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Training a perceptron in a discrete weight space
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Learning in a perceptron having a discrete weight space, where each weight cah taked#ferent values,
is examined analytically and numerically. The learning algorithm is based on the training of the continuous
perceptron and prediction following the clipped weights. The learning is described by a new set of order
parameters, composed of the overlaps between the teacher and the continuous/clipped students. Different
scenarios are examined, among them on-line learning with discrete and continuous transfer functions. The
generalization error of the clipped weights decays asymptotically as-e«pf) in the case of on-line learning
with binary activation functions and ex’p(e‘”“) in the case of on-line learning with continuous one, where
is the number of examples divided by the size of the input vector ari€lis a positive constant. For finits
andL, perfect agreement between the discrete student and the teacher is obtained fin(NL). A cross-
over to the generalization errorl/a, characterizing continuous weights with binary output, is obtained for
synaptic depth.>O(\/N).
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I. INTRODUCTION depth teacher. The method we introduce is based on the clip-
ping of a continuous perceptron. Having an artificial continu-
The study of neural networks as a tool for understanding?us weight vector enables smooth learning; clipping it results
learning processes has benefited various applicafiby®.  in a discrete studentVS, whose components are close to
We are interested in the perceptron learning ability as athose of the teacher. This method has been used successfully
archetype of feed networks that are able to learn. Most of thé the Ising perceptrof6,7,10,11. The questions that arise
perceptrons that have been studied until now are under twtiom the procedure above are; whether learning is possible at
totally different constraints, two extremes. Either the teachegll and if it is possible, does it give better results than the
weight vector is restricted to a binary spathe Ising learning in a continuous space. It seems very natural that if
teache), or it is continuous, confined to a hypersphere. Onlythe weights’ depth is very large, i.e., there are many possible
a few aspects of the learning ability of weights, which arevalues to each weight, the learning behavior of the discrete
confined to have a finite number of values, have been studveights will be exactly the same as those of a continuous
ied. These systems are the intermediate case, in which theeight. However, in the following we examine if and what
weights are confined to finite spacel(2 1)N whenL is an  are the scaling relations between both propeitiesid N.
integer and\ stands for the input sizE8-5]. Our main results are as follow&) Learning in the case
The generalization ability of such networks, in which the of finite depth is possible by using a continuous precursor.
synapse has a finite depth, has been analyzed by using rephis result was confirmed both analytically and numerically.
lica calculations and has been found to have interesting nortb) On-line learning scenario: In the case of a binary output
trivial behavior of phase transition. The learning procedurdhe generalization error decays superexponentially with
composed of two phases: one in which the learning ability i, eg“exp(—Klaz). whereas in the case of continuous
very limited, the generalization error is finite. Another phaseoutput the generalization error decays much faster,
is when the generalization error is exactly zero, perfect learnexf —K; expKsa)], where all the constants; are positive
ing is gained, and it occurs in a finite, where o is the  constants(c) Perfect learning is obtained wheM is very
number of patterns divided by the size of the inpuf5]. large but finite, unlike the continuous perceptrons perfor-
Nevertheless, replica calculations do not involve practicamance. Quantitatively, for a gived andL perfect learning is
algorithms that one may use in order to obtain that learningichieved fora;<O(LyIn(LN)). (d) A crossover to the be-
behavior. In the Ising case, for instance, although a phaskavior of the generalization error in the presence of continu-
transition was predicted, no practical algorithm reproducesus weights occurs fdr>o(y/N).
this discontinuous behavi¢6,7]. The paper is organized as follows. In Sec. Il the architec-
In contrast to batch learning, when all the examples areures and the dynamical rules are defined as well as the con-
used together to achieve perfect learning, on-line learning iinuous and discrete students. In Sec. Il the order parameters
a procedure in which an update rule is used and learning iare defined and the relations between the overlaps of the
each step utilizes only the last of a sequence of examplesontinuous teacher with the discrete/continuous students are
Such an algorithm drastically reduces the computational efderived analytically. In Sec. IV, the dynamical evolution of
fort compared with batch learning and no explicit storage ofthe order parameters in the case of binary output is derived
a training set is requirefB]. It was shown that there is no analytically and confirmed by simulations. In Sec. V the case
updating rule that uses only the discrete vector for updatingf large synaptic depth and the crossover to the continuous
and results in perfect learnif@]. weights is studied. In Sec. VI, the perfect learning in fiite
In this paper we address the issue of learning from a finitesystems is examined both analytically and numerically. Sec-
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tion VIl is devoted to analyZing results in the case of Con'|earning stepu, the current We|ght VectQiM is updated ac-

tmtéous output.t.FlnaIIy, mdgec. Vcljll results are ConCIUdedcording to the new examplé" and each example is pre-
and open questions are addressed. sented only once.

In an off-line scenario, there is a set of examptfé‘s,u
=1...aN and they are used altogether to gain perfect
A. The architecture learning. There are methods in which the off-line learning is

: . . made according to a rule that defines an additive quantity of
We investigate a teacher-student scenario where both netﬂ .
all the examples. Such procedures were shown to end up in

are single-layer feed forward. The examples are generated b - . ; . f
the so—%allegi/ teacher, which is known tpo be regtricted to é}'erfect learning12,13. Since having a discrete teacher is
' erely a special case, not using the knowledge that the

\(/jvgllt-g Efg'ne(? adlssectr(e;;e dizitre?é \\//::lljgg"a\slv% ”?)%2%(]3_ a Synapmfeacher is confined to a discrete set of values gives the well-
P ' known results; an exponential decay in the case of continu-

Il. THE MODEL

1 2 ous rule(on-line learningd 14,15)) and a power law decay in
WiT=tE,tE--«t1. (1) the case of binary rule(on-line and off-line learning
[12,13,16-1B.

When the zero value is part of the game, the possible values 'N€ Way to gain from the knowledge of the discrete na-
of the weights are ture of the weights is at the center of our work, and is based

on having in addition a discrete studak derived from the
2 . continuous one using the following clipping procedure. A
rxL 2 continuous weight is clipped to the nearest discrete value,
among the 2+ 1 possibilities. Such a clipping procedure is
For the sake of simplicity in this paper we present resultghe optimal one with the lack of any prior knowledge about
only for including zero casgEq. (2)]. It is easy to generalize the weights except that each value appears with the same
our results to any other set including the one presented in Egprobability. We define limit valuek, , which are arranged in
(1), which converges to the Ising case wher 1. an increasing order. The limit values divide the continuous
The components of the input patteréfs are independent region of the precursor weight vector components into 2
random variables. In the fo”owing they are drawn from a+1 intervals, aCCOfding to the number of the available val-
Gaussian distribution with zero mean and unit variance. Théles as in Eq(2). The clipping process is such tha is
size of the teacher, the student, and the inpiM.igor any ~mapped ontd/L for Je (N, A\;+1). The set of limits in-

input £ the so-called teacher generates an ouspaitcording cludes{)\,_| Ai-1, Mg oAy M4} Itis given by
to a rule the following mathematical rule:

*

L

|

W =0,+

L
I
. W= 2 TLONa=d)—0n=3)], )

- -

WT. &
IN

In the following we discuss both binary and continuous Si th | fth limits. i hat |
rules. The student has in mind the ridend the discrete set I'QCI?k (;,-va ueo i Oie !mmsl IS somevv'f.a unc earl, V\;ﬁ
of values that the teacher is confined to. In addition, in any/ou'd likeé 10 exemp ify it with some specific cases. In the

on-line learning scenario, the student is given in each tim&3S€ ofL=1, Eq: (D’ for instance, due to symmetry it is
. > ) . obvious that the limit between 1 and 1 should be 0. Hence,
stepu, the inputé”, and the teacher’s outp&®*, whereas in

one introduces the following Ilimits:\_;=—0, \g

S=F

where 6 is the Heaviside function.

batch learning the se(,S") u=1...aN is given alto- =, \,=c«. Evaluating the mapping equation results in
gether. the well-known clipping ruleW>=sgn(J;), [6,10]. Finding
the appropriate value for all other cases but the Ising percep-
B. Dynamics of the weights tron becomes more complicated, the continuous space is no

A continuous precursor for the studeditis needed for Ionggr divided into two clear regions and hence one has to
consider carefully the value of the limits.

learning from a discrete teacher. The learning procedure; In this paper we chose to nail down the aeneral results b
having a continuous student, is well known. In an on-line IS paper v . > 9 y
focusing on the including zero cades=1, i.e.,W;=0,+1.

scenario, at each step the continuous student updates i3 . . ;
weight vector according to some learning algoritfinThe IS case 1S known as the d!Iutgd Ising case and some other
generic form of the learning algorithm is aspec;ts O.f .'t have been studied in R¢iD,3,20. It contalns
the simplicity of the Ising case on the one hand and intro-
duces more generality concerning discrete values on the
Jrti_gry lf(sﬂ,xg)gﬁsM, (4)  other hand. In this case, there is only one unknown param-
VN eterk, sinceh,=—\_;=o andAy= —\;.
While choosing the value of the limit§in the last case it
wherez is the learning rate and, is the student's local field, means choosing only the value kf) one should take into
x;=1/J/NJ- €. Such a learning algorithm means that at eachconsideration the priori knowledge about the weights of
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teacher. It is clear that the limits should scale with the stu- The teacher’'s norm is determined according to dahari-
dent norm, since the exact set of values that the continuousri probabilities for each discrete value. Having equal prob-
student ends up with is irrelevant. The mapping rule ensureability and taking the thermodynamic limit results in the
that the discrete student ends up with the same values a®rm

those of the teacher. This will be shown only after analyzing .

the new order parameters and their dependence on the former [ P , 1. 1
one, as presented in the following section. T=qW W "L, 21 I"=3+30 ®
Il. THE ORDER PARAMETERS where n_ is defined as the number of optional valugs

=2L+1. The order parameters in the clipped machiRgs

Evaluating the agreement between teacher and student i,dQ,, as a function of those of the continuous macHrye
done by calculating either the generalization error or the orandQ; are evaluated as follows:

der parameters. The generalization ergris calculated by

taking the average of the student/teacher disagreement over 1 .|

the distribution of input vectors. The generalization error is RW:<N EI W [[9()‘!+1_‘]i)_ 9(7\I_Ji)]>v

given, in principle, by the overlaps between the vectte

so-called order parametgrsHowever, in order to go into 1 |2

details one has to first define the rul& in Eq. (3)]. This Qw=<— > — [0\ 1= 3) — g(xl_\]i)]>, (9)

will be done in the following sections. In the following we N L

concentrate on introducing the complete set of order param-

eters and their inter-relations. where(A) is an average over the known constraints and the
In our case there are three vectors and hence two interd&nown overlaps

pendent sets of order parameters. One set concerns the con-

tinuous overlaps, TrWTf dJ,8(32—NQ;) 8(J;W/ —NR;)A
(A)= ., (10
RJE%".V‘\’/T, TrWTf dJ,8(32—NQy) 8(J;W' —NR;)
and the summations are over all the possible value, of
1. . starting from |I=-L, -—-L+1,...L, and over i
Q= N -J, (6) =1...N. The validity of this average is based on the as-

sumption that all vectord that are consistent with the con-

and the other set concerns the discrete vector's overlaps, sFramts are taken with e.qual probablllty. This assum_pﬂon is
violated when the updating of the continuous vector itself is
made according to the clipped orieee[6,11]).

Rw= EWS.WT The results are
1 Rw=55— 2 1'[erf( @14y —erf(dy)],
— T\VSA\RK/S L
Qui= WS- WP, (7)
= 2 N— ,
We note that the dynamical evolution of the continuous set Qw 2L, > 1 erf(®, 4, —erf(®, )], (11)

of order parameters, E@6), is independent of the clipped

order parameters, since timining is done only following  where the summation is over all the possible values, df
the continuous weights. Contrary to the training process, thand we define

predictionof the generalization properties is made following

the clipped student. Hence, finding the quantitative interplay N opy I

between the continuous set of order parameters(@gand W - \/_f IR

the discrete set of order parameters, Ef), is the corner- P, = AT S (12)
stone for the analytical description of the generalization abil- ' \/2(1—p§)

ity of the student.

In this section we examine the relationship between thavhere p;=R;/\TVQ;  pw=Rw/VTVQw are the geo-
clipped set and the continuous one. The developme;of metrical order parameters.
and Q; is not influenced by the clipping method. Hence, In the limit L—< the summation in Eq(11) can be re-
examination of the above relationship enables us to deteplaced by an integral. Calculating the integrals in this limit
mine the development of the clipped order parameters ancksults in the obvious identitig®,,= R; andQy=Q;. Note
results in a description that provides the whole picture of thehat taking integrals instead of summation imposes an in-
learning process. equality. The difference, |, —®, ., tends to zero as long
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asL>1/\/l—pJ2, [see Eq(12)]. Hence, in the event thatis Although it was shown that using the “expected stabil-

very large, learning with the continuous student or learnind® algiorllthn; that maX|m|z§s th(;afgenherahzatlorl]_ gain pet:'l
with the clipped version produces the same result as long ample leads to an upper bound for the generalization abil-

py is smaller than 2. This limit is discussed in Sec. V. ity [17], we concentrate on the so-called AdaTron or relax-

We exemplify the general results in the case of the dilute(.‘l'?}tion I_earning qlgorithm. The reason ?S that this latter algo-
Ising perceptron. In this case we use the following limits: rithm in a specific casgfor zero Stabl'lt}‘/,K=0) perform.s Y
comparably well. Moreover, unlike the “expected stability

algorithm it does not require additional computations in the
student network besides the updating of its weights, and the
Nz —\ (13) analysis is simplef8].

! 0 The convergence to perfect learning depends on the learn-
ing rate. If it is too large, perfect generalization becomes
impossible. The transition from a learnable situation to un-

1 learnable occurs aj. . In the following, in order to simplify

RW:§[erf(A+)+erf(A,)], the analysis, we choose a fixed learning ratel, which is
below 7. in all scenarios.

We update the artificial continuous weight vecorThe

1 1 1 L : ; ,
Qw=1- §erf(A0)+ §erf(A,)— §erf(A+), (14)  updating is made as in E¢4) according to the following

)\2: _)\_1200,

and the teacher’'s norm iB=2/3. The mapping above gives

learning rule:
where  A.=(py/NT+N1/JQ)/\2(1—p3) and A et e W e ge } N
=\1/2Q;(1-p?). J =Ji—J—N N o —WS/‘. (17

From Eq.(14) one can verify that at the limik— c when

the continuous order parameters achieve perfect leaming;ne equations for the order parameters with 1 are
p;— 1, the discrete order parameters achieve perfect learning

as well,Ry— 2/3, Quw— 2/3, andp\y— 1 given that the posi- d 1 2
tive quantity\; is smaller tham ;<<\/Q,/T. d—I;J =- 5—;005_1(/03) +—l1- %) Vi-p3,
In general, in order that the discrete student will gain
perfect learning it is necessary that the relatig@;/T(l dQ, Q,
— 1)<\ <VQ;/TI holds for any positivd. Note that the da 7[p3\/l—p§— cos Y(py)]. (18

interpretation of the above constraint is that in the vicinity of
perfect learning the precursor might be focused around any, the limit «— o, one can expand the right-hand side of the

set of discrete symmetric values, but not necessarily the ONgRgy equation aroungh;=1. The next step is to plug the

that the clipped student has. result of p;(«) up to the first order corrections i in the

O_ne of the_ conclusions _cqncernlmg is that the law ac- second equation. One can find the following power law:
cording to whichey decays is independent of the exact value

of the limit value\,. It depends only on the ruldbinary/ 3712 1
continuousy, the specific strategy of learningn-line/off- pJ~1_2<_) -,
line), and the learning algorithm one uses. In the following 4/ o
we analyze all these variations.

,(31°1
IV. BINARY OUTPUT Qy=Qo| 1= 77 7 &2 (19

In an on-line learning scenario one can write equations oNote that in the case of a binary output unit, perfect learning
motion that determine the development of the order paramis achieved as soon as the angle between the vectors goes to
eters as a function at. The rate of convergence depends onzero, independent of the student’s norm.
the rule,F [Eq. (3)] and the learning algorithm that one uses  The solution of Eq(18) describes only the development
f [Eq. (4)]. Fine tuning is achieved by choosing the learningof the continuous perceptron’s overlaps. The next step is to
rate 7. map the continuous precursor to the clipped one as defined

We analyze learning procedure in the case of binary ruleby Eq. (11). Since in the case of binary ruler the student’s

norm converges to some unknown value, it seems only natu-
S=sgn(x), (15  ral to choose a limit sex, that scales with/Q;. As a result
pw. [Rw/QuT, see Eq.(11)] is only a function ofp;
wherex is the local field and the generalization error as agnd does not depend of;. Hence, substituting the
function of p is known to be asymptotic behavior op; [Eq. (19)] into py, one can find
the typical asymptotic behavior of,,. In general, the
e =£C0§1(p) (16) clipped order parametesr,, is composed of a devision be-
Y 7 ' tween two different sums of error functions. The argument of
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each error function consists of 1/(—Jp§). Asymptotically 1 -1.5 e —T
— py— 1/a and the first correction to the error function scales
superexponential witlw, exd —K(\,L)a?] whereK(\,L) ol |
is independent ofr. The leading correction g, is deter-
mined byK —min(\,L) over all error functions. Finally, the
generalization error in the limita—co is given by €4 2.5 T
«\(1— pw)/2/7 [see Eq(16)], and hence In(eg)
-3+ -
exd —K(\,L)a?]
€™ 1 ’ 0 351 -
az
whereK(\,L) is determined by the minimal value upon all -4 T P S
[N —1/LVQ,/T|, [for a specific example see E@4)]. 0 200 400 ) 600 800 1000
One way of choosing,, is simply “half the way” be- o
tween the constrained values, i.B., =\ ;== and oth- FIG. 1. Simulation results of Ig) of the continuous precursor
erwise (O) and of the clipped vector va?. The clipping is made accord-
ing to the mapping in Eq(13), where the results are fox;
N =£(I— 1 % 21) =0.5yQ;/T (V) and\;=0.3yQ,/T (A). Error bars are smaller
L 2 T than symbols. Solid lines are the numerical integfilg. (18)]. p

refers to the point at which a transition occurs between a superior
In the case where the limits are defined as in &1) it is performance by the continuous/clipped percepfisee texxt
possible to calculate the asymptotic decrease of the generali-
zation error forany given depthL, for instance, that the optimal limiy, = 0.5, results in a faster
decay than the limik = 0.3. The second is the exaetor the
exact value ofp; at which the clipped version gives a better
= m (22) result than the continuous one. We named this yalumas
For p;<pt the clipping lowers the overlap; since the
We exemplify the aforementioned discussion in the di-le@rning solution does not contaln enough information about
luted Ising perceptron. We use the limits as in Etp) and  the real direction of the teach&¥" so that clipping only

K(\,L)

assume\;=c+/Q,/T. In that case leads the solution to “forget” a little about the learned pat-
tern without bringing it closer to the exact solution. In the
erf(ay)+erf(a_) other region, whemp;>p+, clipping becomes efficient be-

pw= , (23 cause the learning solution is near the exact one. The numeri-
VT\9-3erfia;)~3erffa,)+3erfa_) cal results ofpy according to the mappindgEqg. (23)], are

wherea.. =p;+c/\2T(1—p3) andag=c/\2T(1—p3J). In pr~0.92 for X,=0.5/Q,/T and pr~0.97 for A,

the limit of large @ one finds =0.3yQ,/T, see Fig. 1.
exp( —ba?) V. LARGE SYNAPTIC DEPTH
€qr———, 24 , ) , )
9 alf? 24 In this section we examine the crossover of the generali-

zation error in the presence of continuous weights as we

where for c=1/20,=c?/6m* and otherwise b.=(1 increase the synaptic depth. As long as the synaptic depth
—c)?/6m2. One can see that choosiig 1/2 results in the L <O(4/N), the generalization error still vanishes superexpo-
fastest decay of the generalization error. nentially, Eq.(20), where the prefactor decreases withFor

The analytical results are compared with simulations in_=0(/N) the learning is characterized by the features of
the case of a teacher of the type of the diluted Ising percepspherical constrained learning.
tron with the following parametersy =0.5/Q;/T and A The first step towards the continuous case limit is to find
=0.3yQ,/T, see Fig. 1. The initial conditions for the con- out the change of the decay of the generalization error as a
tinuous student weight vector a@;(a=0)=T=2/3 and function of L. We focus on the binary unit in the on-line
R;(e¢=0)=0. The weight components were drawn out of ascenario. The analytic tractability of this model enables a
Gaussian distribution. We usegi=1, N=3000 and each profound study of the influence of the synaptic depth over
point was averaged over 50 samples. One can see in Fig.the learning features.
that the analytical results given by E@4) are in agreement In the last model the generalization decays superexponen-
with simulations. tially, eg~exp(—Ka2), Eq.(20). The factorK depends on the

One can see that the superexponential decay is indepelimits one choosed,. Hence, in order to maintain consis-
dent of the accurate value of. However, two important tency, we use the abovementioned limits, E2fl), andK is
parameters do depend on the exact choica.oDne is the given by Eq.(22). We should emphasize that only one domi-
decay rate, the factd€(\) in the largea limit. One can see, nated term out of many superexponential terms arising from

046109-5



MICHAL ROSEN-ZVI AND IDO KANTER PHYSICAL REVIEW E 64 046109

2.1 or L>N, gives the same results as those of continuous
oL learning. Note that Eq25) is consistent with the mathemati-
cal constraint that was pointed out in Sec. Ill when we dis-
19F cussed the continuous limfafter Eq. (11)]. Indeed, the
simulations show indeed that in the caselof 157N,
1.8 whereN= 630, the discrete vector’s performance coincides
< 17k with the analytical learning curve of thentinuousstudent.
' It is worth pointing out that a similar result was found
16k when analyzing the possibility of learning from a discrete
teacher by a discrete student using a general updating rule
1.51 R P R YRl [9]. The last analysis uses a totally different argument, re-
| . G sulting in the conclusion that only when the teacher’s depth
145 20 40 60 is of order N, it is possible to learn the rule using an up-
o dating rule that depends on the discrete weights, i.e., only

FIG. 2. Simulation results of/=Tn(ey) in the case ofL=1 then it behaves as if we have a continuous machine.

(diluted Ising (X), L=2 (V), L=3 (4A), andL=157 (O) vs
a. The analytical result obtained by the numerical integration of Eq. VI. FINITE SYSTEMS—PERFECT LEARNING
(18) and Eq.(23) is presented for the diluted Ising casslid line).
The dashed line is the analytical curve f{l‘f— In(ejg), whereeé is
the generalization error of theontinuousstudent. Inset: the depen-
dence of the prefactoK(L) vs 1/(L?+L). Simulation results
(circles and analytical resultésolid ling) are following Eq.(22).

The theoretical results presented in the previous sections
exhibit the typical behavior of the generalization error and
the order parameters. The main result is the fast decay of the
generalization error of the clipped perceptron to zero, Eq.
(20). In the case of teacher and student with continuous
the asymptotic expansion of all the error functi¢is. (14)], weights and finiteN, the generalization error is always finite
was kept in Eq.(20). As soon as the deviations between distance from zero, even in the asymptotic stage of the learn-
different factors in the exponent are too small, one has teng process. In contrast to the continuous case, the learning
integrate all the terms together_ instead of neglecting all bugf 5 perceptron with discrete weights and firMds charac-
one. Such a procedure results in a crossover from a superesized by a transition to perfect learning, as was found for
ponential decay to power law behavior. o the Ising perceptrofiL1]. Performing simulations in that case

Analytical and simulation results of the generalization er-reqits in a perfect learning at some stage, since in the clip-
for In varieties of synaptic depths; are presented n F'g' 2ping version the student knows exactly the teacher’s optional
s e Ue5 Hence. he overiap becomes ety pe 1, an
slopeK as a function of the depth. The solid line is the :e generalization error becomes exactly zero as vegll
analytical results, Eq(22), and the circles are the slopes In order to estimate the number of steps needed for per-

estimated by simulations far=1,2,3,4. The deviation from : ; L Lt
fect learninga; we use the analytical approximation valid in

the analytical curve is probably due to higher order COIMeCy " reqime. At that redime we have an analvtical ap-
tions in «. Note that only at the very end of the learning gime. 9 Y P

. : S ) proximation of the interdependence &f and « [Eq. (20)
g{j%lﬁﬁg#r(;'t tt?]?slgzggt%ﬁ;g:%?ngg 1)ca;ngehgsct::)e\tl)(zc;.r Iirr: and Eq.(31)]. In addition, the minimal step before perfect
mind deviations due to finite size correctionsNn learning is well definedpy=1-2/(LN) or e~ VI/(LN).

We now present an argument supporting the statemerfg€nce. We can find the interplay betweerandN.

that the generalization performance of finite depth machinegraIt %asisgovr;%tt%tcexr?;sp;sf?r: i/lol_mlﬁgzsg%ctlr?(la (;isaelstiig(lzh as
coincides with the performance of continuous machines a ppIng y P ’ y

soon ad~ N. This scaling is found by taking into account equations for the development of the order parameters are

that: (a) the difference between two available values is Ofaccurate in the leading order. Finite dimensiéatfects the
order of 1L: (b) the distribution of the continuous student deterministic equations for the mean values of the order pa-

: : ! ) rameters by having broader distributions for the order param-
values around the teacher’s value is a Gaussian with a Vark, o and the covariances scale 4$. Moreover. extensive

ance ofy1—pj= €g wheree;' is the generalization error of numerical simulations show that the finite size corrections to
the continuous student. Having a learning procediréhe  ,; scale with 1N [24,25,2] and hence they are negligible.
continuous spagen a finite dimension results in a generali- *  |n the binary output perceptron the generalization error
zation errore; , Which is different from the analytical predic- drops superexponentially, ERO). Hence, perfect learning
tions. The variance is of ordefl/N [21]. Hence, an estima- is determined by
tion to the order of the lower value tha,j gets in a specific

. . . _ 2
run will be VI/N. As a consequence, having a discrete ma- exd —K(\,L)a“]~J1/(LN). (26)

chine of depthL when
If one uses the set of limits as in E1) then the depen-
1 1 dence ofK on L is given by Eq.(22). Deriving a; from the
e 1—p2- I - f
L <V1=pi~e N 25 last equation results ings~L+/InLN. This result indicates
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30— function, the generalization error decreases exponentially,
0 (see for instanc§l4,15,18). In order to learn a rule that is
defined by a finite depth vector, we used a spherical vector
) r for the student weight vectdrand clipped it in order to have
5__ ] a discrete student weight vectovS. The updating of the
o f ; spherical student weight vector is done according to the gra-
. ] dient descent method,
20 100F 4 -
: "so 11 juriz ju_ 7 ju &
NI A I J# :Jﬂ_\/_—vj G(JMafﬂ)- (27)
0246810 1 N
F LYV In(L)
| L | L | L | L | L | L 2 v . .
183 2 22 24 26 28 3 The errore(J*,&*) measures the deviation of the student
V In(N) from the teacher’s output for a particular inpfit The gen-

) ) eralization error of a student is defined as the averaged error
FIG. 3. Simulation results o&;, the number of rescaled steps

necessary to achieve perfect learningy#s N. Simulations for the 1 _

diluted Ising perceptron, in the case of a binary output unit, with €= <_[S(j,§)_s(v'\’/T,§)]2> _ (28)
N=0.4/Q,/T (V), A\=0.5/Q,/T (A), and \;=0.6JQ,/T 2 i

(O). Solid lines correspond to the linear fit of least squares error.

Inset: Simulation results ofa; vs JLInL for N=630, L Since the learning features of all kinds of continuous
=2,3,4,7 and the limit values are chosen according to(E). The  transfer functions are more or less the same, we chose to
solid line is the least squares fit. concentrate on the “sin” activation function

quantitatively that for any chosen limK,, the number of S=sin(kx). (29)
learning steps necessary to achieve perfect learning is finite

as long asN andL are finite. The periodic activation function sin was found to be learn-

Figyre 3 presents results af optained in simulations for  gple given that the perioé is small enough15]. In the
the diluted Ising perceptron witlt=0.4, c=0.5, andc  following we will simplify our analysis by taking=1 and
=0.6, [Egs. (23) and (24)]. Results where averaged oVer the |earning rate;=1. Since the learning curves of the con-
M(N) training sets, were values & (N) ranging from 5000  tinuous version are the same as if there was a rule defined by
to 20 in accordance tN that is varied between 30 and 9000. a continuous teachd'having the finite depth limitation is
To get results in a lower dimensidd, we averaged over a mere|y a Specia| case of the spherica| Const}mtd the
larger number of simulations. learning rate we chose is small enough, we find that perfect

One can see from the obtained valuesxofN,c) in Fig.  |earning is an attractive fixed point in both scenarios.

3 that the last quantity is indeed linearyin N. Note that the Linearizing the equations of motion around these fixed
obtained slope in Fig. 3 for=0.4 andc=0.6 is the same as points results in the following forntwhich holds for all con-

we expect, since, is symmetric around=1/2. Indeed, one tinuous transfer functions

can see in the inset thai;(L) in the case oN=630, in-
creases linearly with In L. As L— an infinite number of
examples are needed for perfect learning, there is a crossover
to the spherical case as discussed in the previous chapter.

Small deviations from a straight line in Fig. 3 are ex- ¢
pected to be a consequence of the following approximations: Qj;=1+ ——=V,expyia)—

(a) We took as an analytical curvéeg. (26)] only the detV
asymptotic function that is an expansion valid in infinite

(b) We neglected the polynomial corrections in EB6)
such as 1/a.

(c) We derived Eq(26) from the analytical calculation of
pi(a). The latter quantity itself is influenced by finite size
effects as explained above.

As was shown in previous sectiortss 0.5 gives the best
performance in the asymptotic learning procedure, lower
for all N, and is confirmed in our simulations, Fig. 3. In the
thermodynamic limitN—oo, a;— as expected.

(o (o
R;=1-— ——V,ex + ——V,ex ,
J detV 2€Xp 1) detV 128X ya)

Ca
——V 1 ex .
detV 11€Xp(ya)

(30

The matrix V(1,1) arises from the linearization,
d/da (R,Q)"=V(1,1)(1-R,1-Q) " wherey,,v, are its
eigenvalues and both are negative. The constants, are
determined from the numerical solution of the equations of
motion.

In order to get a description of the discrete learning one
has to use the mapping relations as in &j. The generali-
zation error of the finite depth student depends directly upon
the order parameters as can be found by taking the average
over the local field distributions E¢28). The general result
of this calculation at thev—o regime is

We now study the case of continuous output perceptrons
with finite depth. As long as one uses a continuous activation €5~ EXP(— Coe“q“), (32

VII. CONTINUOUS UNIT
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where K and C, depend only on the learning ratg, the
limits one choose&, and the specific activation function.

The explicit expression df, andK for the sin activation
function and»=1 is give below. The equations of motion
are

dR, 1 2
da E[(Rﬁ‘ 1D, —2Re "= (R;—1)D_],

d
¥ [(Ry+ QD ~2Que 2% (Qs~Ry)D_]

1
+ g[z(e—ZQa—e—Z—E,+D+)+3—D‘l—2D,

+(2E,—e 8%-D?)], (32)
with D.=exd —(1+Q;*2R;)/2] and E.=exg—(1
+9Q;*6R;)/2]. As a— x>, one gets two eigenvaluey,
~—0.30 andy,~ —0.69. Using Eq(14), rescalingR,y and
Quw by the teacher’s norm 2/3, and taking the limit valugs
to be as defined in Eq21). Collecting everything we have
the leading order correction in the limit— oo,

exp(—0.15x) 5
Rw~1— ———=——exp(—K7e?¥™),
W 2\/;K1 F( 1 )
exp(—0.15x
Quw~1+ % exp( — K7e%30), (33
TR,
where
2 CZ
T 34

andc is a rescaled constant determined by the initial condi
tions only. The generalization error as a function of the dis
crete parameters is

1
1—d_+d+—§(e‘2QW+e_2) : (35

EQZE
with d.=exd —(1+Qw=*=2Ry)/2]. Expanding the last
equation aroun&®,,— 1 andQ,y— 1, we obtain that the gen-
eralization error decays very fast,

g~ exp( —KZe%3%), (36)

We performed simulations in the diluted Ising case
=1 and in the case df =2. Results are averaged over 10
samples andN=3000. In Fig. 4 the development of the dis-

PHYSICAL REVIEW E 64 046109

0.6

0.4

In[-Inag)]

02

FIG. 4. Simulation results of;(A) andpy (O) vs « in the
diluted Ising case. Solid lines are the numerical inteqratss. (14)
and (32)]. Inset: If—In(ey)] vs a obtained in simulations foL
=1 (circles andL =2 (triangles with N=3000. Solid lines are the
least squares fit. The slope was found to be 0.33 in the cake of
=1 and 0.38 in the case &f=2.

The inset of Fig. 4 shows the decay of the generalization
error for L=1 (circles and L=2 (triangles. We plotted
In(—Iney) as a function ofa and according to the above
analysis, Egs(34) and (36), the slope of the linear curve
should be independent &f and equal to 0.30, whereas the
constant in the linear formula dependslanWe obtained in
simulations for L=1, 0.33:0.01, and forL=2, 0.38
+0.01. Considering the fact that we are dealing with an ap-
proximation that is valid only in thee—o and simulations
obtained are at finiter, the results are comparable with ana-
lytical predictions. The generalization error of the clipped
version for largere (a>7 in our casggives better results

than those predicted by the analysis. Its values are exactly

zero due to the finite size effects discussed in Sec. V.

Following the same arguments used in order to find an
estimation of the number of examples needed for gaining
perfect learning, one finds that in the case of continuous
output s~ In(In N). It is obvious from the analytical calcu-
lations and the above simulations that clipping a continuous
vector in order to learn a finite depth teacher results in ex-
tremely fast learning. The learning in finite dimension is
characterized byy;, above which one gets perfect learning
of the discrete vector. All of these unique characteristics of
discrete learning disappear as soon as the weight depth is of
the order ofyN, as found in Sec. VI.

VIIl. CONCLUSIONS

crete as well as the continuous order parameters as a function

of a in the case of. =1 are presented. The solid lines are the

analytical numerical integrals of E¢32). Note that the tran-

In this paper, we presented an analysis of the simplest
neural network, the perceptron, that learns from examples

sition in this scenario is from a poor generalization of thegiven by another perceptron, the teacher, which is confined
clipped version compared to that of the continuous one, to o a discrete space. In fact, we used two students; a continu-
situation in which the clipped version has a better perfor-ous precursor and its clipped version.

mance and it occurs in the same~0.92 as in the binary

unit. This quantity is related to the clipping rule and is inde-

pendent of the specific transfer function one tries to learn.

We analyzed the new set of order parameters arising from
the clipping method. We discussed the issue of how to clip
and what set of limits\; is the best choice. We found that it
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depends specifically on the kind of optimization one im-p;—1. In that regime the fast decay that characterizes the
poses. We showed that during the very first step after reactclipped learning appears.

ing some overlappt, a transition occurs and the clipped  All discrete computers actually correspond to a similar

version results in a better performance then the nonclippegituation, where all available properties have a finite repre-
one, i.e., the benefit from the clipping is evident only aftersentation. The machine uses some kind of clipping by round-
the learning is nearly accomplished, after gaining lasgge N9 the numbers. In fact, the process carried out by comput-
For optimizing the learning time, by means of minimizing €S updates the clipped version by adding a continuous
the generalization error for a given finitg the best value is duantity to each weight component that depends on the mis-
given by minimization ofp,, with respect tox.. In the diluted match between thdiscretestudent and the teacher. The next

Ising perceptron, for instance, the optimal value for bette>eP IS rou_ndlng the student's welghts. In such a scenario, a
precursor isnot used. In analysis of the latter, one has to
performance aroundp;~0.9 was found to be\;

. . make use of different method than the one presented here
~0.425/Q,/T. These results suggest that it is possible 10, it js heyond the scope of our analysis. An intermediate

optimize the generalization error of the clipped perceptronase where there is a precursor but its updating is done ac-
by the choice of a dynamical;=A\,(«). In this paper we cording to the clipped version has been analyzed in Refs.
introduce the limits that result in the fastest decrease in thepg 27, However, even if computers use larger memory
limit «—o0. To conclude, choosing the limits that give the space for the calculations during the learnitey kind of
fastest decrease is given in E§1) as explained in Secs. IV “continuous” precursoy and give final results by limited
and VII. parametergrounded onegsand hence the learning procedure
As one can see from the definitions in E8), it is natural is a kind of finite space, there should be difference between
to choose the continuous weight vector as the one that is nolhe expected results in the continuous machines and the ac-
constrained to a hypersphere, than to choose a vector cotual results in the finite machines. The difference between
strained to a hypercube space. It was shown that in the cale learning in the continuous student and the learning in the
of storing random patterns, pretraining a continuous studerglipped one, as predicted here, can be significant only in the
whose weight vectors are constrained to the volume of &— regime or small depth. Visualizing them is usually
hypercube results in a better performari@@ Open ques- impossible since they are smaller than the measurement
tions remain: what is the quantitative benefit that one carscale.
gain in a learning procedure by using the cubical constraint?;
and can a learning strategy be designed that fulfills this con-
straint? Discussions with W. Kinzel and M. Biehl are acknowl-
We studied the case of a very largeand show a scaling edged. We would like to thank M. Biehl for a careful reading
relation betweerl and N arising from the analysis. Fdr  of the manuscript. We are grateful to A.C.C. Coolen for
~0O(y/N) the learning curve is the one typical of the con- bringing to our attention Ref27] and for fruitful discus-
tinuous case. However, it should remain clear that learning isions. The research was partially supported by the Israel
the same as having a continuous student undess> and  Academy of Science.
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