RAPID COMMUNICATIONS

Least-squares-based lattice Boltzmann method: A meshless approach for simulation
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A version of lattice Boltzmann methddlBM) is presented in this work, which is derived from the standard

LBM by using Taylor series expansion and optimized by the least squares method. The method is basically
meshless, and can be applied to any complex geometry and nonuniform grids. It can also be applied to different
lattice models. The proposed method explicitly updates the distribution functions at mesh points by an alge-
braic formulation, in which the relevant coefficients are precomputed from the coordinates of mesh points. We
have successfully applied this method to simulate many two-dimensional incompressible viscous flows. The
numerical results are very accurate, and the computational time needed is much less as compared with other
existing methods. In this paper, we mainly show the method.
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In recent years, the lattice Boltzmann methe8M) has  Eq. (1) can be used to update the distribution functions ex-
become an efficient and alternative tool for simulation ofactly at the grid points. However, for a nonuniform grig,
complex flows[1-6]. Due to uniformity of the lattice, the +e, 6, y+e,y- &) is usually not at the grid poinfx
standard LBM is usually applied to the simple geometry with+ 8x, y+ 8y). To get the distribution function at the grid
uniform grid. As we know, practical problems may involve point (x+ 6x, y+ dy) and at the time level+ &,, we need to
complex geometry with curved boundaries. For such casespply the Taylor series expansion or other interpolation tech-
the standard LBM cannot be applied directly. niques such as the one used by étal.[2,3]. In this work,

Currently, there are two ways to improve the standardhe Taylor series expansion is used. Note that the time level
LBM so that it can be applied to complex problefizs-6].  for the position(x+e,.d;, y+e,,5) and the grid poin{x
One is the interpolation-supplemented LBMSLBM) pro-  + 6x, y+ dy) is the same, that is;+ 5;. So, the expansion in
posed by He and his colleaguigs-3]. In this method, inter-  the time direction is not necessary.
polation is applied at every time step in order to obtain the We will use Fig. 1 to illustrate our method. For simplicity,
distribution function at the grid point. So, the computationalwe let pointA represent the positiorxg ,y.), pointA’ rep-
effort by this method is very large as compared to the stanresent the positiofX,+ €,,5;, Ya+ €4y, and pointP rep-
dard LBM. The other scheme is based on the solution of @esent the positionxe,yp). Using Eq.(1), we can get the
differential lattice Boltzmann equatiof.BE). For complex  distribution function at the positioA’ as
problems, the differential LBE can be solved in the compu-
tational space with the help of coordinate transformajn f (A t+ o) =f (AD+[FSAA D —f(AD]/T. (2
The differential LBE can also be solved by the finite volume
algorithm[5—6]. As showed by Chef], the finite volume- For the general casé’ may not coincide with the mesh
based LBM can exactly obey the conservation laws. ItpointP. In the numerical simulation, we are only interested
should be indicated that efficient numerical approaches sudh the distribution function at the mesh point for all the time
as upwind schemes are needed to solve the differential LBEevels. So, the macroscopic properties such as the density,
in order to get the stable solution. As a consequence, thBow velocity can be evaluated at every mesh point. In this
computational efficiency greatly depends on the selected nigase, we need to obtain the distribution function at the mesh
merical scheme. point P. This can be done by applying the Taylor series

In this work, we will present a new version of LBM, expansion in the spatial direction only. With Taylor series
which seems to be more efficient than the existing methodsxpansionf ,(A’,t+ 6t) can be approximated by the corre-
Let us start with the standard LBM. The two-dimensionalsponding function and its derivatives at the mesh pBists
standard LBE with BGK approximation can be written as

(ol E’
fo(X+ €Oty + e,y ot,t+ 6t) =1 ,(xy,2) +[f5{X,y,1)

—f(xy, )]/, (1) C aB'(E 4 P’
where 7 is the single relaxation timé,, is the distribution B P
function along thex direction, f¢%is its corresponding equi- A’ D'
librium state, &; is the time step, ané,, is the particle ve-
locity in the « direction. The discrete velocities, (€, ,€.y) A D
and the equilibrium distributiofi®® can be found in Ref.1].
For a uniform lattice, oX=€,x- 6, dy=€,y- . S0, (X FIG. 1. Configuration of particle movement along the

€, 6, Y+e€,y ) is on the grid point. In other words, direction.
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af (P,t+ 6t) ders of derivatives to update the functional value at the next

fo(A" 1+ =1, (Pt+ o)+ AXpy—— —— time level. For a complicated expression of given ODES this
application is very difficult. To improve the Taylor series

af“(P’H&)i(Ax )zﬁzfa(P,H&) method, the Runge-Kutta method evaluates the functional

+AYA ay 2R ax? values at some intermediate points and then combines them
1 ot (P.t+ot) (through the Taylor series expa_nsjctp f(_)rm a sch_eme with
+5(Ayp) P —— the same order of accuracy. With this idea in mind, we look
2 ay at Eq.(4). We know that at the time levek- ot, the distri-
azfa(P,tJr ot) bution function and its derivatives at the mesh péirare all
+AXAAyAW unknowns. So, Eq(4) has six unknowns in total. To solve
for the six unknowns, we need six equations. However, Eq.
+0[(Axa)%,(Ayn)?, (3 (4) just provides one equation. We need additional five equa-

tions to close the system. As shown in Fig. 1, we can see that

along thea direction, the particles at five mesh poirRs,

%.D,E at the time levelt will move to the new positions

P’,B’,C',D',E’' at the time levelt+ 6t. The distribution

of (P,t+ 6t) of (P,t+ 6t) functions at these new positions can be computed through
J’_

where AXpa=Xa+€,0t—Xp, Aya=yp+e€,ot—yp. Note
that the above approximation has a truncation error of th
third order. Substituting Eq3) into Eq. (2) gives

f (P,t+6t)+AXp X YA oy Eq. (1), which are given below:
1 ,Pf(Pt+8t) 1 , Pf (P t+6t) fo (P t+680)=f,(P,O)+[FAP,)—f,(P,0)]/7, (5
+ 5 (AXa) 7+ 5(Aya) a7
s &zfa(P,t-I-ét) f (B’ t+ot)=f, (B,1)+[fS4B,t)—f(B,t)]/7, (6)
XASYAT f(Ct+80)=F (CO+[fYC,H)—F (CDIr (7)
=f (A +[FEAA DT (AL)]/ T (4)

f (D' t+t)=f,(D,t)+[fAD,t)—f(D,t)]/7, (8
It is indicated that Eq(4) is a differential equation. Solving
this equation can provide the distribution functions at all the f (B t+ot)=f (E)+[fSAE ) —f(E,0)]/7. (9
mesh points. In this work, we go further to develop a solu-
tion procedure. In fact, our development is inspired from theUsing the Taylor series expansioh,(P’,t+ ét), f,(B’,t
Runge-Kutta method. As we know, the Runge-Kutta methodt 6t),f,(C’,t+ ét),f (D', t+6t),f(E',t+6t), in the
is developed to improve the Taylor series method in the soabove equations can be approximated by the function and its
lution of ordinary differential equation€ODES. As in Eq.  derivatives at the mesh poiRt As a result, Eqs(5)—(9) can
(4), Taylor series method involves evaluation of different or-be reduced to

af o(P,t+ 6t of (Pt+6t) 1 P (Pt+6t) 1 9?f ,(P,t+ 6t
(ax )+AyP ( ) (Axp)? ( ) Rar )

f(P,t+ 5t)+ Axp oy +§ Xp T+§ Yp Y2

&%t (P,t+ 6t)

- e _
+AxpAyp Xy fo(PO+[FEAP,t) = (P,1)]/7, (10)
P SOLA of (P,t+ 6t) A of (P,t+ 6t) 1A , Pfo(Pt+6t) 1A , Pfo(P,t+6t)
a( I+ )+ XBT"’ yBT"’E( XB)—O7X2—+§( yB)—ayz—
0?f (P, t+ 6t)
+AXBAyB—:fa(th)+[f§q(th)_fa(Bat)]/Tl (11)
axay
P sOLA af J(P,t+ 6t) A af ,(P,t+ 6t) 1A ,Pf P+t 1 , f,(Pt+6t)
«(Pt+ 6t + Xemm— VCT+§ XC)T+§( Yc T
&% (P,t+ 6t)
+AXc Ay ——————=f (C,O)+[fSAC,t)—f(C,1)]/7, (12)
axay
P st A af (P, t+ 6t) A af (P,t+ 6t) 1A , Pf (P t+6t) 1A , Pf (P t+6t)
a( I+ )+ XDT+ YDT"‘E( XD) —(?Xz—+§( YD)T
3*f ,(P,t+ 6t) .
+AXDAyDW:fa(D:t)+[fau(th)_fa(D:t)]/Ty (13
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Cptnanaa T PAFSY PO 1 PRI 1P
a( ) ) XET yET E( XE) o'?Xz E( yE) ayﬁ

&%t (P,t+ 6t)

+AXgAyg Xy

=f(E, ) +[fSYE, 1) —f(E,t)]/ T, (14
where
AXp=e,dt, Ayp=eg,dt,
AXg=Xgt €y t—Xp, Ayg=Ygt+e,dt—yp,
AXc=Xct €4 0t—=Xp, Ayc=Ycte,ot—Yyp,
AXp=Xp+e€mudt—Xp, AYp=Yp+te,t—yp,

AXg=Xgt+e€,0t—Xp, AYp=Yete,ot—yp.

Equations(4), (10)—(14) form a system to solve for six un- =12 ... M, whereM is the number of neighboring points
knowns. Now, we define aroundP and it should be larger than 5. At each point, we
can define an error in terms of E@.8), that is,
gi: fa(xi 1yi 1t)+[fza(xl 1yi 1t)_fa(xi vyi 1t)]/71 (15) q )

(s T={1A%; Ay, (Ax)?2,(Ay) 22 A% Ay}, (16) .

erri=gi—2 si;jVj, 1i=0,1,2... M. (20
=1
IVy={f,,0f  1x,0f .13y, 0%F , 1 9x?,0%F , 1 9%y ,0°1 Ixay T} T,
(170 The square sum of all the errors is defined as

whereg; is the post-collision state of the distribution func-

tion at theith point and the time level{s;}" is a vector with M M 6 2

six elements formed by the coordinates of mesh po{isis E=2> er’=> (gi -2 Si,jvj) : (22)
the vector of unknowns at the mesh poitwhich also has =0 =0 =t

six elements. Our target is to find its first elemevif

=f,(P,t+6t). With above definitions, Eqg4), (10)—(14) 10 minimize the errork, we need to sewE/dV,=0k
can be written as =1,2,...,6,which leads to

6

T — T
g={s}"{V}=3 sV, i=PABCDE, (18 [SITSHVi=[SI'{g). 22
i=

where[S] is a[(M+1)X6]-dimensional matrix, which is
wheres; j is thejth element of the vectdrs;}T andV;isthe given as
jth element of the vectofV}. Equation systenil8) can be
put into the following matrix form:

[SI{V}={g}, (19
where{g}={gp,9a.95.9c.9p .9}’ and[S]=[s; ;]. Note

application of Eq.(19) at all time levels. In practical appli-
cations, it was found that the matfi$] might be singular or
ill conditioned. To overcome this difficulty and make the
method be more general, we propose the following least
squares-based LBM.

Equation(18) has six unknownsgelements of the vector
{V). If Eq. (18) is applied at more than six mesh points, then ) present method (b) N:8 Solver given by Zang etal. [7]
the system is over determined. For this case, the unknown ‘
vector can be decided from the least squares method. For FIG. 2. Comparison of streamlines for flow in a polar cavity
simplicity, let the mesh poinP be represented by the index (Re=350). (a) Present methodb) NS Solver given by Zangt al.
i=0, and its adjacent points be represented by index [7].
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Axo Ayy  (Axg)%2  (Ayo)?2  AxpAyp |
Ax;  Ay;  (Axp)?/2 (Ay))%2  AxAy,

[sl=| ) ) ) i
L1 Axy Aym (Axw)%2 (Aym)2 AXuAYm | s 1)x6
|
and{g}={00.91, . . . Gu} " be uniformly applied to the different lattice models. We have
The Ax and Ay values in the matriS] are given as successfully applied Eq25) to the D2Q9 model and the
D2Q7 model, and the obtained results between these two
AXo=e,x0t,Ayg=e,ydt, (233 models are exactly the same.
The implementation of the boundary condition for the
AXi=Xi+ €40t —Xo, AYi=Yi+esdt—Yo, new method is the same as the standard LBM. That is, at a
for i=1.2, ... M. (230) boundary point, the distribution functions along all outward

directions (point from the flow field to the boundaryare

Clearly, when the coordinates of mesh points are given, anfomPuted through E¢25), while the distribution functions
the particle velocity and time step size are specified, the maz

long all inward directiongpoint from the boundary to flow
trix [S] is determined. Then from E422), we obtain ield) are determined by the bounce back rule. Using Eq.

(25), we have simulated many incompressible viscous flows.
(Vi=(SIS) Y sIMgl=[Al{g}. (24) The obtained numerical results are very accurate and the

convergence is very fast. The theoretical analysis and de-
Note that[A] is a[6X (M +1)]-dimensional matrix. From tailed implementation of our method will be shown in the
Eq. (24), we can have full paper. Here, we only show some results for simulation of
a polar cavity flow(inner surface has a rotational velogity

obtained by the present method. Figure 2 compares the

Fa(X0.Yo, 1+ 0) =V, = k; A1kk-1 (25 streamlines obtained by the present method using a nonuni-

form mesh of 8% 81 and the conventional Navier-Stokes
wherea, , are the elements of the first row of the mafi, solver given by Zanget al. [7]. Very good agreement is
which are precomputed before the LBM is applied. Note thatchieved in the size of the vortices and location of the sepa-
the functiong is evaluated at the time levelSo, Eq.(25) is  ration and reattachment points. We have also done the “no
actually an explicit form. In the above process, there is ndlow” simulation in a square cavity by using nonuniform
requirement for the selection of neighboring points. In othemeshes, and found that when the uniform density and zero
words, Eq.(25) is nothing to do with the mesh structure. velocity are set at the beginning, the maximum velocity mag-
Thus, we can say that E5) is basically a meshless form. nitude and the relative difference of the density can be re-
Although the proposed method has meshless feature, it imained in the order of IC for all times. This implies that
recommended to use a structured grid. This is because in otie balance condition in the method is well kept. Through the
method, only the coordinates of mesh points are involvedapplication, we may conclude that the proposed method is an
When a structured grid is used, it is much easy to define thefficient approach for simulation of flows involving complex
coordinates of mesh points. Furthermore, thdirection in  geometry. It is especially useful for a nonuniform grid where
Eq. (25 can be any direction. This implies that E@5) can  the mesh is clustered towards the boundary.
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