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Defensive alliances in spatial models of cyclical population interactions
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As a generalization of the three-strategy Rock-Scissors-Paper game dynamics in space, cyclical interaction
models of six mutating species are studied on a square lattice, in which each species is supposed to have two
dominant, two subordinated, and a neutral interacting partner. Depending on their interaction topologies, all
imaginable systems can be classified into four~isomorphic! groups exhibiting significantly different behaviors
as a function of mutation rate. In three out of four cases three~or four! species form defensive alliances that
maintain themselves in a self-organizing polydomain structure via cyclic invasions. Varying the mutation rate,
this mechanism results in an ordering phenomenon analogous to that of magnetic Ising systems. The model
explains a very basic mechanism of community organization, which might gain important applications in
biology, economics, and sociology.
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The Rock-Scissors-Paper~RSP! game is certainly one o
the least sophisticated games to play, yet one of the m
interesting subjects of game theoretical studies@1#. The rules
of the game are indeed very simple: each of two oppone
choose a strategy from the strategy setR, S, P, neither know-
ing the choice of the other. The strategies chosen comp
the winner is determined according to a cyclic scheme
dominance:R beatsS beatsP beatsR. If the opponents
choose the same strategy, the outcome is a draw.

The RSP game and its generalizations have received
siderable attention as models of cyclic interactions in biolo
and in economics@2,3#. Added to the classical textbook ex
ample of the cyclic preference system of mating part
choice in females of the lizard speciesUta stansburiana@4#,
a multispecies version of the RSP game has been use
cently as a model for cyclic interference competition amo
different strains of bacteriocin-producing bacteria@5,6#. The
strategies are assumed to be genetically determined tra
most biological applications: the individuals pass their str
egy over to their offspring~i.e., the strategies are heritable!.
The basic assumption of such applications of the general
RSP game as models of population interactions is that p
of individuals of a population repeatedly play the RSP ga
~or a similar game of cyclical interaction topology! against
each other, receiving payoffs according to the outcome of
interaction.

Some theoretical aspects of cyclic dominance in multis
cies RSP models have already been thoroughly investig
@1,7–9#. The analyses have justified that site invasions ba
on payoff asymmetry~i.e., takeovers of the loser’s site by th
winner! maintain a self-organizing domain structure within
d-dimensional lattice ifn, the number of strategies~species!
is less than a (d dependent! threshold value ford>2 @10#.
Our analysis will be restricted to sufficiently large systems
which drift due to finite system size does not play a decis
role.

Further generalization of the multistrategy RSP mode
possible by allowing for a reticulate topology of the st
cyclic dominance graph, so that each strategy can have m
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than one dominant and more than one subordinated op
nents within the strategy set. In a previous paper@5# we have
studied a model of bacteriocin-mediated competition amo
nine strains of toxin-producing bacteria, which is an exam
to this type of generalization. We also allowed for strains
mutate into each other in that model, with mutation rates
according to loss rates of toxin and resistance genes. Num
cal analysis of the model has revealed that this system
dergoes a critical phase transition belonging to the univer
ity class of that of the three-state Potts model@11,12#, if
mutation rates decrease below a critical value. For high m
tation rates, all the nine species are present with the s
probability. For low mutation rates, however, one of thr
equivalent ‘‘coalitions’’ or ‘‘defensive alliances’’ takes ove
in finite time, due to unlimited domain expansion within th
finite grid. The alliances consist of three species each,
their stability is related to cyclic within-domain invasions@8#
providing protection against external intruders.

A defensive alliance is a directed circuit in the interacti
graph, each member of which is defended against its exte
dominant by its within-alliance~internal! dominant. More
precisely, if R, S, and P are the members of a defensiv
alliance, andX is an external intruder dominant overR (X
beatsR), thenP is dominant overX (P beatsX).

To specify somewhat more general criteria of stability
such systems of cyclical competition in terms of the topolo
of the interaction graph, we have studied the simplest p
sible reticulate systems with defensive alliances. The num
of interacting strategies~species! has been reduced to fiv
and six, and required each species to have exactly two do
nant and two subordinated competitors among the remain
species. The dynamical behavior of the only possible fi
species system is very similar to one of the six-species ca
so we concentrate on the six-species models in what follo
Any six-species system satisfying these conditions can
characterized by a directed graph and each one is isomor
to one of the four graphs shown in Fig. 1.

We have systematically tested these four classes of in
action topologies for the emergence of defensive alliance
©2001 The American Physical Society02-1
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a way similar to that of the previous nine-species model
the present spatial model each site of a square lattice is
cupied by one of the six species. System evolution is g
erned by nearest neighbor invasion and local mutation.
latter means that a site transforms itself to one of the
dominant species of the actual resident species independ
of neighborhood composition. For simplicity, the mutati
rate P is the same for all the species, thusP is the only
parameter of the model.

The random sequential update consists of the follow
steps:~1! Random choice of the focal site,~2! decision on
mutation, withP being the probability of a mutation event t
occur on the focal site; which of the two dominants repla
the focal species is determined at random,~3! if no mutation
occurs, one of the nearest neighbors of the focal site is c
sen at random and the species on the two sites play a ro
of the game. If one dominates the other, both sites will
occupied by the dominant~i.e., the dominant species invade
the site of the other!; nothing changes otherwise.

Notice that each graph of Fig. 1 has a directed Ham
tonian circuit positioned along the peripheries@13#. Graphs
A, B, and C have two additional three-edge circuits~with
different directions! composed of the remaining six ‘‘inter
nal’’ edges, each of which embraces three species potent
forming a defensive alliance.

In caseA the system has indeed just these two equiva
defensive alliances consisting of species 01214 and 113
15. Such an association of the corresponding three spe
maintains a self-organizing polydomain structure in the s
tial model @8#, and cyclic invasions prevent the invasion
species external to the alliance. For example, species 1
invade the territory of species 2 in the 01214 association,
but species 0 is dominant over both 1 and 2. Conseque
species 1, the external invader, is soon abolished from
01214 domain by 0, the very same species that domina
species 2 within the alliance.Mutatis mutandis, the same

FIG. 1. The interaction topologies are characterized by the
rected graphsA, B, C, andD. The bullets represent species label
by figures. The arrows show the direction of competitive invasi
The species connected by thicker edges form defensive allianc
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argument applies to the other two~3 and 5! external invaders
of alliance 01214, and the situation is completely symme
ric with respect to the defensive mechanism of the 113
15 alliance against 0, 2, and 4 as external invaders.

Graph B admits only one such defensive alliance~113
15!, and any distinguished three-species association is m
ing from graphC. In this latter case one can find eigh
equivalent three-species circuits in the corresponding
rected graph, but neither is an alliance in the above sens

The situation is quite different in graphD that has four
three-species directed circuits (11213, 31415, 011
14, and 01215), but neither of the corresponding assoc
tions are protected against external invaders in the se
mentioned above. However, this topology exhibits three
rected four-species circuits as well, and one of them (012
1314) seems to be self-protected.

It is worth mentioning here that graphA involves three
additional four-species directed circuits that are also p
tected, i.e., it is not straightforward to determine from t
graph topologies alone, which species or associations wo
persist in the long run.

We used Monte Carlo~MC! analyses to predict the sta
tionary distribution of competing species for each of the fo
graphs. The MC simulations have been performed on
square lattice of sizeL3L with periodic boundary condi-
tions for different mutation ratesP and interaction topolo-
gies. System size varied fromL5300 to 2000. We used
larger grids to suppress the undesired consequences o
creased fluctuations we have found in some cases. The in
configurations have been assembled at random, each sp
having the same chance to occupy a site. After some t
malization we have recorded the concentrations of the s
cies, averaging over a sampling time ranging from 104 to 5
3105 MC steps per site, as required by the actual fluct
tions.

The results of the simulations are summarized in Fig.
The simplest case isC, where all the species are present
equal abundances in the stationary state ifP.0 and the lat-
tice is sufficiently large. The same applies to the five-spec
case mentioned above. SystemA behaves similarly if the
mutation rate exceeds a critical value (P.Pc). Below this
transition point one of the defensive alliances (01214 or

i-

.
s.

FIG. 2. Average stationary concentrations of species as a fu
tion of mutation rate for graphsA ~pluses!, B ~closed triangles!, C
~bullets!, andD~open diamonds!.
2-2
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11315) takes over. In each of graphsB andD there exists
only one defensive alliance whose dominance increa
smoothly as the mutation rate decreases towards 0.

Figure 2 clearly demonstrates that in the limitP→1
~when mutation governs system evolution alone! the species
concentrations become equal. Apart from this limiting ca
the species belonging to the dominating alliance~if there
exists such! are present in the same abundance~concentra-
tion!. That is, in the limitP→0 the ‘‘allied’’ species con-
centrations tend to either 1/3~for graphsA and B) or 1/4
(D).

For modelA the detailed analysis shows that theP depen-
dence of average concentrations can be described by i
ducing an order parameter as

^c0&5^c2&5^c4&5 1
6 ~16m!,

^c1&5^c3&5^c5&5 1
6 ~17m!, ~1!

where m50 if P.Pc , otherwise the order parameter
larger than zero (0,m<1). The results of our MC simula
tions support the fact that the order parameter follow
power law behavior@m}(Pc2P)b# below the critical point
in the close vicinity of Pc . The best fit is found forb
50.127(8) andPc50.000 7515(5). Within the statistical
error, this value ofb agrees with that found for the two
dimensional Ising model (b Ising51/8) @14,12#. In the present
case the ordered phase is twofold degenerated because
one of the two defensive alliances survives~with the same
probabiliy! in the limit P→0. It is therefore not surprising
that the corresponding critical transition belongs to the u
versality class of the Ising model@15#.

In order to have further numerical evidences concern
this critical transition we have studied the concentration fl
tuation defined as

x5L2(
s

Š~cs2^cs&!2
‹, ~2!

where summation runs over the species (s50, . . . ,5). For
model A this quantity diverges at the critical transition o
large lattices. More precisely, our MC data can be well
proximated by a power law,x'uP2Pcu2g in the vicinity of
Pc . Below and above the critical point, numerical fittin
yieldsg51.0(2) andg851.1(2),respectively, in agreemen
with the theoretical expectationg Ising5g Ising8 51 @12#.

Figure 3 compares theP dependence ofx we obtained by
MC simulations for the different interaction graphs.x re-
mains low for graphsB andD, but this quantity diverges fo
C ~as well as for the five-species system!, in which case the
power law fit yieldsx}P2g with g50.72(3) in the limit
P→0. This behavior implies a critical transition atP50.
Consequently, in the absence of mutation some ordering
cess is expected that is studied via considering the time
pendence of correlation length at zero mutation rate@16#.

If the system is started from a random initial state, th
the visualization of the species distribution exhibits an ord
ing process for all these models atP50. The situation is
easy to understand for graphsB and D. In these cases th
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models admit only a single defensive alliance that emerge
the whole system homogeneously. Therefore the spe
concentrations tend exponentially towards the stationary
ues plotted in Fig. 2. For graphA, however, there exist two
equivalent defensive alliances both forming domains of
creasing size, in close analogy to the Ising models for z
magnetic field. It is emphasized that inside the domain o
defensive alliance, cyclic invasions maintain a se
organizing three-color pattern, just as in another multicy
RSP model@5#. The numerical analysis of the ‘‘first zero’’ o
the equal-time pair correlation function„C@j0(t),t#50… sup-
ports the fact that the deduced characteristic linear size
domains follows the usual growth law, namely,j0(t)}At
@16#.

As mentioned above, graphC has eight equivalent three
species cycles and each one can dominate the system
the same chance in the stationary state for finite lattice siz
P50. The visualization of species distribution again ind
cates spatial ordering. The most striking feature is the ext
tion of several species from certain regions, and that the
of such regions increases with time. The quantitative anal
of the equal-time pair correlation function confirms the e
pected results, i.e., the corresponding correlation length
creases asj(t)}At. Here the correlation length is derived b
fitting an exponential function (ex/j(t)) to the MC data of
C(x,t) obtained by averaging over five runs forL55000.

In all these finite-size systems the number of survivi
species is reduced to three~or four for graphD) via a do-
main growth mechanism, and the coexistence of the sur
ing species is maintained by cyclic invasions. Although t
interaction graphs studied may admit many possible cyc
we found that evolution favors certain topological structu
that we call ‘‘defensive alliances’’ capable of protectin
themselves from external invasion.

System behavior can be predicted by thoroughly study
the potential alliances within the interaction graph of t
model in question. In two of four graphs (B andD) there is
only a single defensive alliance, and that one inevita
dominates the system in spite of the permanent attacks
mutants and external invaders. If the interaction graph adm

FIG. 3. Concentration fluctuations vs mutation rate for the fo
models. The MC data are indicated by the same symbols as in
2.
2-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 042902
two equivalent defensive alliances (A), the population un-
dergoes a critical phase transition~accompanied with spon
taneous symmetry breaking! when varying the mutation rate
This means that above a critical rate of mutations (P.Pc)
all the species persist with the same average concentratio
the stationary state, whereas belowPc the members of one o
the defensive alliances take over, driving all other spec
extinct.

It is interesting that the four-species alliances of graphA
do not show up at all in the system. The reason for this mi
be twofold: ~1! the four-species alliances are overlappin
that is, each species is a member of more than one allia
~2! it is topologically easier to maintain a three-species a
ance within a two-dimensional lattice, because the neighb
hood relations of the allies chasing each other is more p
able to persist in space among three rather than among
species. In the fourth case~C! the graph has eight equivalen
three-species cycles whose self-organizing patterns are e
destroyed by external invaders and mutants, because no
them form defensive alliances. Consequently, external in
sions and the appearance of mutants stop domain gro
~which can be observed locally forP50) and maintain a
global state with equal species concentrations.
-
e,

ev
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Just as in many other models of ecological processes@17#,
pattern formation plays a crucial role in the self-protection
defensive alliances: an external intruder is quickly abolish
from the domain of an alliance, because the internal ene
of the intruder is close by—it is chasing the attacked spec
over the lattice. Similar spatiotemporal patterns have b
observed in other models~e.g., in models of forest fires@18#,
evolutionary games@19#, etc.! in which the invasion speed
were different for different pairs of interacting species.

The present systematic study has justified that form
defensive alliances is a powerful mechanism of stable po
lation coexistence in the case of symmetric food-web top
ogy. Species belonging to a defensive alliance attain hig
concentrations than those not defended by other specie
systems with more than one equivalent defensive allian
for a given food web, symmetry-breaking phase transit
can occur along mutation rate as the control parameter.
expect nonsymmetric topologies to admit defensive allian
as well, implying stable coexistence in real multispecies s
tems.
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