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Capillary instabilities in thin nematic liquid crystalline fibers
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A complete identification and characterization of three distinct capillary instabilities in nematic liquid crystal
fibers is presented. Linear stability analysis of capillary instabilities in thin nematic liquid crystalline cylindri-
cal fibers is performed by formulating and solving the governing nematocapillary equations. A representative
axial nematic orientation texture is studied. The surface disturbance is expressed in normal modes, which
include the azimuthal wavenumberto take into account nonaxisymmetric modes of the disturbance. Capil-
lary instabilities in nematic fibers reflect the anisotropic nature of liquid crystals, such as the orientation
contribution to the surface elasticity and surface bending stresses. Surface gradients of bending stresses provide
additional anisotropic contributions to the capillary pressure that may renormalize the classical displacement
and curvature forces that exist in any fluid fiber. The exact ndaiabilizing and destabilizingand magnitude
of the renormalization of the displacement and curvature forces depend on the nematic orientation and the
anisotropic contribution to the surface energy, and accordingly capillary instabilities may be axisymmetric or
nonaxisymmetric, with finite or unbounded wavelengths. Thus, the classical fiber-to-droplet transformation is
one of several possible instability pathways while others include surface fibrillation.
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[. INTRODUCTION are well understood theoreticall23,24] and experimentally
[22], and the anisotropies in the surface elastic properties of
The current wide use of thin fibers, films and multiphasenematics are also well-characterizgt}9]. It is well-known
material systems demands a fundamental understanding tifat the surface tension of nematics contains an isotropic
capillary hydrodynamics, interfacial thermodynamics, andcontribution as well as an anisotropic contribution, known as
interfacial transport phenomerd—3]. Many new liquid the anchoring energy7,9,22. The role of anchoring energy
crystal applications involving strong interfacial effects suchon capillary instabilities has been partially studigsi25]
as mesophase fiber spinnifg] and formation ofin situ  with simplified versions of the governing interfacial linear
liquid crystal polymer compositel®] also require a funda- Mmomentum balance equations. The study of capillary insta-
mental understanding of capillary hydrodynamics. Despite ®ilities is based on analysis of macroscopic flow produced by
good understanding of interfacial liquid crystal thermody-9dradients in capillary pressufé,25|. The capillary pressure
namics[6-14), nonequilibrium surface phenomena are notiS found by projecting thg surface gradient of the surface
well understood and/or characterized. Force balance equélress tensor along the unit surface normal vector. Thus, the
tions describing statid15—20 and dynamical interfacial hature of surface stress tensor is at the center of capillary
phenomend17,20 are available but have not been widely m_stablhtles. For isotropic fde_s, the surface ;trgss ten_sor isa
used in describing the mechanics of fiber and film micro-diagonal 2<2 tensor, the capillary pressure is isotropic, and
structures. This paper is concerned with the mechanics arfgPnaxisymmetric modes on thin cylindrical fibers are thus
stability of thin nematic liquid crystalline fibers. stable because curvature dampens such costly deformation
A question of fundamental importance in capillary insta-[2] (isotropic jets, on the other hand, may develop nonaxi-
bilities of thin fibers is the nature of the modes that arise ag§ymmetric disturbances but only through inertia eff¢26-
driven by surface tension forces. In isotropic fluid fibers, the28))- For nematic liquid crystals, the surface stress tensor is a
fiber-to-droplet transformation is well understood and known2x 3 tensor, exhibiting botmormal and bendingstresses.
as the fiber Rayleigh instabilitj1,2,24. In this case, dis- Bending stresses arise because the surface energy depends on
placement capillary forces drive the fiber break-up, whilethe nematic orientation at the s_urface. The bending stresses
curvature dependent forces resist the instability. Since irttempt to deform the surface if the surface energy can be
these materials surface tension is isotropic, only axisymmedowered in doing so. In this paper, we show that gradients in
ric mode emerges, eventually generating spherical droplet§ending stresses renormalize the capillary pressure effects,
On the other hand, an essential characteristic of nematic licGréating new axisymmetric and nonaxisymmetric capillary
uid crystals is mechanical anisotrofg?2]. The anisotropies Instabilities. The specific objectives of this paper areitp

in the viscoelastic bulk properties of nematic liquid crystalderive a general equation that describes capillary instabilities
in thin nematic liquid crystal fiberg2) characterize all the

possible capillary instability modes and elucidate the physi-
*Corresponding Author cal mechanisms that drive and quench the instabiliii@s,
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atic texture with a fixed director field, denoted as axial tex-
ture, and the nematic fiber with the axial texture is called
“axial fiber.” Figure 1(b) shows the axial fiber with surface
disturbances. In the cross-sectional view of Fig¢h).lthe
director fieldn is shown as dots and thedirectional surface
disturbances as small-amplitude wrinkles at the surface, al-
though in real the surface noise is too small to be visually
detected. The fiber radiuR and the unit surface norma&l
change along the and @ directions. In the axial texture, the
director is oriented along the fiber axis and it is given by

(a)

n=i,. 1)

The fiber shape at any tinteand positiorz and 6 is given by
FIG. 1. (a) Unperturbed fiber with radius is aligned in the

z-axis of cylindrical coordinatesr(6,z). Cross-sectional view in R(z,0.t)=a+&(z,0.1). @
Cartesian coordinate$, y) shows the unit vector§ andi, in
azimuthal angled. (b) Unit surface normal vectoN and director
field n(n,=1) of the axial nematic fiber with surface disturbances.
Fiber radiusR and unit surface normad change along the and ¢ &(z,0,t)= Z £qeottitkztmo) ®)
directions. In the cross section, the director fielts shown as dots

and the #-directional surface disturbances as small-amplitude . L . .
wrinkles at the surface. where &, is the initial amplitude of the disturbance, the

growth rate for real and positive valuds,the axial wave
number, anan the azimuthal wave number. The wave vector
?'k, m) is composed of two wave numbers. Due to rotational
Beriodicity, the azimuthal wave numberis an integer and

The surface disturbancgis expressed in a harmonic series

characterize the fundamental role of anisotropic surface ela;
ticity and bending stresses in capillary instabilities, d@#d

estabh_sh parametric qondlt!ons the.lt. lead to axisymmetric anspecifies the disturbance mode in the azimutfpdirection.
nonaxisymmetric capillary instabilities.

The organization of this paper is as follows. In Sec. Il WeAX|symmetr|c modes correspond o= 0, while nonaxisym-

present the governing nematocapillary equations and deri\}g“atrlc modes correspond to=0. During a capillary insta-

the instability criteria for a representative nematic texture. InbIIIty the fiber geometry evolution is captured by the fiber's

Sec. lll, we characterize all possible instability modes ancraqt'us(?’ the prmc:pal r_erldudc_)f curvatureflllim,er)t, ET? Its it
the geometry of the evolving unstable fiber. The instabilityunl surface normalN). To discuss capillary instabilities i

mechanisms are clearly identified and discussed in terms d&F also useful to introduce the following expression for the

capillary forces. All results are summarized in compact taby!hean curvaturét in cylindrical coordinates

lar form and discussed in detail, emphasizing the physical as 1 1/ 1 1
well as mathematical aspects. Representative computed VisUpy = — — v _.N=— —| — + —
alizations of unstable fibers are included to complement the 2 2\Ry Ry
tabulated and graphical information. Section IV presents
conclusions. -1 1 2R?,
' 2
= Sl 1t — +RG
R, 3| R R *
Il. GOVERNING EQUATIONS 2 1+ —2 + RZz
R ’
A. Geometry and texture of nematic liquid crystal fibers )
To completely define the state of a nematic liquid crystal- —(1+R2 R 1+ E R..4 3 R R.R
line fiber, both the geometry of the fiber and the spatial ori- “ R2 R2) ** Rz 0ROz

entational order of the nematic liquid crystal must be speci- 4
fied. More specifically, nematic liquid crystalline fiber (4)

={n,R,N}, wheren is the nematic director fielf22], Ris  yhereVv, is the surface gradient operat® ,= JR/36, R,
the fiber radius, andll is the unit surface normal vector. For _ ;p/5-° R po=0°RIG6?, R,~=0°RIdZZ, and R,
’ y 1 W ZZ 1 ,0Z

an isotropic material fiber, only the geometry is necessary,_ #RI(965z). A linearized expression fdd is given below
i.e., {R,N}. o _ [see Eq(24)].

Figure 1 shows definitions of the fiber geometry and nem-
atic texture. Figure () shows that the fiber is initially a
uniform cylinder with radius, and the fiber axis is collinear
with the z axis of a cylindrical coordinate system. The fiber We consider the stability of a thin, initially axisymmetric,
nematic texture is expressed by the director field using unitylindrical nematic fiber surrounded by an inviscid matrix.
vectorsi,, iy, andi, in the direction of the, 6, andz axes, The nematic liquid crystal is assumed to be incompressible,
respectively. In this paper, we restrict our analysis to a nemand its orientation is homogeneous and constant. Linear sta-

B. Linear bulk and surface momentum balance equations
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bility analysis is used to analyze the complete set of axisym- N-t-N=(Vt55.N. (11)
metric and nonaxisymmetric capillary instabilities in nematic

liquid crystal fibers. Since the director is fixed, only the sur-To make further progress, an expression for the surface elas-
face and bulk linear momentum balance equations define thiic stress tensart is required. Since nematic liquid crystals
evolution of the fiber's shape. In this work, the mechanicalare anisotropic viscoelastic materials, anisotropy is an essen-
response of the nematic fluid is that of an anisotropic vistial feature oftSE. Moreover, surface elastic stresses are de-
coelastic materidl10,22, where the bulk is viscous and the fined by constrained variations of the surface energy, which

surface is elastic. we now discuss.
The bulk linear momentum balance equation for this sys- The simplest expression for the surface free energy of the
tem is given by nematic liquid crystal is given by the Rapini-Papoular con-
5 stitutive equatior] 16,22
%
pr=V-t, 5)

: (12

1+ —(n-N)2
5(”' )

Y= "Yist %(n' N)?=¥is
wherep is the densityy the velocity vector, and the total
stress tensor. Inertia is neglected. The total stress terisor where vy, is the isotropic surface tensiony,, the anchoring
defined as energy due to the nematic orientation at the surface, and
= van! Vis the ratio of the anchoring energy to isotropic sur-
t=—pl+t’, (6) face tension. Since the surface free energy and the isotropic
. _ . surface tension are always positiveis restricted to a value
wherep is the pressurd, the unit tensor, ant? the viscous

S reater than-2. If =0, the surface anisotropy vanishes. For
stress tensor. Although nematic liquid crystals have bulkg 4 Py

Frank elasticity due to orientation gradients, in this paper nq7>0’ the surface “easy axis,” that which minimizes the sur-
. X . ' ace free energy, is parallel to the surfgpéanar anchorin
elastic stresses arise becausés held constant. Thus, the 9y, 1S p d o

. . : and perpendicular to the surface normal vector. #060, the
viscous stress tensdf is expressed by Ericksen’s trans- perp

. . : oo . surface easy axis is perpendicular to the surfdoeneotro-
versely isotropic fluidTIF) constitutive equatiofi24] pic anchoring and parallel to the surface normal vector. Ex-

tensions of the Rapini-Papoular constitutive equation are
@) used in the literature, specifically to describe thermally in-
duced surface orientation transitioffs3], but these thermal
where,, 7,, andz; are viscosity coefficients, anlis the  effects are beyond the scope of this paper. _
rate of deformation tensor given by The expression for the surface elastic stress tetvais
obtained by considering the energetic penalty of constrained

t'=27n,A+ pA:nnnn+2( 5, — n,)(A-nn+nn-A),

1 . variations iny and is given by the sum of the norm@én-
A=V, +(VV) ], (8 sion t3F and the bendingSE contributions[29]
where the superscriptT’ denotes the transpose. Whep £5E= 1 tSE= — | .<QN) (13)
= 5, and73=0, the constitutive equation for Newtonian flu- N s''B S\oN )"

ids is recovered. The TIF equation thus describes an aniso- o . . .
tropic viscous material, whose viscosity depends on the diParametrizing the interface with orthonormal unit surface
rector orientation. The continuity equation for this system isbase vectorsi(,i,), the normal and bending surface elastic

written as stresses become
dv, 1d(rv,) Y L
(9_22 T (&rr =0 9 tN=| VisT ?(”N)Z (iqiy+iip), (149
In addition to thebulk linear momentum balance equa- t55=BMi N+ BY3i,N, (14b)

tion, the presence of an evolving free surface involves the
action of surface forces, and thus therfacelinear momen- where the superscriptNI” denotes the interface between
tum balance equation enters the description. The surface linhe nematic liquid crystalN) and isotropic fluid (), which
ear momentum balance equation is given[ byl 6] is i’\ﬂvisgild in this study, and where the bending coefficients
B13,B5;} are given b
NtV tSE (10 {B13.B2s} g y
NI _ H NI _ ;
where tSE is the surface elastic stress tensor. On the right B13 Yal-N(0-1), Bz yardn-N)(n-12)- (15)
hand side of Eq(10), the surface viscous stresses are ignored
since they are insignificant in relation to the surface elasticThe bending coefficients are proportional to the anchoring
stresses. The shape of the evolving fiber depends only on tlenergy and to the director’s projections along the unit normal
normal component of the surface linear momentum balancand along the surface base vectors. The largest magnitudes of
equation, and thus the shape equation is the bending coefficients, for givep,,, arise atw/4 angles
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from the interface, and they vanish at the planar and homeo-
tropic orientations. In matrix form, the>23 surface elastic Pl bending stressés 2H
stress tensar°F is

dy
&_N) . (21

dy

NN

+V,

Thus, the anchoring energy,, contributes to the capillary
(16 pressure through both tirmalandbendingstresses. Nev-
ertheless, when considering the linear regime of capillary

Clearly the surface stress tensor is asymmetric. MoreovemsmIbIIIty of a nematic liquid crystal fiber, second order

. . 2 - .
such bending stresses are intrinsic to nematic interfaces arﬁ%r:ir:str”owioclvclggrr'i(t)nut:\é)r] tt(:)atr;](;elzguit”:?d t?:SSSPé E:?Li?;?gm
result in forces normal to the interface, even in the absenc P pifiary p

of curvature, for a director field not parallel or perpendicular € bending stresses. Thus, any model that attempts to cap-

to the interface. The bending stresses play a crucial role i{]ure'dthe Ime;arf'tr)egme of .carlalltljary :FStab'".tg In a nemgtlc
the capillary instability of nematic fibers. Isotropic surfacef'qu' thystad_l er must include all contributions arising
tension leads to axisymmetric capillary instabilities, but an- rom the bending stress tensor.
isotropic surface tension leads, through the generation of

bending stresses, to nonaxisymmetric modes. The reason be- C. Simplifying assumptions
hind this statement is that forces normal to the interface de-
pend on surface orientation and exist even in the absence Q
curvature[20,29.

Using the expression for the surface elastic stress teriSor
we find the following expression for the interfacial forte
[29]:

tSE=

0 y BY

f The assumptions made to describe the linear regime of the
apillary instability in incompressible, isothermal nematic fi-
bers are as follows.

(a) For sufficiently thin fibers, the surface elastic energy is
insignificant with respect to the bulk Frank elasticf82];
the director field does not change even if the fiber shape
evolves through the linear instability process.

f=V  tSE=V 35+ V. t55= : [(a—y) (V)T |-lg (b) In the long wavelength approximation, the wavelength
an of a dominant surface disturbance is assumed to be much

ay ay longer than the fiber radius, and the axial velocity is consid-

+(2Hy)N| + —ZH(WN)—Vs'(m”N], erably larger than the other velocity components. In the

present case, an order of magnitude calculation obtained us-
(17 ing the continuity equation yields,>uv, ,v, [2]. Thus, only

the axial velocityv, is significant.
where the first term in CUrIy brackets is the normal stress (C) In the absence of Surrounding matrix effects and in the
contribution and the second term in curly brackets is thgong wavelength approximation, the radial dependence of
bending stress contribution. Equati@i) shows that surface axjal velocity is ignored so that the axial velocity is consid-
gradients in the normatension surface stresty” give rise  ered as a function only of the axial coordinate and time
to tangentialperpendicular tiN) and normal forcegparallel  _(z,t) [2].
to N), while surface gradients of bending strégSgive rise (d) The analysis is restricted to the linear regime of the

only to normal forces. It is shown in Eq17) that normal capillary instability. This restriction is obeyed whefia
forces from surface gradients of bending stress persist eveg1.

in the absence of curvaturéi&0). Meanwhile, tangential In the next section, we develop the governing equations
forces have been shown to drive Marangoni nematic flowsor the capillary instabilities of nematic fibers when the di-
[29]. rector is aligned along the fiber axis=1).

The normal component of Eq17) is known as the gen-

eralized Laplace equatidn] D. Governing equations for an axial nematic fiber

—N-(t'=tN).N=(V,- t55.N= — P, (18) In this section, the governing equation of the surface dis-
turbanceé(z, 6,t), Eq. (3), is derived for the axial fiber by
where the superscriptl” and “ N” denote the isotropic and combining the linear momentum balance equation, BY.
nematic fluids, respectively, amml, is the magnitude of the and the normal stress boundary condition E).
interfacial normal force originating from the surface gradi- During nonaxisymmetric capillary instability, the princi-
ents of the normal and bending stresses, called as the cappal radii of the curvatureR,; ,,R,,) and the unit surface nor-

lary pressure, and according to Ed7) it is given by mal vectorN are obtained in the linear regime using the
assumptions in Sec. I C and given by
dy ady
—Py=2Hy=2H| -5 N =V | =5 ). (19 1 1 1(#R) 1 R
e =n | ) =7 (22
Ry R R?\96%)" R, 9z°

Thus, the normal and bending stress contributions to the cap-

illary f
illary forces are B 1R IR,

N=i,— = —i,— —i,. (23
py|normal stresses — 2H, (20 "'"RgO Y 9z 7
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Note that the radii of curvature ar@ dependent:R,,
R 4(z,0,t), R,=R,,(z,6,t). Thus, the mean curvatuté
in Eq. (4) is expressed dL1]

_11+1_111 R\ #°R
~ 2Ry, Ry 2|R RZ\9#?) 92|

(24)

Under the assumed kinematical conditions, the only non-

zero component oA is

du,
AZFE. (25
The viscous stress tensor, obtained by substituting Egs.
and(25) into Eq. (7), is

—oy 0 26
et (26)
where n= 7,+ 73/2+2 (51— 75). Substituting Eq(26) into
Eq. (6), the total stress tensor becomes

— piogl 2
p+2n——. (27)
Using Egs.(23) and (24) in Eqg. (19), the capillary pressure
p, becomes
Yis Vis (025 1 0725 525 28)

Py=% " zf Yis z+;ﬁ)—%57?,

PHYSICAL REVIEW E 64 041701

&zvz
927

&vz
Pt

&py

02 (32)

By integrating the continuity equation, E¢P), across the
cross section of the fiber, we obtain

dR
ot

IR R v,

+Uzaz 2 J9z =0, (33

where the second term is dropped in the linear redi2,&1].
Thus, using Eq(2) the axial velocity can be expressed in
terms of¢ [2,31]:

2 9¢

adt’

Jdv,

0z (349

Combining Egs{(32) and(34) in conjunction with Eq.(28)
gives the differential equation faj:

6 3y by E (6 1P 5%
oz p oot 2p 02|a2 \ a2 aZad?| " T oz
=0. (35)

By substituting Eq(3) into Eq.(35), a quadratic equation for
the dimensionless growth rate* = a\/pa®/ v, is obtained:

(ka)?
2

a*24+30hka)2a* — [1-m?—(1+ 7)(ka)?]=0,
(36)

where ka is the dimensionless wave number and Oh

which properly reduces to the Newtonian capillary pressure= 5/+/pay;s is the Ohnesorge number, or the ratio of the
when 7=0, i.e., when surface tension is isotropic. Impor- viscous force to the surface force. From E2f), the nematic
tantly, when the bending stress contributes to the capillarfibers are unstable when the condition is satisfied:

pressure of an axial fiber, a forq:e/lbf appears that is given
by

PPE

Pylpr=— YisT 52 (29

2a* =—3 Ohka)?

+[30hka)?]?+2(ka)’ [1—m’—(1+ 7)(ka)?]

(37

>0.

which can compete or cooperate with the usual isotropic confthe maximum growth rate¥ ., and the corresponding wave

tribution since the sign of is not fixed. Thusgin Eqg. (28)
can be positive, negative, or zero.

The pressure in Eq27) can be expressed in terms of the

capillary pressurg2]

1 1
pz_§(tzz+t00+trr)=_§(tzz_2py)a (30)

where the following boundary conditions are applieg:
=—Py, L=ty , atr=a

Substltutlng Eq(30) into Eq (27), the total stress tensor is
rewritten ag2]

Jv

—p,+37 . (31)

tZZ

numberka,,,, obtained by solving Eq.36), are

-1

( s [ (1+7) 60h
max 2v2 (1_m2)2+ (1_m2) ’ (38)
kamaxz( \/(1( 3f0h\/(1 2) (39)

which reduce to the results for Newtonian fluids if the vis-
coelastic anisotropy and the nonaxisymmetric dependence
vanish; i.e.,n;= 75, 73=0, 7=0, andm=20: for the highly
viscous fiberap,.,=1/(60h) andka,,=1/1/3v20h; for the
inviscid fiber, ap,,=1/2v2 and kay,=1W2. In particular,
when only axisymmetric disturbances become unstable, i.e.,
m=0, the results from Eq¥38) and (39) predict the axial

Using Eq.(31), the axial momentum balance equation, Eq.fiber breakup into droplets with a characteristic size of

(5), is found to bg 2]

271/ Kaynay [25].
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The physics of capillary instabilities in axial nematic fi- C
bers can be elucidated by rewriting E@8) as b=
Vs Vs PE 1 P PE v t>-1
Py=5 28 Vs g2t 2 o) " VsT 2= 5 Not
b st I (MR/A)
L, (40) possible
1
fa==32Ceé Te=—2C¢, 800~ Ce, Loz C, st t=-1:Cc/A) D C,
C, D st Cg,
Ce=C¢,,=7s» Cg =vis(1+7). (41
The capillary pressure contains twédependentdeforma- Not T<-1
tion effects: a displacement fordg and a curvature force . D
f.. Capillary instabilities occur because a spatially periodic possible II (C/A, C/NA)
pressure gradient develops, inducing macroscopic flow. The
driving force for creating a pressure gradient is denoted as a

destabilizing force, while a force resisting it is denoted as a

stabilizing force. The nature of the two capillary forces de-  FiG, 2. Instability phase diagram in terms of the displacement
pends only on the sign of their coefficien@y, Cyy, and  force coefficientC, and the curvature force coefficien@, and
C¢, , which are the effective surface tensions for both forcesc ¢, Roman numeral, I1) refer to the two regions of Table I, and
Thus the displacement force is destabilizistabilizing for  the caption§MR/A, C/A, C/NA) to the instability types of Table I.
C¢s>0 (C.<0), while the curvature force is stabilizifde- ~ On the axes St and D denote stabilizing and destabilizing, respec-
stabilizing for C»,>0 andC, >0 (C4y<0 andC, <0).  tively.

In isotropic fibers ¢=0), the displacement force is always 4ttrihyted to anisotropic effects arising from surface gradi-
destabilizing and the curvature force is always stabilizinggnts of bending stresses.

thus explaining the existence of lower cutoff in the instability

wavelength, as in the classical Rayleigh fiber instabilétye Ill. RESULTS AND DISCUSSION

Fig. 3 and discussion belgwThis occurs because the stabi- L . . S .
The characterization of capillary instabilities in nematic

lizing curvature force for sufficiently short wavelengths .. . it . -
overpowers the driving displacement force. Since for axialflbers requires the specification of two featur@sInstability

. . . ... “mechanism andi) Symmetry of deformation modes. These
fibersC.>0, the displacement force is always destabilizing. . 1
On the other hand, sinee= — 2, the curvature force frorg,, two features are embedded in H§7) and must be consid

ST o ered separately.
can be destabilizing if<—1 becaus€, <0 or stabilizing (i) Instability mechanism. The capillary instabilities in

if 7>—1 becaus€,, >0, although the curvature force from nematic liquid crystalline fibers are found to follow two dif-
&4y is always stabilizing. Thus, when the curvature forceferent routes: Modified Rayleigh and catastrophic instability
from &,, is destabilizing ¢<—1), a lower cutoff wave- mechanisms.

length does not exist and the instability must be of the Had- (a) Modified Rayleigh(MR) instability mechanism. The
amard typesee Fig. 2 and discussion belpvinceris the  modified Rayleigh instability is characterized by a single
bending force coefficienfsee Eq.(29)], the described =0 mode. Settingn=0 in Egs.(37)—(39), we find that the
phenomenology of capillary instabilities in axial fibers is nematic fibers are MR unstable whenever

2a* (m=0)=—30h ka)2+ \[30h ka)?]?+2(ka)2[ 1— (1+ ) (ka)2]>0,

(42)
at (Mm=0)=(2v2\(1+7)+60h 1>0, 0<Kama(m=0)=(V2(1+7)+3v20h(1+ 7)) 1<Kagof

wherekagof IS an upper cutoff wave number above which stable modes follow the classical short wagenall wave-
disturbances do not grow. The axial fibers have no azimuthdength instability [30], which is characterized by simulta-
dependence and thus axisymmetric. neous occurrence of all azimuthal modasvith unbounded

(b) Catastrophic simultaneous instability mechanism. Ingrowth rate. Using Eq(37), we find that the nematic fibers
the catastrophic simultaneous instability mechanism, unare catastrophic unstable whenever
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*

d(ka)~ ¥

2a* =—30hka)?+ \[30h ka)?]?+2(ka)1—m?—(1+ 1) (ka)?] >0, (43

where ka>0 for a catastrophic instability without upper with an uppekag,; Since the curvature forces are stabiliz-
Kagyoff- Under this instability mechanism, the following or- ing; in the fourth quadrant, curvature frogy, destabilizes
dering in growth rates is found: and catastrophic instabilities occur; the second and third
quadrants are thermodynamically inaccessible sidgend
ng are always positive. By crossing the boundary between

h % — 2" whil ten= de h the first and fourth quadrants€ —1), the fiber under MR
wherea™ (my)= a*" while m, representsn=n mode here- instability in region | becomes susceptible to catastrophic

after. . o . X o
. . instability for modem=0. And then, in region Il the fiber is
(il) Symmetry of deformation modes. The symmetry Ofcatastrophic, unstable for modes=1 as well asn=0. Fig-

the deformation in this paper is restricted to axisymmetric . . :
and nonaxisymmetric mgdgs axisymmetric modesybeing romrC 3 shows a representr%[we schematlc of the dlsplacement
tationally invariant. It is noted that for axial fibers the mode {'¢) e.md cu.rvaturef(cygzz,fcigw, c.¢,,) forces as afunction of

=0 i i the dimensionless anchoring energywheref. . represents
m=0 is, as usual, an axisymmetric mode. -

Based on this general discussion, the criteria required tthe curvature forces frorﬁzz,fgjgw the curvature force from
classify the capillary instability are given by specification of £,y for m=0 mode, and™, for m=1 modes. The figure
instability mechanism/symmetry. The following three cases o0 . ’ ©E9 . .
emerge:(a) Modified Rayleigh/axisymmetridMR/A), (b) again provides the reasons of the existence of the two regions
catastrophic/axisymmetric (C/A) (c) catastrophic/ (I'and II), and ops_e_rvahon of the sign and relative magni-
nonaxisymmetridC/NA). In what i‘ollows we discuss these tudes of the stabilizing and destabilizing forces explains the
three different capillary instabilities in axial fibers, and de- phenomenology of Table I. In short, the displacement forces

termine the parametric dependence of the deformation anqd) are always destabilizing, while the curvature forces

a*0>g* > > x> g TS (44)

mo0 m P .
growth rates. from &, (fcé%,fcygw) always stabilizing, showing the
smaller curvature force fan=0 than form=1. Meanwhile,

A. Capillary instabilities in axial fibers the curvature forces frorg, (f; ¢, ) are stabilizing only for

. >—1. ig. ilizi isym-
Table | summarizes the complete phenomenology of the. 1. In Fig. 3, the stabilizing forces for the nonaxisym

. m o
three capillary instabilities in axial fibers, as computed from_metrlc_ _mo_des G.,,) are sufficiently s.trong to quench the
Egs. (42), (43). There are three regimes according to theinstability if 7>—1, and thus onlyn=0 is unstable. In other
values ofr. The first column shows the instability type, and WOrds, it is energetically costly to cause instability modes
the entries show characteristic growth rate curves for eaci=1 for 7>—1 as seen by comparing the magnitude of
instability mechanism. For the MR instability in the secondstabilizing forces with that of destabilizing forces. For
column, the growth rate curve is bounded, and an upper 1, since the destabilizingy cannot overcome the stabiliz-
kac,oif €XiSts. For the catastrophic instabilities of all modes . _ L -

in the fourth column, the growth rate curves are unbounded TABLE I. Capillary instabilities in axial fibers. MR/A: Modified

and lower modes grow faster than higher modes. We neﬁayleigh/axisymmetric instability. C/A: Catastrophic/axisymmetric

It ) ) ; P A
discuss in detail the physical and mathematical aspects of tHérS;?AZ':]'?a&ng Nﬁ?‘h rﬁg:jaes;g:p?;f;g?rgiﬁiscymgzmﬁtigftab'"W' ‘

tabulated information.

1. Instability characterization in axial fibers

. . . . . .| Instability Region I Criticality Region II

As explained above the physics of capillary instabilities in| e

N . ) ) . (r>-1) (r=-1) (-1>12-2)
axial fibers, as summarized in Table I, is elucidated by con
sidering the sign of the displacement and curvature force _
coefficients or effective surface tensiofisee Egs.(410), . "
(41d)]. Figure 2 presents an instability phase diagram MR/A No No
spanned by the displacement force coeffici€at and the a
curvature force coefficientéigw and Ce, The roman nu-
merals (I, 1l) refer to the two regions of Table I, and the . m=g
captionsMR/A, C/A, C/NA) to the instability types of Table ca No
I. The figure captures the nature of the driving forces and ,m
identifies when and why an instability occurs. For the axial
fiber, sinceC,(C,yy) is always positive and thus destabiliz-

C/NA No No

ing (stabilizing, the sign of Ce,, determines instability

i i ] - (a®>a’>a%>)
mechanisms: The first quadrant corresponds to instabilitie
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Force 1-m?—(1+ 7)(ka)?>0. (45)

For isotropic fibers,r=0 and inequality Eq(45) is never
fulfilled for m=1, but for nematic fibers it can be. Inequality

an
=)
‘B f:'éee Eq. (45 is satisfied whernr<—1, where the following con-
= dition is also satisfied:
fiso Fg f
c,§u\V__ &8z —m?
<]

m
<(ka)?. (46)

® piso fcr,néle 0< 1+7
| l/ c ég T
-2 IL~1 0l 1 In other words, when the magnitude of the stabilizing curva-
E ture forcef . _is sufficiently reduced by bending forces, and
%‘ eventuallyf £, becomes destabilizing because the effective
f;S" s surface tension is negative, nonaxisymmetric modes emerge
X é’) f, under catastrophic Hadamard instabilities. Since curvature

from &,, is destabilizing, there is no upper cutoff but lower
cutoff wave number fom=2 from Eq.(46).

For axial fibers we then have two instability regions.

(@) MR/A: 7<—1, region I. This case corresponds to the
second column of Table I. Wher>—1 only the modified
Rayleigh instability with a single unstablen, mode is

FIG. 3. Representative schematic of the displacemgpt &nd
curvature (Clgu, g‘gﬁa,f?g”) forces as a function of the dimension-

less a”ChOn:(i)”g energy wheref, . represents the curvature forces |, ocent The mode is axisymmetric. In this case, the effective
from &,,,fc.¢,, the curvature force frong,, for m=0 mode, and gy rface tensions are positive and the instability follows the
fee,, for m=1 modes. In the figuref;® represents the displace- classical Rayleigh mode.
ment force, and ¢} andfce the curvature forces for isotropic (b) CINA and C/A: —2<7<—1, region Il. This case
fibers. The figure provides the reasons of the existence of the twoorresponds to the fourth column of Table I. There are two
regions(l and Il), and observation of the relative magnitudes of the possible instabilities: C/NA and C/A. The catastrophic insta-
stabilizing and destabilizing forces explains the phenomenology obility mechanism controls the fiber: All modes are unstable,
Table 1. and the short wave instability is dominant. The lower modes
grow faster than the higher modes at constantwhich
ing f'e, andfc . is no longer stabilizing, onlyn=0 un-  means lower mode disturbances with short wavelengths are
dergoes catastrophic instability. The figure also shows thamore likely to cause the fiber instability. In this regime de-
for isotropic fibers ¢=0) the curvature force iSO and  stabilizing forces dominate, and the negative effective sur-

] C.épp ) . .
1% are always stabilizing while the displacement fof{;8 :‘ace tension of curvature forde ¢ , allows for surface fibril-
A ation.

is always destabilizing, and thus the uppea. i exists G . .
since the magnitude of the destabilizing force is relativelyth (tC) ir't'ca_“?f&_l'.-rhe th.,'[.rd T°|,:JT”.'” Tlaple ICs/rAO\_/vs
greater than that of the total stabilizing curvature forces. at whenr= ere Is a crilical state involving In-

i it e 1t
The nature of nonaxisymmetric instabilities is explained.Stab'“ty' In the limit7=—1" the growth rate of the MR/A

as follows. For the cylindrical axial fiber, the surface orien-ms‘_tablllty b(icomes maximized. Qn thg_gther h_and, in the
tation of the nematic texture is planar anchoring. Since 1‘0|l'm't — __1 th?.C/A _and CINA instabilities shrink to the
7>0 the easy axis of the surface is planar anchoring, th nly C/A |nst§blllty with a smaller slope of growth rate.
misalignment between the surface orientation and the eas us, decreasing through th? valug of-1 denote; the ex-
axis is not high enough to cause the nonaxisymmetric instadction of the boundeq MR |n§tg_blllty, and the birth of the
bility by bending stresses. On the other hand, 610 the unbounded catastrophic instabilities.

misalignment between the actual director and the easy axis
(homeotropi¢ is large, and if the anchoring enerdy) is
strong enoughlarge negative valye the bending stresses In this study, surface disturbances are classified by the
may even cause nonaxisymmetric deformation in order tanodem in the azimuthal direction given in E¢3). Because
relieve the high misalignment and align the director with them is an integer, positive and negative signs are equally pos-
easy axis by means of surface deformations and rotationsible for each value ain. In axial fibers, the sign selects the
These observations on the symmetry of the unstable modd®ndedness of the shape deformation but does not affect the
can be made quantitative, as follows. When the growth ratgrowth rate curves due to the? dependence of the growth

a* is real and positive, the surface disturbances become umate in Eq.(37). A positive sign imprints a left-handed rota-
stable and grow with time. In the Newtonian fiber0) the  tion to the surface pattern and thus these are chiral modes.
positive reala® is obtained only for the axisymmetric dis- The modemg, which is a so-called varicose mode, repre-
turbances in=0), from Eq. (37). For the axial fiber, by sents the well-known axisymmetric disturbance. Likewise,
solving Eq.(37) positive reala* solutions are obtained when the m; mode is called the sinuous mode, and modes with
the following condition is satisfied: m=2, fluted modes. Under the modeg instability, the cen-

2. Symmetry of deformation modes in axial fibers
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05 (@ym=0 ) bym=0
—9 ’
3 04
5 , 03
—e o max
02
Oh=(0
" ol 101
1—o , !
=2 0 2 4 6 8 10
0 . > .
FIG. 6. (8) Maximum growth ratex};,., and (b) corresponding
-2 -1 0 1 7 maximum dimensionless wave numbea,,,,, as a function of di-

mensionless anchoring energyfor mg and Oh=0,1,10. This fig-

T ure corresponds to region | in Table | and to the MR/A instability.

FIG. 4. Azimuthal wave numbean as a function of the dimen-
sionless anchoring energy At 7= —1, the figure shows the tran- <—1 all catastrophic modes arise simultaneously since cur-
sition of instability mechanisms from MR to catastrophic type. Only vature forcegcfzz are destabilizing and thus total destabiliz-

the my mode is unstable in the whole range ofThe instability  jng forces are greater than total stabilizing forces for all

birth curve diverges as——17, and thus then, mode undergoes odes(see Fig. 3 The instability birth curve diverges as
from MR for 7> —1 to catastrophic for<— 1. Nonaxisymmetric r——17, indicating that in thisr= — 1 limit, the me mode

catastrophic instabilities also emerge when— 1. becomes catastrophic unstable

Figure 5 shows the dimensionless growth rate cunes
ter of the fiber moves along a spiral trajectory aroundzhe as a function of dimensionless wave numbser for m, at
axis. Form=2, the cross-sectional shape has a regular patr=—0.5,0,2, for(a) Oh=0 and(b) Oh=1. This figure cor-
tern identified bym axes of rotational symmetry, and the responds to region | in Table I. According to E@2), at
shape rotates along tfeaxis. The axial rotation of the an- three values of, 7= —0.5, 0, and 2, the only unstable mode
isotropic cross-sectional shape for=2, produces twisted ismy. Itis seen in Fig. 5 that the cutoff wave number, which
ridged microstructures. is given askags=1/V1+ 7, is not a function of Oh. In

It is noted that while values OhO change the maximum addition to decreasing the maximum growth rate, the effect
growth rate and the corresponding wave number, they havgf increasing Oh is to shift horizontally the maximum growth

no effect on the surface deformation pattern. For the ClaSSiCthe to lowerka values, meaning that Viscosity increases the
mo mode, N =2w/(ka) is the dimensionless wavelength of |ength scales of the unstable mode.
*

the varicose shape in tizedirection. The fiber cross section  Figure ga) shows the maximum growth rate* .., and

is always circular but periodically expands and contractssig. () the corresponding maximum dimensionless wave-
when traversing the axial fiber direction. Thus, for g  nymperkay,,, as a function of dimensionless anchoring en-
mod_e the formation of droplets with a characteristic side ergy 7, for my and Oh=0,1,10. This figure corresponds to
predicted. region | in Table I, and to the MR/A instability. The sup-
pressing effect of the viscosity is again evident in both fig-
ures. The figure shows that asincreasesaj,,, and kaax
decrease sharply untit=0, and then they decrease at a
much slower rate. The sensitivity of the instability with re-
spect tor has already been explained in the previous section

3. Parametric effects on capillary instabilities in axial fibers

Figure 4 shows the azimuthal wavenumineas a func-
tion of the dimensionless surface anchoring energit =
1, the figure shows the transition of instability mecha-
nisms from MR to catastrophic type. Only the MR madg

persists forr>—1 because the stabilizing curvature forces m=0
fo'. for modesm=1 are sufficiently strong, while ifr
C.égy 10
= = = = 8
@m=0, Oh=0 ol (bym=0, Oh=1
0.5
£=-0.5 012 6
04 ol L=-C.3 ka cutoff |
- 03 0 ” 0.08 o 4 |
0.06
0.2 > oot 2 |
0.1 002 2 i
0 0 |
0 02 04 06 08 1 12 14 ¢ 02 04 06 08 1 12 14 0
ka ka -2 -1 0 1 2 3
T

FIG. 5. Dimensionless growth rate curve$ as a function of

dimensionless wavenumbka, for my at 7= —0.5,0,2, for(a) Oh

FIG. 7. Dimensionless cutoff wave numbea, ;. as a function

=0 and(b) Oh=1. This figure corresponds to region | in Table I, of the dimensionless anchoring energyfor m,. This figure cor-
responds to region | in Table I, and to the MR/A instability.

and the onlymy; mode is MR unstable.
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= =-1 = = = = = =
03 @m=0,7 % b)ym=0, Oh=0 “ (@ym=0, Oh=0 05 bym=0, Oh=1
025 @ 12 04
=-1.01 y
02 Oh=), T 10 T T=-1.01
. L 30 . 8 , 03
a 015 1 a £1.5 a a
20 6 -1 02 -
0.1 4
005 " 10 -1 2 <0.99 0.1 095
0 0 0 0
0 0.1 02 03 04 05 0 2 4 6 8 10 12 0 2 4 6 8§ 10 12 14 0 2 4 6 8§ 10 12 14
ka ka ka ka
FIG. 8. Dimensionless growth rate curve$ as a function of FIG. 9. Dimensionless growth rate curve$ as a function of

dimensionless wave numbén, for my, and (@) Oh=0,1,10, and dimensionless wave numbéwa, for my at 7=—0.99, —1, and
7=-1, and(b) 7=—2,—1.5—1, and OR=0. (a) Corresponds to —1.01, and(a) Oh=0 and (b) Oh=1, dramatically revealing the
the transition(C/A instability) between regions | and I, an@) to critical point at 7=—1. The dimensionless anisotropic elasticity
the transition and region Il in Table I. values are close te=—1 (transition between regions | and Il in
Table |), when controlled by the MRr= —0.99; region | in Table
in terms of the misalignment between the surface orientatioh and catastrophi¢r=—1.01; region Il in Table ) instability
and the easy axis. mechanisms, respectively.
Figure 7 shows the dimensionless cutoff wave number
kac,ioif @S @ function of the dimensionless anchoring energy, Figure 10 shows the dimensionless growth rate cunes
7, for my. This figure corresponds to region | in Table I, and as a function of dimensionless wave numbey for m, to
to the MR/A instability. Thekag,, decreases witlrin the  mg, when Oh=0, for (a) 7=—1.01 and(b) 7=—2. The
same pattern akan,y in Fig. 6(b). Similar to the viscous dimensionless anisotropic elasticity range corresponds to
effect, if > —1, the surface elasticitytends to stabilize the catastrophic instability mechanisfregion Il in Table ). The
fiber, as explained above. short wave instabilities are seen for all modes, but only six
Figure 8 shows the dimensionless growth rate curves among all catastrophic modes are presented in the figure,
as a function of dimensionless wave numkarfor my, and  clearly showing that lower modes grow faster than higher
(@ Oh=0,1,10, andr=—1, and(b) 7=—2,-1.5-1, and modes. In Figs. 1@ and 1@b), the growth rate curves for
Oh=0. Figure 8a) corresponds to the transitiq@/A insta- m, to ms show the same pattern for= —1.01 (just below
bility) between regions | and Il in Table |. According to Eq. the critically 7= — 1) and 7= — 2 (the thermodynamic limijt
(43), for =—1 the only unstable mode ig,, and the showing that the catastrophic instability fer=—2 grows
growth rate increases with wave numlk@rwithout kag, much faster than that for= —1.01[see also Fig. &)]. Fur-
signaling that axisymmetric catastrophic instability occursther, it is shown that forr<—1 the “lower” kag, exist
but increasing Oh suppresses the slope of growth rate bipr the catastrophic modes only where 2, as explained in
means of the stabilization effect of viscosity. Figur)8 Eq. (46).
corresponds to the transition and region Il in Table I. Ac- Figure 11 shows representative structures that summarize
cording to Eq.(43), as T decreases from=—1, the growth  capillary instabilities in axial fiberésee Table)l. Axial fibers
rate of modam, increases faster with wave numberunder  display three types of linear instabilities, whose symmetry
the catastrophic instability. and existence are controlled by the magnitude and sign of the
Figure 9 shows the dimensionless growth rate cueves dimensionless surface anchoring energylLarge negative
as a function of dimensionless wave numbzey for my at  values ofr (region Il) ignite catastrophic axisymmetric and
=-0.99, -1, and—1.01, and(a) Oh=0, and(b) Oh=1, nonaxisymmetric Hadamard instabilities, leading to fibrilla-
dramatically revealing the critical point at=—1. The tion phenomena, as the effective surface tension coefficient
dimensionless anisotropic elasticity values are close t€; for curvature forcesf., is negative. Intermediate
7= —1 (transition between regions | and Il in Tablg Wwhen
controlled by the MR(7=—0.99; region | in Table)l and @T=-1.01 , Oh=0 ®T=-2 , Oh=0
catastrophic(r=—1.01; region Il in Table ) instability 10 1
mechanisms, respectively. The growth rate curves are 8
bounded aka, . for 7= —0.99 while the short wave insta-
bilities are seen for=—1 and—1.01. Although, consider- “ ,,
ing that the MR instability is maximized as——1"* while
the catastrophic instability is minimized as——1", the
latter is always more unstable in the whole rang&afThe 010
phenomena mentioned above hold qualitatively for any range
of ViSQOSity’ gltho_ugh the shapes of _the gro_vvth rate CUIVES G, 10. Dimensionless growth rate curve$ as a function of
look different in Figs. @a) and 9b) as higher viscosity shifts  gimensionless wavenumbka, for m, to ms, when Oh=0, for (a)
aax @nd Kayay toward significantly smaller values, i.e., @ ;= —1.01 and(b) =— 2. The dimensionless anisotropic elasticity
quantitative effect. When ORO, for 7= —1 the growth rate  range corresponds to catastrophic instability mechartiggion I
increases with wavenumber but, after leveling off, it is al-in Table ): r=—1.01 (just below the criticality 7=—1) and

most bounded withouta, . [see also Fig. & ]. 7=—2 (the thermodynamic limjt
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atics contains orientation contributions that allow for the ex-
istence of bending stresses. Surface gradients of bending
stresses provide additional anisotropic contributions to the
capillary pressure of fibers that renormalize the classical dis-
placement and curvature forces that exist in any fluid fiber.
The exact nature and magnitude of the renormalization of the
displacement and curvature forces depend on the nematic
liquid crystal orientation and the anisotropic contribution to
the surface energy. If the orientation is along the fiber axis,
capillary instabilities may be axisymmetric or nonaxisym-
: , metric, and if the anchoring energy strongly promotes nor-
-2 I -1 0 I mal (homeotropi¢ orientation to the surface, the usually sta-
bilizing curvature forces become destabilizing and capillary
FIG. 11. Representative structures that summarize capillary ininstabilities with fibrillation phenomena arise. We are pres-
stabilities in axial fiberssee Table)l Axial fibers display three ently pursuing experimental verification of nonaxisymmetric
types of linear instabilities, whose symmetry and existence are coreapillary instability using rheological microscopy methods
trolled by the magnitude and sign of the dimensionless anchoring32]. The phenomenology predicted in this paper is acces-
energyr. Varicose deformations emerge at positive and intermedisijp|e, in principle, by changes in temperature, since the an-
ate _negativer (region ) and surface fibrillation at large negative choring energy of a given interface is temperature dependent
(region 1. [7]. Thus, the classical fiber-to-droplet transformation is one
of several possible instability pathways while others include
surface fibrillation.

negative values close to zero and positive values(oggion

I) lead to the axisymmetric Rayleigh instability, and to an
eventual fiber break-up into droplets, because destabilizing
displacement forcek; overcome stabilizing curvature forces
fee, andf?%ﬂg, butfd, . Atthe critical state ofr=—1, the
fiber instability is of catastrophic axisymmetric type. The

only effect of viscosity is to slow the growth rate and in-
crease the wavelength of the unstable modes.
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