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Adsorbing trees in two dimensions: A Monte Carlo study
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Branched polymers interacting with an impenetrable wall can be modeled by lattice trees confined to a half
space with a fugacity conjugate to the number of visits the tree makes in the wall. We adapt a cut-and-paste
algorithm for lattice trees with an umbrella-style implementation to sample trees interacting with an impen-
etrable wall over a wide range of values far We report results about the thermodynamic and metric
properties of the trees, and estimate the location of the adsorption transitiand crossover exponert
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I. INTRODUCTION The limiting free energy of this model is the thermodynamic
limit of In Z (x) per edge; this is known to exi§6], and is
A polymer in dilute solution can adsorb onto a solid wall defined by
if the interaction between the polymer and molecules in the
wall exceeds the conformational entropy associated with the R T | +
polymer in bulk solution. This adsorptﬁ:n phenomenon is a F (K)_f!m’ n In Zq () for all <. @
phase transition, which is geometric in nature: The three di-

+ - . .
mensional extent of the polymer is reduced to a more or |esgloreove_r,]—' (x) is a convex function, and is nondecreas-
two dimensional nature in the adsorbed phase. ing, continuous, and differentiable almost everywHe It

In this paper, we reconsider a lattice tree model of'® also known that the I|m|t|n+g free enerdy” («) |s.|nde
. X . . pendent ofx for all k<0 [F"(x)=In\, whereX\, is the
branched polymer adsorption onto a solid wall in two dimen- . . . %
. . . : growth constant of lattice trees in two dimensipng «
sions(2D). The adsorption transitions in models of branched>0 then it has been shown that niad,,Ki<F"(x)
. , ) 2 -~
polymers have been rewewed_ _by De’Bell and LOOkT‘ﬁ"h .=In\, +« for k>0. These bounds imply the existence of a
where the values of several critical exponents associated W'trqonanalyticity at a critical valua! in the free energy of
H Cc
the model were reportgd. Further work mclude; a tranSfeBositive trees, and this corresponds to the adsorption transi-
matrix study by de Queirof2] and exactbut not rigorous

results in three dimensions by Janssen and L{3kyEarlier g??hzf%g;iﬂihrigﬁ %Ié/mdg;ircl)gdabsyolld wall. The critical value
Monte Carlo studies of a model of branched polymers near
a wall were done by Lam and Bind@4]. Our approach is
also a Monte Carlo simulation, but using a cut-and-paste
algorithm for lattice tree§5] on the square lattice. Our mo-
tivation for the simulation is to find good numerical esti- in two dimensions and it is known that >0 [6]. The den-
mates of both the critical point and the critical exponentssity of visits is defined byv/n)=(1/n)dIn Z; (x)/dx where
associated with the adsorption transition. Of particulai(v/n)—(V)=9F "/dx asn—cw. k. is also that value of
importance is the crossover exponefit a suggestion of the fugacity where the density of visit&/) becomes non-
hyperuniversalityf2] for branched polymer adsorption indi- zero:(V)=0 if k<. and(V)>0 if k>« . By the con-
cates thatp=1/2, although the real test for this prediction yexity of the limiting free energy(V)=dF*(«)/dx, and
will only come with estimates o in higher dimensions. this exists for almost every value af

A tree is called attached if it has at least one vertex with An umbre”a samp”ng imp'ementation Of the Cut_and_
coordinate equal te-1, 0, or 1. A tree confined to the half paste algorithm was used over a wide rangec.oThis type
spacez=0 is a positive tree. A common model for a of implementation was also used in the sampling of collaps-
branched polymer in the vicinity of a solid wall is a positive jng trees in a self-interacting model of lattice trd&3 and
attached tree. A visit is a vertex in a lattice tree witboor- Simi|ar|y in the simulation of Co||apsing lattice an|mdﬁ]
dinate equal to zero. The fundamental quantity in this mode\ye shall collect thermodynamic data and metric data on ad-
ist, (v), which is the number of positive attached trees withsorbing positive attached trees in this simulation in order to
n edges and visits. Trees are weighted by the number of |ocate the adsorption transition at a critical valuexdgkc, )

visits they have: a tree with visits will have weighte™”,  and to find numerical estimates of critical exponents associ-
wherex is a fugacity conjugate to. The partition function ated with the transition.

ke =sud k| F T (k)=In\,} 3

for positive attached trees is The metric exponent describes scaling of quantities with
dimensions of length, and, in particular, one would expect
that
Zi (k)= th(v)e, (1)
" s=0 " (Rp(K))~n") 4
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where R, (k) is a metric quantity, and where we now note If k<x_, then C,(x)—0 with increasingn, while, if x
that v may depend om. It is known thaty(0)~0.64 intwo >« ,C, () should either divergéif ¢a>0), or approach
dimensions, and, in fact, one would expect th@k)~0.64 g limiting curve, such as a cusjf ¢a=0). If it increases
for all k<x, in two dimensions. On the other hand, sincewith increasingn, then the curve€, () should intersect at
the tree has a nonzero density of visits in the adsorbed phasge critical point, and this will give us one way of finding the

its span along the adsorbing wall will Ie&(n) in two dimen-  critical value of . In this model it is believed thap=1/2

sions so thav(k)=1 if x>« in two dimensions. (and thusa=0) so that the specific heat will have a cusp
The branch exponent measures an intrinsic length in a singularity at the critical point. Numerically, this is more
model of lattice trees. It is defined by difficult to analyze than a divergent specific heat, and we
shall rely on the intersections between the cur@géx) to
(Ph(K))~nPte), (5 locate the critical point.

whereP,(«) is the length of the longest path in a tigd. If
a lattice tree is cut into two subtrees by deleting an edge, Il. MARKOV CHAIN SAMPLING
then the smaller of the subtrees is called a branch. It is be-
lieved that the mean branch size scales with the expgment
as well: (B(x))~n?) [7]. The value of for trees in two

The cut-and-paste algorithm for lattice trees performs
poorly in the adsorbed phase of the lattice tré&bst is, for
. . ! . large values ofk). Since it is a Metropolis algorithm, it op-
d|mens!ons is estimated to be ab(_)ut 3/4, aqd one should e tates by sampling along a Markov chain in the state space
pect this value as weII+for positive trees in the desorbed positive trees. A typical simulation would have long ex-
phasep(x)~3/4 if k<« . In the adsorbed phase the spansions in some relatively small regions of state space, with
of the tree along the adsorbing wall should grow linearlyihe result that there are systematic errors in the averages
with the size of the tree, and so we expect here #{&)  computed by a simulation. This is refered to aguasier-
=1if x>k . godic problemand in this case it is caused by the inability of
Thermodynamic data are equally important in analyzingthe algorithm to make large changes to the ftbese would
the properties of the adsorbing lattice tree. The starting poinkreak many visits, and so are unfavorabRy lowering the
is the finite size free energy per monomeF,(x)  value of x in a simulation, this problem can be alleviated.
=(1n)InZ,(x). The specific heat is defined b, (k) One such techniqu@vhich effectively lowers the strength of
=d?F; (x)/dx? and this is equal to{p?)—(v)?)/n. These the interaction in the simulations called umbrella sampling
are analytic functions for finite values of but asn— o, [11], and this was also implemented in studies of collapsing
F. (k)—F (), the limiting free energy, which we know trees[5].
to be a nonanalytic function. The standard finite size scaling A Metropolis algorithm sampling from a canonical Bolt-
ansatz forF, () is [9,10] zmann distribution can be turned into an umbrella sampling
algorithm by simply replacing the Boltzmann distribution by
Fr(k)~7"*f(n7¥%)  where 7= (k—ko)/k;. (6) an a_rbitrary distr_ibutionn-. Canonic_al averages can then_be
obtained by relying on the following importance sampling

whered is a crossover exponent that describes the crossovdfentity:
behavior ofF (k) to F*(x) asn—x. ais the specific

heat exponent, and it describes the nonanalyticity in the lim-

iting free energy. The functiori(x) is a universal scaling

function, andf (x) —const ax—o. The singular part of the

limiting free energy behaves & (k) ~ 72~ . If we define

g(x) =x?2~9f(x), then we obtain

(Q(x) Sj7,Q0)e
oy Qe

+ .
Etn eU(J)K
j=1

+ .
B Ezn:lQ(j)eU(J)K’?Tj /7TJ

+ e nd(2-a)g(n¢ -
Fn(k)~n g(n?r), 7=0. () s eV
Since we know thaE («x)=(1/n)In Z: (x), this shows that (Qe¥ ),
2—a=1/¢, the standard hyperscaling relation that relates = W, (10

the specific heat exponent to the crossover exponent.
Since the singular part of the limiting free energy is as-
sumed to behave ag~ *, the specific heat should have a whereQ(j) is the value of the propert® for the jth tree,

singularity of the form v(]j) is the number of visits in théth tree, and the subscript
7 denotes expectation with respect to the distribution
Clk)~7¢% 7=0. (8) It is important to note that relatiofl0) is true for any

probability distributions. Sampling fromsr can be carried
It is known thatF *(x)=InX\, if 7<0 and soC(x)=0 if out using a Metropolis rejection scheme with a suitable se-

7<0. If nis finite, then we can compute from E() that lection of trial moves. If one choosesto overlap the Bolt-
zmann distributions at those values#bf interest to us, and
Cn(k)~n?*g"(n®7), 7=0. (9 distributions at values ok where the Markov chain is mo-
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TABLE I. The number of data collected and their step sizes. F o T [ B R B

n Number of data collected Step size 4r 7
25 50 000 250
50 50000 1000
75 50000 3000 sk |
100 250000 4000
150 250000 6 000
200 1000000 8000 3
300 1000000 15000 =0 _
400 1000000 32000 =
500 1000000 40 000

bile, then a more efficient sampling process is found, even 1
for those values ok where Boltzmann sampling is difficult.

There is no obvious criterion for the best choice of the
umbrella distribution. An often used distribution is a linear
combination of the Boltzmann distributions of interest, with oL | C e e L
a “flat histogram criterion”[5]: each Boltzmann distribution 0 0.5 1 15 2
must make about the same contribution to the umbrella dis- 5
”.'bu“o’.‘- The ﬂf’:ﬂﬁﬂGSS criterion s |m.pleme_nted b_y repeating FIG. 1. The ratios of the mean square radius of gyration for trees
simulations, using data from each simulation to improve the . _. 20 022y _

. . : . of sizen to n“” R;/n“”, for n=25 to 500.
umbrella for the next until a histogram that is sufficiently flat
is obtained.

In our simulations we collected data primarily on the We plot the ratioR3/n?” againstx in Fig. 1. These curves
number of visits {), the mean square radius of gyration approach the value 0.125 ¥=0, and, if we assume the
(R%), the mean spang,), the mean end-to-end distance of modelR2=An?"(1+bn~2), whereA=0.65[12] is the first
the longest pathK,), the mean longest pattP(), and the or effective confluent correction, then a least squares fit at
mean branch sizeB(,). Runs were performed on trees of k=0 gives v=0.6425+0.0002 as the metric exponent for
sizes fromn=25 to 500 edges. The step size in Table | is thelattice trees.
number of attempted elementary moves between collected The exponentv can also be obtained by analyzing data
data points. Increasing this reduces autocorrelations in thebtained from the end-to-end distance of the longest path,
data stream. For larger trees very large step sizes were neE;,, and the mean spda#), of the tree. On the other hand, the
essary to reduce autocorrelatiomehich were computed and results from these analyses are conditioned on the assumed
factored into the statistical analysis of our confidence intermodel. A different model may give a different best estimate
vals). for ». Should this be the case, then it may be assumed that

Our immediate motivations are to obtain high quality datathis is indicative of a systematic error in the estimates of the
for the estimation of the crossover exponénénd the criti-  exponent. We therefore tried a different, but related, model
cal value ofx, «. . Umbrellas were generated using histo- to see the effect of the choice of model on the estimates for
gram uniformization by repeated simulations as necessary. A two parameter linear modéwhere the confluent cor-
The umbrellas were checked by performing Monte Carlorection is ignorefl gave a slightly different estimate for.
runs with Boltzmann distributions to compare the resultsWe take the absolute difference in two results from the two

with umbrella sampling results. models as a measure of the size of a possible systematic
error. Our estimates for are listed in Table II.
ll. RESULTS The data collected for the mean pd®y and the mean

branch sizeB,, were analyzed in a fashion similar toabove

Our data show an increase in the mean square radius gf,§ the results are listed in Table IIl. The results in Table Il
gyration as« increases. This effect is best illustrated by con-\yare all obtained by a least square analysis, all of them with
sidering ratios oR2/n?”. In particular, ifR%(«) is the mean

square radius of gyration atin trees withn edges, then we

should expect that TABLE Il. Metric exponentr at k=0.

R%(k) [const if ks<k] v with v with two- Systematic
nz,, ~ . X . (11 Quantity A=0.65 parameter fit error
n o if k>k, asn—o
X , R2 0.64 24816) 0.635127) 0.0074
If we+assume thaRy(«)/n=" decr_eases to a constant for g 0.64 00060) 0.648126) 0.0081
k<k_ , then these curves should intersect each othef at S, 0.63 78039) 0.667352) 0.0295

when plotted against.
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TABLE lIl. Branch exponenp at x=0.

P

HYSICAL REVIEW @& 046101

TABLE IV. Estimates ofx_ from the ratios of the listed quan-

tities ton” or n?, wheren,;, is the size of the smallest tree included

p with p with two- Systematic  in the analysis.
Quantity A=0.65 parameter fit error

; +

B, 0.74 21254) 0.729420) 0.0127 Quantity Mmin e
Pn 0.7368247) 0.7381962) 0.0004 Rﬁ 50 0.82117)
E, 75 0.80715)
o2 statist . _ B, 50 0.82129)
X~ statistic acceptable at the 95% level. We find our best P, 75 0.77929)

estimate by taking the average of these:

v=0.645+0.007+0.020, . .
longest path in the trefg,,, the mean branch si,, and the

where we first state a 95% statistical confidence intefwal  longest path in the treB,,) follows the same general lines as
take the largest such confidence interval in Table II, and thefor the mean square radius of gyratidR3j. In other words,
round it up, and then an estimated systematic efvanich is  we pIotRﬁ(K)/nZV, E./n”, B,/n?, andP, /n’ againstk, and
one-half the maximum difference between estimates in Tablgyok for the intersections of the curves. Here we set
). . o ) =0.642 andp=0.738, which are the best estimates for the
The best estimate fop can be similarly obtained. We free trees in two dimensiorig2]. The error bars are obtained
found by taking one-half the maximum difference between the in-
tersections. We also tried to confirm these error bars by using
two other different approaches in determining them. In the

If we present these best estimates with error bars as the surfi&st instance we took the average of the intersections while
of statistical and systematic errors, then we have discarding outlier points; this gives error bars of size 50% to
100% of those stated in Table IV. In the second instance we

looked at the envelope of the set of intersecting curves. We
) determined the critical point at its narrowest p@is waisd,
They are remarkably close to the values for lattice trees obyng a confidence interval by searching for that interval with
tained previously in 2012], which arev=0.642+0.010 and  gnq points at values of where the envelope has increased to
p=0.738- 0'019' i R ) a size that is 1.5 times its narrowest size. This method gave
From the points of intersection in Fig. 2, we can estimate, .o hars of size 20% to 30% of those in Table IV. The
the value ofic; by drawing the smallest rectangle around the onsistency in the outcome of these three methods supports
points of intersection between the various curves. The analythe estimates made in Table IV, and may even indicate that
sis for three other quantitigshe end-to-end distance of the our stated error bars are some\;vhat conservative. The mean
spanS,, does not show clear intersections of the curves and is

p=0.737+0.002+ 0.007.

r=0.645-0.030n, p=0.737+0.010.
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FIG. 2. The ratios of the mean square radius of gyration for trees
of sizen to n?”, Rﬁ/nz”, for n=50 to 500 focused on the intersec-
tions of the curves.

FIG. 3. Specific heat for trees of=25 ton=500.
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L B I T T - TABLE V. Estimates of¢ from In((v)/n) plotted against In)
035 ’ with several values ok.
: « ¢
n=400 , * ¢ ,
05 R 0.811 0.4708&70)
' doe L nee ° 0.815 0.478455)
R ® wn=100 | 0.821 0.490(63)
R 1 0.825 0.497669)
= | L ] 0.831 0.5096B2)
S ® Lol ] 0.835 0.51767)
Loyt | 0.839 0.52611)
04 [* L n 7 The specific heat data obtained in our simulations were
I to 1 similarly analyzed(see Figs. 3 and)4It appears again that
the critical value ofk can be obtained by looking at intersec-
tions between curves, and our analysis gives
0.35 * * - L * ! * L * - - +
0.78 0.8 0.82 0.84 Ke =0.811+0.010. (13

K

We omitted the results for the first three small trdes
=25, 50, and 7bdue to strong correction to scaling effects,
and we have also omitted the results for the largest tree since
the data an=>500 are so close to the data obtained from
=400 that we could not determine an intersection between
their curves accurately.

The critical values ok_ can also be determined from the

FIG. 4. Specific heat for trees from= 100 ton=400 focused
on the intersections of the curves.

excluded for this estimate. The average valug dHfobtained
from Table IV is then

+
rc =0.8120.03, (12 expected behavior of the energy) at «_ . From Eq.(7), we
have
where the error bar is one-half the absolute difference be-
tween the smallest and largest estimate, rounded up. 5|:;

~nt—P2-a)y’'(n® -1
n n ~nN ,

T

sincep(2— a) =1 by the hyperscaling relation. Thus,

I L B L B S S e T T

log, ((v)/n)

0.4 - T

log, ((van)/{vn))/ l0g. 2

25

02 - T

| L I L I |

4 5 6
log, n
or 4
FIG. 5. Log-log plots of the average energy per edgé/n, vs (‘) 0‘5 1‘ 1'5 ;
tree sizen for different values of. Approximate straight lines are ’ .
observed at 0.8 «x<0.839 (solid lines, which are compared
with other plots with different values ok (X, k=0.699; A, « FIG. 6. Plots of energy ratios Igu../(v,))/10g«(2) againstx
=0.759; *, k=0.869, andO,x=0.919. As we increasex, the for n=75, 100, 150, and 200. The intersection point defines both
slopes of the lines increase. critical valuex. and the crossover exponegt
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0.7 ———T— 71—

x
N
05 - 2% %@ ]

log, ((van)/(vn)}/ log, 2

04 m e .

0.78 0.82 0.84 0.86 0.88

K

FIG. 7. Plots of energy ratios lgu,./(vn))/l0g«(2) againstx
for n=75, 100, 150, and 200 focused on intersection points.

n
2" iV ~n?
n (v)~n?,

where ¢ is a crossover exponent. Fer> k. , the energy of

a very big tree becomes extensiverf), while in the region
for k<w_(v) is constant, i.e., it does not increase with in-
creasingn. Therefore, a log-log plot of the results far)/n
versusn for different values ofc will be a straight line ac,
with a negative slope equal —1 (Fig. 5. Approximate
straight lines occur in the range 0.84k<0.839(Table V).
The value of¢ estimated from the center solid line in Fig. 5
is

$=0.50+0.03, (14)

where the error bar is one-half the difference between the

largest and smallest estimates.

As a last check on the results above we also foxjicand
¢ as follows. Ath+ one expectsif corrections to scaling are
ignored (v,n)/{(v,)=2%, which is a constant. These ratios

for n=75, 100, 150, and 200 can be plotted as a function of,

TABLE VI. Estimate ofx and ¢ from the individual intersec-
tions among the curves of §G,)/(vn))/In 2 versus Inf). The inter-
section between the ratios far=150 and 200 is excluded for this
analysis.

PHYSICAL REVIEW & 046101

R

-20 0 20

n®r

FIG. 8. R5,(x)/n?" againstn?r with k=0.81 and¢=0.50.

k, where the intersection point of the linéat which the
above energy ratios become constatefines both¢, and ¢
(see Fig. 6. The results fon=25 and 50 are omitted due to
strong correction to scaling effects. In Fig. 7, the intersec-
tions of these lines are focused, and all possible individual
intersections among four linegexcept those between
=150 and 200 since they show many intersections in a wide
range ofk) are considered separately to find each location
k. and the value of the ratio at this locatiop,(Table VI).
The first estimate ok, =0.873 is outside the error bars ob-
tained in Eqs(12) and(13), and we ignore it in our analysis.

E,/n

K ¢ 2 i
0.873 0.592
0.845 0.545
0.833 0.524 = . -
0.827 0.498 "
0.819 0.483

FIG. 9. E(k)/n” againstn®r with k=0.81 and¢=0.50.
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P, /nf

FIG. 10. S,(x)/n” againstn®r with k=0.81 and¢=0.50. ) _
FIG. 12. P,(x)/n? againstn?r with x=0.81 and¢=0.50.

The remaining data points are consistent with our other esti- ince this ratio is independent of one can use this as an-

mates. If these are averaged, and errors bars are computed %é{\ heck on th tp 1 fand k. We plot it with

taking one-half the distance between the largest and smalle§tiNer check on the €s 'Ta es $fand . . We plot i wi

then « =0.83+0.02 and$=0.51+0.04, not inconsistent Various values ofp andk. until the data collapse to a single
. =0. . . .04,

; ; ; curve. Our attempts with the best estimaigs 0.50 and
with the prgwously obtayned results. . 0,81 are illustrated in Figs. 812

The scaling assumption for the mean square radius of gy*c = ¥ g o
ration isRﬁ(K)~n2Vh1(n¢r) whereh, (x) is a suitable scal- We next analyze the metric data to estimate the exponents

ing function. It is not unreasonable to expect that a plot of” andp as functions ok (see Figs. 13_])5-_”]?89 exponents
R2(«) against®r will reveal the shape of the scaling func- Should change abruptly around; , and indicate that the

tion. If the ratiosR2,(x)/n?" are taken, then therr_nodyna_lmlc phas_e transition is apcompanle_d by a transi-
tion in metric properties consistent with adsorption. The val-
R%n(K) ues ofv andp in the phase with large are consistent with it
7 ~hy(n?7). (15 being a primarily linear object extending along the adsorbing
line.

T T T

1 : e T
| 1 j #E B

‘ i
f

09 - 1

HHHHE il

fu——

)

B, /nf
2

v(

08 - -

04 &

~~~~~~~~~~~~~~

-20 ‘ 0 20

nd)T K

FIG. 11. B,(«)/n” againstn?r with x=0.81 and¢=0.50. FIG. 13. The metric exponentestimated fronRﬁ(K) againstx.
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= i *
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. i
0.8 z 7
07 I~ _
:::::::::::::::: H *
L 2 e xx
S T
06 [ ! , ! l L L | ] ‘ |
0 05 1 15 2 o 05 ) 15 2
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K
FIG. 14. The metric exponentestimated fronE(«) againstx. FIG. 15. The branch exponeptestimated fromB,(«) against

IV. CONCLUSION

We have performed extensive simulations of lattice treegstimate ¢=0.505+0.015 (de Queiroz[2]). These results
interacting with a solid wall in two dimensions. The cut-and- are consistent with the notion of hyperuniversality in adsorb-
paste algorithm for trees has been adapted via umbrella sarmg branched polymerf3]; that is, ¢=1/2 in every dimen-
pling to deal with quasiergodic problems, and it successfullysion for adsorbing branched polymers.
sampled trees over a wide range of valuescof It is also the case that values close to 1/2 have been ob-

The crossover exponent and critical valuexdfiave been tained for the crossover exponent of adsorbing linear poly-
computed in several ways. All our results agree within theirmers. Numerical data in three dimensions suggest ¢hat

error bars. Our best estimates f¢rand . are found from  ~1/2[14], while renormalization group calculations and se-
Egs.(14), (12), and(13). These are ries estimates gave larger values §df15,16. In two dimen-
sions the result thap =1/2 has been obtained using a variety
$=0.50+0.03, «;=0.81+0.03 of techniqued17—-19; see alsd20] and[21] for more de-

for adsorbing lattice trees. From an exact study of the Ising:;[aIIS
model in an imaginary field id=1, the result$=0.5 is
obtained for lattice tree adsorption @h=3 [3,13]. In two
dimensions the crossover exponent for adsorbing branched
polymers is thought to be equal to 1/2, consistent with our E.J.J.VR. is supported by an operating grant from NSERC
result above. An approach using the transfer matrix gives theCanada
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