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Phase diagram of the two-dimensionak:J Ising spin glass
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The +J Ising spin glasgprobabilitiesp and (1-p) associated with ferromagnetic and antiferromagnetic
couplings, respectivelyis studied by applying a real-space renormalization-group technique on a hierarchical
lattice that approaches the square lattice. Within such a procedure, there is no spin-glass phase and only two
finite-temperature phases are found, namely, the paramagnetic and ferromagnetic ones. In spite of a reasonably
small computational effort, an accurate paramagnetic-ferromagnetic boundary is presented: the estimate for the
slope atp=1 is in very good agreement with the well-known exact result, whereas the coordinates of the
Nishimori point are determined within a high precision. Below the Nishimori point, such a boundary is not
strictly vertical—contrary to the usual belief—in such a way that a small reentrance is found at low tempera-
tures.
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[. INTRODUCTION with a critical point, unstable along the phase boundary,
which is probably the simplest critical point appearing in a
In spite of a large effort dedicated to the spin-gléS§)  two-dimensional system at both finite temperature and finite
problem[1-3], it still remains as a great challenge in the disorder strength25]. One of the results due to Nishimori is
physics of disordered magnets. Some points are currentiihat if one considers a given value pfsatisfying Eq.(1),
accepted as satisfactorily understood; for example, differentorresponding to a point inside the paramagnetic phase, then
numerical approache$4—14], suggest that the nearest- the ferromagnetic order parameter should vanish for all tem-
neighbor-interaction Ising SG on a cubic lattice presents geratures. Such a result implies that, below the Nishimori
phase transition at finite temperatures. Although some workpoint, the border of the ferromagnetic line should be either
claim a possible phase transition at finite temperaturegertical (parallel to the temperature axisor should bend
[15,16], the majority of the investigations carried out for the towards higher values gf. If one definep, as the value at
same model on a square lattigg9-11,14,17-24,26—-300  which such a critical frontier meets the zero-temperature
not find evidence of a SG phase at finite temperatures. Eveaixis, then one should hayg=py . If the inequality holds,
though the Ising SG on a square lattice may seem a triviathen one should have a reentrance within a given range of
problem (due to the absence of a finite-temperature SGralues ofp: for the two-dimensional case, by lowering the
phaseg, it has attracted the attention of many workers re-temperature, one should go from a paramagnetic state to a
cently, either for its chaotic behavif22,23 or for its critical ~ ferromagnetic one and then back to a paramagnetic phase.
behavior at zero-temperatufé4,17—-20,24,28,300r along  However, for sufficiently high dimensions, one comes into a
the paramagnetic-ferromagnetic frontj@d,24—27,29 SG phaséwhich presents a higher entropy as compared with
In the case of atJ Ising spin glass, with probabilitigs  the ferromagnetic oneat low temperatures; the terminology
and (1-p) associated with ferromagnetic and antiferromag-reentrance has been also used in such a case, even though
netic couplings, respectively, there exists a line along whictbeing not accurate, since one does not come back to the same
the internal energy can be calculated exactly; the so-calleghase by lowering the temperature.

Nishimori line [31,37 is defined in the plane temperatufe Even though there are some theoretical argumigatkin
vs probabilityp as favor of the so-callecho-reentrance hypothesisupporting a
vertical straight line below the Nishimori point, i.ep.
p =py), there appears to be no fundamental reason why reen-
exp(2J/kgT) = -1 (D) trances should be ruled out of thermodynamic systE85&

Although some numerical investigatio29,36—39 were

The intersection of the Nishimori line with the border of the N0t able to detect a reentrance in the two-dimensional
ferromagnetic phase is called the Nishimori pojnbodi- Ising spin glass, the possibility of small deviations between

nates py,Ty)]; for sufficiently high dimensions, in such a Pe and py should nqt be discarded. Th_e most _recent finite-
way that a SG phase exists at finite temperatures, it has bedgmperature numerical approaches yield estimates of the
proposed that the Nishimori point should coincide with theNishimori point that are very close to one another, e.g., se-
multicritical point where all phases of the model meeti€S expansion§21] [py=0.886(3), Monte Carlo analysis
[25,33. In the two-dimensional case, even though the SEf nonequilibrium relaxatioh27] [ py=0.8872(8), and nu-

phase is absent, the Nishimori point is expected to coincidé€rical transfer matrix(29] [py=0.8905(5). However,
such estimates fopy are slightly smaller than those @f.

—_— obtained through a recent finite-size scaling analysis of exact
*Email address: nobre@dfte.ufrn.br ground states[24], which find p.=0.896(1) or p.
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peratures of both pure ferromagnetic and antiferromagnetic
Ising models on a square lattice. Such a hierarchical lattice
has been employed successfully to approach the square lat-
tice with a large variety of physical systems, such as aniso-
tropic bond percolation, anisotropic Potts ferromagnets, and
Ising antiferromagnet$40—44. Therefore, the model de-
fined through Eq.(1), on the hierarchical lattice defined
above, is expected to be a good approximation of the

2 Ising SG on a square lattice.

The RG procedure may now be carried; as usual, it works
inversely to the generation of the hierarchical lattice, i.e., it
transforms the cells in Fig. 1 into elementary bonds. Herein,
we shall work with the dimensionless exchange energies,
Kij=J;j /kgT; the recursion relation involving the effective
exchange energl; and the set of original coupling,,}
of a basic cell is given by

oL S10, exp(A)
1272 expBy) |

(4)
FIG. 1. The basic cell of the hierarchical lattice with fractal
dimensionD=2. The solid circles denote the internal sités be
decimated in the renormalization procgsshereas the open ones
represent the external sitésonnected to other cells of the lattjce

where
A1=Kig+Kg+ Kip+ Kot Ky +Kopt Ky,

=0.8942), depending on the type of scaling employed. The
above results suggept>py, leading to a possible break-
down of the no-reentrance hypothesis.

In the present work we consider theJd Ising spin glass
on a hierarchical lattice that approaches the square lattice. By
applying a renormalization-group approach, we are able to
increase the accuracy, with respect to the previous works, in

Ar=—Kiz— K+ Kip+ Kot Kyj+Kogt Ky,
A3=Kig+Kg+ Kip+ Kot Ky =Ko=Ky,

As=Kiz—Kg+ Kip— K=Ky + Koyt Ky,

the estimation of the critical points. A precise phase diagram
is presented; in particular, it is shown that below the Nishi-
mori point the phase boundary is not strictly vertical. In Sec.
Il we define the model and the numerical formalism; in Sec.
[l we present and discuss our results.

IIl. THE MODEL AND THE NUMERICAL PROCEDURE

Let us consider the Ising spin glass defined in terms of the
Hamiltonian,

”Z‘% JiSS; (S==1), 2

where the coupling constantg);;} are quenched random
variables following the bimoddbr *+J) probability distribu-
tion,

P(Jij)=pd(Jij—I) +(1—p)a(dj;+J). 3)

The sumz.;;, is restricted to nearest-neighbor pairs of spins
on a hierarchical lattice generated in such a way that the (
+1)th hierarchy is obtained by replacing each single bond of
the nth hierarchy by a cell like the one exhibited in Fig. 1
[40]; such an operation corresponds to a scaling fabtor
=3. The fractal dimension of the cell in Fig. 1 B

=In9/In 3=2. Under a renormalization-groyRG) transfor-

As=Kiz+Ka—Kip— Ko+ Kij— Kogt Ky,
Ag=—Kiz— K+ Kip+ Kot Kij =Ko=Ky,
Ar=—Kjz+ K31+Ri2_K12_R11+K24+ Kaj,
Ag= _KiS_KSl_RiZ_K12+R1j_K24+ Kaj,

Ag=Ki3—Kg+Kip— KKy =Ky Ky,
Aso=Kiz+Ka—Kio— K12+R11+K24_ Kaj,
A=Kiz—Ka— Ko+ K12_R11—K24+ Kaj,
Ar=Kiz—Ka—Kip+ K12_R11+K24— Kaj,
Agz= —Kiz+Ka—Kip+ K=Ky = Kogt Kyj
Ag= —Kiz—Kg—Kip =Kt Kyj+ K= Kyj
A= —Kiz+ K31+Ri2_K12_R11_K24_ Kaj,

Are= —Kiz+Ka—Kip+ K12_R1j+K24_ Kaj,

with K;, and le representing effective exchange energies

mation, this cell preserves antiferromagnetism and reprofi.e., the sum of the exchange energies associated with each
duces several well-known exact results, e.g., the critical temef the two parallel paths connecting siteto 2 and 1 toj,
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respectively. The B’s (i=1,...,16) may be obtained from 8.0x10° o™
~ UX 7
the respectivé\’s by inverting the signs precedirig;; and o
Kgj -
At zero temperature, the recursion relation involves the 6.0x10"1
effective couplingdj; and the set of original couplinds,} °° o
in such a way that 4.0x10° .
‘]i,j:%(cmax_Dmax)a 5 b °g R :‘?
20510°f [0 og 0
where ° ° ogp °
i % oo o ° 00000 o
0.0 2 P o ) o O O
Cmax: ma)(Cl ,C2 P 'Clﬁ)’

0 100 200 300 400

Dimax=maxDy,D5.....D1e), sample number

Ci=Ilim kgT(Aj); D;j=Ilim kgT(B;); (i=1,...,18. FIG. 2. The first moment of the distribution of exchange ener-
=0 =0 gies after 20 RG iterations, for each single sample, for a typical
(6) point close to the critical frontie(p=0.98, kgT/J=2.1175. The
V\}najority of sample478.75% presented a convergence to the para-
magnetic attractor, whereas a small fraction of sam24s25%
presented a convergence to the ferromagnetic attractor. Large

In order to find the phases of the model, one should follo
numerically the probability distribution associated with the

e)fCh_aEgg benergletEZl]MSucT a perOba?él(lr%/ d]:smbu“r?_n hls square-root deviations with respect[to{"],, ,5{" , are observed;
mimicked by a set oV real num ergKi™}, from whic in this case, one finds that the ra#§"/[ o{"],, remains essentially
one may compute at each iteration step unchangedapproximately 0.15for iteration numbersi=15.

M
1
U(”?):ME (KMM  (m=1,2,..), (7)  proach, for increasing values of [¢{"],,—0 in the para-
- magnetic phase[ag‘)]avaoo in the ferromagnetic phase,
wheread o{"],,—0 (m odd) and[o{"],,— (meven in

which are expected to approach, in the linMt , the
b PP 7 the SG phase.

moments of the distributio®(K;;). In order to reduce the . . e .
For a more reliable identification of a given phase bound-

dependence OfTETT) in the particular sequence of random ry, one should also monitor the square-root deviations asso-
numbers, such quantities were computed, for each RG ste@,y’ q

: n P n)y.
over N, different sampleqdifferent sequences of random lated V‘(’Lt)h eacrﬁaﬁn)]a_v (hergln denoted by); large val-
numbers, after which, the averages over samples were con!€S 0fdy” may be an indication that only a small number of
sidered,[aﬁﬁ‘)]av. _samples are contributing S|gn|f|cantly_ to _the sample average

For given values of temperatufieand probabilityp, the " [0 ]ay - As an example, we show in Fig a typical case,

RG process starts by creating an initial pool wihreal ~ With the sample-to-sample fluctuations of{*” for the
numbers{K(®} produced according to a bimodal probability Present model, in the neighborhood of the critical frontier
distribution similar to the one in Eq3). An iteration con- ~Paramagnetic/ferromagnetip=0.98; kgT/J=2.1173. For
sists inM operations, where in each of them one picks ranthe particular case exhibited in Fig. 2, the fact thaf; ],
domly nine numbers from the po@ach chosen number is increase under successive RG iterations is due to a conver-
assigned to a bond in the cell of Fig). ib order to generate gence to the ferromagnetic attractor of a small fraction of
the corresponding effective coupling according to E4.  samples; the great majority of samplearly 80% present
After that, one gets a new pool representing the renormalizethe momentss(") of Eq. (7) with a convergence to a para-
probability distribution, from which one may compute the magnetic attractor. In cases like that, the corresponding point
moments in Eq(7). Such moments are stored for each itera-under study will, herein, be considered inside the paramag-
tion stepn, and each individual sample, in such a way thatnetic phase, instead of in the ferromagnetic one.

[oM],, may be calculated.

It should be mentioned that the bimodal distribution pre-
sents a rapid proliferation of delta functions under the RG
procesd 14]; inside the paramagnetic phase, the delta func- We have considered pools of six¢=800000 and our
tion at Kj;=0 (which usually appears throughout the RG simulations were repeated fdt;=400 samples. Within the
procedurg increases its weight after each renormalization,present numerical approach, we found no evidence of a SG
whereas inside the ferromagnetic phase the deltas corrghase at finite temperatures, and only the paramagnetic and
sponding toK;;>0 increase their weight under the RG pro- ferromagnetic phases were observed; the results that follow
cess. The SG phase is usually associated with a decreaserisfer to the critical frontier separating such two phases. In
the weight of the delta at the origin, whereas the deltas fomost of the cases, in order to achieve a proper convergence
both positive and negativ€;; predominate. Therefore, under to one of the attractors, 20 RG iterations were enough, al-
the RG process the averaged mome[rat&ﬁ)]av should ap- though in some cases, up to 30 RG iterations were necessary.

IIl. RESULTS AND DISCUSSION
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TABLE 1. Estimated critical temperatures of the two-
dimensional=J Ising spin glass for several values mfabove the 1.0+ "
Nishimori point. \ "
0.8 Y
p keTe(p)/J /
0.995 2.23180.0005 0.6 —0—n, (a)
0.990 2.1941%+0.0008 0.4 —o—n,
0.980 2.11650.0011
0.970 2.036%0.0015 0.2
0.950 1.8674:0.0020 /
0.930 1.6796:0.0025 0.04 / o
0.910 1.4506:0.0035 . . . .
0.889 0.890 0.891  0.892
For a specific sample, a point in tkyg T) plane was consid- P
ered inside the paramagnetferromagneti¢ phase if, at the
end of the RG process;{V <1072 (¢{">10). Let us now 1.0
define np (7g) as the fraction of total number of samples /
which, at the end of the RG process, have converged to the 0.8 -
paramagneti¢ferromagnetitattractor. We have associated a /
point in the(p, T) plane with a specific phase only when the 0.6-
corresponding fraction of samples, as defined above, was —O—n, (b)
greater than 0.8; this ensures small ras§8/[ (" ],, [e.0., 04l M
for the case m=1, a point with ->0.8, presents
&V o{M],, slightly constant fon> 15, fixed to a value not 0.2-
greater than 0.05 The uncertainties in our critical-point es-
timates (see Table )l correspond to situations where 0 0.04
<7p, 7<0.8. . . .
As mentioned before, the hierarchical lattice considered 0.891 0.892 0.893
reproduces the exact critical temperature of the two- p
dimensional ferromagnetic Ising model; in Table | we dis-
play typical values of critical temperatures found for differ-
ent values opy<p<1. A good test for the present approach 1.0+ o\o
is to compute the reduced slope of the critical frontiepat d
=1; considering the exact critical temperaturepat 1, to- 0.8+ \o
gether with the data fop=0.995 andp=0.99 of Table I,
one finds 0.61 e, ©
|l —®
o=t AT 500,03 (8) - F
T(L) dp |, R 0.2
which compares rather well with the exact resust, 0.0
=2v2/[In(v2+1)]~3.209[45]. 0,894 0.895 0.896
In order to compute the Nishimori point, we have applied p

the above-mentioned RG procedure along the Nishimori line
[Eq. (1)]; our estimate igsee Fig. 8]

kgTn
J

pn=0.8902£0.0004, =0.9557:0.0018, (9)

FIG. 3. The fraction of the total number of samples which, at the

S . ... end of the RG process, have converged to a paramagngtjcdr
which is in good agreement with the most recent flnlte'ferromagnetic {e) attractor, as function op. The critical points

temperature numerical approaches. Indeed, our estimalge yefined byye= 7 and our uncertainty regions were considered
agrees well with the recent num_encal transf_er—matrlx aPfor 0< 7p, 7¢<0.8.(a) Along the Nishimori line(estimated Nishi-
proach[29] [py=0.8905(5), but is slightly higher than mori point: py=0.8902+ 0.0004; (b) TemperaturésT/J=0.5 (es-
those obtained through series expansiofl] [py  timated p=0.8919-0.0004; (c) Zero temperaturdestimatedp,
=0.886(3) and Monte Carlo analysis of nonequilibrium re- =0.8951+0.0003. In all cases above, 20 iterations were consid-
laxation[27] [ py=0.8872(8). ered in the RG process.
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(20) 2.5

204
1.5

1.0 P

;N
o
k,T/J

0.5

0.0 T
0.7 0.8

P

0 loosang(l)e ns?lzber‘mo FIG. 5. The phase diagram of the two-dimensiornal Ising
spin glass, as obtained by the present approach. Only two phases

are present, namely, the paramagnécand the ferromagneti@)

ones. The dashed line represents the Nishimori llBe. (1)] and

the black circle denotes the Nishimori point.

FIG. 4. The first moment of the distribution of exchange ener-
gies after 20 RG iterations, for each single samplg-a0.892 and
three different temperature@) Along the Nishimori line(squarek
(b) kgT/J=0.5 (circles; (c) Zero temperaturdtriangles. For a
better visualization, the samples wit§?®<10~° were not repre-
sented. (p,J)<(1—p,—J), and the present RG approach preserves

antiferromagnetism, one has a symmetric phase diagram

Let us now turn to the critical frontier for temperatures \yjth respect to the axip=1/2, with an antiferromagnetic
lower thanTy . In Fig. 3 one clearly sees that the fractions of phase appearing for low values pf
sampleszp and 7 indicate a critical frontier bending to- |t should be pointed out that the present method, although
wards values op greater tharpy . In Fig. 3@ one hasyp  peing very suitable for investigating critical frontiers, is not
and » along the Nishimori line, in the neighborhood of the 456priate for studying the critical exponents of the model
Nishimori point, leading to the estimate of E@)' I_n FI9.  considered herein. Under successive RG iterations, the cou-
‘ri(b) one has such fractE)ns fd{BT/‘]:.O'S’ yielding (p pling probability distribution changes rapidly, leading to a
t?1(e)'Srgit::.c?;__lOp.)gioncidra’ltks-(la—ﬁé\]t;rgbsg.ra't:l:?én Fig. gc) one gets proliferation of delta funct_ions; this certainly yielgl_s critical

' exponents that are very different from the true critical expo-
nents of the+J Ising spin glass on a square lattice.
p.=0.8951+ 0.0003. (10) Finally, we have studied the-J Ising spin glass on a
hierarchical lattice that approaches the square lattice. A

The above result agrees well with a recent finite-size scalinfenormalization-group method is employed, and the evolu-
analysis of exact ground statg®4], which obtain p. tion of the probability distribution associated with the cou-
=0.896(1) orp.=0.8942), depending on the type of scal- pling constants is analyzed numerically. Within such a pro-
ing employed. Indeed, the result of Ed.0) lies in between cedure, one is able to obtain a precise paramagnetic-
such two estimates. ferromagnetic critical frontier, improving the accuracy with

We have found thap.>py, i.e., a small reentrance is respect to previous investigations. A small reentrance is ob-
observed below the Nishimori point. In order to illustrate thisserved in the critical frontier for temperatures below the
effect more clearly, in Fig. 4 we exhibit the sample-to- Nishimori point. There is always a possibility that such a
sample fluctuations of{? for a conveniently chosen value reentrance may be a peculiarity of the particular hierarchical
of p (p=0.892), at three different temperatures. Along thelattice investigated. However, taking into account the accu-
Nishimori line most of the samples have converged to theacy of the results, either nepr=1 or the good agreement of
ferromagnetic attractor, fokgT/J=0.5 one is clearly very the location of the Nishimori point, as well as the zero-
close to the critical frontier, whereas at zero temperaturetemperature critical point, with the most recent numerical
most of the samples have converged to the paramagnetjgyestigations, it is very probable that the reentrance found
attractor. As far as we knOW, this is the first time that such Qf]erein is also present in thed |Sing Spin g|ass on a square
reentrance has been observed in the present model. Due to jtice. Further numerical investigations of this model on a
small extent, in fact smaller than the error bars in some of th%quare lattice are necessary to clarify this issue.
previous numerical investigations, it might have been indis-
cernible up to the moment.

The phase diagram, obtain_ed thr_ough the present n_umeri- ACKNOWLEDGMENTS
cal approach, for the two-dimensionatJ Ising SG, is
shown in Fig. 5; for the sake of clarity, we exhibit only the  Partial financial support from CNPq and Pronex/MCT
range 0.&Zp<1.0. Since this model holds the symmetry (Brazilian agencigsis acknowledged.
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