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Are randomly grown graphs really random?
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We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with
probability 8, two vertices are chosen uniformly at random and joined by an undirected edge. This process is
repeated fot time steps. In the limit of largg the resulting graph displays surprisingly rich characteristics. In
particular, a giant component emerges in an infinite-order phase transitiés HB8. At the transition, the
average component size jumps discontinuously but remains finite. In contrast, a static random graph with the
same degree distribution exhibits a second-order phase transitidn Hét, and the average component size
diverges there. These dramatic differences between grown and static random graphs stem from a positive
correlation between the degrees of connected vertices in the grown graph—older vertices tend to have higher
degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown
graphs, however randomly they are constructed, are fundamentally different from their static random graph

counterparts.
DOI: 10.1103/PhysRevE.64.041902 PACS nuni®er87.10+e, 84.35:+i, 64.60—i
[. INTRODUCTION emerges naturally from a stochastic growth process in which

new vertices link to existing ones with a probability propor-

Many networks grow over time. New pages and links aretional to the degree of the target vertex. More refined vari-
added to the world wide web every day, while networks likeants of this preferential attachment process allow for aging of
the power grid, the Internet backbone, and social networksertices, rewiring of edges, and nonlinear attachment prob-
change on slower time scales. Even naturally occurring netability, with power laws or truncated power laws emerging
works such as food webs and biochemical networks evolvefor a wide range of assumptiof5—10. Kumar et al. [11]

In the last few years, physicists, mathematicians, andhave concurrently proposed a model in which a local copy-
computer scientists have begun to explore the structural iming process for edges leads to a type of preferential attach-
plications of network growth, using techniques from statisti-ment phenomenon as well.
cal mechanics, graph theory, and computer simulation As in these studies, we consider the role of system growth
[1-12]. Much of this research has been stimulated by recenbn network structure. However, our purpose is somewhat
discoveries about the structure of the world wide web, metaedifferent. Rather than seeking to explain an observed feature
bolic networks, collaboration networks, the Internet, foodof real-world networks, such as the degree distribution, we
webs, and other complex networj&,13—-18. focus on a minimal model of network growth and compare

Among the many properties of these networks that havéts properties to those of the familiar random graph. We do
been studied, one that has assumed particular importancenst claim that our model is an accurate reflection of any
the degree distribution. The degree of a vertex in a networlparticular real-world system, but we find that studying a
is the number of other vertices to which it is connected.model that exhibits network growth in the absence of other
Many real-world networks are found to have highly skewedcomplicating features leads to several useful insights. In ad-
degree distributions, such that most vertices have only dition, the model turns out to have some interesting math-
small number of connections to others, but there are a fewematical properties, as we will show.
like Yahoo and CNN in the Web, or ATP and carbon dioxide ~Among other things, we solve for the distribution of the
in biochemical reaction networks, which are very highly con-sizes of component&onnected sets of vertices distribu-
nected. If we defing, to be the probability that a randomly tion that has not been studied in previous growth models,
chosen vertex hals neighbors, it turns out thagi, often has largely because most of them produce only one huge, con-
either a power-law tail as a function &f (indicating that nected component. We find that the model exhibits a phase
there is no characteristic scale for the degree a power- transition at which a giant component forms—a component
law tail truncated by an exponential cutd#,13-17,19  whose size scales linearly with system size. In this respect
These distributions are quite different from the single-scaleur networks resemble traditional random grapie,21],
Poisson distribution seen in traditional random graph modelbut they differ from random graphs in many other ways. For
of networks[20,21]. example, the mean component size is different both quanti-

One theoretical challenge has been to explain the origin ofatively and also qualitatively, having no divergence at the
these observed degree distributions. Basahad co-workers phase transition. The position of the phase transition is dif-
[1,2] have emphasized the key role played by networkferent as well, and the transition itself appears to be infinite
growth. They showed that a power-law degree distributiororder rather than second order. There are thus a number of
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features, both local and global, by which the grown graph 06 b S L L L B

can be distinguished from a static one. In a certain sense, | .

therefore, it seems that a randomly grown network is not § o5 [ W

really random. Z d

g 04 F OOoO 3
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Il. THE MODEL g 03 _ OOO _

Our model is very simple. At each time step, a new vertex § : o° ]

is added. Then, with probability, two vertices are chosen & 02 ¢ o E

uniformly at random and joined by an undirected edge. Our * ¢; L ]

goal is to understand the statistical properties of the network . ]
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in the limit of large timet. 08 02 04 06 08 1o

This model differs from preferential attachment models in
two important ways. First, new edges are introduced between
randomly chosen pairs of vertices, with no preference given FiG. 1. Giant component sizgin the randomly grown graph, as
to high-degree vertices. Second, new vertices do not neceg-function of 5. HereSis defined as the number of vertices in the
sarily attach to a preexisting vertex when they enter the netargest component, divided by the system siz®esults are ob-
work. In other words, there is no guarantee that a new vertewined by simulating the growing graph for X80’ time steps,
will have an edge emanating from it. As a result the graphswith the number of edges assigned by a Bernoulli distribution of
generated by our model usually contain isolated verticesneans, i.e., one edge is introduced per time step with probability
along with components of various sizes, whereas the prefe@; otherwise no edges are introduced. Component sizes were calcu-
ential attachment models typically generate graphs in whictated by depth-first search. The results shown are an average over

edges per vertex, 8

all vertices are connected in a single component. 25 repetitions of the calculation.
IIl. DEGREE DISTRIBUTION (25)k
. . . . . pk: k+1 - (3)
We begin by calculating the distribution of vertex degrees (1+26)

in our model. For concreteness, we choose an initial condi-
tion for the graph in which there is a single isolated vertex In other words, the randomly grown network has an ex-
and no edges, although the asymptotic behavior at long timggonential degree distribution. This result will become impor-

does not depend on this initial condition. tant shortly.

At time t there will bet vertices and on averagi edges.
Letd(t) be the expected number of vertices with dedce¢ IV. CRITICAL BEHAVIOR
timet. The number of isolated verticelg(t) will increase by
one at each time step, but decrease on averageSty(9/t, In this section we establish that the grown graph displays
the probability that a degree zero vertex is randomly choseft phase transition for finité at which a giant component
as one of the ends of a new edge. Thus forms, and study the critical behavior of the system in the

vicinity of this transition.
do(t)
t A. Size of the giant component

Similarly, the expected number of degreeertices k>0) Figure 1 shows the average si3ef the largest compo-

will increase on average by an amount proportional to theent in simulations of our model for a range of values of the
probability that a degre&—1 vertex is chosen for attach- parameters, as a fraction of the total system size. From the
ment by a new edge, and decrease by an amount proportionfégure, it appears that a giant component forms somewhere
to the probability that a degrdevertex is chosen. This gives betweens=0.1 ands=0.2, although no discontinuity is ap-
parent inS(5) or in its derivative. The smoothness of this
d—1(t) di(t) transition sets the growing graph apart from random graphs,
—20 t 2) for which there is known to be a discontinuity in the first
derivative of the giant component size at the transition.
Note that these equations neglect the possibility that an edge To address the difference between static and growing
links a vertex to itself. This means the equations are onlygraphs analytically, leiN,(t) be the expected number of
approximate at short times, but they become exact in theomponents of siz&. At each time step, one isolated vertex
limit t—oo because the probability that any vertex is choser(i.e., a component of size) is added to the graph. At the
twice decreases like 2. same time, 3N,(t)/t vertices will on average be chosen for
For larget, numerical simulations show that solutions of attachment and thereby leave the set of isolated vertices.
these equations grow linearly in timd;(t)~p.t. Seeking ThusN,(t) obeys
solutions of thii form, we find thgby=1/(1+26), and py NL(D)
=(26/(1+26))“pg for k>0. Thus, in general, the probabil- _ _ 1
ity of a randomly chosen vertex having degieis Ni(t+D)=Ny(O+1-20—=—. @

dk(t+ 1) = dk(t) +26
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Components of siz&>1 are gained when vertices be- 06 k-
longing to separate components whose size sumis dce Tr
connected by a new edge. Components of kizd are lost Sost
when a vertex within &-sized component is chosen for at- é i
tachment. Thus the number of components of &izel sat- g 04
isfies g
g 03[
k-1 . K= DN (1) 3
Ni(t) (k— _a(t S oal
N+ 1) =N+ 53, ) IR g
=1 t t &
0.1 | ]
ka(t) ....., \.J\\.\\\.J\\.:
—20—— (5) 00 02 04 06 038 10

edges per vertex, &
As with Egs.(1) and(2) for the degree distribution, these .
equations ar?a a(pp))roxinga)te for smallgsystem sizes because we FIG. 2'.S'ZeS°f the largest component for the r_andomly grown
have neglected the possibility that both ends of an edge faEetwork(cwcles), and for a static random graph with same degree
L . . istribution(squares Points are results from numerical simulations
within the same component. This probability tends to zero a nd the solid lines are theoretical results from E2) and Ref.
system size becomes large, and hence the equations beco 9. The grown graph was simulated for X80 time steps, start-
exact in the limitt—oc. Equivalently, there is a negligible

- o . ing from a single site.
probability of closed loops within any component of fixed

sizek, ast— . Of course, there can be closed loops in the 1[1-g/x
giant component, if one exists. Thus, E¢) and (5) hold g'= —[— ) (11
only for the finite components in the graph, a fact that we 26| 1-¢

exploit below. The generating functiog(x) provides a convenient way

. Seeking soll_mons to Eqg4) and (5) .Of the form Ny (t) to determine the siz8 of the giant component. We observe
=a,t, wherea, is the steady-state solution of the component,[h ta(L)=S" b dh that(1) is th babilit
size distribution, we find that atg(1)=2y-.by, and hence thag(l) is the probability

that a randomly chosen vertex will belong to some compo-
nent of finite size(since, as we mentioned above, the quan-

al:;, (6) tities N, and hence alsd, represent only the finite-sized
1+24 components When no giant component exists, this prob-
1 ability is exactly 1, but if there is a giant component, then
) . g(1)<1 and the size of the giant component is
A= Tros & | (K—Daac ;. (7
=1 S=1-g(1). (12)
For any givenk, the coefficienta, can be calculated from In the absence of an analytic solution for E41) we

these equations by explicit iteration. We however will take agvaluateS numerically by integrating Eq1) using the ini-
different approach here and derive closed-form results byial condition[x,g(x)]=[Xg,Xo/(1+26)] for smallx,. (We
defining a generating functiog(x) for the distribution of  find thatx,=10"° gives sufficient accuragyThe resulting
component sizes: value of Sis shown as a solid line in Fig. 2, and is in good
agreement with the data from the direct simulations of the
- ‘ model(circles, suggesting, among other things, that it was a
g(x):kzl by, (8 reasonable approximation to neglect closed loops in finite-
sized components, as we claimed above.
where
B. Comparison with a static random graph
by=kay . C) We now compare our results for the grown network with
the properties of an ordinary static random graph, in which
The coefficient, has a simple interpretation: it is the prob- edges are added to a preexisting complete set of vertices and
ability that a randomly chosen vertex belongs to a finite comno new vertices are ever added. The standard example of
ponent containing exactly vertices. such a static graph is the so-calleq , model of Erds and
If we multiply both sides of Eqs(6) and (7) by kx“ and  Renyi [20]. This model however does not provide an ideal
sum overk, we find thatg(x) satisfies the differential equa- benchmark, since the degree distribution @y, is Poisson

tion whereas the distribution for our networks is exponential, as
we showed in Sec. Ill. Fortunately, it is possible to construct
g=—26xg’ +2xgg’ +Xx, (10  arandom graph that has an exponential degree distribution
(or any other distribution we desjreising the construction
whereg’=dg/dx. Rearranging fog’ then yields given by Molloy and Ree22,23, which works as follows.
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(1) Create a set oN vertices, indexed by=1,2,...N, 5
whose degreg; is assigned from the distribution of interest.
(2) Form a listL that containg; distinct copies of each
vertexi.
(3) Choose a random matching of pairs of element$ of
to create an edge list. g’(1)
As with the model of Erde and Rayi, this model exhib-
its a distribution of component sizes and a phase transition a
which a giant component of siz8(N) appeargd22,24. In
Fig. 2 (squareswe show numerical results for the size of this
giant component for a static random graph with degree dis-

tribution identical to that of our grown graph, i.e., conform- 1Y P P |
ing to Eq.(3). The size of the giant component can also be 0.0 02 04 0.6 08 1.0
calculated exactly in the limit of large graph size using re- edges per vertex, &

sults due to Molloy and Red@3], or equivalently using the

. . . FIG. 3. Di ti behavi 1) for th i h.
generating function formalism of Newmaat al. [24]. The iscontinuous behavior of (1) for the growing grap

The solid line is the theoretical prediction from E@.8) and the

result is open circles are data from simulations of the growing network for
1 1.6x 10" time stepsaveraged over many runs
0, o< 7
= 1+y1-86
Sstatic 1 (13 g'(1)=———=—— wheng(1)=1. (16)
1- 18+ 8%+ 29), 5>7, 46

. I — This solution is only valid for 8 6<3.
which is shown as a solid line in Fig. 2. Thus for all 5> § we have only a single solutiofi5) for

Figure 2 shows that there is a marked discrepancy beg’(l), which necessarily means that a giant component ex-

tween the size of the giant component in the static and growfy;q Ford<1%, we have three solutions, one of whi¢hs)

cases. In the following sections we show analytically thatmjies the existence of a giant component while the other
this is indeed the case by locating the critical value$aft 1, £q.(16) do not. Thus the phase transition, if there is one,
which the giant components form. must occur ai,<1.
If we make the further observation that in the limit
C. Average component size and position of the phase —0 all components have size 1, it is clear that the correct
transition solution forg’ (1) in this limit is Eq.(16) with the negative
For the static graph with the same exponential degree digsign. In the absence of any nonanalytic behavior in the solu-
tribution as our grown graph, Eq13) shows that the size tion of Eq.(11) other than a=35, we then conclude that in
Sstatic of the giant Component tends to zero Continuous|y andact this branch is the correct solution for ak®< %, and
vanishes aB,= . For the grown model, we do not have an hence that
analogous closed-form result 8¢ 5). However, we can still
find the value ofs, by considering the average sizs) of s 1 (17)
the finite components, which is given in terms of the gener- ¢ 8’
ating functiong(x) by
This is clearly different froms. = of the static model, and

_ g'(1) agrees qualitatively with what we observe in Fig. 2.
(89)=—~77 - (14)
a(1) In summary,
To locate the transition, we examine the behaviog(fl), 1
using Eq.(11). (1-V1-86)/46, o< 3
For values of§ where the giant component exists, we g'(1)= (18
haveg(1)# 1 and, settingk=1 in Eq.(11), we find that 1/28 5>E
7 8,
1
g'(L)= 26 when g(1)#1. (19 which implies thaig’ (1) jumps discontinuously from 2 to 4

as & passes througld=3 and hence that the average com-
This equation holds for alb> &,, whered; still remains to  ponent siz€/s) also jumps from 2 to 4 at the transition.
be determined. Conversely, #< 6., the giant component In Fig. 3 we compare our analytic results fof(1) with
does not exist and(1)=1, in which case both the numera- direct simulations of the model. The predicted discontinuity
tor and denominator of Eq.ll) approach zero ags—1. s clearly visible, although, as is typical with simulations
Applying L'Hopital’s rule we then derive a quadratic equa- near critical points, the numerical errors are large in the re-
tion for g’ (1), whose solution is gion of the transition.
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10° T e A least-squares fit to the data in Fig. 4 gives=

- a . —1.132+0.008 and3=0.499+0.001. We conjecture that in
10 L d i fact B is exactly equal td;, and hence that the appropriate
L o - asymptotic form forSis S(8)~ e\~ %,

S10™ o -

10> L o - V. DEGREE CORRELATIONS

0 O vl il The results of the previous sections indicate that the be-
0.0001 0.001 0.01 0.1 1 havior of grown random graphs is distinctly different from
6 c that of static random graphs. Why should this be? What is it
about a grown graph that makes the giant component form at
a lower density of edges than in the corresponding static
graph? The crucial difference seems to be that in the grown
graph some vertices are older than others, having been added
to the graph earlier, whereas in the static graph, all vertices
are added at the same time. The older vertices in the grown
< graph have a higher probability of being connected to one
] another, since they coexisted earlier, and hence had the op-
-10 -8 -6 -4 =2 0 portunity of developing connections at a time when the graph
In(3-3,) was relatively small. Thus the graph has a “core” of old
vertices in which there is a higher than average density of
edges. Because of this core, the giant component forms more
readily than in a graph whose edges are uniformly distrib-
uted. On the other hand, @sincreases, the size of the giant
component in the growing graph increases more slowly than
in the static graph, since low-degree vertices remain con-
nected only to one another, rather than joining the giant com-
The phase transitions of grown and static random netponent.
works differ in more than just their location. The random  To demonstrate the effect of the differing ages of vertices,
graph undergoes a second-order phase transi®pi{is  we now examine correlations between the degrees of con-
continuous but its first derivative with respectdas discon-  ected vertices in the growing graph. Since older vertices
tinuous atd=3), whereas the transition for the growing tend also to be vertices of higher degree, we can test our
graph is of at least thilrd orderS(and its first derivative pyhothesis about the existence of a core by determining
appear continuous dt=35 from Inspection Of. Fig. 1 whether vertices of high degree tend to be connected to one
o investigate the order of the translmon in our model, Weanother more often than one would expect in a static random
_num_erlcally integrated Eq11) ne_ar5=§. The_log-log plot tqraph.
in Fig. 4a) suggests that the size of the giant componen We defineEy,(t) to be the number of edges with a vertex
apprpaches zero faster than a power Iavﬁaq;)proache§c. of degreek at one end and a vertex of degreat the other,
In Fig. 4(b), we take an additional logarithm and plot at timet. This is the discrete-time version of a quantity re-

In[—In(S] against In— &,). The resulting points now appear . . .
to fall on a straight line as we approach the transition, indi-Cently introduced by Krapivsky and Redri@] in the study

cating that the size of the giant component is well approxi-Of preferential attachment models. There are three possible

In(—In(S))
H'lllll\\J"'w"

FIG. 4. Giant component siz8(5) near the phase transition,
from numerical integration of Eq11). The straight-line form im-
plies thatS(8)~e*®= % A least-squares fitsolid line) gives
B£=0.499+0.001, and we conjecture that the exact resujﬁs%.

D. Infinite-order transition

mated by a function of the form processes that increase the value Ef as our network
grows: (1) a vertex of degre&—1, already connected to a
S(8)~e*(0- 37" a5 5 S, (190  vertex of degree, is chosen for attachment to a third vertex

of any degree(2) the same process withandl| reversed(3)
where the straight line in the figure implies that the leadingtwo vertices with degreds— 1 andl —1 are chosen for con-
constant is unity. The form of Eq19) suggests that the nection to one another. Similarly there are two possible pro-
phase transition is in fact of infinite order, since all deriva-cesses that decreagg,: (1) a vertex of degree that is
tives vanish aty; . If true, this would be an interesting result. attached to a vertex of degrégains an additional edgé?)
Most known phase transitions of infinite order are of thethe same process withand| reversed. As in the derivation
Kosterlitz—Thouless typg25-27, i.e., they arise in models of the component size distribution, we are interested in the
that can be mapped to a two-dimensional Coulomb gas, sudbehavior of the graph only in the large system size limit, and
as the two-dimensional classicély model or the nonlinear thus we can safely neglect higher-order processes such as an
o model. Because there is no obvious mapping from ouedge connecting two previously connected vertices.
system to a two-dimensional one, it seems likely that the Given the processes described above, the difference equa-
transition here is produced by another mechanism. tions governing the time evolution &, are
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E-ui(t) Exi_1(t) 04 —
Ekl(t+1):Ek|(t)+25( pklﬁﬂ)llﬁ) [
Ew(t) Ep(t) 0.3 |
+25pk—1p|—1_25( pkm+p|m), o |
(20) 02 |

where the second and third terms correspond to the three
processes above by whih, is increased, and the fourth to
the processes by which it is decreased. As befpgds the

probability that a randomly chosen vertex has dedgeznd 008
dy is the expected number of degrkeerertices. 0.0 0.2 04 0.6 0.8 1.0
Note thatE,(t) satisfiesZ Ey(t)=24t, which suggests edges per vertex, &

that the large- solution will have the fornE,(t) =26tey,,
whereegy, is asymptotically independent of time. Making this
substitution and solving foe,, yields

FIG. 5. The correlation coefficient for the degrees of connected
vertices in a randomly grown graph. The solid line is the analytic
result, Eq.(26), and the open circles are numerical results from
simulations of the growth model for $@ime steps, averaged over
20 Pk-1Pi-1 25 realizations for each value ot

en=1 (k-1 e -t = (21
1+46 ’ ' 1+46 ) o . .
In Fig 5 (solid line) we show this value fop as a function of

To quantify the tendency for edges to connect vertices of: Where the values of the quantitieg are derived from
like degree, we compute the degree correlation coefficient Numerical iteration of E¢(21). On the same figure we show
results for the same quantity from direct simulations of the

c growth model(circles, and the two calculations are clearly
pP=— (22)  in good agreement.
o The analogous correlation coefficient in the static graph is
identically zero—the two ends of any given edge are placed
where independently of one another. So the positive value aif
the grown graph indicates that high-degree vertices attach to
2 (k= 10)2Kp, other high-degree vertices more often than they would in a
R static random graph with the same degree distribution, and
e (23 suggests that our supposition about the observed differences
E Ip between grown and static graphs was in fact correct.
[

. . . . VI. CONCLUSIONS
is the variance of the distribution of vertex degree at either

end of a randomly chosen edge, and We have introduced and analyzed a model of a growing
network. The model is simple enough that many of its prop-
erties are exactly solvable, yet it shows a number of non-
c=2> (k—=w)(I—-p)ey (24 trivial behaviors. The model demonstrates that even in the
“ absence of preferential attachment, the fact that a network is
grown, rather than created as a complete entity, leaves an
easily identifiable signature in the network topology.

The size of the giant component in a graph has been lik-
ened to the strongly connected component of the world wide
E k?py web (another growing netwoj{4,28-31. In this context it
K is interesting to note that it takes only half as many edges to

n=— (25 . ) .
produce a giant component in the grown graph as in the
; Kpx corresponding static one. Put another way, the giant compo-
nent in the grown graph is more robust to random edge de-

is the average degree of a vertex at the end of a randoml} tion; twice as many edges would have to be removed from

is the covariance between vertex degrees at both ends.
these expressions

chosen edge. to destroy its giant component. It is possible that a similar
Substituting Eqs(3), (21) and(23)—(25) into Eq.(22), we process helps large growing graphs like the Web achieve and
find maintain a high level of overall connectivity even for low

edge densities.
We have also shown that there is a positive correlation
> [k—(1+48)][1—(1+45)]ey between the degrees of connected vertices in our model, or
_ M (26) equivalently that highly connected vertices are preferentially
connected to one another. Similar correlations have been ob-

p= 45(1+26)
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served previously in preferential attachment modgd$ of component sizes. We also have, at present, only numerical
However, our results can be interpreted in a new way—irevidence that the phase transition is of infinite order. Further
our case the degree correlation appears to force the earlyork on these and other questions would help to shed light
emergence of the giant component, and thus alters the conon the unusual behavior of this model.
ponent size distribution in a graph that is otherwise random.
A number of interesting questions remain to be answered
about the model described here. In particular, although we
have an exact differential equation for the generating func- This work was supported in part by the National Science
tion of component sizes, we have no exact solution for thidoundation, the Department of Defense, and the Electric
equation, and hence no closed-form result for the distributiofPower Research Institute.
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