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Phase field model for three-dimensional dendritic growth with fluid flow
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We study the effect of fluid flow on three-dimensio@D) dendrite growth using a phase-field model on an
adaptive finite-element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow
problem coupled to the phase-field method and the semi-implicit approximated projection rfsetren. We
describe a parallel implementation for the algorithm, usingctherm+ + FEM framework, and demonstrate its
efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating
accurate comparison to theory. We benchmark our results for 2D dendrite growth with solvability theory and
previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three
dimensions is very different from that in two dimensions, and we discuss the origin of this behavior.
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[. INTRODUCTION nominally perpendicular to their primary growth direction.
The mechanism by which the flow alters the growth pattern

Dendrites are the basic microstructural form for mostis the transport of solute from the leading edge to the trailing
crystalline materials. They express the underlying crystallineédge of the dendrit¢11]. In 2D, this occurs by the flow
symmetry, as well as the growth conditions which existeddoing up and over the dendrite. However, in 3D, it is much
when the dendrite was formed. Dendrites may form from theeasier for this transport to take place by having the flow go
vapor phasée.g., snowflakes from solution(e.g., polymer ~aroundthe dendrite. Thus, in order to correctly model this
crystal3, or by solidification from the melte.g., most met- phenomenon, we must do 3D simulations.
als). In this work, we focus our attention on growth from the ~An example of a dendrite computed with fluid flow
melt, which is important in many materials processing appli-Present is given in Fig. 2. This calculation was done using
cations. Dendritic growth produces local Compositiona|the methods we describe later in this paper, but we introduce
variations which determine the macroscopic properties of thé here to provide a context for describing the physical prob-
material. These features persist through subsequent proce$gm. The shape of the dendrite is complex, and it evolves
ing, and it is therefore important to understand the mechaduring the computation. The far-field flow on the left-hand
nisms by which the microstructural pattern is selected. side of the dendrite is a uniform velocity, directed parallel to

Beginning with the morpho|ogica| Stab|||ty theory of Mul- & preferred Crystalline growth direction. The figure shows
lins and Sekerkd1], the dynamics of pattern selection is stream traces for the flow over the dendrite. Notice that
now reasonably well understood. For a review of the theorygrowth is enhanced in the directions counter to the flow. Side
see Langef2] and Kessleet al.[3]. There is now a consen- branches also appear preferentially on the leading edge of the
sus that the so-called “microscopic solvability” theds,5] ~ transverse arms, and the trailing arm is completely sup-
agrees very well with numerical calculatiof§,7]. These Pressed. More will be said about this in Sec. VI.
Comparisons were performed in two dimensi@h@), where The surface of the dendrite represents the interface be-
accurate time-dependent simulations of dendrite growth ar&veen the solid and liquid, and there are two boundary con-
tractable using phase-field methods and also level set tecHitions which must be satisfied on this interface. First there is
niques[8]. In this paper, we focus on the phase-field methodthe condition of local thermodynamic equilibrium,
for a description of the level set method as applied to solidi-
fication problems, see Chast al.[9]. T=Ty=T(nNx=pMV:-n, @

It is known that fluid flow during solidification dramati-
cally alters the solidification structurglO]. Using typical
values for the local flow velocity, material properties and
process parameters, one can anticipate that the interdendritic
flow is dominated by viscous forcéRe~(0.1)], but that I—' /O
the diffusion fields for temperature and solute are dominated o
by advective effect§ Pe~O(10—100)]. The presence of
the flow admits the possibility of instabilities due to the flow
itself, in addition to the morphological instabilities normally
found in crystal growth.

The effect of fluid flow on dendritic growth is the object
of this research. This is an inherently three-dimensional phe- FIG. 1. Schematic drawing of the flow over dendrites growing
nomenon, as can be seen in the schematic drawing in Fig. perpendicular to a superimposed flow, comparing 2D and 3D phe-
A pair of dendrites is shown growing into a flow which is nomena.

whereT is the interface temperaturé,, is the equilibrium
melting point of the pure materiévith a flat interfacg I is

2D 3D
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In this paper, we resolve this difficulty by solving the
phase-field equations on an adaptive finite-element mesh.
The methods are discussed in greater detail in the following
sections; just a sketch is provided here. The 3D domain is
meshed with hexahedral elements, stored in an octree data
structure. Local error estimators are used to selectively refine
or coarsen the mesh, and this permits tracking of the inter-
face as well as resolution of gradients in the other fields.
There are six degrees of freedom at each ngliee veloci-
ties, pressure, temperature, a#)l, and a typical computa-
tion, such as the one shown in Fig. 2 has up to 300 000 nodes
and thus well over X 10° unknowns. While adaptive grid
methods make the computations feasible, the full 3D prob-
lem remains a formidable challenge.

The outline of this paper is as follows: In Sec. Il we
describe numerical methods. In Sec. Il we present a detailed
description of the 3D adaptive grid refinement algorithm.
Sec. IV describes a parallel implementation usTigaRM
++ and presents the results of our effort to accelerate our
fode. In Sec. V we explain the difficulties generically en-
countered in measuring interface velocities, even with phase-
field methods, and present accurate schemes to calculate the
the ratio of the surface energy to the entropy of fusieris int_erface veloci_ty. In Sec. VI, we present results for 3D den-
the Gaussian curvature of the surfageis a kinetic coeffi-  drite growth without and with fluid flow. In Sec. VII, we
cient, V is the interface velocity, and is the normal vector conclude and discuss our results.
to the interface. The dependenceloind B on n introduces
crystalline anisotropy into the problem. There is also an en- Il. NUMERICAL METHODS
ergy balance for the motion of the interface,

FIG. 2. Computed streamtraces for flow over a growing isolate
dendrite.

The numerical implementation of the adaptive grid tech-
Cn e ] nique applied to the phase-field model without convection

KsVTs-n=k VT, -n=plVon, @ has been described in detail elsewhdr2], so we focus here

where the subscripts and / refer to the solid and liquid ©N the quid_ flow problem. Beckermarat al.[13] introduced

phases, respectively, is the thermal conductivityp is the ~ an averaging method for the flow problem coupled to the

solid density, and_ is the latent heat of fusion. We refer to Phase field, and we follow that approach here. Beckermann

the solidification problem where these boundary condition€t & performed only 2D calculations, but their methods ex-

are explicitly satisfied as theharp interface problem tend naturally to 3D. The phase averagg of a variableW

One of the computational issues in this problem is that thdor Phasek over volumeAV, is defined as
position of the interface ia priori unknown, and therefore

enforcement of the boundary conditions is difficult. Rather Zf X, vdV
than track the phase boundary explicitly, we introduce a con- _Jav
tinuous order parametep e[ —1,1], where ¢=—1 corre- k™ 1-¢ ' ©)

sponds to the liquid¢p=1 corresponds to the solid, and the

level set¢p=0 is identified as the interface. Details of the where X, €[0,1] is an existence function. The phase aver-

method and the selection of parameters to ensure conveages of the velocity and pressure are used for deriving the

gence of the phase-field model to the sharp interface problemmixture continuity equation, averaged liqguid momentum

described above can be found in Ré8,12). equation, and averaged energy conservation equation. The
The phase-field method introduces a finite witltly for  formulation ensures that the fluid velocity is extinguished in

the interface, which must be kept small if the calculations arehe solid, and further that the shear stress at the liquid-solid

to be meaningful. In particular, we require th&t must be interface is handled correctly.

of the order of the capillary lengtty, which is a material The governing equations for simulating dendritic growth

property, typically ranging from ¥ 10 ° to 1X10 8 m. At with fluid flow are the mixture continuity equation, averaged

the same time, the computations must resolve the diffusiofiquid momentum equation, averaged energy conservation

field surrounding the dendrite, and this can be of order lequation, and phase field equation as follows:

X 10~ 4 m for physically relevant growth conditions. Finally, (i) The mixture continuity equation

the grid spacing at the interface must be on the ordégf

to preserve contact with the sharp interface model. Thus, the 1-¢

spatial grid must resolve at least five orders of magnitude. 2

Uniform grid approaches are clearly limited to two dimen-

sions, and even then they are very computationally intensivavhereu is the velocity vector.

V-

u

=0, 4)
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(ii) The averaged momentum equation tion method. For a detailed discussion of the algorithm, the
reader is referred to the original pagdé#], and we present
1-¢ ul+u. v 1-¢ 1-¢|\Vp only an operational description of the algorithm here. The
ul+|——|— . ;
a2 2 2 ) po algorithm consists of four steps.
5 (i) Compute an intermediate velocity* from
v 1-¢ ul— h(l1-¢ )(1+¢)u 5

14 —2 V—852 y

iM 1K+F utl= iM+1K u'—A(uMHu'-G; p"

At 2 At : e
wheret is time, p is pressurep, is the (constank density, v (10

is the kinematic viscositys=W,/+/2 is the characteristic

interface width, andh is a constant=2.757 which ensures Whereun+l is the vector of nodal values of the intermediate

that the interface shear stress is correct for a simple sheaelocity component at time stem+ 1, u!" is the correspond-

flow (see Beckermanat al.[13]). ing vector at time step, andp" is the vector of nodal pres-
(iii ) We write the averaged energy conservation equatiogures at timestep. The coefficient matrices are defined in
in terms of a dimensionless temperatdére c,(T—Tp)/L¢, terms of the velocity shape functiohsas follows:
scaled by the specific hea}, and latent heat of fusioh; :
(1-¢)
90 [1—¢ V=DV 19¢ 6 =], 2 NTNdQ, (11)
E‘F 2 u-ve= 0+ E E ( )
—1)[dNT N gNT 9N
whereD = arOIW?) in which « is the thermal diffusivity and K= f y(¢ ) (— —+tl— —dQ,
7o IS @ time characterizing atomic motion in the interface. @ 2 IX X 0%y IXk
(iv) The 3D phase-field evolution equation is given by (12
oy [ vh(1-¢A)(1+¢) .
o) S =[N 01— 2)](1— %) + V- [W(N)V 6] R 19
d (n)) (1- ¢) PIN
+dy| |V é|*W(n ny— T
x| [V AW 75755 A(U") fﬂ 5 NTui gy 40, (14)
+ay| [V ¢|?W(n )a(a(qs))) G (1- ¢) _dQ (15
Y I a 2po X
(n)
d| [V #|*W(n )&(0z¢) (7) (i) The velocity field found in the first step is generally

not divergence free. The next step corrects the pressure to
where\ is a dimensionless constant that controls the tilt ofobtain an approximately divergence-free velocity field by
the double-well potential which forces to the attractors at  solving a Poisson equation farp" "= (p"**—p"):
+1. Anisotropy is included in this equation by writing the

: o ; i 1
interface mobility 7 and YVIdthW as functions of the local LAp™ 1= — D(un+1 u"), (16)
normal vectorn. Following Karma and Rapp€]6], we At
choose
where
W(n)=Wyas(n), 7(n)=rya2(n), 8
| (n)=Wpas(n), 7(n)=roag(n) tS) a (1—¢>)<9_NTﬁdQ w
with “Ja 2p0 X X
dey  (dy ¢>“+<ay¢>“+<az¢> 1— N
2y =(1-3ey)| 1+ 75 T D=f A=d)r 19
(9) n+1 ;
The constant parametey, fixes the strength of the anisot- p""" is then updated from
ropy in the interface energy. Pt l=pi ApttL, (19)

We solve the 3D flow equations using the semi-implicit
approximate projection metho(siAPm) as developed by (ii ) Finally, the projected velocity"** is computed in a
Gresho[14]. siAPM is a predictor-corrector method which corrector step by solving
can solve Eq(4) and Eq.(5) effectively, especially for large
3D problems, because it uses relatively small amounts of untl= AtMLleAp““ (20)
memory. The velocity degrees of freedom are solved in a
segregated form, and the pressure is updated using a projeshere
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type element

integer :: num_element 'l Element number
integer 1 level !l Refinement level
integer :: lneigh !'! Number of neighbor elements
type(connectivity), pointer 11 connect !'! Pointer of connectivity
type(connectivity), pointer :: connect_mid !'! Pointer of connectivity for disconnected nodes
integer :: midindex(6) !l Index to check for discontinuous nodes
type(neighbor_elements), pointer:: neighbor !'! Pointer to neighbor elements
integer :: num_parent(LimitLevel) !! Parent element numbers
integer :: num_history(LimitLevel)!! Time step number
integer 11 merge !'! Index to check if the element should be merged
real*8 i1 error !l Error estimator value at time step n
integer ii nver !l Vertex node number for disconnected edge node
integer 11 ntype !l Element type (liquid/solid/interface)

'1 If phi = -1 , ntype = 1(liquid)

' If phi =1 , ntype = 2(solid)

' If -1 < phi <1 , ntype = 3(interface)
real*8 ii pe !'! Element pressure
type(element), pointer 11 previous !'! Previous element in linked list
type(element), pointer 11 next !'! Next element in linked list

end type element
FIG. 3. Element linked data structure for adaptive grid.
1-¢ Ill. THREE-DIMENSIONAL ADAPTIVE GRID
M, = JQ_Z NdQ. (21 REFINEMENT ALGORITHM

To resolve the interface, the grid spacidg must be
smaller than the characteristic interface widt¥y,, which
The computations are started using an initial velocity fieldmust in turn be on the order of the capillary length, for the
u, determined from the boundary conditions. In order to ob-solution of the phase-field model to converge to the sharp
tain a fieldu, whose discrete divergence is close to zero, wanterface limit. On the other hand, the system dizequired

perform J (typically 10) iterations on the following system for simulation is determined by the size of the diffusion field
(shown in pseudocogte ahead of the dendrite. A ratio &f Ax~10>—10* is typical.

For simulation of a single 3D dendrite, this implies that at
least 10 10° elements must be used in a uniform grid. Such

Forl=1toJ[ a simulation of 3D dendrite growth with fluid flow would be
| 1 intractable.
Lg'=—Du In this problem, there is an important characteristic that
u'=u'""1-M;'Gq". (220 the various fields vary most rapidly in the interface region,

whose width is much smaller thdn For this reason, adap-
tive grid refinement techniques can be applied very effec-

The Variab|a:] p|ays the role of a temporary pressure update,tively. The 3D adaptive grld refinement is described in the

but the actual initial pressure is zero everywhere. next few sections.
Equations(10) and (16) are solved by the conjugate gra-
dient (CG) method with diagonal preconditioningl5]. A. Error estimating procedure

SIAPM can calculate the velocity field for large 3D problems
much faster than fully implicit time-stepping methods, be-
cause convergence is reached for @d) in a few iterations
and the number of degrees of freedom of Bd) is one. The
CG iteration for Eq.(16) converges more slowly, typically
50-200 iterations.

The averaged energy equati@@) is also solved using the
CG method with diagonal preconditioning. Streamline up-
wind scheme$16] are employed for the convection terms in
Eqg. (10) and Eq.(6). The 3D phase-field equation is a non-
linear system. In order to solve the system implicitly, an Drmin= D= dmax: (23
iterative method such as the Newton-Raphson method is re-
quired. We use instead an explicit time-stepping scheméhen the element is divided until its refinement level becomes
where a linear system is solved. Stable solutions are obtaingle maximum level. We control the width of the region with
from the explicit scheme, because the variation ofé#hféeld  the finest elements through the valuestqf,, and ¢y,2. We
exists only in the interface region and a sufficiently smallproceed by defining a grid and then solving a predetermined
time incrementAt is used. number of time steps on that grM,.; (typically N,q=20

The basis of the code is the element data structure, illus-
trated in Fig. 3. The structure consists of arrays for element
connectivity, neighbors, and also the element pressure.

The grid is locally adapted based on an element-by-
element error estimate, with a hybrid scheme using the mag-
nitude of ¢ and the interelement variation of the derivatives
of #. We use¢ as an indicator to define the specific region in
which the finest elements should be distributed. Specially, if
an element includes a node where
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{Eo}=>{E¢}
An element belonging to {E; }
7 / ya
Y
E E/ E E E E
fa f L —T faf fa f fa
Efa/
Et | En En | En | En
{Egud=>{Ez} {Eot=>{E;} {(E.4=f FIG. 4. Dividing sequence for refinement.
The arrows indicate the sequence of refinement,
* * as discussed in the text.
Efa Ef

Efn Es

{E,d=f

—100), and then adapt the grid. We require that the interfaceshere y is a scale coefficienftypically 10, Nt is the total
remain within the fine grid during the time steps. We foundnumber of elementd\,,,., 1S maximum refinement level, and
that ¢nin=—0.99 and ¢,.x=0.9 gave consistent results. N, is the refinement level of elemest The element is di-
The reason for the asymmetry is that the interface movesided until its estimated error becomes smaller than a speci-
from the solid regiong>0 to the liquid region$<<0. Out-  fied limit value. Once the elements to be refined have been
side of the interface regionf(< ¢min OF ¢> dmay, We used  selected, the grid is refined using the procedure described in
an error estimator based on the magnitudes of the derivativdbe next section.

of # as follows:

B. Grid refinement procedure

Ee= fﬂ V6-VedQ, (24 The grid refinement procedure begins by storing the
¢ pointers of neighboring elements and the refinement level of
) ) each element. Refinement is required in an element when-
where() is the element. The estimated ergey,, 0f @ Sub- g6 the estimated error exceeds the limit value or when the
element divided from a parent element with erfgycan be  5pqq|yte difference between the level of an element and that
calculated from the asymptotic rate of convergence of they s neighbors exceeds 1. The latter is called the single-
finite element approximation as level rule. Refinement is carried out successively at each
refinement level, beginning with the minimum, according to
the procedure illustrated in Fig. 4, and described below.

(i) After checking the computed elemental errors, a set
{Eqy} is created which consists of elements in the current
wherek is the exponent for the asymptotic rate of conver-refinement level, whose error exceeds the pres_,ent Iimit value.
gence k=2 for linear elements and hg,p, and hpaen; are These elements will be refined after the neighboring ele-

the element sizes of the subelement and parent element, fqients which must be refined to satisfy the single-level rule

spectively. A limit valueE,;; is calculated from are found and refined. _
(ii) A recursive search is then performed to find the out-

(No N Ny ermost elements which need to be refined to satisfy the
Ejimit=y max (0.8 Mmax NJE | T (26 single-level rule. We do this by first defining a new 8Bt}

heup | X
Esubz(hi) E,=0.5E,, (25)

paren
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whose initial value iEgy}. The neighbor elements to each
element in{E;} are then examined, and any neighboring el-
ement that does not satisfy the single-level rule is added to ¢
new set{E;,}. If {Efas} is not a null set, thedE;} is re-
placed by{E;,s}. This procedure is repeated unfiE;,}
becomes a null set. At this point, the 4&;} contains the 7
outermost elements which need to be refined to satisfy thé L
single-level rule, and these elements are then divided intq
eight subelements by bisection of each fd&ee Fig. 4. At

this point, the se{E;} is again set equal t¢E,}, and the
search begins anew. This process is repeated until the sear
for elements to fill se{E;,;} yields a null set. Then, the
elements in sefE,} are refined, and the refinement process
is completed in the next step.

(iii) The nodal coordinates, element connectivities, neigh- _ ) _ _
bor arrays, parent arrays, nodal refinement levels, etc., are FIG. 5. Configurations of disconnected sides and nodes.
updated. The neighbor array is the array to store the element o .
numbers of neighboring elements. The parent array is the 'O €nsure continuity of the solution between elements,
array to store the element number of the parent elements f§f€ following constraints are enforced for each degree of
the coarsening procedure, described in the next section. re€dom, here represented by the symial

The recursive search for elements violating the single- (1) disconnected edge midnodes
level rule in the second step above may seem inefficient, vt D vitD vt
because it performs multiple searches, finding the same ele- Vo= = =2 (2D)
ments. However, this procedure makes it possible to perform 2 2 2
the searches with each element knowing only about its near-
est neighbors. This gives greater efficiency in the computa-
tional phase, because it limits the memory allocation re-

e

(ii) disconnected face midnodes

vituvstuvgto vitvtvpto
quired within the element data structure. 03:%89, V4= ! 114 10 79 (28
C. Grid unrefinement procedure After applying the constraints, the original element connec-

The unrefinement procedure is accomplished through &vity is modified to be[8, 12, 10, 9, 7, 13, 11,]1and the
loop in which the refinement level is decreased incrementallglement shape functions are changed appropriately. This
from the maximum level to the minimum level. change is made to facilitate domain decomposition in the

(i) A set{{Es} is created, containing all elements which parallel implementation, described next.
are eligible for unrefinement based on the value of the error
estimator. Each element §fE;}} is a subsefEg;}, consist- IV. PARALLELIZATION BY  CHARM ++

ing of eight elements to be merged into one. If an element G . llel .
whose refinement level equals the current level of the unre- CHARMT + IS a message-passing parallel runtime system

finement loop has smaller estimated error than a prescribef8r machjnes frqm clustgrs of workstations to tightly coupled
limit value, then the element is placed in a temporary sepYMMetric multiprocessing maching$7]. A parallel FEm

{Etemg- The elements belongs {&:eng are sorted into the code can be written iIFORTRANIO using interface routines
subset§E,;} according to their parent element. from the cHARM++ FEM framework[18]. The FEM frame-

(i) If the number of elements belonging to any subsetVork program consists of three kinds of subroutines. Service

{Eof is eight and an element created from the eight clefoutines such asiNIT” and “ FINALIZE” do I/O, startup, and

ments satisfies the single level rule, tHé.} becomes the shutdovx_/n tasks_, and are _called only on _the first processor.
subset{E.} ' S The main work is done usingDRIVER” routines, replicated
i

on every processor. In our parallel implementation, the

(iii) The eight elements belonging to eadh;} are then C .
merged into the parent element. As we did for grid refine-adaIOted grid is newly regenerated every 20100 time steps.

ment, the nodal coordinates, elemental connectivities, neigHg‘:]tfrzkiagzsrieﬂige{gtggégherggsspstﬁg Sr!d 'f‘sp[?gﬁt'opﬁg Into
bor array, parent array, and nodal refinement levels are URE - tion i g P | USHE] '
dated. unction is also handled through the interfacectoaRM+ +.

In the DRIVER routine on each processor, the temperature
and velocity fields are calculated using the preconditioned
CG method in an the element-by-element scheme, anéthe

The adapted grid will have so-called disconnected nodefield is solved using an explicit time-stepping scheme, as
which appear whenever an element has a neighbor whostescribed earlier. All calculations for the CG method are
refinement level differs by one, as illustrated in Fig. 5. Anaccomplished through the products of the elemental stiffness
element with connectivity6, 3, 12, 4, 1, 2, 13, bcontacts matrixes and local solution vectors. This creates additive
two neighbor elements of lower refinement level. contributions for the residual vector for each degree of free-

D. Treatment of disconnected nodes

041602-6
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- 0.050

30 - ===~ Ideal speed e
=—a Charm++ FEM framework e

- oo Linear interpolation

& - - 4 Third order polynomial interpolation
0.048 - |=—= Hyperbolic tangent function interpolation
© - - © Moving average velocity

25 |

Interface velocity (Dimensionless)

0.038
0

. . . 20 40 60 80 100
0 8 16 24 32 t (Dimensionless)
Number of processors

FIG. 7. Interface velocity vs time for the 1D test problem.
FIG. 6. Speed-up focHARM+ + FEM framework.

This multipoint scheme is somewhat problematic when
dom. Some “shared nodes™ appear on more than one proygaptive gridding is used, because the selection of points for
cessor. The array is calculated for each chunk, and the valuggterpolation is incompatible with our data structure. We de-
of the field variables for all shared nodes are combined With/eloped a new scheme using a hyperbolic tangent function to
the other chunks by using the&eHARM++ function  perform the interpolation. This approach provides equivalent
“ FEM_UPDATE_FIELR” For calculating the inner product of control of the tip position oscillation, yet it requires only two
arrays and finding the maximum error values, each nodakyiq points, corresponding to the nodes in the element which
value is combined across all chunks and the shared nodegntains the interfaced(=0). Let us denote the coordi-
ares not double-counted by using tbBARM++ function [ 5tes and¢ values of these two points a( ¢;) and

“ FEM_REDUCE_FIELD” After the computations in the (X,,¢,). We interpolates along the axis as
DRIVER routine on all processors are completed, the calcu-

lated data are transfered frobRIVER to INIT. The grid is X—X¢
adapted, then repartitioned. These procedures are repeated ¢(X;XC,W):—tam‘( W ) (30
until the simulation is finished.
In order to rate the parallel performance of the code, W&yherex, and W are fitted parameters corresponding to the
compute the ratio SP, defined as zero crossing ofp and the interface width, respectively. The
parameters, andW are determined as follows:

(run time on one processor 29 2(X1—Xp)
~ (runtime onn processors’ W A g0t é) 1M1 (A 6T
(31
A sample result is shown in Fig. 6, where we used a grid
with 296 636 elements and 349 704 nodes computing over 20 W 1+ ¢,
Xc=—=1In +Xq. (32

time steps. The value SR28.8 for 32 processors is typical 2 1-¢,
for our code and shows that the code has been effectively
parallelized. The interface velocity is then computed by a finite difference
in time between successive interface locations.

To demonstrate the scheme, we examined the same 1D
test problem considered by Karma and Ragpgl viz.,

The steady-state tip velocity is a convenient measure to
compare the computational results to dendritic growth theo- 2 zt?zlﬂ
ries. In the phase-field method, tip velocity is inferred from 0 st 092
the temporal evolution oth=0 along the primary growth
axis. Karma and Rappégb] were able to derive interface using 7o=1, Wy=1, Ax=0.8, andA=0.02. This problem
velocities from the numerical solution by using a third-orderhas a traveling-wave solution which propagates at velocity
polynomial to interpolate¢, using neighbor and next- V=0.041. The computed interface velocity is shown in Fig.
neighbor grid point values. Using a 1D analog problem as & for a variety of interpolation schemes. It can be seen that
basis, they showed that this scheme gives an interface velothe hyperbolic tangent interpolation scheme has a small os-
ity with a small amplitude oscillation about the mean, due tocillation amplitude, slightly smaller than that of the third-
the interpolation of the moving front on the fixed grid. order polynomial. The average interface velocity can be eas-

V. TIP VELOCITY MEASUREMENT

+y—PP+A, (33)
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—— Without fluid flow(Ax=0.8)
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100

ily extracted by selecting pairs of interpolated points

separated by the amount of time it takes to cross one grid
spacing. We refer to this as the moving average tip velocity.
This method is used to compute the interface velocities re- |n order to validate our 3D code, we simulated the 2D

ported for the calculations in the remainder of this paper.

PHYSICAL REVIEW B4 041602

FIG. 8. Tip velocities and tip radii in 2D.

VI. RESULTS

A. Two-dimensional verification problem

example analyzed by Beckermaahal. [13]. The computa-

TABLE I. Results for the simulations of dendrite growth in 2D and 3D.

Solvability solution(2D) 2D (Ax=0.8) 2D (Ax=0.4) 3D (Ax=0.8)
Viip(no flow) 0.489 0.502 0.486 0.915
Vggstreaﬂ(ﬂow) 0.766 0.761 1.038
Vggwnstrean(ﬂow) 0.324 0.276 0.800
Vianserse(gioy) 0.533 0.516 0.915
pip(nO flow) 0.959 1.47 1.22 2.90
pggstrea”(ﬂow) 1.60 1.36 3.50
1.50 1.28 241

pﬂgwnstreancﬂow)
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FIG. 9. Computed interfaces in 2D without and with fluid flowtat16, 72, and 104.

tional domain is a square with an initial circular seed. A 3Dthe tip where the curve becomes straight. The tip radius ob-
domain is created by extending the square domain and thined this way i, =3.84 and the tip Peclet number
circular seed into thg direction.

We used a box of edge length=204.8 so that subele- Pé):VtipPEip
ments ofAx=0.8 or 0.4 are created through repeated bisec- 2D
tion of the domain. The flow enters at the left edge, with
uy=1 andu,=0. The top and bottom surfaces are symmetryThe relative difference between thePPand P&2" (0.257
boundaries. Beckermaret al.[13] usedL =230.4 and simi-  [13] obtained from the Ivantsov relation is less than 8%.
lar values forAx. The problem parameters are undercoolingThus, usingp{’ip does indeed remove uncertainties from us-
A=0.55, thermal diffusivity D=4, and anisotropye, ing the value at just one point.
=0.05. We also used\t=0.016, W=1, 7,=1, and A Figures 8 and 9 and Table | summarize the results for 2D
=6.383. The capillary lengtty(=a;W/\) is 0.139, the ki-  simulations. For the upstream tips, the steady tip velocities
nematic viscosityv is 92.4, and the Prandtl number Pr cal- for Ax=0.8 andAx=0.4 agree with the results of Becker-
culated from these parameters is 23.1. These physical paramann et al. [13] within 9% percent. FoAx=0.4, the up-
eters correspond to succinonitrile. The adapted grid is newlgtream tip grows approximately 55% faster than in the
regenerated every 20 time steps. We examined two minimur§rowth without flow att=100, while the downstream tip
grid spacingsAXqi,=0.8 andAX,,;,=0.4. The largest ele-
ment size wad\ X,,,= 3.2 for both cases. >

For 2D dendrite growth without fluid flow, when using _ Symmetry
Ax=0.8 andAx=0.4, the steady-state dendrite tip velocities -
Viip scaled withD/d, are 0.017 44 and 0.016 89, respec-
tively. Those values are in good agreement with solvability —
theory (0.017 00 and previous phase-field resu[ts3]. We
calculated the tip radiupy, using the method in Ref6], —U —
where the tip curvature is computed using estimates of the —
second derivatives at the tip interpolated along the two coor- %fw/ﬁcal seed
dinate directions at the tip. We obtainpg, /d,=10.58 and — _>Symmet1y 2
8.78 for Ax=0.8 and Ax=0.4, respectively. The ratio —
piip/do for Ax—0 can be computed by Richardson extrapo- TZ; X
lation, plotting pyip versusAx?. The extrapolated value of
this ratio forAx—0 is 8.20, which is somewhat larger than
the solvability solution(6.90. .

An alternative method to fit the tip radius, given by
Wheeleret al. [20], was also used. In this method, we fit to
an effective lvantsov solution by calculating the parabolic tip  FIG. 10. Schematic diagram of 3D computation domain and

radiUSp{’ip from the slope of versusx? in the region behind  boundary conditions.

=0.237. (34

|
|

Symmetry

Symmetry

\

3D domain
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T EEEEENEEEEEE FIG. 11. Grid configurations of adapted grids
EEEEEEENEE T T t=9.6, 43.2, and 86.4.

4

L

grows approximately 45% slower. Beckermaenal. re-  tively. Those values also agree well with the resaltll)
ported that the upstream tip grows 40% faster and the dowrbtained by Beckermanet al.[13] The ratioog /o™, where
stream tip grows more than 30% slower. The trend forthe subscript O refers to the the solution in the absence of
changing the tip velocities according to the growing direc-fluid flow and o* :2d0D/pﬁthip, is 1.95 and 0.63 for the
tions agrees well with the results by Beckermaatral.[13]  upstream tip and downstream tip, respectively. These results
For the upstream tips, the raticp@ip/p?ip with and without  agree reasonably well with those of Beckermaral.

fluid flow are 1.09 and 1.12 foAx=0.8 and 0.4, respec- A detailed comparison is not meaningful because our

041602-10
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simulations have not reached steady state, and in some casesThe simulations usingAx=0.8 andAx=0.4 consumed

are not fully grid converged, as shown in Table I. Figure 9about 40 h and 190 h, respectively, on a single processor of
shows interfaces of the dendrites with and without fluid flowthe IBM RS/6000 machine with clock rate of 200 MHz. In

in 2D. The interfaces are in good agreement with previoushe simulation wheré\x=0.8, the initial mesh consisted of
results[13]. 10607 elements, and the final mesh had 208 357 elements.
These numbers should be compared with a fully dense mesh,
which would have had over 410° elements. With fluid

We simulated 3D dendrite growth with fluid flow using a flow, computing the velocity and pressure fields consumes
cube computation domain with a spherical seed, as shown iapproximately 80%-90% of the total CPU time. We per-
Fig. 10. The inlet velocity boundary conditions are imposedformed some the simulations using a different time incre-
on the left side boundary and their values axe=U, u, ment for velocity fieldAt,,, larger than the time increment
=0, andu,=0. For this particular problem, we again have for temperature and fields At,,. For Ax=0.8 andAty
U=1. The largestAx is 6.4, while the smalleshx is 0.8.  =5Aty,, the CPU time decreased by 76%, and the results
Time increments ofAt=0.016 andAt=0.008 are used to for p;, andVy;, agree within 5% with the results obtained
model growth without and with fluid flow, respectively. The by using Aty=At,,. The detailed results presented next
other parameters are identical to the parameters for the 2ere computed usingit,=At,,=0.008 in order to com-
analysis in previous section. Figure 11 shows several of thpare our results with the previous 2D results. This run took
grid configurations in the analysis. The scale fagtarsed in  approximately 250 h on 16 processors of the ORIGIN2000 at
the adaptive grid procedure was 10 for this simulation. the National Center for Supercomputing Applications

B. Three-dimensional computations
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51

FIG. 13. Computed interfaces in 3D without
and with fluid flow att=9.6, 43.2, and 86.4.
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(NCSA). The same run usingAt,,=0.016 and At,  effect of 3D flow on the upstream dendrite tip velocity is
=5At,, consumed approximately one-eighth of the run timemuch weaker than the effect of 2D flow. However, the rea-
for Aty=At,,=0.008, and the deviation in the results wasson for the trend is that the effect of forced flow on tip
less than 3%. Thus, a run time of about 32 h on 16 procesrelocity is highly dependent on the rati$/V,;, whereU is
sors yielded essentially the same result. the inlet velocity. The ratidJ/Vﬁ';’ is 45% smaller than the
Without fluid flow, the steady scaled tip velocity ratio U/V{D, and this accounts for the reduced effect. The
Viipdo/D is 0.0318 and the rativi/Vip for Ax=0.81is ratio piip/pip is 1.21 for 3D for the upstream tip, which is
0.55. Karma and Rapp¢b] reported that this ratio is 0.39  sjightly larger than the ratipy,/pJ,=1.09 for 2D. The tip
for A=0.65 and effective anisotropy,=0.0269. The (adjus for the downstream in 3D decreases by 17% due to
pip/do is 20.86 and the ratipgo/p; for Ax=0.8is 0.51.  the flow effect, while the tip radius in 2D increases by 2%.
The ratio o5p/ 03 is 7.09, whereo™ is the selection con-  Thus, the effect of the forced flow on the downstream tip is
stanta™® =2Dd0/pt2ianp. much stronger in 3D than in 2D. The cause of the trend is
The time evolution of the dendrite tip velocities and tip that in 2D the fluid flows vertically over the dendrite, while
radii are shown in Fig. 12. With fluid flow, the upstream tip in 3D the fluid flows both vertically and laterally over the
grows 13% faster than it does without flow, while the down-dendrite.
stream tip grows 13% slower. We stopped the calculations at Figure 13 shows several interfaces in the plane. The
t=86.5, before the diffusion field encounters the end of thdilt angle of the transverse arms into the flow in 3D is 2.5°,
computational domain. These results seem to show that thghile the tilt angle in 2D is 2.3°. From Fig. 13 we can see

05 |- o—e Without fluid flow |
: =~ — @ Upstream tip
&« - - & Downstream tip
04 | g

o ke, FIG. 14. o*s in 3D.

o* (Dimensionless)
=]
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L

02+ X J
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that sidebranches begin to appear on the upstream side of the We also introduce a new scheme using a hyperbolic tan-

transverse tip more quickly than on the other sides. gent function to interpolate tip position. We found that the
Bouissouet al. [21] showed that when surface tension scheme, which requires just two points for interpolation, has

effects are neglected, the Peclet numbey &emputed using  a smaller oscillation amplitude than third-order polynomial

Viip is related to the Peclet number computed using the inlefnterpolation using four points.

velocity, Pg, for a given undercooling. In order to assess  Test cases showed that the dendrite tip velocities and radii

the effect of the forced flow on the tip Peclet number, wefor 2D dendrite growth were in satisfactory agreement with

computed the the difference between the tip Peclet ”Umbesrolvability theory and previous computational resyts].

with fluid flow, Pd,=V'p"/2D, and the tip Peclet number e found that the effect of fluid flow on dendrite tip velocity

without fluid flow, Pg=V%%2D , divided by the Peclet in 2D is much larger than in 3D, because the rafio/z> is

number related to the inlet velocity, fe Up'/2D: approximately 2 times larger than the ratigV;? . For the
downstream tip, the tip radius in 3D decreases by 17%, and
APe= Pé/_ Pé\)/ (35) the tip radius in 2D increases by 2%. The cause of the trend

peL is that in 3D the fluid flows both vertically and laterally over
the dendrite and the effect of the forced flow in 3D is much
We found that for the upstream tip in 2D, 3Peis 0.305 and ~ stronger than in 2D where the fluid flows vertically over the
it is similar to PE°(=0.275), even though the effect of the dendrite.
forced flow on the tip velocities and tip radii in 2D and 3D is We examined the effect of the forced flow on the tip
much different. Peclet number by computingPe: the difference between
We found that the ratiar’/o* for 3D is 1.675 for up- the tip Peclet number in the growth with fluid flow and the
stream tip and 0.603 for the downstream tip. With flow tip Peclet number in the growth without the fluid flow, di-
present, it takes somewhat longer fot to settle onto a vided by the Peclet number related to the forced flow. We
steady value, as seen in Fig. 14. The trendsin for the ~ found thatAPe in 2D and in 3D are within 10%, even
upstream tip with fluid flow agrees with experiments by Bou-though the tip radii and velocities vary by much more than
issouet al. [21] on alloys of PVA and ethanol, while the that. In 3D growth with fluid flow,c* for the upstream t!p
trend is opposite to the experiments by Lekal. [22] on ~ decreases by 39%. The trend fot for the upstream tip
SCN forced past a needle. Further work is needed to examir@gdrees with experiment§eduction of 37%) by Bouissou
this phenomenon. et al.[21] on alloys of PVA and ethanol. The ratigf / o* 3P
for the upstream tip is 14% smaller than the ratf{y o* 2°.

VIl. CONCLUSIONS

In this paper, we presented an efficient algorithm using
3D adaptive grid refinement in order to study the effect of
fluid flow on 3D dendrite growth using a phase-field model. This work was supported by the NASA Microgravity Re-
We simulated 3D dendrite growth with fluid flow using search Program, under Grant No. NAG8-1249, and the Na-
adapted grids with at most 300000 elements, while ovetional Science Foundation under Grant No. NSF DMS 98-
4000000 elements would be required for an uniform grid.73945. The authors wish to thank S. Kale, M. Bhandarkar,
We also present a parallel implementation by using theD. Lawlor, and T. Hinrichs for their help with the parallel-
CHARM++ FEM framework. A speed-up factor SR28.8 for  ization of the code. We also thank C. Beckermann and A.
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