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Phase field model for three-dimensional dendritic growth with fluid flow
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We study the effect of fluid flow on three-dimensional~3D! dendrite growth using a phase-field model on an
adaptive finite-element grid. In order to simulate 3D fluid flow, we use an averaging method for the flow
problem coupled to the phase-field method and the semi-implicit approximated projection method~SIAPM!. We
describe a parallel implementation for the algorithm, using theCHARM11 FEM framework, and demonstrate its
efficiency. We introduce an improved method for extracting dendrite tip position and tip radius, facilitating
accurate comparison to theory. We benchmark our results for 2D dendrite growth with solvability theory and
previous results, finding them to be in good agreement. The physics of dendritic growth with fluid flow in three
dimensions is very different from that in two dimensions, and we discuss the origin of this behavior.
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I. INTRODUCTION

Dendrites are the basic microstructural form for mo
crystalline materials. They express the underlying crystal
symmetry, as well as the growth conditions which exis
when the dendrite was formed. Dendrites may form from
vapor phase~e.g., snowflakes!, from solution~e.g., polymer
crystals!, or by solidification from the melt~e.g., most met-
als!. In this work, we focus our attention on growth from th
melt, which is important in many materials processing ap
cations. Dendritic growth produces local composition
variations which determine the macroscopic properties of
material. These features persist through subsequent pro
ing, and it is therefore important to understand the mec
nisms by which the microstructural pattern is selected.

Beginning with the morphological stability theory of Mu
lins and Sekerka@1#, the dynamics of pattern selection
now reasonably well understood. For a review of the theo
see Langer@2# and Kessleret al. @3#. There is now a consen
sus that the so-called ‘‘microscopic solvability’’ theory@4,5#
agrees very well with numerical calculations@6,7#. These
comparisons were performed in two dimensions~2D!, where
accurate time-dependent simulations of dendrite growth
tractable using phase-field methods and also level set t
niques@8#. In this paper, we focus on the phase-field meth
for a description of the level set method as applied to sol
fication problems, see Chenet al. @9#.

It is known that fluid flow during solidification dramati
cally alters the solidification structure@10#. Using typical
values for the local flow velocity, material properties a
process parameters, one can anticipate that the interden
flow is dominated by viscous forces@Re;O(0.1)#, but that
the diffusion fields for temperature and solute are domina
by advective effects@Pe;O(102100)#. The presence o
the flow admits the possibility of instabilities due to the flo
itself, in addition to the morphological instabilities normal
found in crystal growth.

The effect of fluid flow on dendritic growth is the obje
of this research. This is an inherently three-dimensional p
nomenon, as can be seen in the schematic drawing in Fi
A pair of dendrites is shown growing into a flow which
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nominally perpendicular to their primary growth directio
The mechanism by which the flow alters the growth patt
is the transport of solute from the leading edge to the trail
edge of the dendrite@11#. In 2D, this occurs by the flow
going up and over the dendrite. However, in 3D, it is mu
easier for this transport to take place by having the flow
around the dendrite. Thus, in order to correctly model th
phenomenon, we must do 3D simulations.

An example of a dendrite computed with fluid flo
present is given in Fig. 2. This calculation was done us
the methods we describe later in this paper, but we introd
it here to provide a context for describing the physical pro
lem. The shape of the dendrite is complex, and it evol
during the computation. The far-field flow on the left-han
side of the dendrite is a uniform velocity, directed parallel
a preferred crystalline growth direction. The figure sho
stream traces for the flow over the dendrite. Notice t
growth is enhanced in the directions counter to the flow. S
branches also appear preferentially on the leading edge o
transverse arms, and the trailing arm is completely s
pressed. More will be said about this in Sec. VI.

The surface of the dendrite represents the interface
tween the solid and liquid, and there are two boundary c
ditions which must be satisfied on this interface. First ther
the condition of local thermodynamic equilibrium,

T5Tm2G~n!k2b~n!V•n, ~1!

whereT is the interface temperature,Tm is the equilibrium
melting point of the pure material~with a flat interface!, G is

FIG. 1. Schematic drawing of the flow over dendrites growi
perpendicular to a superimposed flow, comparing 2D and 3D p
nomena.
©2001 The American Physical Society02-1
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the ratio of the surface energy to the entropy of fusion,k is
the Gaussian curvature of the surface,b is a kinetic coeffi-
cient,V is the interface velocity, andn is the normal vector
to the interface. The dependence ofG andb on n introduces
crystalline anisotropy into the problem. There is also an
ergy balance for the motion of the interface,

ks“Ts•n2kl “Tl •n5rsL fV•n, ~2!

where the subscriptss and l refer to the solid and liquid
phases, respectively,k is the thermal conductivity,rs is the
solid density, andL f is the latent heat of fusion. We refer t
the solidification problem where these boundary conditio
are explicitly satisfied as thesharp interface problem.

One of the computational issues in this problem is that
position of the interface isa priori unknown, and therefore
enforcement of the boundary conditions is difficult. Rath
than track the phase boundary explicitly, we introduce a c
tinuous order parameterfP@21,1#, wheref521 corre-
sponds to the liquid,f51 corresponds to the solid, and th
level setf50 is identified as the interface. Details of th
method and the selection of parameters to ensure con
gence of the phase-field model to the sharp interface prob
described above can be found in Refs.@6,12#.

The phase-field method introduces a finite widthW0 for
the interface, which must be kept small if the calculations
to be meaningful. In particular, we require thatW0 must be
of the order of the capillary lengthd0, which is a material
property, typically ranging from 131029 to 131028 m. At
the same time, the computations must resolve the diffus
field surrounding the dendrite, and this can be of orde
31024 m for physically relevant growth conditions. Finally
the grid spacing at the interface must be on the order ofW0
to preserve contact with the sharp interface model. Thus,
spatial grid must resolve at least five orders of magnitu
Uniform grid approaches are clearly limited to two dime
sions, and even then they are very computationally intens

FIG. 2. Computed streamtraces for flow over a growing isola
dendrite.
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In this paper, we resolve this difficulty by solving th
phase-field equations on an adaptive finite-element m
The methods are discussed in greater detail in the follow
sections; just a sketch is provided here. The 3D domain
meshed with hexahedral elements, stored in an octree
structure. Local error estimators are used to selectively re
or coarsen the mesh, and this permits tracking of the in
face as well as resolution of gradients in the other fiel
There are six degrees of freedom at each node~three veloci-
ties, pressure, temperature, andf), and a typical computa-
tion, such as the one shown in Fig. 2 has up to 300 000 no
and thus well over 13106 unknowns. While adaptive grid
methods make the computations feasible, the full 3D pr
lem remains a formidable challenge.

The outline of this paper is as follows: In Sec. II w
describe numerical methods. In Sec. III we present a deta
description of the 3D adaptive grid refinement algorith
Sec. IV describes a parallel implementation usingCHARM

11 and presents the results of our effort to accelerate
code. In Sec. V we explain the difficulties generically e
countered in measuring interface velocities, even with pha
field methods, and present accurate schemes to calculat
interface velocity. In Sec. VI, we present results for 3D de
drite growth without and with fluid flow. In Sec. VII, we
conclude and discuss our results.

II. NUMERICAL METHODS

The numerical implementation of the adaptive grid tec
nique applied to the phase-field model without convect
has been described in detail elsewhere@12#, so we focus here
on the fluid flow problem. Beckermannet al. @13# introduced
an averaging method for the flow problem coupled to
phase field, and we follow that approach here. Beckerm
et al. performed only 2D calculations, but their methods e
tend naturally to 3D. The phase averageCk of a variableC
for phasek over volumeDV, is defined as

Ck5

2E
DV

XkCdV

12f
, ~3!

whereXkP@0,1# is an existence function. The phase ave
ages of the velocity and pressure are used for deriving
mixture continuity equation, averaged liquid momentu
equation, and averaged energy conservation equation.
formulation ensures that the fluid velocity is extinguished
the solid, and further that the shear stress at the liquid-s
interface is handled correctly.

The governing equations for simulating dendritic grow
with fluid flow are the mixture continuity equation, averag
liquid momentum equation, averaged energy conserva
equation, and phase field equation as follows:

~i! The mixture continuity equation

“•F12f

2
uG50, ~4!

whereu is the velocity vector.

d
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~ii ! The averaged momentum equation

]

]t F S 12f

2 DuG1u•“F S 12f

2 DuG1S 12f

2 D“p

r0

5n¹2F S 12f

2 DuG2n
h~12f2!~11f!

8d2
u, ~5!

wheret is time,p is pressure,r0 is the~constant! density,n
is the kinematic viscosity,d5W0 /A2 is the characteristic
interface width, andh is a constant~52.757! which ensures
that the interface shear stress is correct for a simple s
flow ~see Beckermannet al. @13#!.

~iii ! We write the averaged energy conservation equa
in terms of a dimensionless temperatureu5cp(T2Tm)/L f ,
scaled by the specific heatcp and latent heat of fusionL f :

]u

]t
1S 12f

2 Du•“u5D¹2u1
1

2

]f

]t
, ~6!

whereD5at0 /W0
2 in which a is the thermal diffusivity and

t0 is a time characterizing atomic motion in the interface
~iv! The 3D phase-field evolution equation is given by

t~n!
]f

]t
5@f2lu~12f2!#~12f2!1“•@W~n!2

“f#

1]xS u¹fu2W~n!
]W~n!

]~]xf! D
1]yS u¹fu2W~n!

]W~n!

]~]yf! D
1]zS u¹fu2W~n!

]W~n!

]~]zf! D , ~7!

wherel is a dimensionless constant that controls the tilt
the double-well potential which forcesf to the attractors a
61. Anisotropy is included in this equation by writing th
interface mobilityt and widthW as functions of the loca
normal vector n. Following Karma and Rappel@6#, we
choose

W~n!5W0as~n!, t~n!5t0as
2~n!, ~8!

with

as~n!5~123e4!F11
4e4

123e4

~]xf!41~]yf!41~]zf!4

u¹fu4 G .

~9!

The constant parametere4 fixes the strength of the aniso
ropy in the interface energy.

We solve the 3D flow equations using the semi-impli
approximate projection method~SIAPM! as developed by
Gresho@14#. SIAPM is a predictor-corrector method whic
can solve Eq.~4! and Eq.~5! effectively, especially for large
3D problems, because it uses relatively small amounts
memory. The velocity degrees of freedom are solved i
segregated form, and the pressure is updated using a pr
04160
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tion method. For a detailed discussion of the algorithm,
reader is referred to the original paper@14#, and we present
only an operational description of the algorithm here. T
algorithm consists of four steps.

~i! Compute an intermediate velocityũn11 from

S 1

Dt
M2

1

2
K1FD ũi

n115S 1

Dt
M1

1

2
KDui

n2A~un!ui
n2Gi pn,

~10!

whereũi
n11 is the vector of nodal values of the intermedia

velocity componenti at time stepn11, ui
n is the correspond-

ing vector at time stepn, andpn is the vector of nodal pres
sures at timestepn. The coefficient matrices are defined
terms of the velocity shape functionsN as follows:

M5E
V

~12f!

2
NTNdV, ~11!

K5E
V

n
~f21!

2 S ]NT

]x

]N

]x
1I

]NT

]xk

]N

]xk
DdV,

~12!

F5E
V

nh~12f2!~11f!

8d2 NTNdV, ~13!

A~un!5E
V

~12f!

2
NTuk

n ]N

]xk
dV, ~14!

Gi5E
V

~12f!

2r0
NT

]N

]xi
dV. ~15!

~ii ! The velocity field found in the first step is general
not divergence free. The next step corrects the pressur
obtain an approximately divergence-free velocity field
solving a Poisson equation forDpn115(pn112pn):

LDpn1152
1

Dt
D~ ũn112un!, ~16!

where

L5E
V

~12f!

2r0

]NT

]xk

]N

]xk
dV, ~17!

D5E
V

~12f!

2
NT

]N

]x
dV. ~18!

pn11 is then updated from

pn115pn1Dpn11. ~19!

~iii ! Finally, the projected velocityun11 is computed in a
corrector step by solving

un115ũn112DtML
21GDpn11, ~20!

where
2-3
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FIG. 3. Element linked data structure for adaptive grid.
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2
NdV. ~21!

The computations are started using an initial velocity fi
u0 determined from the boundary conditions. In order to o
tain a fieldu0 whose discrete divergence is close to zero,
perform J ~typically 10! iterations on the following system
~shown in pseudocode!:

For I 51 to J@

LqI52DuI 21

uI5uI 212ML
21GqI ]. ~22!

The variableq plays the role of a temporary pressure upda
but the actual initial pressure is zero everywhere.

Equations~10! and ~16! are solved by the conjugate gra
dient ~CG! method with diagonal preconditioning@15#.
SIAPM can calculate the velocity field for large 3D problem
much faster than fully implicit time-stepping methods, b
cause convergence is reached for Eq.~10! in a few iterations
and the number of degrees of freedom of Eq.~16! is one. The
CG iteration for Eq.~16! converges more slowly, typically
50–200 iterations.

The averaged energy equation~6! is also solved using the
CG method with diagonal preconditioning. Streamline u
wind schemes@16# are employed for the convection terms
Eq. ~10! and Eq.~6!. The 3D phase-field equation is a no
linear system. In order to solve the system implicitly,
iterative method such as the Newton-Raphson method is
quired. We use instead an explicit time-stepping sche
where a linear system is solved. Stable solutions are obta
from the explicit scheme, because the variation of thef field
exists only in the interface region and a sufficiently sm
time incrementDt is used.
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III. THREE-DIMENSIONAL ADAPTIVE GRID
REFINEMENT ALGORITHM

To resolve the interface, the grid spacingDx must be
smaller than the characteristic interface widthW0, which
must in turn be on the order of the capillary length, for t
solution of the phase-field model to converge to the sh
interface limit. On the other hand, the system sizeL required
for simulation is determined by the size of the diffusion fie
ahead of the dendrite. A ratio ofL/Dx;1032104 is typical.
For simulation of a single 3D dendrite, this implies that
least 103106 elements must be used in a uniform grid. Su
a simulation of 3D dendrite growth with fluid flow would b
intractable.

In this problem, there is an important characteristic th
the various fields vary most rapidly in the interface regio
whose width is much smaller thanL. For this reason, adap
tive grid refinement techniques can be applied very eff
tively. The 3D adaptive grid refinement is described in t
next few sections.

A. Error estimating procedure

The basis of the code is the element data structure, il
trated in Fig. 3. The structure consists of arrays for elem
connectivity, neighbors, and also the element pressure.

The grid is locally adapted based on an element-
element error estimate, with a hybrid scheme using the m
nitude off and the interelement variation of the derivativ
of u. We usef as an indicator to define the specific region
which the finest elements should be distributed. Specially
an element includes a node where

fmin<f<fmax, ~23!

then the element is divided until its refinement level becom
the maximum level. We control the width of the region wi
the finest elements through the values offmin andfmax. We
proceed by defining a grid and then solving a predetermi
number of time steps on that gridNre f ~typically Nre f520
2-4
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FIG. 4. Dividing sequence for refinemen
The arrows indicate the sequence of refineme
as discussed in the text.
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2100), and then adapt the grid. We require that the interf
remain within the fine grid during the time steps. We fou
that fmin520.99 andfmax50.9 gave consistent result
The reason for the asymmetry is that the interface mo
from the solid regionf.0 to the liquid regionf,0. Out-
side of the interface region (f,fmin or f.fmax), we used
an error estimator based on the magnitudes of the deriva
of u as follows:

Ee5E
Ve

“u•“udV, ~24!

whereVe is the element. The estimated errorEsub of a sub-
element divided from a parent element with errorEp can be
calculated from the asymptotic rate of convergence of
finite element approximation as

Esub5S hsub

hparent
D k

Ep50.5kEp , ~25!

wherek is the exponent for the asymptotic rate of conv
gence (k52 for linear elements!, and hsub and hparent are
the element sizes of the subelement and parent elemen
spectively. A limit valueElimit is calculated from

Elimit5g max@~0.5k!(Nmax2Ne)Ep#ue51
NT ~26!
04160
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whereg is a scale coefficient~typically 10!, NT is the total
number of elements,Nmax is maximum refinement level, an
Ne is the refinement level of elemente. The element is di-
vided until its estimated error becomes smaller than a sp
fied limit value. Once the elements to be refined have b
selected, the grid is refined using the procedure describe
the next section.

B. Grid refinement procedure

The grid refinement procedure begins by storing
pointers of neighboring elements and the refinement leve
each element. Refinement is required in an element wh
ever the estimated error exceeds the limit value or when
absolute difference between the level of an element and
of its neighbors exceeds 1. The latter is called the sing
level rule. Refinement is carried out successively at e
refinement level, beginning with the minimum, according
the procedure illustrated in Fig. 4, and described below.

~i! After checking the computed elemental errors, a
$E0% is created which consists of elements in the curr
refinement level, whose error exceeds the present limit va
These elements will be refined after the neighboring e
ments which must be refined to satisfy the single-level r
are found and refined.

~ii ! A recursive search is then performed to find the o
ermost elements which need to be refined to satisfy
single-level rule. We do this by first defining a new set$Ef%
2-5
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whose initial value is$E0%. The neighbor elements to eac
element in$Ef% are then examined, and any neighboring
ement that does not satisfy the single-level rule is added
new set$Ef a f%. If $Ef a f% is not a null set, then$Ef% is re-
placed by$Ef a f%. This procedure is repeated until$Ef a f%
becomes a null set. At this point, the set$Ef% contains the
outermost elements which need to be refined to satisfy
single-level rule, and these elements are then divided
eight subelements by bisection of each face.~See Fig. 4.! At
this point, the set$Ef% is again set equal to$E0%, and the
search begins anew. This process is repeated until the se
for elements to fill set$Ef a f% yields a null set. Then, the
elements in set$E0% are refined, and the refinement proce
is completed in the next step.

~iii ! The nodal coordinates, element connectivities, nei
bor arrays, parent arrays, nodal refinement levels, etc.,
updated. The neighbor array is the array to store the elem
numbers of neighboring elements. The parent array is
array to store the element number of the parent elements
the coarsening procedure, described in the next section.

The recursive search for elements violating the sing
level rule in the second step above may seem ineffici
because it performs multiple searches, finding the same
ments. However, this procedure makes it possible to perf
the searches with each element knowing only about its n
est neighbors. This gives greater efficiency in the compu
tional phase, because it limits the memory allocation
quired within the element data structure.

C. Grid unrefinement procedure

The unrefinement procedure is accomplished throug
loop in which the refinement level is decreased increment
from the maximum level to the minimum level.

~i! A set $$Es f%% is created, containing all elements whic
are eligible for unrefinement based on the value of the e
estimator. Each element of$$Es f%% is a subset$Es f%, consist-
ing of eight elements to be merged into one. If an elem
whose refinement level equals the current level of the un
finement loop has smaller estimated error than a prescr
limit value, then the element is placed in a temporary
$Etemp%. The elements belongs to$Etemp% are sorted into the
subsets$Ets f% according to their parent element.

~ii ! If the number of elements belonging to any sub
$Ets f% is eight and an element created from the eight e
ments satisfies the single level rule, then$Ets f% becomes the
subset$Es f%.

~iii ! The eight elements belonging to each$Es f% are then
merged into the parent element. As we did for grid refin
ment, the nodal coordinates, elemental connectivities, ne
bor array, parent array, and nodal refinement levels are
dated.

D. Treatment of disconnected nodes

The adapted grid will have so-called disconnected no
which appear whenever an element has a neighbor wh
refinement level differs by one, as illustrated in Fig. 5. A
element with connectivity@6, 3, 12, 4, 1, 2, 13, 5# contacts
two neighbor elements of lower refinement level.
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To ensure continuity of the solution between elemen
the following constraints are enforced for each degree
freedom, here represented by the symbolv i :

~i! disconnected edge midnodes

v25
v11v7

2
, v55

v11v11

2
, v65

v11v9

2
, ~27!

~ii ! disconnected face midnodes

v35
v11v71v81v9

4
, v45

v11v111v101v9

4
. ~28!

After applying the constraints, the original element conn
tivity is modified to be@8, 12, 10, 9, 7, 13, 11, 1#, and the
element shape functions are changed appropriately. T
change is made to facilitate domain decomposition in
parallel implementation, described next.

IV. PARALLELIZATION BY CHARM¿¿

CHARM11 is a message-passing parallel runtime syst
for machines from clusters of workstations to tightly coupl
symmetric multiprocessing machines@17#. A parallel FEM

code can be written inFORTRAN90 using interface routines
from the CHARM11 FEM framework@18#. The FEM frame-
work program consists of three kinds of subroutines. Serv
routines such as ‘‘INIT’’ and ‘‘ FINALIZE’’ do I/O, startup, and
shutdown tasks, and are called only on the first proces
The main work is done using ‘‘DRIVER’’ routines, replicated
on every processor. In our parallel implementation,
adapted grid is newly regenerated every 20–100 time st
After each regeneration, the adapted grid is partitioned i
chunks assigned to each processor usingMETIS @19#. This
function is also handled through the interface toCHARM11.

In the DRIVER routine on each processor, the temperat
and velocity fields are calculated using the precondition
CG method in an the element-by-element scheme, and thf
field is solved using an explicit time-stepping scheme,
described earlier. All calculations for the CG method a
accomplished through the products of the elemental stiffn
matrixes and local solution vectors. This creates addit
contributions for the residual vector for each degree of fr

FIG. 5. Configurations of disconnected sides and nodes.
2-6
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PHASE FIELD MODEL FOR THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 64 041602
dom. Some ‘‘shared nodes’’ appear on more than one p
cessor. The array is calculated for each chunk, and the va
of the field variables for all shared nodes are combined w
the other chunks by using theCHARM11 function
‘‘ FEM_UPDATE_FIELD.’’ For calculating the inner product o
arrays and finding the maximum error values, each no
value is combined across all chunks and the shared n
ares not double-counted by using theCHARM11 function
‘‘ FEM_REDUCE_FIELD.’’ After the computations in the
DRIVER routine on all processors are completed, the cal
lated data are transfered fromDRIVER to INIT. The grid is
adapted, then repartitioned. These procedures are rep
until the simulation is finished.

In order to rate the parallel performance of the code,
compute the ratio SP, defined as

SP5
~run time on one processor!

~run time onn processors!
. ~29!

A sample result is shown in Fig. 6, where we used a g
with 296 636 elements and 349 704 nodes computing ove
time steps. The value SP528.8 for 32 processors is typica
for our code and shows that the code has been effecti
parallelized.

V. TIP VELOCITY MEASUREMENT

The steady-state tip velocity is a convenient measure
compare the computational results to dendritic growth th
ries. In the phase-field method, tip velocity is inferred fro
the temporal evolution off50 along the primary growth
axis. Karma and Rappel@6# were able to derive interfac
velocities from the numerical solution by using a third-ord
polynomial to interpolatef, using neighbor and next
neighbor grid point values. Using a 1D analog problem a
basis, they showed that this scheme gives an interface ve
ity with a small amplitude oscillation about the mean, due
the interpolation of the moving front on the fixed grid.

FIG. 6. Speed-up forCHARM11 FEM framework.
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This multipoint scheme is somewhat problematic wh
adaptive gridding is used, because the selection of points
interpolation is incompatible with our data structure. We d
veloped a new scheme using a hyperbolic tangent functio
perform the interpolation. This approach provides equival
control of the tip position oscillation, yet it requires only tw
grid points, corresponding to the nodes in the element wh
contains the interface (f50). Let us denote thex coordi-
nates andf values of these two points as (x1 ,f1) and
(x2 ,f2). We interpolatef along the axis as

f~x;xc ,W!52tanhS x2xc

W D , ~30!

wherexc and W are fitted parameters corresponding to t
zero crossing off and the interface width, respectively. Th
parametersxc andW are determined as follows:

W5
2~x12x2!

ln@~12f1!~11f2!#2 ln@~11f1!~12f2!#
,

~31!

xc5
W

2
ln

11f1

12f1
1x1 . ~32!

The interface velocity is then computed by a finite differen
in time between successive interface locations.

To demonstrate the scheme, we examined the same
test problem considered by Karma and Rappel@6#, viz.,

t0

]c

]t
5W0

2]2c

]x2 1c2c31D, ~33!

using t051, W051, Dx50.8, andD50.02. This problem
has a traveling-wave solution which propagates at velo
V50.041. The computed interface velocity is shown in F
7 for a variety of interpolation schemes. It can be seen t
the hyperbolic tangent interpolation scheme has a small
cillation amplitude, slightly smaller than that of the third
order polynomial. The average interface velocity can be e

FIG. 7. Interface velocity vs time for the 1D test problem.
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FIG. 8. Tip velocities and tip radii in 2D.
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D

ily extracted by selecting pairs of interpolated poin
separated by the amount of time it takes to cross one
spacing. We refer to this as the moving average tip veloc
This method is used to compute the interface velocities
ported for the calculations in the remainder of this paper
04160
id
.
-

VI. RESULTS

A. Two-dimensional verification problem

In order to validate our 3D code, we simulated the 2
example analyzed by Beckermannet al. @13#. The computa-
TABLE I. Results for the simulations of dendrite growth in 2D and 3D.

Solvability solution~2D! 2D (Dx50.8) 2D (Dx50.4) 3D (Dx50.8)

Vtip~no flow! 0.489 0.502 0.486 0.915

Vtip
upstream~flow! 0.766 0.761 1.038

Vtip
downstream~flow! 0.324 0.276 0.800

Vtip
transverse~flow! 0.533 0.516 0.915

r t ip~no flow! 0.959 1.47 1.22 2.90

r t ip
upstream~flow! 1.60 1.36 3.50

r t ip
downstream~flow! 1.50 1.28 2.41
2-8
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FIG. 9. Computed interfaces in 2D without and with fluid flow att516, 72, and 104.
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tional domain is a square with an initial circular seed. A 3
domain is created by extending the square domain and
circular seed into they direction.

We used a box of edge lengthL5204.8 so that subele
ments ofDx50.8 or 0.4 are created through repeated bis
tion of the domain. The flow enters at the left edge, w
ux51 anduy50. The top and bottom surfaces are symme
boundaries. Beckermannet al. @13# usedL5230.4 and simi-
lar values forDx. The problem parameters are undercooli
D50.55, thermal diffusivity D54, and anisotropye4
50.05. We also usedDt50.016, W51, t051, and l
56.383. The capillary lengthd0(5a1W/l) is 0.139, the ki-
nematic viscosityn is 92.4, and the Prandtl number Pr ca
culated from these parameters is 23.1. These physical pa
eters correspond to succinonitrile. The adapted grid is ne
regenerated every 20 time steps. We examined two minim
grid spacings,Dxmin50.8 andDxmin50.4. The largest ele
ment size wasDxmax53.2 for both cases.

For 2D dendrite growth without fluid flow, when usin
Dx50.8 andDx50.4, the steady-state dendrite tip velociti
Vtip scaled withD/d0 are 0.017 44 and 0.016 89, respe
tively. Those values are in good agreement with solvabi
theory ~0.017 00! and previous phase-field results@13#. We
calculated the tip radiusr t ip using the method in Ref.@6#,
where the tip curvature is computed using estimates of
second derivatives at the tip interpolated along the two co
dinate directions at the tip. We obtainedr t ip /d0510.58 and
8.78 for Dx50.8 and Dx50.4, respectively. The ratio
r t ip /d0 for Dx→0 can be computed by Richardson extrap
lation, plotting r t ip versusDx2. The extrapolated value o
this ratio forDx→0 is 8.20, which is somewhat larger tha
the solvability solution~6.90!.

An alternative method to fit the tip radius, given b
Wheeleret al. @20#, was also used. In this method, we fit
an effective Ivantsov solution by calculating the parabolic
radiusr t ip

p from the slope ofz versusx2 in the region behind
04160
he
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y

m-
ly
m

-
y

e
r-

-

the tip where the curve becomes straight. The tip radius
tained this way isr t ip

p 53.84 and the tip Peclet number

Pep5
Vtipr t ip

p

2D
50.237. ~34!

The relative difference between the Pep and PeIvan ~0.257!
@13# obtained from the Ivantsov relation is less than 8
Thus, usingr t ip

p does indeed remove uncertainties from u
ing the value at just one point.

Figures 8 and 9 and Table I summarize the results for
simulations. For the upstream tips, the steady tip veloci
for Dx50.8 andDx50.4 agree with the results of Becke
mann et al. @13# within 9% percent. ForDx50.4, the up-
stream tip grows approximately 55% faster than in t
growth without flow att5100, while the downstream tip

FIG. 10. Schematic diagram of 3D computation domain a
boundary conditions.
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FIG. 11. Grid configurations of adapted grid
t59.6, 43.2, and 86.4.
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grows approximately 45% slower. Beckermannet al. re-
ported that the upstream tip grows 40% faster and the do
stream tip grows more than 30% slower. The trend
changing the tip velocities according to the growing dire
tions agrees well with the results by Beckermannet al. @13#
For the upstream tips, the ratiosr t ip /r t ip

0 with and without
fluid flow are 1.09 and 1.12 forDx50.8 and 0.4, respec
04160
n-
r
-

tively. Those values also agree well with the result~1.11!
obtained by Beckermannet al. @13# The ratios0* /s* , where
the subscript 0 refers to the the solution in the absence
fluid flow ands* 52d0D/r t ip

2 Vtip , is 1.95 and 0.63 for the
upstream tip and downstream tip, respectively. These res
agree reasonably well with those of Beckermannet al.

A detailed comparison is not meaningful because
2-10
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FIG. 12. Tip velocities and tip radii in 3D.
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simulations have not reached steady state, and in some c
are not fully grid converged, as shown in Table I. Figure
shows interfaces of the dendrites with and without fluid flo
in 2D. The interfaces are in good agreement with previo
results@13#.

B. Three-dimensional computations

We simulated 3D dendrite growth with fluid flow using
cube computation domain with a spherical seed, as show
Fig. 10. The inlet velocity boundary conditions are impos
on the left side boundary and their values areux5U, uy
50, anduz50. For this particular problem, we again ha
U51. The largestDx is 6.4, while the smallestDx is 0.8.
Time increments ofDt50.016 andDt50.008 are used to
model growth without and with fluid flow, respectively. Th
other parameters are identical to the parameters for the
analysis in previous section. Figure 11 shows several of
grid configurations in the analysis. The scale factorg used in
the adaptive grid procedure was 10 for this simulation.
04160
ses

s

in
d

D
e

The simulations usingDx50.8 andDx50.4 consumed
about 40 h and 190 h, respectively, on a single processo
the IBM RS/6000 machine with clock rate of 200 MHz. I
the simulation whereDx50.8, the initial mesh consisted o
10 607 elements, and the final mesh had 208 357 eleme
These numbers should be compared with a fully dense m
which would have had over 43106 elements. With fluid
flow, computing the velocity and pressure fields consum
approximately 80%–90% of the total CPU time. We pe
formed some the simulations using a different time inc
ment for velocity fieldDtV , larger than the time incremen
for temperature andf fields Dtuf . For Dx50.8 andDtV
55Dtuf , the CPU time decreased by 76%, and the res
for r t ip andVtip agree within 5% with the results obtaine
by using DtV5Dtuf . The detailed results presented ne
were computed usingDtV5Dtuf50.008 in order to com-
pare our results with the previous 2D results. This run to
approximately 250 h on 16 processors of the ORIGIN2000
the National Center for Supercomputing Applicatio
2-11
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FIG. 13. Computed interfaces in 3D withou
and with fluid flow att59.6, 43.2, and 86.4.
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~NCSA!. The same run usingDtuf50.016 and DtV
55Dtuf consumed approximately one-eighth of the run tim
for DtV5Dtuf50.008, and the deviation in the results w
less than 3%. Thus, a run time of about 32 h on 16 proc
sors yielded essentially the same result.

Without fluid flow, the steady scaled tip velocit
Vtipd0 /D is 0.0318 and the ratioVtip

2D/Vtip
3D for Dx50.8 is

0.55. Karma and Rappel@6# reported that this ratio is 0.39
for D50.65 and effective anisotropyee50.0269. The
r t ip /d0 is 20.86 and the ratior t ip

2D/r t ip
3D for Dx50.8 is 0.51.

The ratios2D* /s3D* is 7.09, wheres* is the selection con-
stants* 52Dd0 /r t ip

2 Vtip .
The time evolution of the dendrite tip velocities and t

radii are shown in Fig. 12. With fluid flow, the upstream t
grows 13% faster than it does without flow, while the dow
stream tip grows 13% slower. We stopped the calculation
t586.5, before the diffusion field encounters the end of
computational domain. These results seem to show tha
04160
s-

-
at
e
he

effect of 3D flow on the upstream dendrite tip velocity
much weaker than the effect of 2D flow. However, the re
son for the trend is that the effect of forced flow on t
velocity is highly dependent on the ratioU/Vtip whereU is
the inlet velocity. The ratioU/Vtip

3D is 45% smaller than the
ratio U/Vtip

2D , and this accounts for the reduced effect. T
ratio r t ip /r t ip

0 is 1.21 for 3D for the upstream tip, which i
slightly larger than the ratior t ip /r t ip

0 51.09 for 2D. The tip
radius for the downstream in 3D decreases by 17% du
the flow effect, while the tip radius in 2D increases by 2%
Thus, the effect of the forced flow on the downstream tip
much stronger in 3D than in 2D. The cause of the trend
that in 2D the fluid flows vertically over the dendrite, whi
in 3D the fluid flows both vertically and laterally over th
dendrite.

Figure 13 shows several interfaces in thex-z plane. The
tilt angle of the transverse arms into the flow in 3D is 2.5
while the tilt angle in 2D is 2.3°. From Fig. 13 we can s
FIG. 14. s* s in 3D.
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that sidebranches begin to appear on the upstream side o
transverse tip more quickly than on the other sides.

Bouissouet al. @21# showed that when surface tensio
effects are neglected, the Peclet number PeV computed using
Vtip is related to the Peclet number computed using the i
velocity, PeU , for a given undercooling. In order to asse
the effect of the forced flow on the tip Peclet number,
computed the the difference between the tip Peclet num
with fluid flow, PeV

f 5Vfr f /2D, and the tip Peclet numbe
without fluid flow, PeV

05V0r0/2D , divided by the Peclet
number related to the inlet velocity, PeU

f 5Ur f /2D:

DPe5
PeV

f 2PeV
0

PeU
f

, ~35!

We found that for the upstream tip in 2D, PeU
2D is 0.305 and

it is similar to PeU
3D(50.275), even though the effect of th

forced flow on the tip velocities and tip radii in 2D and 3D
much different.

We found that the ratios0* /s* for 3D is 1.675 for up-
stream tip and 0.603 for the downstream tip. With flo
present, it takes somewhat longer fors* to settle onto a
steady value, as seen in Fig. 14. The trend ins* for the
upstream tip with fluid flow agrees with experiments by Bo
issou et al. @21# on alloys of PVA and ethanol, while th
trend is opposite to the experiments by Leeet al. @22# on
SCN forced past a needle. Further work is needed to exam
this phenomenon.

VII. CONCLUSIONS

In this paper, we presented an efficient algorithm us
3D adaptive grid refinement in order to study the effect
fluid flow on 3D dendrite growth using a phase-field mod
We simulated 3D dendrite growth with fluid flow usin
adapted grids with at most 300 000 elements, while o
4 000 000 elements would be required for an uniform gr
We also present a parallel implementation by using
CHARM11 FEM framework. A speed-up factor SP528.8 for
32 processors is typical for the larger meshes.
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We also introduce a new scheme using a hyperbolic t
gent function to interpolate tip position. We found that t
scheme, which requires just two points for interpolation, h
a smaller oscillation amplitude than third-order polynom
interpolation using four points.

Test cases showed that the dendrite tip velocities and r
for 2D dendrite growth were in satisfactory agreement w
solvability theory and previous computational results@13#.
We found that the effect of fluid flow on dendrite tip veloci
in 2D is much larger than in 3D, because the ratioU/Vtip

2D is
approximately 2 times larger than the ratioU/Vtip

3D . For the
downstream tip, the tip radius in 3D decreases by 17%,
the tip radius in 2D increases by 2%. The cause of the tr
is that in 3D the fluid flows both vertically and laterally ove
the dendrite and the effect of the forced flow in 3D is mu
stronger than in 2D where the fluid flows vertically over t
dendrite.

We examined the effect of the forced flow on the t
Peclet number by computingDPe: the difference betwee
the tip Peclet number in the growth with fluid flow and th
tip Peclet number in the growth without the fluid flow, d
vided by the Peclet number related to the forced flow. W
found that DPe in 2D and in 3D are within 10%, eve
though the tip radii and velocities vary by much more th
that. In 3D growth with fluid flow,s* for the upstream tip
decreases by 39%. The trend fors* for the upstream tip
agrees with experiments~reduction of 37%) by Bouissou
et al. @21# on alloys of PVA and ethanol. The ratios0* /s* 3D

for the upstream tip is 14% smaller than the ratios0* /s* 2D.
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