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Noise-enhanced neuronal reliability
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This work shows that noise can enhance the discharge time reliability in Hodgkin-Huxley neuron models
stimulated by weak periodic and aperiodic inputs. By expanding the Fokker-Planck equation of an elementary
model for excitable systems, the dependence of the optimal noise intensity on input characteristics is discussed.
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[. INTRODUCTION of electric fish[22], both of which perform highly precise
computational tasks, and aperiodic ones are common in cor-
Signal processing in nervous systems takes place in thiécal neurons as a result of the large number of connections
presence of external perturbations and internal fluctuationguch neurons receiv@3|.
broadly referred to as noidd]. Neurons are nonlinear de-  Finally, we support our numerical investigations in the
vices whose response can be strongly affected by the noiddH model by analyzing noise enhanced reliability using the
[2]. Surprisingly, such alterations are not necessarily detriFokker-Planck equatioiFPB of the active rotator(AR)
mental. Numerous studi8,4], supported by behavioral evi- [20,24-217, an elementary model for excitable systems
dence[5], have established that noise can play a positivé’WdeW used in _the determ|nat|on_ of the influence of noise.
functional role by assisting neurons in the detection or transEurthermore, this enables us to discuss the dependence of the
mission of weak inputs. Such observations have opened tHePtimal noise level on input period and amplitude. This is an
door to possible biomedical applicatiofi§]. One of the issue of importancei) to determine whether nervous sys-
mechanisms accounting for the role of noise is through thé€mMs operate in conditions suitable for noise-enhanced reli-
reduction of nonlinear distortions between stimuli and thebility, and (i) for potential usage of noise in biomedical
discharge rate of neurorf®,7—-9, which improves input- devices if improved reliability is desirable. _
output fidelity. In this sense, noise can assist “rate coding.” 1his paper is organized as follows. First the influence of
In many instances, rapid and precise computations in nefi0ise on reliability in the HH model is presented and com-
vous systems rely on a different code, namely temporal code@red with enhanced fidelit§Sec. I). Then, the same phe-
ing [10]. In this case, the stimulus characteristics are encode@iomenon is analyzed in the AR, using the FPE and its
into discharge timings rather than averaged firing rates. T6xPansions(Sec. ll). Finally conclusions are presented
operate such a code, a neuron must be reliable in the senteec. V).
that there must be little variability in the discharge times
evoked by repetitive presentation of a given inp(it1-13
and the review14]). Otherwise, distinction between differ- Il. THE HODGKIN-HUXLEY MODEL

ent signals is not possible from the observation of the dis- \ye report simulation results of the HH mod@lppendix
charge times. Given that jitter in the spike timing detenorategg\) under two conditions: one receiving sinusoidal input and

temporal code, the prevailing view is that noise is one of the,nother receiving aperiodic input. The aperiodic signal was a
key limiting factors in the operation of such codd$,16. sample path of an Omnstein-Uhlenbeck process.

~ The main purpose of the present paper is to show that this 15 quantities were computed to evaluate the relation
is not necessarily so. More precisely, in the same way thaletween the input signals and the spike train generated by
noise can enhance neuronal fidelity, it can also enhance i{$e HH model. One is the input-output correlatiog, and
discharge time reliability to weak inputs. To this end, we firstthe other the discharge time reliabiliB,.

examine the influence of noise on the discharge times of & The first one measures input-output fidelity defined as the
weakly forced canonical neuron model, namely the Hodgkinjinaar correlation between the inpstt) and the outpuy(t)
Huxley (HH) model[17]. Previous studies have reported that [f7 9]

noise can increase spike timing precision in ensembles o

HH units stimulated by a single-weak excitatory post synap-

Fic pot_ential_[18—2q. Analyzing the response to this form of Co= max{m}, 1)

input is a first step towards characterizing the influence of .

noise on temporal coding. In contrast with these, the present

study deals with periodic and aperiodic input signals similar

to the ones that occur in nervous systems. More preciselyyhere the overbar denotes average over several independent
periodic modulations have been observed in systems such &gals. For a periodic inpus(t) =A sin((Xt), we evaluateC,

the owl auditory systerfi21] and the electrosensory system as[9]
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107 same way as in postsynaptic membranes. Based upon this
Co=max $J Asin(Qu)y(u+7)du consideration, we follow Hunteet al. [13] in that, when
T 0 needed, we filter spike trains with an exponential filter. This
=Am/2, @) choice is motivated by two factors, one that the exponential

filter is a reasonable approximation of the postsynaptic effect

whereT= 27/ is the stimulation period, and, and; are of a presynaptic firing, and, the other, that it is computation-
the first Fourier coefficients of the outpyft) computed as ?”}’ advantageous for rapid estimation of the instantaneous
iring rate.
2 (T The third step for evaluating reliability consists in com-
alszo cog Qt)y(t)dt, (3 puting the measure itself. While several different measures
have been usd®,12,13,18, they are all based upon one key
T consideration, which is also the fundamental difference be-
f sin(Qt)y(t)dt. (4) tween these measures and others such as correl@tjon
0 More precisely, the reliability measures quantify the sharp-

Conversely, for an aperiodic inpstt), we computedC, as ness and sizes_ of pez_iks of the instantaneous firing mate,
gardlessof the input signal. In other words, these measures

_2
ﬂl—f

1 M indicate whether discharges in the pooled spike train were
CO:? E S(tm), (5) synchronous(after the filtering. They do not measure
m=1 whether these synchronous firings occur when the input sig-
wheret,, (me[1,2, ... M]) are the time of discharges and nal presents, say, a transient increase, or any other specific

T is the duration of the aperiodic stimulus. This is the crosd€ature. In this sense, high reliability measures indicate that
correlation between output spike train and the input signal® @ given stimulation there corresponds a given sequence of

evaluated at zero time delay. It measures whether the numbgjscharge times, so that temporal coding is possible for such
of spikes fired within some time interval reflects the variationc/asses of inputs. However, these measures do not shed light
in the input signal. Roughly speaking, a large positg ~ ©" the “coding” relation between the input signal and the

indicates that the increases and decreases in the input atRiK€ train. This contrasts with a measure sucgswhich.
concurrent with similar evolutions in the firing rate. evaluates whether there is a linear relation between the input

The standard experimental protocol to evaluate neuronaiignal and the firing rate. o _
reliability consists in presenting repetitively a given stimula- N the following, we detail the reliability measure used in
tion segment to a neuron. Then the discharge times in eacd}' Paper, which is the one introduced by Hurgeal.[13].
trial, measured from the stimulation onset, are compared ne reliability R,y measures the propensity of neurons within
with one another. When the discharges of the different trial@" €nsémble to fire synchronously in response to a given
are aligned, the discharge timing is referred to as precise argimulation, or equivalently, that of a given neuron to fire at
the firing as reliable. The above procedure has been widel{f’€ Same times when stimulated by the same input. The com-
used in experiments dealing with various levels of Signa|pl21tat|on of the reliability is based upon that of the variance
processing in nervous systefiid—13. Besides a qualitative P~ Of the outputy(t). , o
assessment of reliability, various quantities have been used The outputy(t) is convolved with an exponential filter as
to quantify this property12,13,18. t M

The first step in the evaluation of these quantities is to _ _

“pool” the spike trains from the independent trials together, yi()= joy(t— A exq_)\T]dT_)\mZﬁ exp —Mt=tm)],
in other words, to consider the point process formed by sum-
ming the point processes representing the discharge timgghere 1X is the characteristic time of the synchrony among

during each trial. From a modeling point of view, this is the ensemble. Substitutingt) with y(t), we have
equivalent to considering the pooled spike train generated by

an ensemble of noninteracting units, receiving all the same 1T
input signal, so that our work applies both to the reliability of p2=?f yf(t)dt—
single units and to synchronous firing within ensembles. 0
The second step for measuring reliability consists in esti-
mating the instantaneous firing rate of the pooled spike train
or, equivalently, of the ensemble. This is done by convolving 0=
the point process with a filter. Various filters have been used Rei=p?IN, @)
in previous studie$12,13,18. One purpose for filtering the _
spike train is to smooth the data. However, the key argumenwhere, for a periodic inputN is the mean number of dis-
for selecting a filter is that discharge times from trial to trial charges per input period, while for an aperiodic input, it rep-
or coming from different neurons within an ensemble areresents a normalization factor, computed BEMN\/(2T)
unlikely to be perfectly aligned, but they can occur close—N?M?/T? where T is the simulation durationM is the
enough to one another so that their influences on a dowrmumber of spikes, an the number of spike trair4.3]. For
stream neuron effectively add up. Filtering the spike traina periodic inputRe can be expressed in terms of the Fourier
allows the addition of the effects of nearby discharges in theoefficientsa) and B8y of the unfiltered signay as

2

(6)

1T
?fo yr(t)dt

Using the above, the reliability is defined as
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FIG. 1. Reliability andC to periodic and aperiodic input in an HH model. Reliabilitgp row) andC, (bottom row as a function of
noise intensity. Input currents are a sinus@&ft column and sample path of an Ornstein-Uhlenbeck pro¢gght columr). All abscissas
are (mAJ/ms/cnf). Ordinates in the upper row are unitless, and in the lower row are mA/@m8). Stimulus parameters for periodic input
are 0=0.22 (rad/ms),A=0.4 (+),0.8 (X), 1.4 (*), and 1.8 {d) (mA/cn?), and those for aperiodic input are time constant
=1 (ms), andA=0.8 (+),1.5(x), and 2 ¢) (mA/cn?). The time-scale parametarof reliability are 5 and Ims™?) for periodic and
aperiodic inputs, respectively. Simulations of 208t column and 1000(right column HH units were run and the output spike train of
all units were pooled to form a single spike train. All simulations were started at the resting state and run using the standard Euler method
with a time step of 0.005 ms for a duration of 50 input cydle$t column and 1 s(right column, respectively. Transient spikes were not
discarded. Discharges were defined as the membrane potential crossing upwards through 50 mV at least 3 ms after the previous discharge

2 A2 at all input amplitudes. This is not the case for maximal
Rei= CONY 2(aﬁ+,8§)_ (8)  reliability: the optimal noise level tends to zero as the signal
ao(A = ag) k=1 N2+ Kk2Q reaches threshold level. This tendency is common in both

periodic and aperiodic input conditions.
For subthreshold periodic or aperiodic inputs, bGthand
R have a nonmonotonic dependence on the noise intensity. lll. THE ACTIVE ROTATOR

They both decay at low and large noise intensities, and Qur numerical analysis of the response of the HH model
present a unique maximum at an intermediate noise levelstablished that noise enhanced-reliability occurs for both
(Fig. 1). For Cy, this is noise-enhanced fidelity, a phenom- periodic and aperiodic signals, and revealed the similarity
enon that has been previously studied in detait9]. The  between these two cases. Our main concern in the remainder
lower maximal C, associated with the aperiodic input is of this paper is to investigate the mechanisms underlying
mainly due to the fact that this signal contains much fastenoise-enhanced reliability. To this end, we focus on periodic
frequency components than the periodic one, and that thesdéimulation applied to the noisy AR, a simplified model for
high frequencies are poorly transmitted by neurons. ThusgXcitable systems.
the fidelity is lower in the aperiodic case compared with the ~The state of an AR model is defined by a pajnon a unit
periodic. circle. The autonomous dynamics are given dxy/dt=1

That R, is maximal at an intermediate noise level, i.e., —@Sin(¢), so that whem> 1, there are two fixed points, one
noise-enhanced reliability, constitutes a different effect ofStable and the other unstable. A state starting at all points
noise on neuronal coding. Comparison between noisedlong the circle except the unstable point eventually asymp-
enhanced fidelity and reliability highlights the key similari- 10t€S t0 the stable point. The unstable point acts as a thresh-
ties and differences between these two phenomena. old of an excitable system because points starting at opposite

Besides the fact that, for weak inputs, when plotted as gldes of the unstable point return to the resting state in op-

function of noise intensityC, and Ry, both exhibit a hum- posite rotation. The dynamics of an AR receiving a periodic

plike shape, these two quantities display similar dependenc'é1IOUt and noise is then governed by

on input intensity. When the latter is increas€g,and R, de
both increase at all noise levels. However, the optimal noise at
intensities at which maximal fidelity and reliability are

reached differ. The former is substantially larger than thewhere is white Gaussian noise, satisfyitg £(t)]=0 and

latter, and the difference widens with the input amplitude.E[ £(t) é(s)]=2D &(t—s). The Fokker-Planck equation as-
Maximal fidelity is reached for roughly the same noise levelsociated with Eq(9) is [20,24—2T:

1—asin(¢)+Asin(Qt)+ &t), (9)
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wheref(¢)=1—asin(p).

The output ratel(t) of the AR can be computed from the
solution of the FPE as the flux throughr®, that is,J(t) FIG. 2. Reliability andC, to periodic input in an AR model.
=F[n(3m/2t),t]. From this, we compute the input-output Reliability (upper panglandC, (lower panel as a function of noise
correlationCy and the reliabilityRe, using Eqs.(2) and(8)  intensity. Input currents are a sinusoid of angular velodity
with a and By representing th&th Fourier coefficients od. =0.3 [rad/mg and amplitudes A=0.15 (+), 0.20 (X),

We systematically computed the flux of an AR model0.25 (+), and 0.30 [J) (rad/ms), respectively. Abscissas in both
receiving periodic modulation for various noise intensitiespanels are noise intensityadi/ms) and ordinates are dimension-
and modulation amplitudef28]. Control cases were also less(upper pangland rad/m& Both reliability andC, were com-
computed from numerical simulations of periodically forced puted from the flux crossing=3/2. The time-scale parameter
noisy AR’s, and satisfactory correspondence between thes¥ reliability is (ms™*). Numerical computations of the flux were
quantities and the estimates from the flux of the FPE wa&arried out by simulating the approximation of the FPE using the
observednot shown. Figure 2 shows that this system repro- fourth-order Runge-Kutta method with a time step of 0.0 (
duces the behavior of the HH model in the sense (ihdtoth ~ <0-3) and 0.005 @>0.3). All Fourier coefficients of the prob-
Co andR,, are hump-shaped when plotted against noise ingblllty density func_tlon, expanded up _to 30th order, were |n|t|al_|zed
tensity and(ii) the curves display similar dependence on in-at zero. After running 50 ms,_data points over a duratlon_ of 5 input
put amplitude as for the HH. The amplitude of the stimula-CyCIes were analyzed. The single AR model parametersd. 2.
tion for the AR model was close to sixfold smaller than that
for the HH model. Therefore, while the ranges@f in the
two models are different, those Q'fa12+ﬁzl are of the same
order.

Using the FPE of the AR, we examined the dependence q
the optimal noise levels maximizin@, and R, on input
amplitude. Figure 3 summarizes the results of the numerical

noise intensity

Our starting point is our previous studigk9,20,29 that
revealed thati) canonical neuronal models such as the HH
equations, the AR but also the FitzHugh-Nagumo model, and
e leaky integrate and fire unit, all undergo a noise-induced
ansition as noise intensity is increased, dngl this phe-

0.5

investigations. The loci of the optimal noise maximizing re- &
liability Re; andCq (represented, respectively, i@ and O 04| S

in Fig. 3 are plotted in thé-A plane, where is the noise B 03 T oo g
intensity andA is the input amplitude. Similar to HH model £ %, §
simulations, the reliability had a peak at smaller noise com- E 02t H §

pared toC,. The dependence of these peaks on the input 01 | H e
amplitude was also reproduced in the AR model. The opti- : fé

mal noise intensity of reliability shifted towards zero noise as 0 0 0.1 02 0.3

modulation amplitude was increased, in contrast with that of

noise intensity

Cy, which remained within an intermediate range, even when
modulation reached suprathreshold levels. This difference is FiG. 3. Optimal noise at various input amplitudes in an AR
in fact a reflection of the differences in the mechanisms unmodel. Each point is plotted at the noise intensity where reliability
derlying noise-enhanced reliability and the well-documenteq®) and C, (O) are maximal for each input amplitude. The ab-
linearization by noise. In the following, we investigate the scissa is noise intensity (ragihs) and the ordinate is modulation
noise-induced changes in neuronal behavior that are respoamplitude(rad/mg. The model and simulation parameters are the
sible for enhanced reliability. same as in Fig. 2.
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nomenon accounts for the noise enhanced discharge time
precision in response to a single subthreshold postsynaptic
potential. In the following, we show that a similar mecha-
nism accounts for enhanced reliability in response to other
classes of stimuli such as subthreshold periodic ones. To this
end, we proceed as follows. The noise induced-transition is
characterized by a change in the stationary distribution of
model variables from Gaussian-like to non-Gaussians. We 0
have shown that a signature of this transition is a bifurcation 0 0.02 004 006 008 0.1
in the deterministic equations approximating the dynamics of noise intensity
the momentqthe means and variangesf the model vari- . .
ables prior to the transition. Since our previous studiesR F.IG' 4. Various dynamics of .the moments of an AR model.
[19,20,29 considered the effect of noise alone on these syskcJiOns Where the mear(t) remains subthreshol(SUB), where
T . . ?~u(t) oscillates around the circle while varianegt) remains
tem;, .It Is not pOSSIbIe FO dlrect!y a}pply the results t(.) unltsbounded(OSQ, and where bothu(t) and v(t) diverge to non-
receiving, §a_y, a maintained perIOdI_C current stimulation. Tonumerical valuegDIV) are delineated in the input amplituce
address this issue, we need to consider the moment equa'“ovné;rsus noise intensity two-parameter plane. The abscissa is noise

@n the presence of both the no_ise_and the external. input. Thiiﬁtensity (radi/ms) and the ordinate is modulation amplitugad/
is done in the case of the periodically forced AR in the fol- g The time step is 0.01 ms. Model and input parameters are the

lowing. same as in Fig. 2.
The key observation that allows the derivation of the mo-
ment equations is that at low-noise intensities, the densiteparation between these two different asymptotic behaviors
n(¢,t) solution of Eq.(11) is well approximated by a Gauss- comes in the form of a deterministic bifurcatif2o,29. We
ian. In other words, given a single realization of the forcedhave observed a similar separation in the presence of peri-
AR receiving a weak noise, the probability that at timéhe  odic forcing, i.e.,A#0. The following paragraphs describe
AR is within some phase rangep(¢+de) is given by  this aspect and discuss its relation with enhanced reliability.
n(e,t)de where, under the Gaussian assumption When A#0, solutions of Eqs(17)—(18) display one of
) three behaviors depending on the valueafnd A. These
n(ont)= 1 expl’ _1le—u®)] ] (14) are(i) for low A andD (lower-left region in Fig. 4, bounded
' V27 (t) 2 vt ' oscillations of bothu and v, with u oscillating around the
stable fixed point of the unforced ARij) for large A, and
where u(t) and v(t) represent the mean and variance ofsmall D (upper-left region in Fig. ¥ u rotates around the
¢(t). Equivalently, given a large ensemble of noninteractingunit circle, whilev displays bounded oscillations, ari )
AR'’s, the proportion of units whose phase is withia,{  for largeD (right region in Fig. 4, the two variables andv
+deg) is given byn(¢,t)de. For the unforced AR, this as- diverge. In the first regime, firing is sparse and the AR dis-
sumption has been used in our previous st{i2§]. This  plays mainly subthreshold oscillations. In the second region,
approximation also applies to the forced AR, as a specidiiring takes place, either becauéeis suprathreshold or be-
case from a general result on weak white-noise perturbationsause there is enough noise. However, the factithratnains
of dynamical systemg30]. bounded reflects the fact that the noise is not large enough to
The dynamics of the mean and variancenaire given by:  completely dominate the firing. This latter situation takes
place in the third region.

amplitude

du : : The noise-induced transition corresponds to the border
a_l aB[sin(¢)]+Asin(QU), (15 delineating the first region. It represents the change in the
system from a mainly subthreshold regime to one in which
dv ) firing takes place. Remarkably, the locus of this border in the
gt~ ~2aEl(e—wsin(e)]+2D, (16 p_A plane is similar to the locus of the optimal noise levels

obtained directly from the FPHEFig. 3). The quantitative
whereE denotes expectation. Using Ed.4), we can evalu- difference between the two curves is due to two factors. One
ate Eqs(15)—(16) as[25,2( comes from the fact that Eqsl5)—(16) are an approxima-
tion that captures mainly qualitative changes in the system
; behavior rather than quantitative changes. The other is that,
TASInQ, 19 in fact, maximal reliability is reached after the onset of firing
at the noise-induced transition, so that the optimal noise lev-
els are larger than the ones corresponding to the noise-
induced transition.

The reason why the noise-induced transition separates the
WhenA=0, solutions of Egs(17) and (18) display one of regions in which the noise improves and deteriorates neu-
two behaviors depending on the valuelfMore precisely, ronal reliability can be understood from the characteristics of
they remain bounded or diverge for noise intensities belovthe two regimes. In the first one, the sensitivity of neurons to
and beyond the noise induced transition, respectively. Theveak inputs increases due to the noise-induced fluctuations

du—l ) v
T asin(u)ex >

v
2

dv
——=—2acogUu)v ex

o +2D. (18)
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that bring the system close to its firing threshold. The key 5 05
point here is that in this regime, noise alone causes little E 04 | ;
firing, so that the discharges are mainly due to the input g /
signal, and therefore, evoke reliable firing. Conversely, in the é 03 ¢
second regime, the firing is mainly due to the noise rather Qe 9o
than the input signal. This phenomenon accounts for the de- s | T
crease in reliability. %_ 0.1 ¢

The above analysis clarified the mechanism underlying ° 9
noise-enhanced reliability in the AR, and the dependence of 2™ 2™ 2° 2° 2* 2°
the optimal noise on input amplitude. In the following, we frequency

address a different question, that of the dependence of the ) ) ) ) )
optimal noise on the input period. In this case, we focus on FIG. 5. Optimal noise as a function of input frequency in an AR

weak inputs. Figure 3 shows that, for such inputs, the opti-mOdel' The curve is plotted at the noise intensity where reliability

. : - . lid and C, (dashed are maximal as a function of input fre-
mal noise depends little on the modulation amplitude. We(SO 0 o Co ) . .
P b The abscissa is noise intensitgdA/ms) and ordinate is

: o uency.
app!y the. Ilnear_ re_s_ponse t.heory to analyze the conditions foﬁlhodulation frequencykHz). Both reliability andC, were com-
getting high reliability or highC. T ; 4 .
! ’ . puted from the flux crossing= 3/2 in the first-order perturbation

At the limit of small modulation amplitudé, we expand with arbitrary input amplitude. Numerical computations were car-
nandJ as ried out by simulating the expansion of the FPE using the standard
Euler method with a time step of 0.005. All Fourier coefficients of
the probability density function, expanded up to 30th order, were
initialized at the asymptotic solution of FPE in the absence of
modulation. After running 50 ms, data points over a duration of 50
ms were analyzed. Model parameters are the same as in Fig. 2.

N(@,t)=no(e) +Any(@,t)+A%ny(@,t)+ -,
J(t)=Jg+AJ (1) + A2, (1) + - - -. (19

Substituting these into Eq11), and regrouping the terms
with the same order i, yields the following system gov-

erning the dynamics of the terms in the expansion: ny takes on the form,(¢,t) =x(¢)coslt)+z(¢)sin((2),

wherex andz satisfy the following system of linear ordinary

dng differential equations:
7"—0[”0]:0,
2
DOI x_d 1 [ +Q (22)
—=—[(1—asi X z,
an, gp2 = dgL(1masine)x]
W_Lo[nl]:Lext[nOvt]v
022 L asingna-ox S8 g
: —=—[(1—asi z]-Qx+——
Nk The stationary i d i
K L= L N1 t]. 20 y linear response does not contain any terms
ot ol M =Lexd Me-.t] 20 with higher harmonics. These higher harmonics appear pro-

) ) gressively if one proceeds further with the expansion. The
We numerically simulated the above system and checkedame goes for the expansion of the ratdn the stationary

that for small amplitude#, the solution up to the first order regime,J, is constant and,(t) = a cosQt)+ Bsin(Qt). The

provided a satisfactory approximation of the solution of Eq.coefficientse: and 8 can be directly evaluated fromandz.

(11) [31]. Furthermore, by progressively increasing the valugp, this way, from Egs(2) and(8), the expansions &, and
of A, we checked that, while the validity of the first-order g_ are

approximation deteriorated, by increasing the order of the

expansion, one could always obtain a satisfactory approxi- A2

mation. This could be seen, for instance, from the observa- Co=7 a’+ B, (23
tion that, when plotted together, the graphsJéf) against

time, computed directly from Eq11) and from the expan- IN2A2

sion, could not be visually distinguished from one another.
Finally, we also checked that the approximate values of the
measure, and R, obtained from the expansion matched
those obtained with Eq11). These numerical comparisons wherea, depends neither oA nor ), and only onD, and«
showed that the expansion provides a satisfactory approxand 8 do not depend o\, but only onQ) andD.
mation of the original system. In the following, we describe Using these expressions, we have numerically computed
only results obtained with the first-order term, which high-the optimal noise intensities that maximigy and R, for
light the dependence of the optimal noise intensity on inputlifferent input periods. The dependency of the optimal noise
period. level to the input frequency is shown in Fig. 5 for bai

In the stationary regimen, tends tonf , the stationary (solid curve and R, (dashed curve The results show that
probability density function of the unforced AR7,20, and up to aboutQ)=0.2, the optimal noise level is almost the

(a+ B?), (24)

ReI

" ao(h—ag)(\2+0?)
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same no matter how slow the input is. As the frequency idlistortions, it also introduces random fluctuations that dete-
increased beyond this value, the optimal noise intensity alsdorate C,. The humplike dependence 6f, on noise inten-
increases. sity reflects the competition between these two effgg9].
These results can be interpreted as follows. For low-inputhus, the main phenomenon that accounts for enhanced fi-
frequencies, the optimal noise does not dependXrbe-  delity is that noise reduces the nonlinear distortions in the
cause the system behavior can be studied through a quasigput-output relation of neurons such as the ones caused by
tationary assumption. For linearization by noise, this hashe threshold. For this reason, it is referred to as linearization
been previously described i8]. For enhanced reliability, by noise[2].
this means that the input term in Eqd.7)—(18) varies so Conversely, in the case of enhanced reliability for weak
slowly, that the noise-induced transition occurs at the Samgyputs, the effect of noise strongly depends on the threshold.
r)oise level as for a constant input, and therefore displaygpe key point here is that due to threshold, membrane po-
little dependence on input frequency. , _tential fluctuations abruptly increase as the system enters the
One factor influencing the increase of the optimal noise ajgise-induced transition regime. These large fluctuations re-
higher frequencies is the AR’s cutting frequency: the ampli-fact neuronal firing. So, in effect, for a given noise level,
tude of subthreshold oscillations decreases with input frefiring is possible only in segments of the signal that are be-
guency, and this effect is more marked for frequencies highe}?ond the transition. For low noise, there are no such seg-
than a critical value. This is due to the properties of the ARy ents when the input is subthreshold. When the noise is
Iinearized a_t its_ stable_equilibrium p_oint. In this Wayv_keepingincreased, only a few, clearly separated input segments are
A fixed, while increasind) results in smaller effective 0s- gpove the transition, so that action potentials can take place
cillations in ¢, thus requiring larger noise intensities to in- only in these intervals: the firing is reliable. However, as
duce firing, and henceforth, resulting in larger optimal noise,gise is further increased, so does the length of the “su-
levels for bothCo and R, . . pratransition” segments, making it possible for several
The above result highlights that, for weak inputs, the despikes to occur in each. The timing of these fluctuates be-
pendence of the optimal noise intensity on input frequencyayse in the supratransition range, firing is mainly caused by
reflects mainly the subthreshold response of the system negpjse. Thus, the abruptness of the noise-induced transition
the equilibrium point. This effect is similar to what has beenp|ays an important role in noise-enhanced reliability: it al-

discussed in conventional stochastic resonancelike phenonys firing to occur in some specific preferential input seg-
ena in the leaky integrate and fire mod@2] and the ments and therefore be reliable.

FitzHugh-Nagumo moddH]. The above descriptions clarify the difference between the
noise ranges where enhanced fidelity and reliability are
IV. DISCUSSION reached. We observed that the noise level maximig@ipglid

not go to zero when the signal amplitude was increased until

While spike trains constitute one of the main informationthreshold. This is because even for suprathreshold stimula-
carriers in nervous systems, the encoding of input signaltion, the neuronal firing rate can present strong nonlinear
into such pulse sequences can take on different faens, distortions due to rectification. Some amount of noise re-
[10,33,34). Two of these are rate and temporal coding. Induces these distortions and therefore improves fidelity. In
the former, the mean discharge rate of neurons conveys ireontrast, the optimal noise maximizing the reliability tends to
formation about the input signal, while in the latter, it is the zero with the signal amplitude. This is because as the signal
sequence of discharge times that fills in this role. This studyamplitude is increased, lower noise levels are required to
investigated the influence of noise on two quantities, the linhave “supratransition” input segments that are wide enough
ear correlationCy and the reliabilityR,,, which are mea- to allow firing and not too wide to have several discharges.
sures related to these two forms of coding, rate coding anét such noise intensities, the firing is highly reliable firing
temporal coding. In agreement with previous studies9), with poor fidelity due to the rectification. This accounts for
we observed that for weak inputs, some intermediate noisthe difference between the two optimal noise intensities.
level maximizesC,. We also reported that under the same  Finally, we examine the implication of the above analysis
conditions, some noise also enhances neuronal reliabilityin terms of neuronal coding. High fidelity attained wh&p
However, the noise intensities at which these occur widelyis maximal means that there is a large linear correlation be-
differ from one another. The following paragraphs discussween the input signal and the output of the neuron. In such
the main aspects of enhanced fidelity and reliability anda case, one can assume that the main function of the neuron
clarify the differences between the two. is to transmit the input signal with as little distortion as pos-

The measur€, quantifies the linear relation between the sible. As this is best achieved by a linear system, neuronal
input signal and the neuron’s firing rate. For weak inpQig, nonlinearities, such as the threshold, hinder transmission fi-
takes low values because the response of the neuron is regelity. In this setting, noise may play a significant functional
tified, that is, only the suprathreshold segments of the signable through linearization. Conversely, highly reliable firing
evoke discharges. The addition of some noise incre@ges is achieved in a regime where the input-output fidelity can be
because it allows some firing to take place even for subpoor. In this case, firing reliability indicates that the input is
threshold signal segments, with a rate that is commensuratncoded into the sequence of discharge timing. The neuron
with the distance of the stimulus to the threshold. Whilefires in response to specific segments in the input signal such
further increase in the noise further attenuates the nonlineas those that are “supratransition.” Thus, rather than simply
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transmitting the input it receives, the neuron is performing a dn,

feature extraction. For instance, for neurons receiving con- ar = (V= 7a(Vini, (A1)
verging stimuli from a large number of other neurons, these

supratransition excursions may be glue to almost s.ynchronoteNshere the variable¥;, m;, h;, andn; are the membrane
firing of upstream units, and detecting such coincidences has . L : oL .
b . S otential, the activation, and inactivation of the sodium cur-

een proposed as one means of signal processing in so rént, and the activation of the potassium curréfita, V

areas of the nervous systefr&5]. In this setting, the func- X P a YKo

tional role played by the noise could be to increase neuronzi”}ndvL are the reversal potentials of the sodium, potas_smm,
PP oo and leak currents, argh,, gx , andg, are the corresponding
sensitivity to such coincidences. . A ) o
maximal conductances(t) is the input current. For periodic

stimulus s(t) =sin((2t) and for aperiodic stimulus(t) is a

sample path of a centered Ornstein-Uhlenbeck process with
We reported an effect of noise that is different comparedime constantr=1 ms and standard deviation\2. A de-

with linearization, as we showed that noise can also improv@otes the amplitude of the stimulug(t) represents white

neuronal reliability. This phenomenon can be potentiallyGaussian noise satisfying[£;(t)]=0 and E[&(t)&;(s)]

beneficial for temporal coding, which relies on precise dis-=a28(t—s).

charge times. For example, on the one hand, at the level of a The auxiliary functionsy,,, an, @n, ¥Ym, vn, andy, are:

single neuron, repeated presentation of the same stimulus

V. CONCLUSION

signal would elicit reliably the same spike sequence. On the 0.1(25-V)
other hand, at the level of an ensemble of neurons receiving ap(V) = T T25—-v]
the same stimulus, noise can enhance the synchrony of the ex;{ 10 }—

discharges among the constituting units. Furthermore, our
analysis also clarified the mechanism underlying noise-
enhanced reliability, by relating it to a noise-induced transi- (V)=<D{ an(V)+4 exp{ _ _”
tion that takes place in neuronal models when the noise in- Ym m 18]}’
tensity is increased, and which separates the regimes in

which noise increases the sensitivity of neurons from those v

in which noise-induced firing dominates. This characteriza- ah(V)=(I>|0.07 ex%— Z)“
tion, together with the description of the dependence of the

optimal noise level on input frequency, should prove helpful

in determining whether nervous systems operate in regimes (V)=® | an(V)+ 1
where noise-enhanced reliability can possibly take place. h h 30—V '
exp{ 10 +1
APPENDIX: THE HH EQUATIONS
In an ensemble of HH equations comprisiNgunits, the (V)= 0.0(10—-V)
dynamics of theith unit are determined by the following n 10—V '
system of differential equatiorfd.7]: ex;{ 0 | 1
Congp = Iy (Via— Vi) + g (Vie= Vi) + gu(V = V) \
Yn(V)=D§ ay(V)+0.125 exp— 3ol
+AS(t) + &(1),
where® is a factor for temperature e){d/10—0.63)In 3.
ﬂ:a (V)= ym(V)) M, Parameter values used in this text &g=1.0 ,uF/cmz,
de Moy am R Ona= 120 mu/cn?, gx=36 mu/cn?, g, =0.3 mu/c?, @
=1, V=115 mV, V=—-12 mV, andV,=10.613 mV.
dhy — an(V)— w (V) h The parameter values were set so that the resting potential is
E_a'h( i)~ ya(Vih, atV=0 mV.
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