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Are randomly grown graphs really random?
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We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with
probability d, two vertices are chosen uniformly at random and joined by an undirected edge. This process is
repeated fort time steps. In the limit of larget, the resulting graph displays surprisingly rich characteristics. In
particular, a giant component emerges in an infinite-order phase transition atd51/8. At the transition, the
average component size jumps discontinuously but remains finite. In contrast, a static random graph with the
same degree distribution exhibits a second-order phase transition atd51/4, and the average component size
diverges there. These dramatic differences between grown and static random graphs stem from a positive
correlation between the degrees of connected vertices in the grown graph—older vertices tend to have higher
degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown
graphs, however randomly they are constructed, are fundamentally different from their static random graph
counterparts.
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I. INTRODUCTION

Many networks grow over time. New pages and links a
added to the world wide web every day, while networks li
the power grid, the Internet backbone, and social netwo
change on slower time scales. Even naturally occurring
works such as food webs and biochemical networks evo

In the last few years, physicists, mathematicians, a
computer scientists have begun to explore the structural
plications of network growth, using techniques from statis
cal mechanics, graph theory, and computer simula
@1–12#. Much of this research has been stimulated by rec
discoveries about the structure of the world wide web, me
bolic networks, collaboration networks, the Internet, fo
webs, and other complex networks@4,13–18#.

Among the many properties of these networks that h
been studied, one that has assumed particular importan
the degree distribution. The degree of a vertex in a netw
is the number of other vertices to which it is connecte
Many real-world networks are found to have highly skew
degree distributions, such that most vertices have onl
small number of connections to others, but there are a f
like Yahoo and CNN in the Web, or ATP and carbon dioxi
in biochemical reaction networks, which are very highly co
nected. If we definepk to be the probability that a randoml
chosen vertex hask neighbors, it turns out thatpk often has
either a power-law tail as a function ofk ~indicating that
there is no characteristic scale for the degree!, or a power-
law tail truncated by an exponential cutoff@4,13–17,19#.
These distributions are quite different from the single-sc
Poisson distribution seen in traditional random graph mod
of networks@20,21#.

One theoretical challenge has been to explain the origi
these observed degree distributions. Baraba´si and co-workers
@1,2# have emphasized the key role played by netw
growth. They showed that a power-law degree distribut
1063-651X/2001/64~4!/041902~7!/$20.00 64 0419
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emerges naturally from a stochastic growth process in wh
new vertices link to existing ones with a probability propo
tional to the degree of the target vertex. More refined va
ants of this preferential attachment process allow for aging
vertices, rewiring of edges, and nonlinear attachment pr
ability, with power laws or truncated power laws emergi
for a wide range of assumptions@5–10#. Kumar et al. @11#
have concurrently proposed a model in which a local co
ing process for edges leads to a type of preferential atta
ment phenomenon as well.

As in these studies, we consider the role of system gro
on network structure. However, our purpose is somew
different. Rather than seeking to explain an observed fea
of real-world networks, such as the degree distribution,
focus on a minimal model of network growth and compa
its properties to those of the familiar random graph. We
not claim that our model is an accurate reflection of a
particular real-world system, but we find that studying
model that exhibits network growth in the absence of ot
complicating features leads to several useful insights. In
dition, the model turns out to have some interesting ma
ematical properties, as we will show.

Among other things, we solve for the distribution of th
sizes of components~connected sets of vertices!, a distribu-
tion that has not been studied in previous growth mod
largely because most of them produce only one huge, c
nected component. We find that the model exhibits a ph
transition at which a giant component forms—a compon
whose size scales linearly with system size. In this resp
our networks resemble traditional random graphs@20,21#,
but they differ from random graphs in many other ways. F
example, the mean component size is different both qua
tatively and also qualitatively, having no divergence at t
phase transition. The position of the phase transition is
ferent as well, and the transition itself appears to be infin
order rather than second order. There are thus a numbe
©2001 The American Physical Society02-1
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DUNCAN S. CALLAWAY et al. PHYSICAL REVIEW E 64 041902
features, both local and global, by which the grown gra
can be distinguished from a static one. In a certain se
therefore, it seems that a randomly grown network is
really random.

II. THE MODEL

Our model is very simple. At each time step, a new ver
is added. Then, with probabilityd, two vertices are chose
uniformly at random and joined by an undirected edge. O
goal is to understand the statistical properties of the netw
in the limit of large timet.

This model differs from preferential attachment models
two important ways. First, new edges are introduced betw
randomly chosen pairs of vertices, with no preference gi
to high-degree vertices. Second, new vertices do not ne
sarily attach to a preexisting vertex when they enter the
work. In other words, there is no guarantee that a new ve
will have an edge emanating from it. As a result the grap
generated by our model usually contain isolated vertic
along with components of various sizes, whereas the pre
ential attachment models typically generate graphs in wh
all vertices are connected in a single component.

III. DEGREE DISTRIBUTION

We begin by calculating the distribution of vertex degre
in our model. For concreteness, we choose an initial co
tion for the graph in which there is a single isolated ver
and no edges, although the asymptotic behavior at long ti
does not depend on this initial condition.

At time t there will bet vertices and on averagedt edges.
Let dk(t) be the expected number of vertices with degreek at
time t. The number of isolated verticesd0(t) will increase by
one at each time step, but decrease on average by 2dd0(t)/t,
the probability that a degree zero vertex is randomly cho
as one of the ends of a new edge. Thus

d0~ t11!5d0~ t !1122d
d0~ t !

t
. ~1!

Similarly, the expected number of degreek vertices (k.0)
will increase on average by an amount proportional to
probability that a degreek21 vertex is chosen for attach
ment by a new edge, and decrease by an amount proport
to the probability that a degreek vertex is chosen. This give

dk~ t11!5dk~ t !12d
dk21~ t !

t
22d

dk~ t !

t
. ~2!

Note that these equations neglect the possibility that an e
links a vertex to itself. This means the equations are o
approximate at short times, but they become exact in
limit t→` because the probability that any vertex is chos
twice decreases liket22.

For larget, numerical simulations show that solutions
these equations grow linearly in time:dk(t);pkt. Seeking
solutions of this form, we find thatp051/(112d), and pk
5(2d/(112d))kp0 for k.0. Thus, in general, the probabi
ity of a randomly chosen vertex having degreek is
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~2d!k

~112d!k11
. ~3!

In other words, the randomly grown network has an e
ponential degree distribution. This result will become imp
tant shortly.

IV. CRITICAL BEHAVIOR

In this section we establish that the grown graph displ
a phase transition for finited at which a giant componen
forms, and study the critical behavior of the system in t
vicinity of this transition.

A. Size of the giant component

Figure 1 shows the average sizeS of the largest compo-
nent in simulations of our model for a range of values of t
parameterd, as a fraction of the total system size. From t
figure, it appears that a giant component forms somewh
betweend50.1 andd50.2, although no discontinuity is ap
parent inS(d) or in its derivative. The smoothness of th
transition sets the growing graph apart from random grap
for which there is known to be a discontinuity in the fir
derivative of the giant component size at the transition.

To address the difference between static and grow
graphs analytically, letNk(t) be the expected number o
components of sizek. At each time step, one isolated verte
~i.e., a component of size 1! is added to the graph. At the
same time, 2dN1(t)/t vertices will on average be chosen fo
attachment and thereby leave the set of isolated verti
ThusN1(t) obeys

N1~ t11!5N1~ t !1122d
N1~ t !

t
. ~4!

FIG. 1. Giant component sizeS in the randomly grown graph, a
a function ofd. HereS is defined as the number of vertices in th
largest component, divided by the system sizet. Results are ob-
tained by simulating the growing graph for 1.63107 time steps,
with the number of edges assigned by a Bernoulli distribution
meand, i.e., one edge is introduced per time step with probabi
d; otherwise no edges are introduced. Component sizes were c
lated by depth-first search. The results shown are an average
25 repetitions of the calculation.
2-2
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ARE RANDOMLY GROWN GRAPHS REALLY RANDOM? PHYSICAL REVIEW E64 041902
Components of sizek.1 are gained when vertices be
longing to separate components whose size sums tok are
connected by a new edge. Components of sizek.1 are lost
when a vertex within ak-sized component is chosen for a
tachment. Thus the number of components of sizek.1 sat-
isfies

Nk~ t11!5Nk~ t !1d(
j 51

k21
jN j~ t !

t

~k2 j !Nk2 j~ t !

t

22d
kNk~ t !

t
. ~5!

As with Eqs.~1! and~2! for the degree distribution, thes
equations are approximate for small system sizes becaus
have neglected the possibility that both ends of an edge
within the same component. This probability tends to zero
system size becomes large, and hence the equations be
exact in the limitt→`. Equivalently, there is a negligible
probability of closed loops within any component of fixe
sizek, as t→`. Of course, there can be closed loops in t
giant component, if one exists. Thus, Eqs.~4! and ~5! hold
only for the finite components in the graph, a fact that
exploit below.

Seeking solutions to Eqs.~4! and ~5! of the form Nk(t)
5akt, whereak is the steady-state solution of the compone
size distribution, we find that

a15
1

112d
, ~6!

ak5
d

112kd (
j 51

k21

j ~k2 j !ajak2 j . ~7!

For any givenk, the coefficientak can be calculated from
these equations by explicit iteration. We however will take
different approach here and derive closed-form results
defining a generating functiong(x) for the distribution of
component sizes:

g~x!5 (
k51

`

bkx
k, ~8!

where

bk5kak . ~9!

The coefficientbk has a simple interpretation: it is the pro
ability that a randomly chosen vertex belongs to a finite co
ponent containing exactlyk vertices.

If we multiply both sides of Eqs.~6! and ~7! by kxk and
sum overk, we find thatg(x) satisfies the differential equa
tion

g522dxg812dxgg81x, ~10!

whereg85dg/dx. Rearranging forg8 then yields
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The generating functiong(x) provides a convenient way
to determine the sizeS of the giant component. We observ
that g(1)5(k51

` bk , and hence thatg(1) is the probability
that a randomly chosen vertex will belong to some com
nent of finite size~since, as we mentioned above, the qua
tities Nk and hence alsobk represent only the finite-size
components!. When no giant component exists, this pro
ability is exactly 1, but if there is a giant component, th
g(1),1 and the size of the giant component is

S512g~1!. ~12!

In the absence of an analytic solution for Eq.~11! we
evaluateS numerically by integrating Eq.~11! using the ini-
tial condition@x,g(x)#5@x0 ,x0 /(112d)# for smallx0. ~We
find that x051026 gives sufficient accuracy.! The resulting
value ofS is shown as a solid line in Fig. 2, and is in goo
agreement with the data from the direct simulations of
model~circles!, suggesting, among other things, that it was
reasonable approximation to neglect closed loops in fin
sized components, as we claimed above.

B. Comparison with a static random graph

We now compare our results for the grown network w
the properties of an ordinary static random graph, in wh
edges are added to a preexisting complete set of vertices
no new vertices are ever added. The standard exampl
such a static graph is the so-calledGn,p model of Erdo¨s and
Rényi @20#. This model however does not provide an ide
benchmark, since the degree distribution forGn,p is Poisson
whereas the distribution for our networks is exponential,
we showed in Sec. III. Fortunately, it is possible to constr
a random graph that has an exponential degree distribu
~or any other distribution we desire! using the construction
given by Molloy and Reed@22,23#, which works as follows.

FIG. 2. SizeSof the largest component for the randomly grow
network ~circles!, and for a static random graph with same degr
distribution~squares!. Points are results from numerical simulation
and the solid lines are theoretical results from Eq.~12! and Ref.
@24#. The grown graph was simulated for 1.63107 time steps, start-
ing from a single site.
2-3
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DUNCAN S. CALLAWAY et al. PHYSICAL REVIEW E 64 041902
~1! Create a set ofN vertices, indexed byi 51,2, . . .N,
whose degreeki is assigned from the distribution of interes

~2! Form a listL that containski distinct copies of each
vertex i.

~3! Choose a random matching of pairs of elements oL
to create an edge list.

As with the model of Erdo¨s and Re´nyi, this model exhib-
its a distribution of component sizes and a phase transitio
which a giant component of sizeO(N) appears@22,24#. In
Fig. 2 ~squares! we show numerical results for the size of th
giant component for a static random graph with degree
tribution identical to that of our grown graph, i.e., conform
ing to Eq.~3!. The size of the giant component can also
calculated exactly in the limit of large graph size using
sults due to Molloy and Reed@23#, or equivalently using the
generating function formalism of Newmanet al. @24#. The
result is

Sstatic5H 0, d<
1

4
,

121/~d1Ad212d!, d.
1

4
,

~13!

which is shown as a solid line in Fig. 2.
Figure 2 shows that there is a marked discrepancy

tween the size of the giant component in the static and gro
cases. In the following sections we show analytically th
this is indeed the case by locating the critical values ofd at
which the giant components form.

C. Average component size and position of the phase
transition

For the static graph with the same exponential degree
tribution as our grown graph, Eq.~13! shows that the size
Sstatic of the giant component tends to zero continuously a
vanishes atdc5 1

4 . For the grown model, we do not have a
analogous closed-form result forS(d). However, we can still
find the value ofdc by considering the average size^s& of
the finite components, which is given in terms of the gen
ating functiong(x) by

^s&5
g8~1!

g~1!
. ~14!

To locate the transition, we examine the behavior ofg8(1),
using Eq.~11!.

For values ofd where the giant component exists, w
haveg(1)Þ1 and, settingx51 in Eq. ~11!, we find that

g8~1!5
1

2d
when g~1!Þ1. ~15!

This equation holds for alld.dc , wheredc still remains to
be determined. Conversely, ifd,dc , the giant componen
does not exist andg(1)51, in which case both the numera
tor and denominator of Eq.~11! approach zero asx→1.
Applying L’Hopital’s rule we then derive a quadratic equ
tion for g8(1), whose solution is
04190
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16A128d

4d
when g~1!51. ~16!

This solution is only valid for 0<d< 1
8 .

Thus for alld. 1
8 we have only a single solution~15! for

g8(1), which necessarily means that a giant component
ists. Ford< 1

8 , we have three solutions, one of which~15!
implies the existence of a giant component while the ot
two Eq.~16! do not. Thus the phase transition, if there is on
must occur atdc<

1
8 .

If we make the further observation that in the limitd
→0 all components have size 1, it is clear that the corr
solution forg8(1) in this limit is Eq.~16! with the negative
sign. In the absence of any nonanalytic behavior in the so
tion of Eq. ~11! other than atd5 1

8 , we then conclude that in
fact this branch is the correct solution for all 0<d< 1

8 , and
hence that

dc5
1

8
. ~17!

This is clearly different fromdc5 1
4 of the static model, and

agrees qualitatively with what we observe in Fig. 2.
In summary,

g8~1!5H ~12A128d!/4d, d<
1

8
,

1/2d, d.
1

8
,

~18!

which implies thatg8(1) jumps discontinuously from 2 to 4
as d passes throughd5 1

8 and hence that the average com
ponent sizê s& also jumps from 2 to 4 at the transition.

In Fig. 3 we compare our analytic results forg8(1) with
direct simulations of the model. The predicted discontinu
is clearly visible, although, as is typical with simulation
near critical points, the numerical errors are large in the
gion of the transition.

FIG. 3. Discontinuous behavior ofg8(1) for the growing graph.
The solid line is the theoretical prediction from Eq.~18! and the
open circles are data from simulations of the growing network
1.63107 time steps~averaged over many runs!.
2-4
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ARE RANDOMLY GROWN GRAPHS REALLY RANDOM? PHYSICAL REVIEW E64 041902
D. Infinite-order transition

The phase transitions of grown and static random n
works differ in more than just their location. The rando
graph undergoes a second-order phase transition (Sstatic is
continuous but its first derivative with respect tod is discon-
tinuous atd5 1

4 ), whereas the transition for the growin
graph is of at least third order (S and its first derivative
appear continuous atd5 1

8 from inspection of Fig. 1!.
To investigate the order of the transition in our model,

numerically integrated Eq.~11! neard5 1
8 . The log-log plot

in Fig. 4~a! suggests that the size of the giant compon
approaches zero faster than a power law asd approachesdc .
In Fig. 4~b!, we take an additional logarithm and plo
ln@2ln(S)# against ln(d2dc). The resulting points now appea
to fall on a straight line as we approach the transition, in
cating that the size of the giant component is well appro
mated by a function of the form

S~d!;ea(d2dc)2b
as d→dc , ~19!

where the straight line in the figure implies that the lead
constant is unity. The form of Eq.~19! suggests that the
phase transition is in fact of infinite order, since all deriv
tives vanish atdc . If true, this would be an interesting resu
Most known phase transitions of infinite order are of t
Kosterlitz–Thouless type@25–27#, i.e., they arise in models
that can be mapped to a two-dimensional Coulomb gas, s
as the two-dimensional classicalXY model or the nonlinear
s model. Because there is no obvious mapping from
system to a two-dimensional one, it seems likely that
transition here is produced by another mechanism.

FIG. 4. Giant component sizeS(d) near the phase transition
from numerical integration of Eq.~11!. The straight-line form im-

plies thatS(d);ea(d2dc)2b
. A least-squares fit~solid line! gives

b50.49960.001, and we conjecture that the exact result isb5
1
2 .
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A least-squares fit to the data in Fig. 4 givesa5
21.13260.008 andb50.49960.001. We conjecture that in
fact b is exactly equal to1

2 , and hence that the appropria
asymptotic form forS is S(d);ea/Ad2dc.

V. DEGREE CORRELATIONS

The results of the previous sections indicate that the
havior of grown random graphs is distinctly different fro
that of static random graphs. Why should this be? What i
about a grown graph that makes the giant component form
a lower density of edges than in the corresponding st
graph? The crucial difference seems to be that in the gro
graph some vertices are older than others, having been a
to the graph earlier, whereas in the static graph, all verti
are added at the same time. The older vertices in the gr
graph have a higher probability of being connected to o
another, since they coexisted earlier, and hence had the
portunity of developing connections at a time when the gra
was relatively small. Thus the graph has a ‘‘core’’ of o
vertices in which there is a higher than average density
edges. Because of this core, the giant component forms m
readily than in a graph whose edges are uniformly distr
uted. On the other hand, asd increases, the size of the gian
component in the growing graph increases more slowly t
in the static graph, since low-degree vertices remain c
nected only to one another, rather than joining the giant co
ponent.

To demonstrate the effect of the differing ages of vertic
we now examine correlations between the degrees of c
nected vertices in the growing graph. Since older verti
tend also to be vertices of higher degree, we can test
hypothesis about the existence of a core by determin
whether vertices of high degree tend to be connected to
another more often than one would expect in a static rand
graph.

We defineEkl(t) to be the number of edges with a verte
of degreek at one end and a vertex of degreel at the other,
at time t. This is the discrete-time version of a quantity r
cently introduced by Krapivsky and Redner@9# in the study
of preferential attachment models. There are three poss
processes that increase the value ofEkl as our network
grows: ~1! a vertex of degreek21, already connected to
vertex of degreel, is chosen for attachment to a third verte
of any degree;~2! the same process withk andl reversed;~3!
two vertices with degreesk21 andl 21 are chosen for con
nection to one another. Similarly there are two possible p
cesses that decreaseEkl : ~1! a vertex of degreek that is
attached to a vertex of degreel gains an additional edge;~2!
the same process withk and l reversed. As in the derivation
of the component size distribution, we are interested in
behavior of the graph only in the large system size limit, a
thus we can safely neglect higher-order processes such a
edge connecting two previously connected vertices.

Given the processes described above, the difference e
tions governing the time evolution ofEkl are
2-5
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DUNCAN S. CALLAWAY et al. PHYSICAL REVIEW E 64 041902
Ekl~ t11!5Ekl~ t !12dS pk21

Ek21,l~ t !

dk21~ t !
1pl 21

Ek,l 21~ t !

dl 21~ t ! D
12dpk21pl 2122dS pk

Ekl~ t !

dk~ t !
1pl

Ekl~ t !

dl~ t ! D ,

~20!

where the second and third terms correspond to the t
processes above by whichEkl is increased, and the fourth t
the processes by which it is decreased. As before,pk is the
probability that a randomly chosen vertex has degreek, and
dk is the expected number of degree-k vertices.

Note thatEkl(t) satisfies(klEkl(t)52dt, which suggests
that the large-t solution will have the formEkl(t)52dtekl ,
whereekl is asymptotically independent of time. Making th
substitution and solving forekl yields

ekl5
2d

114d
~ek21,l1ek,l 21!1

pk21pl 21

114d
. ~21!

To quantify the tendency for edges to connect vertices
like degree, we compute the degree correlation coefficie

r5
c

s2
, ~22!

where

s25

(
k

~k2m!2kpk

(
l

lp l

~23!

is the variance of the distribution of vertex degree at eit
end of a randomly chosen edge, and

c5(
kl

~k2m!~ l 2m!ekl ~24!

is the covariance between vertex degrees at both end
these expressions

m5

(
k

k2pk

(
k

kpk

~25!

is the average degree of a vertex at the end of a rando
chosen edge.

Substituting Eqs.~3!, ~21! and~23!–~25! into Eq.~22!, we
find

r5

(
kl

@k2~114d!#@ l 2~114d!#ekl

4d~112d!
. ~26!
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In Fig 5 ~solid line! we show this value forr as a function of
d, where the values of the quantitiesekl are derived from
numerical iteration of Eq.~21!. On the same figure we show
results for the same quantity from direct simulations of t
growth model~circles!, and the two calculations are clear
in good agreement.

The analogous correlation coefficient in the static graph
identically zero—the two ends of any given edge are pla
independently of one another. So the positive value ofr in
the grown graph indicates that high-degree vertices attac
other high-degree vertices more often than they would i
static random graph with the same degree distribution,
suggests that our supposition about the observed differe
between grown and static graphs was in fact correct.

VI. CONCLUSIONS

We have introduced and analyzed a model of a grow
network. The model is simple enough that many of its pro
erties are exactly solvable, yet it shows a number of n
trivial behaviors. The model demonstrates that even in
absence of preferential attachment, the fact that a netwo
grown, rather than created as a complete entity, leaves
easily identifiable signature in the network topology.

The size of the giant component in a graph has been
ened to the strongly connected component of the world w
web ~another growing network! @4,28–31#. In this context it
is interesting to note that it takes only half as many edge
produce a giant component in the grown graph as in
corresponding static one. Put another way, the giant com
nent in the grown graph is more robust to random edge
letion; twice as many edges would have to be removed fr
it to destroy its giant component. It is possible that a simi
process helps large growing graphs like the Web achieve
maintain a high level of overall connectivity even for lo
edge densities.

We have also shown that there is a positive correlat
between the degrees of connected vertices in our mode
equivalently that highly connected vertices are preferentia
connected to one another. Similar correlations have been

FIG. 5. The correlation coefficient for the degrees of connec
vertices in a randomly grown graph. The solid line is the analy
result, Eq.~26!, and the open circles are numerical results fro
simulations of the growth model for 106 time steps, averaged ove
25 realizations for each value ofd.
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served previously in preferential attachment models@9#.
However, our results can be interpreted in a new way—
our case the degree correlation appears to force the e
emergence of the giant component, and thus alters the c
ponent size distribution in a graph that is otherwise rando

A number of interesting questions remain to be answe
about the model described here. In particular, although
have an exact differential equation for the generating fu
tion of component sizes, we have no exact solution for t
equation, and hence no closed-form result for the distribu
go

et

e
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om

04190
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rly
m-
.
d
e
-
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n

of component sizes. We also have, at present, only nume
evidence that the phase transition is of infinite order. Furt
work on these and other questions would help to shed l
on the unusual behavior of this model.
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