in other ensembles such as the Tsallis
ensemble.
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Phase transitions are universal examples of self- Within the quantum mechanics framework, the statistical
organization. From the theoretical point of view they areensemble ¢ is described by the density matri>6§
defined on very robust foundations in the thermodynamical;zn|\pg)> pg) <xp(§i)|_ The statdﬁlfé”) are elements of the
limit through nonanalyticities of the thermodynamical poten-gqck subspace of the system. The observablé§ are op-

tial. However, many physical situations fall out of this theo- g 4t0rs defined o, The probability distribution of the re-
retical framework because the thermodynamical limit is notg ,jis of the observatioh reads

reached. The forces might not be saturating such as the
gravitational[1] or the Coulomb forces. The system might be P.(b)=TrD.s(b—B)=(5(b—B
too small such as any mesoscopic sys{@m4,6,7. Since «b) 0l )= ))-

the_pg_rtition sum of a finitg system is analytical, t_he standargyo propose to define phase transitions through the topology
definition of phase transitions cannot be applied. Then g P¢(b). In the absence of a phase transitiorPhb) is
proper definition independent of the thermodynamical "mitexpected to be concave. An abnorrfaly., bimodal behav-
should be achieved. ior of P,(b) or a convexity anomaly of IR.(b) signals a

This issue is debated since 1960s. It has been proposgghase transition. More specifically, the larger eigenvalue of
[8] to define and classify phase transitions according to thenhe tensor
distribution of zeroes of the canonical partition sum in the
complex temperature plan®]. Alternatively it has been . #n P.(b)
claimed that phase transitions in finite systems can be univo- T‘gk =—
cally signed through a curvature anomaly of the entropy

[7,10]. The existence of a link between these two definitions L i .
based on two different statistical ensembles is still to be?€COMES positive in presence of a first order phase transition

proven. In particular it is not clear if phase transitions exist-10)- The associated eigenvector defines the local order pa-

independently of the ensemble or if they can be studied onlV metgr since it allows the best separation of thg probability
through the topological properties of the microcanonical ent ¢(P) into two components that can be recognized as the
tropy. precursors of phases. If the largest eigenvalue is zero, the

In this paper, we propose the possible bimodality of thehumber of higher derivatives that are also zero defines the

probability distribution of observable quantities as a connecrder of the phase transition. In this paper we shall concen-

tion between these ideas, and we establish a bridge to tHERt€ on first order. y
thermodynamical limit. This definition is already under ap- '€ definition of phase transition from the topology of
plication in experiment§6,3—5. Pg(p) contains _and generalizes the dgfmmons ba;ed on con-
The order parameter is a quantity that can be known fol/€Xity anomalies of thermodynamical potentials. Any
every single eventi) of the considered statistical ensemble, 3°ltZmann-Gibbs equilibrium is obtained by maximizing the
£={i}. It is an observable that clearly separates the twgShannon information entrop$=—TrDInD in the given
phases. It is not necessarily unique. Typical examples of ofFock spaceF under the constraints of the various observ-
der parameters are one body operators such as the density fifles B, known in average. A Lagrange multipliet, is
the liquid gas phase transition or the magnetization in theassociated with every constraint. Other constraints can be
ferromagnetic transition. applied to the system through conservation laws on the ac-
Let us consider a set df independent observablé;, cessible spacé or through additional Lagrange multipliers
which form a space containing one possible order parametex. if some other observabld, has an expectation value
We can sort events according to the results of the measur&nown in average or imposed by a reservoir. The statistical
mentb® = (b{") and thus define a probability distribution of ensemble is defined a&=(F,\,«) and its density matrix
the observable®(b). reads

(1)
Dby
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This ensemble is consistent with the fact that the order pa- 5 0.03
rameter is in general not controlled on an event by event :—)’
basis but measure®,(b) can be written as o 0.02
a
o K 0.01
INPra(b)=INWyy(b) = 2 aby—Zpye, (3 N
B {-2.6 i
where Wz, (b) =Z £, 0P rr0(b) is nothing but the partition 3._28
sum of the statistical ensemble associated with fixed vdlues T
of all the observables. Indeed, the two partition sums are =3 |
related through the usual Laplace transform - [
Zrvo= | db Wi (b)exp(— ab) -34 | :
. . _3'6 ;...I....I....I‘...I....I....I...‘I....I..__
Equation(3) clearly demonstrates that the convexity anoma- 25 50 75 100 125 150 175 200
lies of the thermodynamical potential Wi, (b) can be
traced back from I#®~, ,(b). The equations of state related mass number
to InWg, then read FIG. 1. Grand canonical lattice-gas resultspgt —3¢ and T
o <T. (open symbols T>T, (filled symbolg. Top: particle mass
— INWz,(b)  dINP£y,(b) number probability distributiom. Bottom: canonical equation of
ay(b)= o, b, ay. (4 states from Eq(5).

If V_Vﬂ has an abnormal curvature, theq presents a back tions of the temperature and chemical potential. We present

bending. For this statistical ensemble where bheare the results from the three-dimensional grand canonical lattice-

control parameters, the coexistence can be defined as tgg¢S Model with fixed volume and periodic boundary condi-
. — . . tions [9]. The sites of a cubic three-dimensional lattice are
region where oney, is associated with three values b

because of the anomalous curvature. &pm this region the characterized by an occupation numbe 0,1, with the to-
) T - R gion aal number of particles=>n;. The Hamiltonian consists of
associated probability distribution presents two maxima and ™, . ~ . ; . :
a minimum. In the statistical ensemi{® where thea, are a kinetic term and a closest nelghb_or Interactios (see
: . X X k € Refs.[11,12 for detailg. In the following the chemical po-
controlled, the coexistence is then signalled by the bimodal:_ " > | will be k fixed . tical val -
ity of the probability distribution and the value of, where tential wi e ept fixed at its Cm'cf”‘ valuge= _38'.
K Above the critical temperature the distribution of particle

:)hoeirRNO maxima have equal height is the first order trans't'onnumber,Pﬁﬂ(n) is almost Gaussian. At the critical tempera-

Let us take first the example of the energy as a possibléur.e the flatness OF.ﬁM signals the second order transition
point. Below the critical temperatuie;, becomes bimodal

order parameter with no other constrainBs,=H and b, and defines the coexistence zdsee Fig. 1 Indeed
=e. Then the considered ensemble is nothing but the canoni-

cal one witha;= B, the inverse of the temperature. The ca- .
nonical probability reads INPgu(n)=InZg(n)+Bun=2Zg,,

Ps(e)=exd S(e)—Be—InZ(pB)], where Z4(n) is the canonical partition sum far particles
i ) while Zz,, is the grand canonical one. The canonical chemi-

where thE entropyS(e) is related to the level density by potential is given by
S(e)=InW(e). A convex intruder inS(e) directly induces a
convexity anomaly in IfP4(€) that becomes bimodal in the
phase transition region. Therefore the definition of phase , (n)=-p
transition through the curvature anomalies or a bimodality in an an
the canonical probability distribution contains the former
definitions based on the occurrence of negative heat capa@nd is shown in the lower part of Fig. 1. It should be noticed
ties[2,7,10,6,12, the only condition being that the canonical that a unique grand canonical chemical potentialgives

—1@: _B—1M+M (5

ensemble exists. access to the whole distribution of canonical chemical poten-
As a second example we consider the grand canonicglals 4 ,4(n). In the phase transition regiop, presents a
distribution of particles. We introducd;=H andB;=N . strong back bending that reflects the bimodal structure of the

Taking \;=p8 and a;= — Bu we recover the usual defini- probability distribution.
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FIG. 2. Volume and energy distribution of a confined canonicaliemperature.

lattice-gas model in the first order phase transition region with three
associated projections.
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by a temperature. Some distributioRg(e,m) are shown in

Let us now take the example of the liquid-gas phase tranEi9- 3. AboveT, only the paramagnetic phase is present.
sition in a system oh particles for which only the average Be€low Tc we observe a first order phase transition. The bi-
volume is known. In such a case we can define an observabgodal structure in then direction corresponds to a negative

A . . suceptibility in a constant magnetization ensemble. It should
B, as a measure of the size of the system; for example thB : - :
e noticed that the projection on the energy axis does not

cubic radiu§Bl=4w/3nEiri3£V where the sum runs over show anomalies: at variance with recent clajhs], the en-

all the particles . Then a Lagrange multipliey; has to be  ergy cannot not be an order parameterTAthe distribution
introduced that has the dimension of a pressure divided by gresents a curvature anomaly only on the low energy side
temperature. In a canonical ensemble with an inverse teMpgpect to the maximum. Therefore at this point the curvature
peratureB we can define different distributions that are illus- passes through zero signalling a second order phase transi-
trated in Fig. 2. A complete information is contained in thetjon, Since in finite systems the canonical distribution for any
distribution va(e,v)=W(e,v)Z;x1U exp—(BetA,v) since  B,u allows a complete exploration of the microcanonical
events are sorted according to the two thermodynamical varentropy surfacein the limit of the total number of events
ables,e andv. This leads to the density of stat@(e,v) ar!alyzec)l, the whole m|crocano_n|cal phase_ diagram can in
with a volumev and an energg. One can see that in the first principle be drawn fm”."' any single canonlcgl tgmperature.
order phase transition region the probability distribution jsA\S an example the croissant shape of the distributiomat

bimodal. In the spirit of the principal component analysis wenot only defines the critical energy and magnetizatiom, .
A A ~ . of the second order phase transition but also allows to infer
can look for an order paramet€=xH-+yV that provides

the best r f the t h A act fththe coexistence line where the first order phase transition

€ tes stﬁparadlon or the tWO pr a;es.l pLOJeC 'QnFq fakes place. Indeed a constant energy cut of the distribution
event on this order parameter axis 1S aiso Sshown In FIg. 4yq)q, e. directly represents the entropy as a function of
One can see a clear separation of the two phases.

. agnetization and has a bimodal shape.
the other hand if we cannot measure both the volume ™\, important issue is to show how the presented defini-
v and the energye we are left either with va(e)

- tion can be related to the usual one at the thermodynamical
=W)\v(e)Z;A1 exp(—Be) giving access to the microcanonical limit. A way to address this problem is to look at the zeros of
: the partition sunZ , , in the complexx plane and to use the

_ Lee-Yang theory. For sake of simplicity let us consider only
Pmu(v)=Z/3(U)ZEA1UGXD(—?\UU) leading to the isochore ca- one couple of thermodynamical wariables,) Using Eq.
nonical partition sUnZ4(v). Since both probability distribu- (3) We see that the partition sum for a complex parameter

tion P, () andPy, (v) are bimodal the associated parti- Y= a+in is nothing but the Laplace transform of the prob-

tion sum does have anomalous concavity intruders, i.e."flb'“ty distribution I:)f“o(b) for a paramete [14,19

negative heat capacity as well as negative compressibility.
Let us now study the canonical distribution of energy
B,=H and magnetizatio,=M the Ising model. The per- Z«/:j dbZ,, Pao(b)ef(rd")b-EJ dbp,(b)e'"".
tinent statistical ensemble has two Lagrange multipliers, the
canonical temperature; = 8 and a magnetization constraint
a»= Bh that has the dimension of a magnetic field dividedIn order to study the thermodynamical lintivhen it exist$,

partition sumV_VkU(e) at constant, or with the probability
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if p,(b) is monomodal we can use a saddle point approxital temperature while this point has a null curvatur€if

mation around the maximui, giving Z,.=e*), with =g/q, whereC, is the microcanonical heat capacity. Then
27C(b) the Tsallis critical point occurs above the microcanonical
o = ; . !
b)=Inb.(b)—i7b+ n2C(b)/2+In , critical ppmt and one expects a broader coem;tence zone in
¢4(b) Pa(b)=i7b+7°C(b) ( 2 ) the Tsallis ensemble. The curvature at the maximur'pis

o o T202InP9=-1/C, +q,/q. Far from theC divergence line,
whereC™"=0d; In p, (b). However, ifW, (b) [see Ed.4)]  tnis curvature is not very different from the microcanonical
has a curvature anomaly it exists a rangexddr which the  heat capacity sincg;/q is small.
equation dp IN[W,, (b)]— (e~ a)=0 has three solutionb, In.(_:onclysign_, we have proposed a definition of p_hase
b,, andbs. Two of these extrema are maxima so that we ca ransitions in f|.n|te. systems based on topology anomalies of
use a double saddle point approximation that will be valid he event distribution in the space of observations. We have

close to thermodynamical limif14] z,= %)+ gé,(b3) shown that for statistical equilibria of Gibbs type this gener-
Y alizes the definitions based on the curvature anomalies of

+
= 2e’ycoshg, ), where 2p) = ¢,(b1)+ b,(b3) and 2, entropies or other potentials. It gives an understanding of
=¢,(b1)— ¢,(bs). The zeros ofZ, then correspond t0 coexistence as a bimodality of the event distribution, each
¢, =i(2n+1)m. The imaginary part is given by=2(2n  component being a phase. It provides a definition of order
+1)7/(bs—b;) while for the real part we should solve the parameters as the best variable to separate the two maxima of
equation Rep,, =0. In particular, close to the real axis this the distribution. Some first applications based on the proper-
equation defines am that can be taken asg,. If the bimodal ties of probability distributions have already been reported
structure persists when the number of particles goes to infin6,3—5. From the experimental point of view, one may
ity, the loci of zeros corresponds to a line perpendicular tovorry about the statistical significancy of the curvature
the real axis with a uniform distribution as expected for aanalysis in a finite sample of events. For any sorting variable
first order phase transition. b, if K; events belong to the bih;, the uncertainty on the
Finally we stress that the presented definition of phasextracted entropy curvature estimated through a three point
transition based on the probability distribution can be ex-derivative is G\b?/K;. For instance for a reliability of
tended to other ensembles of events that do not correspond 9.99% in a negative heat capacity measurement, one needs
a Gibbs statistics. As an example, we analyze the conseé;>18c?T%/(Ae*n?), wheren is the number of particles;
quence of going from Gibbs to Tsallj46] ensemble on the s the temperature, arglc are the energy and heat capacity
existence of a phase transition, for a system controlled by aper particle. These statistical uncertainties are generally well
external parametex (e.g. pressupe For a given the sys-  under control in actual experimerit3].
tem is characterized by a density of sta@§(e). For a The nature of the order parameter provides also a bridge
critical value of A=\, the associated entropys,(e) toward a possible thermodynamical limit. If it is sufficiently
=InV_Vx(e) presents a zero curvature and below a convessollective it may survive until the infinite volume and infinite

intruder. The Tsallis probability distribution readsg;&q number limit. If the anomaly also survives the saddle point
~1) [16] approximation will be correct and the finite size phase tran-

sition becomes the one known in the bulk. Finally the pro-
Pd(e) =W, (e)(1+q,8e) ¥z posed definition can be extended to different statistical en-
sembles such as Tsallis ensemble.

Computing first and second derivatives ofify one can see  \ye would like to thank all the participants of the ECT
that the maximum of I} occurs for the energy that fulfills  \orkshop on “Phase transitions in finite systems” for stimu-
the relationT, = (B8~ 1+ q,€)/q whereT is the microcanoni- lating discussions.
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