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Kinetics of crystallization in hard-sphere colloidal suspensions
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We propose a kinetic model for describing crystal nucleation kinetics in hard-sphere colloidal suspensions.
The model captures the interplay between the enhanced thermodynamic driving force and the reduced particle
diffusivity in determining crystal nucleation rates as the particle density is increased in hard-sphere suspen-
sions. Model calculations of nucleation rates and crystal growth velocities agree quantitatively with experi-
mental observations. The dependence of the critical cluster size on volume fraction that emerges differs
qualitatively from predictions of classical theories allowing for an experimental validation of the mechanism of
crystal nucleation in colloidal suspensions.
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[. INTRODUCTION strated, however, that temperature gradients can induce crys-
tallization indirectly, by altering the mechanical stability of
Promising technological and scientific advances, such athe system, and allow for control of the crystallization pro-
the manufacture of photonic band gap materials and the desess[20]. Crystallization can be suppressed by rapid in-
termination of protein structures through x-ray crystallogra-creases inp abovegs [5]. A HS glass results ap~0.58. At
phy, hinge on our ability to control colloidal crystallization this volume fraction suspensions are observed to be noner-
[1,2]. Ongoing efforts to establish crystallization protocols godic.
have resulted in an understanding of the equilibrium phase Nucleation rates, crystal growth velocities, and induction
behavior of large classes of colloidal suspensions, includingmes have been measured for crystallization in HS suspen-
hard spheres, proteins, globular macromolecules, and mixions[15,16,18,21-2}4 At low volume fractions,¢= ¢,
tures of colloids and polymef8—10]. On the other hand, the the kinetics of the ph_ase transition is dictated pred.ommz_:mtly
kinetics associated with these phase transitions remairf®y the thermodynamic driving force for crystallization, viz.,
poorly understood. Classical nucleation theory is often inthe difference in the fr.ee energies of the §o_lld and th_e fluid
voked for predicting steady state nucleation rates during colPhases. Upon increasing above ¢, the driving force in-
loidal crystallization[11—15. Comparisons between experi- créases and, accordingly, nucleation rates and growth veloci-
mental results and model calculations show discrepancigii€s increase, and induction times decrease. At higher volume
that cannot be attributed easily to approximations in theoryractions,¢~0.58, hydrodynamic effects begin to dominate.
or uncertainties in experimefit1,16,17. This is especially Due to crowding, the diffusivity of the particles in suspen-
true of systems where particles have attractions. Even fopion decreases. In this volume fraction regime, the rate of
hard spheres, where the phase diagram is well establishel@rticle reorganization is a stronger function of volume frac-
the rates of crystal nucleation and growth are difficult totion than the thermodynamic driving force. As a result,
predict[18]. As a result, colloidal crystals are often producednucléation rates and growth velocities decrease, and induc-
by highly empirical methods. tion tlmes increase with mpreasmg These effects produce
With the simplest of phase diagrams, suspensions of hardd maximum in the nucleation rate #t=0.56. _
sphere(HS) colloids are useful for studying the kinetics of ~ Recently, with the particular aim of quantifying this com-
colloidal crystallization. Here, only solid/fluid phase transi- Petition between the thermodynamic and hydrodynamic ef-
tions are observed and the driving force for this orderingfects, Russel adapted classical nucleation theory to describe
transition is controlled by a single parameter, the particlecrystal nucleation in HS_SUSpenSIO[rISL]. In this approach,
volume fraction, ¢. The freezing boundary occurs at,  the nucleation rate is written as=A exp(-AG), whereAG
=0.495. Forg> ¢, crystals with random stacking of hex- iS the free energy barrier to crystal formation, ahds the
agonal close-packed planésicp) are seen in microgravity, Prefactor characterized by the diffusivity of the particles in
whereas due to the inability to completely density matchsuspension. While classical theory is known to provide ac-
particles and the fluid, mixtures of face-centered-cyfiic) ~ Curate expressions faxG, the prefactor remains ambigu-
and rhcp arrangements occur under terrestrial condition§US[11]. Russel builds approximations for the long time and
[19]. Due to the absence of particle interactions, except foghort time self-diffusivities of the particles in dense HS sus-
an infinite repulsion at contact, crystallization in HS suspeniensions to determind. Predictions of nucleation rates and
sions is entropic, with temperature playing no direct role ingrowth velocities using these approximations agree qualita-

inducing phase changes. Cheng, Russel, and Chaikin demofively with experiment§11,16].
In a subsequent study, Ackerson and Schatzel argue that

_ crystal formation and growth are not governed by the particle
* Author to whom all correspondence should be addressed. Emagielf-diffusivity but by the particle gradient diffusivity12].
address: czukoski@uiuc.edu Their calculations suggest that the formation of a crystal
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nucleus depletes the suspension of particles in the immediaset from estimates of the solid/fluid surface tension for HS
vicinity of the crystal surface. A concentration gradient from systems. In the other limit where only two particles consti-
the bulk suspension to the crystal surface is therefore estaltdte a crystal nucleus, the number of nearest neighbors is set
lished. Particles diffuse down this concentration gradient anddy assuming that particles in such a crystal have the same
are incorporated onto the crystal surface during nucleatioRumber of nearest neighbors as particles in the bulk fluid.
and growth. The rates of these processes are controlled ByoW the number of nearest neighbors varies between these
the particle gradient diffusivity as opposed to the self-limits is not kn0\_/vn. Approximating thls size dependence in-
diffusivity. By incorporating these ideas in their adaptationtroduces an adjustable parameter in our model. A second
of the classical theory, they find qualitative agreement bel€'m of significance is the particle volume fraction in the
tween their predictions and experimental measurements Stepletion zone Just Ol_JtSIde the crystal s_urfa_ce. This must be
crystal growth rates. These studies and otfi@B24 dem- below that in the bulk if there is _to be a diffusional flux to the
onstrate that classical nucleation theory can predict nucle3urface, as has been hypothesized by Ackerson and Schatzel
ation rates during colloidal crystallization. [12]..Aga_|n, the equilibrium value is determmeq by requiring

In making these predictions, the classical approach buriedat infinitely large crystals do not grow or shrink. However,
much of the kinetics of crystal nucleation in equilibrium the depende_nce of th_ls surface packing fraction on the bu_lk
thermodynamics. Indeed, in this lies the beauty of the clas¥olume fraction remains unknown. We develop an approxi-
sical approach. Nucleation, however, is an inherently kinetigh@tion for this variation, which introduces a second nonequi-
phenomenon. Crystals do not appear spontaneously but agrium parameter in our model. We show that these two
formed from particle aggregation and dissociation processefarameters can be chosen by fitting crystal growth rate data,
We are interested ultimately in understanding the process b§nd that once chosen, they predict nucleation rates well. In
which crystals nucleate and grow, as this is important for2ddition, we show that these parameters can be linked to the
interpreting light scattering data that determine inductionSiZ€ and volume fraction dependence of the crystal/fluid sur-
times and crystal growth velocities used for characterizind@ce ténsion—parameters commonly used for adjusting clas-
nucleation kinetics. For this purpose, we are interested i§ic@l nucleation rate models to fit experimental data.
developing a purely kinetic approach to describing colloidal _The paper is organized as follows. Below, in Sec. II, we
crystallization. brlefly outline the equilibrium thermodyn_arr_ucs of HS sus-

In our previous work25], the kinetic nucleation model Pensions. In Sec. I_II, we present a description of the_crystal
proposed by Narasimhan and Ruckensfe# is adapted for structure adopted in our model. In Seq. IV, we de;cnb_e our
systems where particles experience short-ranged attractiof@ethod for calculating the aggregation and dissociation
In this approach, independent calculations of the rates of thEt€S, leading to calculations of steady state nucleation rates
aggregation and dissociation processes lead to predictions 8Pd growth velocities. In Sec. V, we present calculations of
nucleation rates and crystal growth velocities. The modelucleation rates and growth velocities and compare them
captures much of the underlying physics of crystal nucleWith experimental results. In Sec. VI, we draw conclusions.
ation but fails dramatically in quantitative comparisons with
experimental data. This may be attributed to a series of as- Il. EQUILIBRIUM THERMODYNAMICS
sumptions made in the model that determine how strongly
particles are bound to crystal surfaces. A second failure of
the model as currently developed is that it cannot predic
nucleation rates in purely repulsive systems, e.g., electro-
statically stabilized or hard-sphere systems, where the ordel”
ing transition results from an increase in particle entropy in 3 2 3
thg crystalline phase over that in the quidpphase. > 4ma’Py = 1o+ ;d)

In this paper, we extend this kinetic model to the case of 3¢kT (1-¢) 1

hard spheres. For this we note that although two isolated HS ) _ ) _ . _
particles experience only volume exclusion interactions,""herea is the radius of the colloidal particles in suspension,

when they are near each other in a dense suspension thgytheirvolume fraction, an#T the product of the Boljczmann
experience a net attraction induced by local ordering, as inSonstant and the absolute temperature. An equation of state
dicated by the strong peak in the radial distribution function,for the solid phase determined from computer simulations
g(r), at contac27]. We assume that this attraction drives fOF @ fcc crystal is given by29]

crystallization in HS suspensions in a manner identical to Amalp 217
that in attractive systems. This allows the extension of the maFs _ :
current description of crystal nucleation to HS suspensions. 3bxakT  0.738- dyia’
Accurate quantitative predictions of nucleation rates, how-

ever, require a more sophisticated description of the crystaVhere ¢y is the packing fraction in the solid phase. Given
structure. Two terms of critical significance are involved: an equation of state, the chemical potential of the corre-
One is the number of nearest neighbors of particles on &Ponding phase is determined[d4,12

crystal surface. The number of nearest neighbors determines

the strength of the bonds holding the particles on the crystal i:f
surface. In the limit of infinitely large crystals, this number is kT

A description of the equilibrium thermodynamics of HS
uspensions is largely derived from computer simulations.
he osmotic pressure of the fluid phaBe, is well approxi-
ated by the Carnahan-Starling equation of stags

()

2

47a’P |\ d¢ 4maP
— ()

3okt L)% T 3okt T C

041604-2



KINETICS OF CRYSTALLIZATION IN HARD-SPHERE . . .

07
[

068 |
066

064

¢xla\

062
0.6 B

058 |

0.54

P I

P

0.48

0.5

0.52

0.54

0.56

¢

0.58

0.6

0.62

0.64

PHYSICAL REVIEW E 64 041604

crystals expand frong,., to ¢, and the fluid phase disap-
pears. In the ensuing discussion, these ripening processes are
assumed to occur over time scales much larger than the time
scale for crystal nucleation and are therefore neglected. Crys-
tals at packing fractiong,., given by Eq.(4) are assumed to
nucleate in background suspensions of volume fractigns
which do not vary with time.

Ill. CRYSTAL STRUCTURE

Classical theories employ a continuum description of
crystal nuclei, with a sharp interface separating the crystals
from the surrounding fluid. Such a description is adequate
for determining the energetics of crystal formation, from
which nucleation rates and growth velocities can be pre-
dicted. In the kinetic model presented here, accurate deter-
mination of the aggregation and dissociation rates of par-
ticles onto and from a crystal surface is crucial for accurate
predictions of nucleation rates and requires a more detailed

description of the crystal structure.

FIG. 1. Crystal packing fraction determined via Hd) as a
function of the volume fraction in the fluid phase.

The crystal structure employed in our calculations is
shown in Fig. 2. A crystal of radiu®, consisting of uni-

formly distributed particles of radi, is assumed to have a

whereC is an arbitrary constant.

crystalline core of radiuR-a at a volume fractiong,,,

At equilibrium, the pressures and the chemical potentialgjetermined from Eq4). This core is surrounded by a liquid-
of the solid and the fluid phases must be equal. This providegxe surface layer of thickness, at a packing fractionpg.
two equations for determining the volume fractions of theThe yolume fraction of particles in the suspension rises from

coexisting solid and fluid phases. At equilibrium, these vol- 4 at the crystal surface t@ in the bulk suspension at large
ume fractions are 0.55 and 0.495, respectively. The fluigjistances from the crystal.

phase volume fraction at equilibrium sets the solubility
boundary,s=0.495, marking the onset of crystallization.

In a suspension of volume fractioth> ¢, crystals of
volume fraction ¢, are formed. Whileg,,> ¢ initially,
the crystals eventually relax to the equilibrium volume frac-
tion of 0.55 for < $<<0.55, or¢ for $>0.55, as has been
suggested by the work of Ackerson and Schafi®l] and
Palberg[15]. In the ensuing discussion, we are interested in
knowing the volume fractiom,, of a growing crystal, away
from equilibrium. As an approximation, we determigg,,
from the condition of mechanical equilibrium, by equating
the pressures in the solid and the fluid phases. This yields

B 0.738 4 p
¢xtal_ . 217(1_¢)3 ( )
(1+¢+ "= %) “

The resulting dependence @k, on ¢ is shown in Fig. 1. s
Experimental evidence of this approximation is provided by /i
Harland and van Megef4] who estimateg,,, and ¢ as 2 _
crystallization progresses. They find that their data, at short
times and initial volume fractiong)>0.55, are captured well R-aR r
by Eg. (4). Note that for all¢p> ¢, dya> @. Therefore, as

crystals nucleate, the average volume fraction in the fluid

decreases belowp. In the coexistence region, i.efs<¢
<0.55, as time proceedsh approachesps and ¢y, ap-

FIG. 2. The crystal structure assumed in our model consisting of

a dense crystalline core of radisa at a packing fractionp,,

proaches 0.55. Mass conservation then determines the fragarrounded by a rare surface layer of thicknesgequal to the
tion of the initial suspension converted to crystals. Outsidgadius of a single particjeat a packing fractionpz. The volume
the coexistence region, i.e>0.55, where 100% conver- fraction in the fluid phase rises frog at the crystal surface to the

sion from fluid to crystal is observdd 6], as time proceeds,

041604-3
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Since¢,> @, a depletion zone is formed adjacent to the(6) is chosen to interpolate smoothly between two known
crystal surface. As a consequence, we expect that the packitiguits with a single adjustable parameter.
fraction in the fluid in the depletion zone to be smaller than
¢ (i.e., pr< ). This results in a diffusional flux of particles
from the bulk suspension to the crystal surface. Siggg,
varies with ¢, we postulate thatpg varies with ¢ as well. In a HS suspension of particle volume fractign> ¢,
When ¢= ¢,=0.495, i.e., at the solubility point, we write crystals nucleate at a steady state nucleation rathat is a
dr= dgrs. As discussed below, we determigigg by requir-  function of the rate at which particles aggregate onto the
ing that at the solubility point no stable clusters can becrystal surfaceB, and the rate at which particles leave the
formed. When¢= ¢,,,=0.64, i.e., when the bulk fluid is crystal surfaceq. o and 8 have dependencies on the crystal
randomly close packed, compaction of a certain region in théize such that small crystals shrink and large ones grow. The
bulk fluid to a crystalline structure with a packing fraction critical cluster size is defined at eaghas that size at which
&, 1S prevented due to the jamming of the particles. At thisa= 8. The rate of formation of clusters of the critical size
point, a distinct depletion zone ceases to exist, so #hat, gives the nucleation raté,

IV. CRYSTAL NUCLEATION AND GROWTH

== ¢brcp=0.64. FOr ps< <, the dependence abg To determinex and 3, and hence, we consider a crystal
on ¢ is assumed to be of the form nucleus of radiufk in a suspension of volume fractiah Let
the crystal nucleus consist df particles,Ng of which lie in

§(Dp—diep) a surface layer of thickness Only some portion of each of

br= drs=(brep~ Pro)EX m ' () theseNg particles will lie entirely within the crystal. On an

average, the volume of this portion is given [36]
where ¢ is an adjustable parameter chosen as discussed be-
low. In this description, we assumg; to be independent of
R. We note that the functional form of E¢p) is arbitrary. We
chose this function as a smooth interpolation between the
two known limits with a single adjustable parameer Since the surface layer has a packing fracijgn N, varies

Particles within the crystalline core are assumed to havgith R as
Cya= 12 nearest neighbors. In the surface layer, particles
have C4 nearest neighbors, whereas in the bulk fluid they R
have C; nearest neighbors. From geometric considerations Ng=2| —
the variation ofCg with R can be determined for a crystal a

with a densely packed surface lay@&0]. For crystals with isol icles i , ) |
the rare surface layers assumed here, this variation is more WO isolated HS particles in suspension experience only
complex and is assumed to be of the form volume exclusion interactions. However, the presence of

other particles in a suspension induces local ordering of these
{(Ryin—R) particles, characterized by the pair distribution function,
l—exp[ a ]) (6)

a
1- 5| €))

2
VS=—7'ra.3 5R

3

8 [1-(1-a/R)?]

R [1-al2R] ©

Cs(R)=C;+(Cs.—Cy) g(r,¢), wherer is the center-to-center separation between

the particles. This ordering gives rise to an interaction be-

where is an adjustable parameter chosen as discussed plween these particles other than the infinite repulsion at con-

low. Here, C... is the number of nearest neighbors of a par- act, and is characterized by a potential of mean force, de-

ticle on the surface of an infinitely large crystal and is deter-flnecj as{27]

mined from considerations of the solid/fluid surface tension.

Rmin is the size of a crystal containing two particles. A par- W(r,¢)=—kTIng(r.4). (10
ticle in such a crystal is assumed to have the same number of ) ) ) )

nearest neighbors as a particle in the bulk flg®ingle par- ~ The prominent primary maximum ig(r,¢) and the corre-
ticle crystals are not allowed in this model since dissociatiorsPonding minimum inA(r, ¢) atr=2a for a dense suspen-

of particles from such crystals is meaningl@sEhus, when ~ Sion, i.e.,¢~0.5, indicates the propensity of two particles in
R=R,,,,C<=C;. By assuming such a crystal to be closeSuch a suspension to stay in contact rather than separated.

packed (yia= dep="0.74), we find This may be treated as a net attraction between two particles
when they are sufficiently close to each othex@a).
Runin=a(2/¢bp) 13 7) On the surface of a crystal, a particle is in contact V@th

other particles. If we assume that the potential of mean force
which sets the minimum size of a crystal in suspension. Thais pair-wise additive, the surface particle will have an attrac-
observed crystals are mixtures of rhep and fcc structures sudion energy ofCsW(2a, ¢g) binding it to the crystal. In the
gests that crystal nuclei will not be spherical and their surfluid just surrounding the crystal surface, a particle Qas
faces will not be smooth. More recent observations indicateearest neighbors. Therefore, the depth of the potential well
that nuclei resemble ellipsoidal shapes more than sphericét which a surface particle may be assumed to reside will be
[31]. However, the exact shape of the nuclei is complicated
and we proceed with the spherical approximation for the ®=(Cs—Cs)W(2a,¢pr)=—KkT(Cs—Cs) In{g(2a, pr)}.
present calculations. Again, we note that the form of Eq. (11

041604-4
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The motion of the particle in this potential well is described U=(1/2)[ — (N—Ng)CyakTIng(2a, dysa)

by the Smoluchowski equatid25,26]. Solving this equation

we obtain the mean residence time of the particle in this —NsCskTIng(2a,¢r) +NCikTIng(2a,¢)].
well, Tg. The extent of the potential well is assumed toabe (17)
so that a particle on the surface escapes the well upon tra-

versing an outward radial distanee Then, the average dis- Rearranging to group terms linear My results in
sociation rate at which particles escape the surface layer is

calculated asr=N,/T,. Following Dixit and Zukoski25], U=—(L2N[CyakTIng(2a, pya) — CikTIng(2a,¢)]

we obtain
+ (1/2) Ns[CxtalkT In g(2a, ¢xtal) - CskT In g(2a, ¢R)]i

6D,wprR  [1—(1—a/R)®] [1l+a/R]? (18)

=33 Cs—C — KRR

alg(2a.4s)] ro[1alR] [(A+a/R) (11]2) where we follow Narasimhan and Ruckenstgdf] to define
the second term in Eq.18) to correspond to the surface
energy contribution in the formation of a crystal. WhBn
>a, this is written as 4R?y, where y is the solid/fluid
surface tension. Thus whepi=~ ¢4 and ¢r~ ¢rs, We find
N¢~6R2¢rs/a’? and Cs~Csq, yielding

a

which  for R>a simplifies to a=6D,w¢gR/
a’[g(2a,¢r)]°% ©". Here w=0.2 is the approximate near
field hydrodynamic contribution, reducing the diffusivity of
the particles on the surface frold,, the Stokes—Einstein
diffusivity of the single particles in suspensid@5]. The

2
contact value of the pair distribution function is related to the RA 3LRS[Cxtal Ing(2a, pya) — Csc INg(2a, Pr9) |-
osmotic pressure in the fluid phase aga#P/3¢pkT=1 4m
+4¢g(2a,¢) [27]. Combined with the Carnahan—Starling (19

equation of stat¢gq. (1)}, this yields From studies in the literature, for example, the work of Marr

and Gas{33], a reasonable estimate for the surface energy of

1-¢/2 e A 21 T= ;
2a, )= _ 13 a HS crystal is given byya/kT=0.16. AssumingCy,
9(2a.¢) (1-¢)° 3 Z 12, and knowingy(2a, ¢) for all ¢, Eq.(19) provides one

equation linkingers andCg,, .

The aggregation rate of particle8, occurring via gradi- A second condition for determining the unknown equilib-
ent diffusion, is given by a solution of the standard diffusionrium parameters can be obtained by noting that under the
equation. Following Dixit and ZukoskR5], we find that for ~ same conditions, i.e¢p= ¢ and pg= ¢rs, the critical clus-

a crystal of radiuRR in a suspension of bulk volume fraction ter size diverges, so that,= 8 asR—~. This gives, from

o known expressions fowr and g for R>a
3R a\ (¢ L f‘bs D-(‘f")d _ 20 dRrs (20
b= | 1R [, D404 (49 s Do [0(Za, dea 15 O

Equation(20) links ¢rs andCg,,—C;. C; can be deter-
mined from simulation$34] or from an integral of(r, ¢),
as has been done in the work of Chang and Sar{@®F.
P Knowing C;, Egs.(19) and(20) can be solved to findhrs
— andCg, .
0¢>(¢Z(¢))’ (13 With both the parametershrs and Cs,.—Cs, known, «

and B can be calculated as functions Rfand ¢ from Egs.
whereK(¢) is the hydrodynamic contribution to the diffu- (5)—(7),(12)—(16). At any ¢> ¢, a critical cluster sizeR*,

Here,D(¢) is the gradient diffusivity of the particles in sus-
pension and is given by

D(¢)=DoK(¢)

sivity and is approximated as is defined as that size at whieh= 3. Thus,R* is obtained
by equating Eqs(12) and(14) and solving forR.
K(p)=(1— ¢)55° (16) Assuming the background particle volume fraction to re-

main constant, a population balance yields the steady state

for hard sphereqd32]. The thermodynamic contribution, nucleation rate ag25]

IPZ(P)) dp, is evaluated using the Carnahan—Starling

equation of state, wher®(¢) =4ma’P/3¢kT. [
The calculation ofa and 8 from the above expressions

requires knowledge of two paramete@,,. — C; and ¢gs,

and links back to the crystal structure described in Sec. Ii1Where

To determineCg,., we note that the energy of formation of a \

cryst_al of radl_usR, containing a total oN particles, is ap- w(N)= B adN (22)

proximately given by 0 Bta

384 (W'(N¥)
~ 87a’

1/2
) exp(2w(N*)), (21)

041604-5
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andN = ¢ (R/a)® is the number of particles in a crystal of 065
size R N* is the number of particles in a crystal of the I
critical size, R*, andw”(N*) is the second derivative of
w(N) with respect ta\, evaluated aN*. :

The difference between and B8 determines the growth 06 -
velocity of a crystal. From a differential volume balance, we |
obtain for a crystal of sizeR in a suspension of volume
fraction ¢

3 & 0.55 |-
dR —a)a
oR_15_wa (29
dt 3R R
Using these equations, we present calculations of nucle- 05 -

ation rates and growth velocities and compare them with
experimental observations in the next section.

V. CALCULATION OF NUCLEATION AND GROWTH 0.45
RATES

We compare our model calculations with the experiments
of Palberg[15] who studied the crystallization of HS par- £ 3. The surface packing fraction calculated using Byas
ticles of radii a=435nm under conditions where the 3 function of the bulk volume fraction for several values of the
Stokes—Einstein diffusivity of the particles in suspension isparamete.

D,=5.0x 10 ° cnm?/s. When the colloid volume fractiom,

exceeds the SO|Ubi|ity |imit¢s: 0.495, the particles Crystal— Using small angle light scattering and Bragg scattering,
lize into structures witfC,y= 12 nearest neighbors. In this palberg[15] measured crystal growth rates for the system
range of volume fractions, following previous estimatesdiscussed above fap=0.535 and these data are reproduced
[34,35, we let the number of nearest neighbors of particlesn Fig. 5. These data can be predicted using our model and
in the bulk fluid beC¢=9 and assume that this does not vary require the integration of Eq23). This latter equation cap-
with ¢. tures the growth of crystals bigger than the critical si&,

To determine nucleation rates, E¢9) and(20) must be  jone. Crystals of siz&* neither grow nor shrink, whereas
solved simultaneously to fingrs and Cs... The equations crystals of size smaller thaR* are predicted to shrink.

can be simplified by lettingbrs~ ¢ in Eq. (19) and noting  Hence, the use of Eq23) requires the assumption that a
that when¢g= ¢,=0.495, ¢,.,=0.55, so that lg(2a,dya)
~Ing(2a,¢J. Then, solving Eq(19) with ya?/kT=0.2, we

find Cq,=11. With Cg,,—C;=11-9=2, solving Eq.(20)
yields ¢prs=0.486, in agreement with our initial assumption
that prs~ ¢s.

Knowing these parameters, the dependence of the surfac
packing fractiongg, on ¢, and the dependence of the num-
ber of nearest neighbor§;, of a surface particle on the
crystal sizeR can be determined from Eq&) and (6), re-
spectively. These dependencies are shown in Figs. 3 and 4 ¢ -
functions of the parametesand {. The choices o and ¢ o !
are crucial to the quantitative capabilities of the nucleation I
rate model. The difference betwegnand ¢ provides the
requisite concentration gradient for the aggregation of par- L
ticles from the bulk suspension onto a crystal surface anc 05 -
sets the magnitude of the aggregation rate. This gradient i I
small wheng~ ¢ and ¢~ ¢, and goes through a maxi-
mum at an intermediaté. The parameteg determines the I
location of this maximum and, therefore, the location of the o
maximum in the nucleation rate. Similarl determines the 1 2 3 4 5 6 7 8
magnitude of the potential well in which surface monomers
lie and sets the magnitude of their dissociation rate. By vary-
ing ¢, the dissociation rate, the critical cluster size and, F|G. 4. The number of nearest neighbors of a particle on a
hence, the nucleation and growth rates can be varied quilgystal surfaceCs, in excess of that in the bulk flui;, calcu-
sensitively. Here, we choosg and { to match the known Jated using Eq(6) as a function of the crystal siz® for several
growth rate data for hard-sphere crystals. values of the parametet

041604-6
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FIG. 6. Solid/fluid surface tension as a function of the crystal

FIG. 5. Time evolution of the size of a growing crystal observedsize calculated via Eq24) for two values of the bulk volume
via small angle light scatteringtriangles and Bragg scattering fraction.
(squaresunder identical conditiongsee Ref[15]). The solid line is
obtained by integrating Eq23) as described in the text with the

parameterg—2 andZ= 0.7 [36—45. The insensitivity ofy to ¢ is argued to be observed

in systems wher€, is independent o [36], as is assumed

concentration fluctuation produces a crystal of size biggePn our model. , i i o
thanR* at some timd. Here, drawing from the experimental The dependenge of on Ris described using the 5,'mp|"
data, we assume that a crystal of radiis 4 um exists in  1ed Tolman equationy(R) = y..(1-25./R), wherey.. is y
the suspension at time= 15 min. The subsequent evolution for the planar interfaceR— ) and 6.(<R) is 4, the Tol-
of this crystal is predicted by integrating E€3). This is man length, again foR—c [37]. Simplifying Eg. (24) to
shown in F|g 5 for the Va|ue$:2 andgz 0.7 which, we terms linear ina/R and Comparing it with the Tolman equa-
find, provide the best agreement with the experimental datdion, we find thaté..~a/4, in reasonable agreement with
We use these values for all further calculations. previous calculationg38—40. The Tolman lengthés for
The parameter§ and{ can be linked to the curvature and smaller R is predicted to have a strong dependenceRon
the volume fraction dependence of the solid/fluid surfacd40,41. Depending on whethetis positive or negativey is
tension. We note that the second term in E§8) corre- found to increase or decrease, respectively, upon increasing
sponds to the surface energy contribution to the formation oR. Thus, the nonmonotonic variation gfwith R predicted
a crystal of sizeR in a suspension of volume fractio. by Eq. (24) indicates that changes sign upon increasifRy

Therefore, equating it to #R?y(R, ¢), we obtain Similar nonmonotonic variations iy and corresponding
changes in the sign o have been predicted in previous
y(R,$)a?>  ¢gR (1—(1—a/R)3) studieg41—43. Further, we note that the work of Israelach-
KT~ 4ma  (1=a/2R) [CxaIN9(28, Pytal) vili [44] and Sinanogli45] suggests that over a broad range

of droplet sizes,y is independent oR, but begins to vary
—CslIng(2a,¢R)]. (24) whenRis on the order of the size of the particles constituting

the fluid. In reasonable agreement, we find that thbe-
Here, the parametérdetermines the dependenceyobn ¢, comes independent d® (as suggested by the onset of the
entering Eq.(24) via ¢r, and{ determines the dependence plateau in Fig. 8 whenR~ 10a.
of y onRvia Cg. For the above values @gfand{, in Fig. 6 Having set the values of the parametérand ¢, « and 8
we showy as a function ofR for two different values ofp ~ can be calculated for aRk and ¢. Shown in Fig. 7 arer and
predicted by Eq.(24). In these calculations, we have as- 8 as functions ofR for ¢=0.5. For a fixed value ob, «
sumed that Iigy(2a, p,.a) =N g(2a,¢g). The calculations sug- > for small R, and vice versa for larg® Thus, small
gest that in the rangé.< ¢<0.55, where Eq(13) is known  crystals shrink and large crystals grow. The critical cluster
to predictg(2a, ¢) accurately,y is nearly independent ap.  size R* occurs whena= . At a fixed value ofR, « de-
The dependence dR, however, is more sensitive. A& in-  creases monotonically upon increasiggas g(2a, ¢g) in-
creases abov®,,, y decreases rapidly, passes through acreases monotonically. On the other hagdiirst increases
weak minimum, and plateaus at very large valueR.cfhese  and then decreases upon increasipd his behavior is gov-
trends are in qualitative agreement with previous calculationsrned by the difference betweepr and ¢, which goes
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FIG. 7. Dissociatior(«@) and aggregatiof3) rates calculated as
functions of the crystal size at a suspension volume fracioof
0.5. The point of intersection of the two curves gives the critical

cluster sizeR* at that volume fraction.

through a maximum upon increasinf (see Fig. 3. Thus,
upon increasingp above but close t¢g, a decreases and
increases, resulting in a decreaserih. At much larger val-
ues of¢, while a continues to decreasg,begins to decrease
as well. Here B is a stronger function of thana and results

in an increase iR* with ¢. R* therefore goes through a
minimum upon increasingb. Shown in Fig. 8 are calcula-
tions of R* as a function ofp. R* diverges aip= ¢ and at
¢=bp, by construct, and passes through a minimum a

$~0.56.
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FIG. 8. Critical cluster size as a function of volume fraction.
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FIG. 9. Nucleation rate as a function of volume fraction calcu-
lated (solid line) via Eq. (21) and compared to the experimental
estimates from Palbergee Ref[15]) (filled squarel Schatzel and
Ackerson(see Ref[16]) (circley, maximum (checkered squargs
and averagédotted squargsucleation rates from Harland and van
Megen(see Ref[24]), and from simulations of monodisperé&e)
and polydisperséx) hard sphere systems by Auer and Frer{keke
Ref. [46]).

In Fig. 9, we present calculations of nucleation rafes,
from Eq.(21). In accordance with classical theoriéss zero
when ¢= ¢¢, and increases upon increasiggdue to the
increasing thermodynamic driving force for crystallization.

t larger ¢, however,l is reduced due to hydrodynamic ef-
ects. A maximum occurs a$~0.56. Shown in the same
figure are nucleation rates determined via scattering experi-
ments by Palber§l5]. Note that there are no adjustable pa-
rameters used in this figure. Excellent agreement is seen be-
tween the experimental results and model calculations. The
model predicts the experimental nucleation rates accurately
until ¢=~0.56. Beyondp~0.56, the model tends to overpre-
dict the experimental data. One reason for this may be attrib-
uted to the intervening glass transition, which occurspat
~0.58. In the absence of a glass transition, as assumed in
this model, particle jamming occurs at the random close
packing volume fractiong,.,=0.64. However, a glass tran-
sition forces jamming ath~0.58, resulting in much lower
nucleation rates in this volume fraction range than predicted.

Also shown in the same figure are nucleation rates esti-
mated by Schatzel and Ackerspt6] and Harland and van
Megen[24] from scattering experiments, and by Auer and
Frenkel[46] from simulations. The discrepancy between the
results of independent experiments and between experiments
and simulations is glaring. Auer and Frenkel argue that the
reason for the discrepancy lies in the interpretation of the
experiments. Classical nucleation theory has been shown to
capture the experimental nucleation rates, although with the
surface tension;y, as the adjustable parameter. Auer and
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0.03 cally for large X. The maximum, occurring aX~2, corre-

I sponds to the minimum im [or, to be precise, the maximum

in (B— a)/R?] as indicated in Fig. 7 which sets the magni-
tude of the growth rate in Eq23). The asymptotic decay is
due to the 1R dependence of the growth rate fBe>a as
described above. This behavior is in excellent agreement
with the calculations of Russet al. [47] for ¢<<0.55. The
maximum in their calculations, which also occurs<at 2, is
attributed to the effects of surface tension. Kor 0.55, the
assumption of no surface tension in their model yields a size
independent growth rate according to the classical Wilson—
Frenkel growth law.

The model presented here thus captures quantitatively ex-
perimental observations of the kinetics of crystallization in
HS suspensions. While doing so, we note that it employs a
completely kinetic description of nucleation that differs sig-
nificantly from classical theories. Models based on classical
nucleation theory employ combinations of thermodynamic
and kinetic descriptions. These models are also able to pre-
dict similar experimental data reasonably well, albeit with

FIG. 10. Nondimensional growth rates calculated using(Eg.  Some adjustable parameters. At this point, which of these two
as functions of the reduced crystal size for several volume fractiongpproaches provides a more accurate description of the
mechanism of nucleation needs to be determined. A sure test
of the validity of one approach over the other lies in their
predictions of the dependence Rf on ¢. According to the

0.02

dX/dt

001 Hr

X=RR

Frenkel find that the values oj obtained from such fits

(ya’/kT~0.12) are Iov;/er than those obtained from fits 10 yresent modeR* is defined kinetically and passes through a
their simulation datafa®/kT~0.18). However, more recent minimum upon increasing. Classical theories, on the other
experiments mvolvmg_ the real space imaging of the ”UCIQhand, defineR* from thermodynamics alone, as the size at
ation of crystals of Sl'ggﬂy charged sphefil] have pro- \yhich the free energy change associated with crystal forma-
vided estimates ofy(ya”/kT~0.03) that are much lower on js 5 maximumR*, therefore, decreases monotonically
than the estimates from fits using classical theory. The "€pon increasings. Unfortunately, experiments measuring

ported nucleation rate estimates from these experimentg« beyond ¢=0.56, where the present model predicts the
(e.g., I=1.0mm?3s ! at ¢~0.5, which corresponds to minimum, have not yet been performed.
321a°/D,~10 ° at ¢4~0.56 are comparable to the other

experimental estimates. Thus, the discrepancy between the
nucleation rates estimated from different experiments and
simulations remains a matter of concern. More detailed real
space experiments may resolve these differences. The kinetics of crystallization in HS suspensions is cap-
Finally, we note that the growth rate predictions of Eq.tured well by the model presented here. Upon increasing the
(23) agree with the dynamical scaling of crystal growth ob-particle volume fraction in suspension above the solubility
served experimentally. Schatzel and Acker§b6] find that  point, an increase in the thermodynamic driving force for
at long times, crystal growth follows thR~tY? scaling  crystallization enhances the nucleation rate. At very high vol-
when ¢ lies in the coexistence region, i.eps<¢$<<0.55. ume fractions, however, the concentration gradient between
(For ¢>0.55, this scaling could not be unambiguously iden-the surface of a crystal nucleus and the bulk suspension di-
tified.) In our model, such a scaling emerges in the limit of minishes. The aggregation of particles onto the crystal sur-
large crystal sizefR>a. Under these conditions, bothand  face, being driven by gradient diffusion, also diminishes, re-
B scale as~R. Then, Eq.(23) simplifies todR/dt~1/R, ducing the nucleation rate. As a result of these competing
integrating which yields theR~tY? scaling. Further, as influences, a maximum in the nucleation rate is predicted at
shown in Fig. 5, rigorous integration of E@3) captures the an intermediate volume fraction of about 0.56. Model pre-
time evolution of growing crystals quantitatively. Ackerson dictions of nucleation rates and growth velocities show ex-
and Shatze[12] and Russekt al. [47] predict this scaling cellent agreement with experimental observations.
from their adaptations of the classical growth models. For a To make quantitative comparisons with data, the model
comparison with their predictions, we present in Fig. 10 di-introduces two adjustable parameters to characterize the
mensionless growth ratesx</dr calculated using Eq23) as  structure of the surface of a growing crystal. We show that
functions ofX for several values of. Here, X=R/R* isthe  these parameters correspond to the curvature and the volume
dimensionless crystal radius and=tD,/(R*)? is the di- fraction dependence of the solid/fluid surface tension, which
mensionless timedX/d7 is zero forX=1 as at this point are typically used as adjustable parameters in classical nucle-
a= g for all ¢. For X>1, dX/dr increases aX increases, ation theories. Our model, however, differs from the classical
reaches a maximum, and finally decays to zero asymptotapproach by building a completely kinetic description of the

VI. CONCLUSIONS
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nucleation mechanism. The two approaches make very difvalidation of the two approaches, clarifying the mechanism

ferent predictions for the variation of the critical cluster size0f crystal nucleation in colloidal suspensions.

with volume fraction. While the present model predicts a
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