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Defensive alliances in spatial models of cyclical population interactions
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As a generalization of the three-strategy Rock-Scissors-Paper game dynamics in space, cyclical interaction
models of six mutating species are studied on a square lattice, in which each species is supposed to have two
dominant, two subordinated, and a neutral interacting partner. Depending on their interaction topologies, all
imaginable systems can be classified into foésomorphig¢ groups exhibiting significantly different behaviors
as a function of mutation rate. In three out of four cases tlwedour) species form defensive alliances that
maintain themselves in a self-organizing polydomain structure via cyclic invasions. Varying the mutation rate,
this mechanism results in an ordering phenomenon analogous to that of magnetic Ising systems. The model
explains a very basic mechanism of community organization, which might gain important applications in
biology, economics, and sociology.
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The Rock-Scissors-Pap&RSP game is certainly one of than one dominant and more than one subordinated oppo-
the least sophisticated games to play, yet one of the mostents within the strategy set. In a previous pdpgmwe have
interesting subjects of game theoretical stufligsThe rules  studied a model of bacteriocin-mediated competition among
of the game are indeed very simple: each of two opponentsine strains of toxin-producing bacteria, which is an example
choose a strategy from the strategy Re§, P, neither know-  to this type of generalization. We also allowed for strains to
ing the choice of the other. The strategies chosen competejutate into each other in that model, with mutation rates set
the winner is determined according to a cyclic scheme oficcording to loss rates of toxin and resistance genes. Numeri-
dominance:R beatsS beatsP beatsR. If the opponents cal analysis of the model has revealed that this system un-
choose the same strategy, the outcome is a draw. dergoes a critical phase transition belonging to the universal-

The RSP game and its generalizations have received coity class of that of the three-state Potts mofi&l,12, if
siderable attention as models of cyclic interactions in biologymutation rates decrease below a critical value. For high mu-
and in economic$2,3]. Added to the classical textbook ex- tation rates, all the nine species are present with the same
ample of the cyclic preference system of mating partneiprobability. For low mutation rates, however, one of three
choice in females of the lizard specig$a stansburiand 4], equivalent “coalitions” or “defensive alliances” takes over
a multispecies version of the RSP game has been used rigfinite time, due to unlimited domain expansion within the
cently as a model for cyclic interference competition amondfinite grid. The alliances consist of three species each, and
different strains of bacteriocin-producing bactdisg6]. The their stability is related to cyclic within-domain invasiof&
strategies are assumed to be genetically determined traits providing protection against external intruders.
most biological applications: the individuals pass their strat- A defensive alliance is a directed circuit in the interaction
egy over to their offspringi.e., the strategies are heritable graph, each member of which is defended against its external
The basic assumption of such applications of the generalizedominant by its within-allianceinterna) dominant. More
RSP game as models of population interactions is that pairgrecisely, if R, S, and P are the members of a defensive
of individuals of a population repeatedly play the RSP gamalliance, andX is an external intruder dominant ovBr (X
(or a similar game of cyclical interaction topologggainst  beatsR), thenP is dominant oveiX (P beatsX).
each other, receiving payoffs according to the outcome of the To specify somewhat more general criteria of stability in
interaction. such systems of cyclical competition in terms of the topology

Some theoretical aspects of cyclic dominance in multispeef the interaction graph, we have studied the simplest pos-
cies RSP models have already been thoroughly investigatesible reticulate systems with defensive alliances. The number
[1,7-9. The analyses have justified that site invasions basedf interacting strategie¢species has been reduced to five
on payoff asymmetryi.e., takeovers of the loser’s site by the and six, and required each species to have exactly two domi-
winnen maintain a self-organizing domain structure within a nant and two subordinated competitors among the remaining
d-dimensional lattice if, the number of strategidspecies  species. The dynamical behavior of the only possible five-
is less than ad dependentthreshold value fod=2 [10].  species system is very similar to one of the six-species cases,
Our analysis will be restricted to sufficiently large systems inso we concentrate on the six-species models in what follows.
which drift due to finite system size does not play a decisiveAny six-species system satisfying these conditions can be

role. characterized by a directed graph and each one is isomorphic
Further generalization of the multistrategy RSP model iso one of the four graphs shown in Fig. 1.
possible by allowing for a reticulate topology of the still  We have systematically tested these four classes of inter-

cyclic dominance graph, so that each strategy can have moeetion topologies for the emergence of defensive alliances in
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FIG. 2. Average stationary concentrations of species as a func-
tion of mutation rate for graph& (pluses, B (closed triangles C
(bullets, andD(open diamonds
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argument applies to the other tW® and 5 external invaders
FIG. 1. The interaction topologies are characterized by the diOf alliance O+ 2+4, and the situation is completely symmet-

rected graph#, B, C, andD. The bullets represent species labeled liC with respect to the defensive mechanism of the 3l
by figures. The arrows show the direction of competitive invasion.+5 alliance against 0, 2, and 4 as external invaders.
The species connected by thicker edges form defensive alliances. Graph B admits only one such defensive allian¢tet+3

+5), and any distinguished three-species association is miss-
a way similar to that of the previous nine-species model. Iring from graphC. In this latter case one can find eight
the present spatial model each site of a square lattice is oequivalent three-species circuits in the corresponding di-
cupied by one of the six species. System evolution is govfected graph, but neither is an alliance in the above sense.
erned by nearest neighbor invasion and local mutation. The The situation is quite different in grapBb that has four
latter means that a site transforms itself to one of the twdhree-species directed circuits {2+3, 3+4+5, 0+1
dominant species of the actual resident species independently4, and O+ 2+5), but neither of the corresponding associa-
of neighborhood composition. For simplicity, the mutationtions are protected against external invaders in the sense
rate P is the same for all the species, thBsis the only = mentioned above. However, this topology exhibits three di-

parameter of the model. rected four-species circuits as well, and one of them 20
The random sequential update consists of the following+3+4) seems to be self-protected.
steps:(1) Random choice of the focal sit€2) decision on It is worth mentioning here that graph involves three

mutation, withP being the probability of a mutation event to additional four-species directed circuits that are also pro-
occur on the focal site; which of the two dominants replacesected, i.e., it is not straightforward to determine from the
the focal species is determined at rand@®),if no mutation  graph topologies alone, which species or associations would
occurs, one of the nearest neighbors of the focal site is chgersist in the long run.
sen at random and the species on the two sites play a round We used Monte Carl¢MC) analyses to predict the sta-
of the game. If one dominates the other, both sites will beionary distribution of competing species for each of the four
occupied by the dominarite., the dominant species invades graphs. The MC simulations have been performed on a
the site of the other nothing changes otherwise. square lattice of sizé XL with periodic boundary condi-
Notice that each graph of Fig. 1 has a directed Hamil-tions for different mutation rate® and interaction topolo-
tonian circuit positioned along the peripher{ds3]. Graphs gies. System size varied frol=300 to 2000. We used
A, B, and C have two additional three-edge circuitith  larger grids to suppress the undesired consequences of in-
different directiony composed of the remaining six “inter- creased fluctuations we have found in some cases. The initial
nal” edges, each of which embraces three species potentiallyonfigurations have been assembled at random, each species
forming a defensive alliance. having the same chance to occupy a site. After some ther-
In caseA the system has indeed just these two equivaleninalization we have recorded the concentrations of the spe-
defensive alliances consisting of species D+ 4 and 1+ 3 cies, averaging over a sampling time ranging frorft 05
+5. Such an association of the corresponding three species10° MC steps per site, as required by the actual fluctua-
maintains a self-organizing polydomain structure in the spations.
tial model[8], and cyclic invasions prevent the invasion of  The results of the simulations are summarized in Fig. 2.
species external to the alliance. For example, species 1 carhe simplest case i€, where all the species are present in
invade the territory of species 2 in ther@+4 association, equal abundances in the stationary state3f0 and the lat-
but species 0 is dominant over both 1 and 2. Consequentlyce is sufficiently large. The same applies to the five-species
species 1, the external invader, is soon abolished from thease mentioned above. Systelnbehaves similarly if the
0+2+4 domain by 0, the very same species that dominatemutation rate exceeds a critical value> P.). Below this
species 2 within the allianceMutatis mutandis the same transition point one of the defensive alliancesH®+4 or
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1+3+5) takes over. In each of grapBsandD there exists 10 +
only one defensive alliance whose dominance increases +
smoothly as the mutation rate decreases towards 0. . K ¥
Figure 2 clearly demonstrates that in the linit—1 10 ".. +
(when mutation governs system evolution alptie species L 4—"3;_
concentrations become equal. Apart from this limiting case, 10’ | ®o, L *t

the species belonging to the dominating alliaridethere
exists such are present in the same abundarcencentra-

[ +
000 +
. are present . . Tl
tion). That is, in the limitP—0 the “allied” species con-

10' F Iﬁtt

centrations tend to either 1/3or graphsA and B) or 1/4 ¥
(D). o,
For modelA the detailed analysis shows that tRelepen- 0 , . . .
. - H 10 -5 -4 -3 -2 -1
dence of average concentrations can be described by intro- 10 10 10 10 10

ducing an order parameter as mutation rate

(Co)=(Co)=(ca)=5(1%m),
(c1)=(cg)=(cs)=5(1¥m),

where m=0 if P>P, otherwise the order parameter is models admit only a single defensive alliance that emerges in
larger than zero (&m=1). The results of our MC simula- the whole system homogeneously. Therefore the species
tions support the fact that the order parameter follows &oncentrations tend exponentially towards the stationary val-

FIG. 3. Concentration fluctuations vs mutation rate for the four
models. The MC data are indicated by the same symbols as in Fig.

) 2.

power law behaviof me(P.— P)#] below the critical point
in the close vicinity of P,. The best fit is found forg
=0.127(8) andP.=0.0007515(5). Within the statistical

ues plotted in Fig. 2. For graph, however, there exist two
equivalent defensive alliances both forming domains of in-
creasing size, in close analogy to the Ising models for zero

error, this value of3 agrees with that found for the two- magnetic field. It is emphasized that inside the domain of a
dimensional Ising modelfsing=1/8) [14,12. In the present  defensive alliance, cyclic invasions maintain a self-
case the ordered phase is twofold degenerated because owlyganizing three-color pattern, just as in another multicycle
one of the two defensive alliances surviggith the same RSP mode[5]. The numerical analysis of the “first zero” of
probabiliy) in the limit P—0. It is therefore not surprising the equal-time pair correlation functig@[ £y(t),t]=0) sup-
that the corresponding critical transition belongs to the uniports the fact that the deduced characteristic linear size of
versality class of the Ising modgL5]. domains follows the usual growth law, namel(t)t

In order to have further numerical evidences concerning1g.
this critical transition we have studied the concentration fluc-

tuation defined as
x=L223 {(cs=(ce)?), ¥

where summation runs over the speciss=0, ...,5). For

As mentioned above, graph has eight equivalent three-
species cycles and each one can dominate the system with
the same chance in the stationary state for finite lattice size if
P=0. The visualization of species distribution again indi-
cates spatial ordering. The most striking feature is the extinc-
tion of several species from certain regions, and that the size
of such regions increases with time. The quantitative analysis

model A this quantity diverges at the critical transition on of the equal-time pair correlation function confirms the ex-
large lattices. More precisely, our MC data can be well appected results, i.e., the corresponding correlation length in-

proximated by a power lawg~|P— P~ in the vicinity of
P..
yields y=1.0(2) andy’ =1.1(2),respectively, in agreement
with the theoretical expectatiopising= ¥ising=1 [12].

Figure 3 compares the dependence gf we obtained by
MC simulations for the different interaction graphg.re-
mains low for graph® andD, but this quantity diverges for
C (as well as for the five-species systerim which case the
power law fit yieldsy=<P~? with y=0.72(3) in the limit
P—0. This behavior implies a critical transition &=0.

creases ag(t)x\t. Here the correlation length is derived by

Below and above the critical point, numerical fitting fitting an exponential functiong/é") to the MC data of

C(x,t) obtained by averaging over five runs for=5000.

In all these finite-size systems the number of surviving
species is reduced to thréer four for graphD) via a do-
main growth mechanism, and the coexistence of the surviv-
ing species is maintained by cyclic invasions. Although the
interaction graphs studied may admit many possible cycles,
we found that evolution favors certain topological structures
that we call “defensive alliances” capable of protecting

Consequently, in the absence of mutation some ordering prahemselves from external invasion.

cess is expected that is studied via considering the time de- System behavior can be predicted by thoroughly studying

pendence of correlation length at zero mutation fag. the potential alliances within the interaction graph of the
If the system is started from a random initial state, thenrmodel in question. In two of four graph8(andD) there is

the visualization of the species distribution exhibits an orderonly a single defensive alliance, and that one inevitably

ing process for all these models Bt=0. The situation is dominates the system in spite of the permanent attacks by

easy to understand for grapBsand D. In these cases the mutants and external invaders. If the interaction graph admits
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two equivalent defensive alliancea), the population un- Just as in many other models of ecological procegEés
dergoes a critical phase transitiGmccompanied with spon- pattern formation plays a crucial role in the self-protection of
taneous symmetry breakihgshen varying the mutation rate. defensive alliances: an external intruder is quickly abolished
This means that above a critical rate of mutatioRs>(P) from the domain of an alliance, because the internal enemy
all the species persist with the same average concentration of the intruder is close by—it is chasing the attacked species
the stationary state, whereas belBwthe members of one of over the lattice. Similar spatiotemporal patterns have been
the defensive alliances take over, driving all other speciesbserved in other modelg.g., in models of forest fird4 8],
extinct. evolutionary game§19], etc) in which the invasion speeds

It is interesting that the four-species alliances of graph were different for different pairs of interacting species.
do not show up at all in the system. The reason for this might The present systematic study has justified that forming
be twofold: (1) the four-species alliances are overlapping,defensive alliances is a powerful mechanism of stable popu-
that is, each species is a member of more than one allianckgtion coexistence in the case of symmetric food-web topol-
(2) it is topologically easier to maintain a three-species alli-ogy. Species belonging to a defensive alliance attain higher
ance within a two-dimensional lattice, because the neighborconcentrations than those not defended by other species. In
hood relations of the allies chasing each other is more probsystems with more than one equivalent defensive alliances
able to persist in space among three rather than among fofer a given food web, symmetry-breaking phase transition
species. In the fourth ca$€) the graph has eight equivalent can occur along mutation rate as the control parameter. We
three-species cycles whose self-organizing patterns are easiypect nonsymmetric topologies to admit defensive alliances
destroyed by external invaders and mutants, because noneas well, implying stable coexistence in real multispecies sys-
them form defensive alliances. Consequently, external invatems.
sions and the appearance of mutants stop domain growth
(which can be observed locally fd?=0) and maintain a Support from the Hungarian National Research Fund
global state with equal species concentrations. (Grant Nos. T-33098 and T-257P% acknowledged.
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