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Space-time versus particle-hole symmetry in quantum Enskog equations
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The nonlocal scattering-in and scattering-out integrals of the Enskog equation have reversed displacements
of colliding particles reflecting that the scattering-in and -out processes are conjugated by the space and time
inversions. Generalizations of the Enskog equation to Fermi liquid systems are hindered by the need for
particle-hole symmetry which contradicts the reversed displacements. We resolve this problem with the help of
the optical theorem. It is found that space-time and particle-hole symmetry can be fulfilled simultaneously only
for the Bruckner type of internal Pauli blocking while the Feynman-Galitskii form allows only for particle-hole
symmetry but not for space-time symmetry due to a stimulated emission of bosons.
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[. INTRODUCTION from each other the particles are at the beginrigngd of a
collision. Of course, the hard-sphere gas is a special case to
The formulation of kinetic theory of dense interacting Which the theory applies. It turns out that the scattering in is
Fermi gases beyond the Boltzmann equatBE) is an on-  identical to the Enskog equation while the displacement of
going task. For a classical hard-sphere gas the main theor(%:‘-e scattering out does not have the expected opposite sign.
ical focus has been on the statistical correlations resulting i careful inspection shows that this sign problem appears

: -~ "also within all earlier approach¢8—14.
the Enskog equatiofl—7]. In contrast to the BE_’ _the CO”'. The sign puzzle has two serious consequences for the ap-
sion integral of the Enskog equation is nonlocal; it takes into

! : licability of the nonlocal kinetic equation. First, the Ensko
account that, when two hard spheres collide, their centers arp Y g 9

. . - . uation corresponds to classical trajectories; therefore it can
displaced by the sum of their radii. The particle scattered oube nymerically studied either with a Monte Carlo simulation

of its free trajectory faces its collision partner in front, while 5, by the so called molecular dynamics. The kinetic equa-
the particle scattered in the new free trajectory leaves it§iong derived from quantum statistics cannot be studied with
partner behind. This is expressed by the opposite signs Qfese methods. Second, the Enskog equation yields the hy-
nonlocal corrections in the scattering-out and Scatte””g'”arodynamic Chapman-Enskog expansion in a straightfor-
mtegra_lls. o . ward and relatively simple manng2] which allows one to
Various generalizations of the Enskog equation towardyenify the thermodynamic properties of the system. The
quantum systemg8—14] have been developed mostly in the gymmetry between the scattering in and out is a very impor-
last two decades. They offer numerous gradient correctiongnt prerequisite in separation of canceling and conserving
to the scattering integral which describe how the nonlocalantities. Without this symmetry, one can also derive con-
character of collisions contributes to smooth perturbationsggryation laws[12]: however, an extensive application of
With a typical number of gradient corrections counted inppysically nontransparent identities is necessary.
tens, a comparison of the original Enskog equation with its |, thig paper we show how the natural symmetry of the
generalizations was not possible. Enskog equation can be obtained within the quantum me-

The connection became more clear after Tastevingpanical approach to the kinetic equation. In the next section
Nacher, and Lalog13] recognized that some of the gradient \ye introduce the problem of symmetry in a naive manner
corrections obtained can be recast into effective fields angsing ad hockinetic equations for the Fermi liquid. In Sec.

renormalizations of the mass of particles, i.e., these gradienf; \ve show that the nonlocal corrections for the Fermi liquid
corrections are linked to the Landau concept of quasipartiz;e jinked to in-medium effects and provide an identity that

cles. They also show that when the quasiparticle contribugios one to achieve the Enskog form of nonlocal correc-
tions are separated, all remaining gradient contributions argyns. sec. IV includes conclusions.

proportional to various derivatives of the scattering phase

shift. These derivatives have a natural link to the Wigner Il. CLASSICAL VERSUS QUANTUM COLLISION
collision delay[15] which also describes the nonlocality of o )
collisions, although in time not in space. The problem with sign in the scattering out follows from

A kinetic equation that combines the nonlocality in time @ difference between the classical and quantum approaches
and space has been derived as the quasiclassical asymptotiescollisions. One has to recognize that a realistic collision
of nonequilibrium Green’s functionfd6,17. In [16] a back- _has a f|.n|te d.uratlomxt and to compare these two approaches
ward resummation of the gradient expansion was introducet] the time picture.
by which one obtains the scattering integral in a form recall-
ing the Enskog equation: the gradient corrections are ex-
pressed as shifts of arguments in the initf&hal) condition The simplest model system on which one can illustrate
so that one can see how long the collision lasts and how faboth approaches is a homogeneous gas of particles that form

A. Pseudoclassical approach
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short-living molecules, i.e., the system with dominant reso- ® particle

nant scattering15]. Its kinetic equation reads o—

af(t
0= [preyn- [ Pronm.

The last term is the scattering out which describes that with
the probabilityP two particles form a molecule and thus a A7
particle leaves the state of momentunThe first term onthe .~
right hand side corresponds to the decay of the molecule intc
two particles, one of them achieves momentlknThe de-
pendence of the distribution of moleculEsis also covered CLASSICAL QUANTUM
by the balance equation

FIG. 1. Scattering out for the classical and quantum concepts of

IF(t Fo(t collisions.
aLt():f Pfy_p(t)f () — Z(t). (2)

B. Quantum approach

One can see that the scattering out of Es), obtained
hin pseudoclassical assumptions, requires the blocking
factor at future timet+A,. The quantum approach, how-
ever, does not allow one to look into the future and treats the
same process differently.
_ (7 — A In the quantum statistics, the scattering out is described as
Fr()= fo dre tf Plc-p(t=7)fp(t=7) a coIIisior? of two holes; see Fig. 1. In ourgsimple model, two
holes form a hole-molecule which also exists for. When
%f P (t—A)f (t—A,) 3) this holetmolecule decays in_to two holes, these ho!es annihi-
K=p e v late particles of corresponding momenta. Accordingly, the
scattering out is described by the hole-hole interaction during
The second line is the gradient approximation which is sufthe time interval fromt— A, to t. An ad hockinetic equation
ficient for our discussion since all quantum approaches to theorresponding to the quantum picture thus reads
nonlocal kinetic equation are restricted to it. Using E3).in

The last term describes the decay of molecules with Iifetiquit
Ay, the first term on the right hand side their formation.
The balance equatiof2) for molecules is solved by

oo . af(t)
Eqg. (1) one gets a kinetic equation, ;E ZJ' Py q(t— Ao, q(t—AJ[1—Fi()I[1—F(1)]
af(t)
#=JA Pfk_q(t—At)fp+q(t—At)—f Pf(t)fo(t). _f PR(OF(D[1—fi_o(t—Ap)]
(4)
X[1=f,.q(t=Ap]. (6)

The scattering in has a retarded initial condition reflecting
that the molecule exists from- A, to t. The initial condition
of the scattering out is associated with time instgnthe
corresponding molecule thus exists fraro t+ A, .

In dense Fermi systems, the final states of collisions migh
be occupied and the collision is then prohibited. Let us . i .
modify kinetic equatior(4) by ad hocPauli blocking factors the nonlocal corrections reveal a paradox: The space-time

; : . _ symmetry and the particle-hole symmetry lead to contradic-
ggéﬂt[rlo%uced by Nordheiffi8] and by Uehling and Uhlen tory results. Indeed, Eq$5) and(6) are different and for a

general scattering rafethey correspond to different thermo-
dynamic properties of the system.

Note that Eq(6) differs from its pseudoclassical counterpart
(5) by the sign of the nonlocal correction. This is the time
modification of the sign problem found for the quantum gen-
?ralizations of the Enskog equation.

The abovead hocimplementations, Eq45) and (6), of

afi(t) f
ot~ ) Pleat= A0 gt A0 = (DL~ Fp(b)] IIl. IN-MEDIUM EFFECTS
To resolve the paradox of symmetries, one has to take
_f PR(DTp(O[1= i q(t+Ay)] into account that the scattering ra®etself is a function of
the occupationP[ f]. This dependence represents an internal
X[1=Fpiq(t+A]. (5 Pauli blocking of states during collisions, which is called the

in-medium effect in nuclear physics. In a heuristic manner
The time arguments of the blocking factors 1 correspond one can indicate what kind of internal Pauli blocking is con-
to the ends of the time intervals during which the collisionsistent with the Uehling-Uhlenbeck blocking of final states.
happens because the blocking is attributed to the final states. Since the scattering process lasts over the time interval
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from t— A, to t, the mean value oP equals its value at the All methods of quantum statistics enforce the causality
center timeP=P(t—1/2A,); see[16,17. Comparing Egs. Using backward propagation of holes instead of the forward

(5) and(6) we find that the two symmetries are consistent ifPropagation of particles into the future. To link the space-
time and particle-hole symmetries, we will use the optical

theorem which allows us to reformulate the causal internal

1
f P(t— EAt frOf(O[1—f_q(t—Ap] propagation during the collision into the anticausal one.
In the algebraic notation of the double-time Green func-
X[1—fpiq(t—Ap] tions [20—23, the causality is reflected by the order of op-

erators retarded-correlation-advanced. The time cuts of the

1 retarded and advanced operators restrict all time integrals to
:f P(t+ §At f(D (DL = fig(t+A0)] the past. The anticausal expansion is then characterized by
the reversed order advanced-correlation-retarded. Without
X[1=fpiq(t+AY]. (7)  introducing unnecessary details, we can link the causal and
anticausal expansions using the identity for the scattefing
Within the gradient approximation this condition reads matrix,
TRATA=TAATR. 9
J Pfkfp(l_fqu)(l_fqu) o . .
This identity represents two forms of the optical theorem,
dinP d ImT=TRATA and ImT=TAATR. Their derivations are in
(T+Zaln[(1—fk_q)(l—fp+q)] =0. Appendix A.

The retarded/advanced matrix TR describes an indi-
(8)  vidual binary procesg23]. The two-particle spectral function
A includes the internal Pauli blocking. In this paper we dis-
From this equation we see that the space-time and particleuss two particular approximations of the internal Pauli
hole symmetries are consistent when the time dependence plocking, the Bruckner approximation,
the in-medium effect is given by Pauli blocking of Bruckner

type, P[(1—f)(1—f)]. According to this type of Pauli Ag(ty,tr,k,p)~(1—f)(1—fe w72, (10)
blocking, the internal states of the short-living molecule exist o o

Agr(ty,ty k,p)=(1—f —fye (et szt (11)
A. Causality

For both approximations we will derive kinetic equations

peculiar from the point of view of the causality. Since the With the space-time symmetry of the nonlocal scattering in-
scattering-out process ends at titaed,, the scattered par- tegral. We will see that the kinetic equation obtained within
ticles have to have an available final state at this time. 1{1€ Bruckner approximation has the pseudoclassical form

other words, to determine whether the collision is allowed by\>); therefore it can be treated with numerical tools based on

the Pauli exclusion principle, one has to look into the future the classical concept of trajectories. In contrast, the kinetic

In this way, the Pauli blocking seems to create an anticasugdvation within the Galitskii-Feynman approximation in-

step. cludes a nqntrlwal term due to t_he stlm_ulated emission of
In general, the causality of the perturbative expansion rePosons which essentially complicates its numerical treat-

flects the tendency of a many-body system to reach its equMent:

librium state. An anticausal description of the whole system

is thus impossible because of the dissipative processes. Ac- B. Collision integral from Green functions

cordingly, we will take the causal expansion and the subse- | gt ys first recall how the nonlocal scattering integrals
quent particle-hole symmetry represented by Ei).as a  relate to more general relations of quantum statistics. We
well justified starting point. . . ~ demonstrate it on the method of nonequilibrium Green func-

The Enskog-type kinetic equation with the space-timegjons. The scattering-in and -out integrals result from anti-

symmetry of the scattering integral applies only under récommutatorg., .} of the Kadanoff and BayrtkKB) equation
strictive assumptions. The first assumption is that individuaj4_2¢g

binary collisions are treated as if they were isolated from the

rest of the system. The dynamics of the binary collision is  {G”,2<}—{G~,27}={G”,G™-TR(G~G)T#}
then reversible and the causal and anticausal expansions on e Ry oA

the space-time scale of a single collision are equivalent. This —{G7,G7TH(G"GT)TT.
assumption is met in all approaches to the kinetic equation (12
except for the studies of the so called collisional broadening.

The second assumption is that the internal Pauli blocking oHere,G= andG~ are particle and hole correlation functions;
collisions is of the Bruckner type. This point is discussedthe > denotes thaG~ = closes one loop of the two-particle
below. function on its right hand side. ThE matrices and pairs of

The retarded scattering-out integral of Enskog typeis
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single-particle correlation functionsG(G) obey standard b 1d¢ 19¢ b
two-particle operator products. A==5, Ae=—5— Ak=5—0—, Az=——-,
; L - Q) 2 gt 2 or ak
With respect to our treatment, it is sufficient to know that
the particle correlation functions are proportional to the qua-
. - L ; J J J J J
siparticle distributionG=(ty,t,,k)~ f,e ' (t1712); therefore AZ:_¢ _9¢ __d’, Ay=— ¢ _ _¢ (16)
they represent the initial states of collisions. Similarly, the dp 99 ok gk aq

hole correlation functions are proportional to the hole distri-

i > ~(1— —le(ti—tp)- -
bution G (ty,t, k)~ (1~ fi)e ; therefore they de the scattering integral of the Boltzmann equation is not es-

scribe the final states including their Pauli blocking. sential for our discussion. It is important to realize that the
According to the initial and final states, the first and sec- i P

ond terms of the right hand side of E6L2) can be inter- collision is of finite durationA,. During this time particles
preted as the scattering-in and scattering-out integrals, rean gain momentum and energy e due to the medium

spectively. Note that both scattering integrals are causa,ffeCt on the collision. Three displacemedig, , correspond

having the order retarded-correlation-advanced of the two™ initial and final positions of wo coliiding particles/holes.
The quasipatrticle kinetic equati@h3) covers three ingre-

particle functions. At the same time, the scattering-in and

scattering-out integrals are linked via the particle-hole Sym_dlents of the kinetic theory. First, the scattering integral in-

metry. One can see that upon the interchange of particles ar%Udes _the_ medium effect on the_ scattering rate. Seco_nd, the

holes, > < <, the first term changes to the second one ancpcattering integrals are nonlocal in space and time. Third, the

vice versa. Equatiofl2) is thus a precursor of Ed6). quasmgrtlcle energy represents _the momentum dependent
Using the(extendedl quasiparticle and quasiclassical ap- mean field. With respect to the included nonlocal correc-

- . . . T jons, it is important that the quasiparticle energy is defined
proximations and keeping gradients in the scattering integr -
of the KB equation, one obtains a nonlocal kinetic equatioﬁ}‘rom the pole_ of the_ propagator, not from the_varlatlon of the
[16], energy density. This difference has been discussd@7h

The scattering out of Eq13) is the particle-hole mirror of
of, e 9fy  deq ofy the scattering in; accordingly it is not the space-time mirror

o Tk ar . ar ok Tty f,(1- —f, found in the Enskog equation.
ot "ok ot or ok fp fafa (1-T1)(1-13) g eq

A detailed understanding of these numerous corrections to

C. Anticausal collision integral

f Pr(1=13) (=T ), . Our aim is to rearrangél3) so that it will include the
(13) scattering out as the space-time mirror of the scattering in;
briefly, it will be the symmetry assumed by Enskog. It is
Algebraic operations needed to arrive at Eb) are rather ~advantageous to make this step already on the level of Green
extensive due to numerous gradient contributions to the scafunctions. Accordingly, we rearrange E¢l2) so that its
tering integrals. These gradient contributions are expressegfattering-out part is written in terms of the anticausal ex-

via shifts of arguments as pansion.
Further progress depends on the approximation ofTthe
fi=f(k,r,t), matrix. Let us first approximate the matrix by Bruckner’s
reaction matrix for which the two-particle spectral function
fo=f(p,r—A,,t), is Az=(G~G~). Formula(10) is the quasiparticle approxi-
mation of (G~ G”). Using identity(9) in the second term of
fy=f(k—q—Ax,r—Ag,t—Ay), Eqg. (12) one finds

{G>,2<}_{G<,2>}:{G>,G>°TR(G<G<)TA}

—{G=,G=TAG”G™)TR}.
The differential cross section is proportional to the square of (17)
the amplitude of th& matrix

fa=f(p+tg—Ax,r—A,t—A)). (14

Expression(17) has the desired explicit space-time sym-
dp dqg . metry in contrast to the explicit particle-hole symmetry of

T amETolat e e e 2he) Eq. (12). To see it in detail, we use Eq17) in the KB
A A A2 equation and employ the same steps as aljguasiclassical
_ K K t and quasiparticle approximation® arrive at
X|T el+ez—AE,k—T,p—T,q,r—Ar,t—i) a P PP 9

afl (961 (91:1 F?Gl (9f1 o 3
15 I _ _ B 3
= gt Tk ar  ar ok P fsfy(1-f)(1-1;)

The arguments of the quasiparticle energieare identical

with Eqg. (14). All nonlocal corrections are given by deriva- —J P+(1—f3+)(1—f;“)f1f2+.
tives of the scattering phase shift ¢
=ImInTR(Q,k,p,q,t,r) [16], (18)
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The shifts in the scattering out have opposite signs, As mentioned, the Galitskii-Feynman approximation in-
cludes processes that go beyond the scope of naive kinetic
fI=f(p,r+A,,t), equations. While terms proportional t&G{G~) exclude

correlation in the occupied phase space, terms proportional
to (G=G™) describe stimulated correlation by already exist-
ing pairs. These processes lead to the superconducting phase
transition at low temperatures; therefore the system cannot

fy=f(k—q+Ag,r+A5,t+A),

fa=f(p+q+Ag,r+A,t+A)), (19 be treated as a sum of single-particle excitations on the
Fermi liquid ground state. Kinetic equatiof and (6) are

It can be indicated why the change of the causal picturdnclude the stimulated processes. _ o
into the anticausal one results in the flipped signs of all non- Even with the stimulated processes included, the kinetic
local corrections. First, one can use a formal argument. Writégquation can be rearranged into the space-time symmetric
ing the T matrices as products of the amplitude and theform. Agaln,. we make the regrra_ngement on the Ievgl of the
phase, TR=|T|e'* and TA=|T|e ¢, one can see that the Green functions. The scattering integrél®) can be written
interchange of retarded and advandeahatrices merely flips SO that their final states are consistent with the Galitskii-
the sign of the phase shit. As all A’s depend linearly on Féynman spectral function,
¢, the gradient contributions of the anticausal scattering out > 5 _ (e SPI_ (0> oo TR <A< TA
have signs reversed with respect to the causal scattering in. (G727} {6727} ={C7,G - THG G T

Second, there is a physical reason for the formal argument —{G=,G=oTRG~G)TA}
above. The amplitude of th& matrix represents a filter e Ry
which selects the probability of individual channels. The fac- —{G=,G™T(G"G")
. |¢ . . B .
tor of the phase shifé'? is a unitary transformation which —(G<G)TA). (20)

applies to individual components of the wave function in a

manner that parallels the evolution operator. Products like ] o )
ei®...e ¢ correspond to transformation from one place to 1he last term includes the Galitskii-Feynman two-particle

another. anag 4. - .e'% to the backward one. spectral function and can be converted into the anticausal

For the system of classical hard spheres, the kinetic equé)jctur_e. The causal/anticausal forms of the resulting kinetic
tion (18) reduces to the Enskog equation in the second ordefduation read,
virial approximation. This limit includes three simplifica-
tions. First, the Pauli blocking factors vanish in the classical Jdf; dey df; dey 9ty o _
limit, 1 —f—1. Second, the quasiparticle energy reduces to 5t " sk ar  or W:f P™ fafy(1-f1—13)
the kinetic energy of free particles, — k2/2m. For this limit
it is important that the quasiparticle energy is defined from
the pole of the propagator. Landau’s definitionedfased on
the variation of the energy density yields a nontrivial quasi-
particle energy even for the classical gas of hard spheres.
Third, from the hard-sphere scattering phase slft: 7 ) ) ) )
—|q|D, whereD is the diameter of colliding particles, one  1he particle-hole symmetric forrtwith superscripts-)
finds the expected values of tis. The collision delay is ©an be recast into Eq6) by a subtraction of stimulated
zero,A,—0, there is no energy/momentum gai; «—0,  Processes, propolrtlonal fig T, f_lf2 on.both S|des..|n con-
during collision, and none of the particles move in space{rast, the space-time symmetric fortwith superscriptst)
A;=0 andA,=A,. The displacement of particles at the in- annot b_e recast into the intuitive for(d) due to gr§d|ent
stant of collision isA, ,=D. contributions of stimulated processes, proportional to

To summarize this section, we have shown that the spacéds f4 f1f> . It is a pity, since the space-time symmetry is
time and the particle-hole symmetric forms of the nonlocalobligatory for numerical treatments based on Monte Carlo
Boltzmann equation are equivalent if the scattering rate inSimulations. Equatioii21) is not suited for the Monte Carlo

cludes the in-medium effect on the level of the Brucknertreatment because its scattering integrals can change their
reaction matrix. sign, losing their probabilistic interpretation. The Galitskii-

Feynman type of kinetic equatiq21) thus provides a more
precise description of the system, but at the cost of a serious
increase in difficulties of its numerical treatment. Because of

The Bruckner approximation of the scattering rate washese numerical problems, we discuss implementation of
quite common in earlier microscopic studies of heavy ionsymmetries only for the Bruckner approximation. A com-
reactions. Recently, most studies prefer the Galitskii-parison between the Bruckner and Galitskii-Feynman ap-
Feynman approximatiof25,26 for which the Pauli block- proximations can be found {128] showing that the latter can
ing of the internal states is controlled by the two-particledescribe the onset of pairing in contrast to the Bruckner ap-
spectral function, Age=(G~G~)—(G=G~). Formula(11)  proximation. About the range of validity of the Bruckner
is the quasiparticle approximation gfgg. approximation, seg29] and citations therein.

—f P (1= 13— f5)f,f5.

(21)

D. Comments on the Galitskii-FeynmanT matrix
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E. Implementation of the symmetry in simulations APPENDIX: OPTICAL THEOREM

The equivalency of both forms of the kinetic equation, |dentity (9) represents two alternative expressions of the
(13) and (18), offers an important simplification of the nu- anti-Hermitian part of thé matrix,

merical treatment. Expanding the scattering out to the linear
terms, one finds that amplitudes of anticausal and causal cor- M=ImT=i(TR-T4). (A1)
rections are equal while the signs are opposite. Since both
forms are equivalent, the sum of gradient corrections to th&Ve derive this identity known as the optical theorem from
scattering out vanishes. the ladder approximation, which is the approximation used in

For highly inhomogeneous and/or fast evolving systemsthe scattering integrals of the discussed kinetic equation.
like nuclear matter in a heavy ion reaction, the Monte Carlo The ladder approximation in the differential form reads
simulation procedure spends a majority of the CPU time
searching when and where a collision should be generated. TraA=V—GRA (A2)
Due to cancellation of gradient corrections to the scattering-
out integral, this part of the simulation procedure remains thélere,G** are the two-particle propagators given by the time
same as in the local approximation. All nonlocal correctionscut of the spectral functiopd=i(G"—G*). From Eq.(A2)
are included only after the collision event is selected. Thigfollows
scheme was used [130].

i(TRI-Tah=—A. (A3)
V- CONCLUSIONS Multiplying Eq. (A1) by T one finds

We have shown that the space-time symmetry of the non-
local scattering integral becomes nontrivial if the Pauli ex- TRM=i—iT{'Tx. (A4)
clusion principle has to be accounted for. Within the
pseudoclassical form of the Pauli blocking represented byinally, we expres§ gl from Eq. (A3),
the hole distributions as introduced by Nordheim and Ue-
hling and Uhlenbeck, the space-time symmetry and the TRI=Tal+iA4, (A5)
particle-hole symmetry are consistent only if the scattering
cross section includes in-medium effects of Bruckner typeso that Eq(A4) turns into the familiar optical theorem
Due to their classical form, these nonlocal corrections are
easily implemented into the Monte Carlo simulations. M =TRATA, (AB)

The more sophisticated approximation of Galitskii and ) - ) )
Feynman includes the stimulated creation of the colliding TO obtain a less familiar anticausal form of the optical
pair. This process escapes the pseudoclassical interpretatiieorem, we multiply Eq(A1) by T * from the right hand
of the scattering process which makes its implementatiogide,
within the traditional Monte Carlo simulation schemes im-

possible. MTRI=i—iT,TR!. (A7)
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