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Adsorption properties of a colloid-polymer mixture confined in a slit pore
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The soft fundamental-measure theory, which was based on the additive colloid-polymer niiMture
Schmidt, Phys. Rev. B2, 3799(2000] has been employed to investigate the adsorption of a colloid-polymer
mixture within a hard slit pore. The calculated results show that the adsorption for the confined colloid-polymer
mixture is very different from those of the colloid-colloid and polymer-polymer mixtures. The equilibrium
particle density distribution strongly depends on the softness of a star polymer. The local relative concentration
oscillates with a spatial period close to the diameter of a large particle in the same way as the equilibrium
particle density distribution. The size selectivity in adsorption depends both on the softness of a star polymer
and on the particle size ratio in a binary mixture. In particular, the strong adsorption occurs at the ultra-soft
polymer and high bulk packing fraction.
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[. INTRODUCTION polydisperse soft-sphere fluid. He showed that the preferred
species in a slit pore depends on the pore size and softness of
Over the last decade, the density functional theory of clasa polydisperse soft-sphere fluid. The local relative concentra-
sical fluids has evolved into an efficient theoretical tool fortion oscillates with a spatial period close to the diameter of a
studying confined fluid mixturels—4]. Many different kinds ~ large particle in the same way as the equilibrium particle
of theories have been developed for dealing with problemélensity distribution. The results suggest that the pore average
such as phase separation and interfacial adsorption of mixnole fraction and Ioca] relative concentration for colloidal
tures in the confined systens]. For the hard-sphere mix- hard spheres mixed with star.polymers are affected by the
ture, the newest and most successful approximation is the°ftness of a star polymer. It is generally expected that the
fundamental-measure theory which was developed b olloid-polymer mixture shows very different adsorption

Rosenfeld and co-workeff$,7]. The density functional ap- rop_erties compared with bina_ry mixtures such as colloid-
proximations for various common model fluids, within the colloid and polymer-polymer mixtures, because of the soft-

soft fundamental-measure theory, was proposed to study t £SS qf a star polymer. On.the othgr hand, the adsorption
structural properties in the fluid pha$8,10,d. More re- ehavior of an open system is very different from that of the
cently, Schmidi[11] proposed a soft fundamental-measureC|osed system such as the spherical pore, where the number

theory for a model colloid-polymer mixture of particles in- of part'CIeSN |s_f|xed [17]. .
teracting with a radially symmetric pair potential. In this .Th|s paper 1s arranged as follows. In Sec. I, we wil
case, the cross interaction between unlike species can be (%I'_lefly summarize the soft fundamental—megsure theory .for
scribed by the fundamental-measure theory for the hard- € addmve g:ollmd—polymer mixture, and _denve the ldens.|ty
sphere and star polymer. These interactions turn out to ha\}?emf'le equation for the colloid-polymer mixture confined in

a physically reasonable forfii2,13. Schmidt applied it to goitcrgﬁiu;i)er?s' zar?hzhltopolr e I(r; Seecélll,t_'(t)he Iogal Ore;a:v:
investigate the partial pair distribution functiay;(r,p) of ration, 1.€., cal slze segregation and pore aver-

an additive colloid-polymer mixture, and obtained reason-29¢€ mole fraction, which represents the size selectivity in

ably good results compared with the computer Simul(,jltionfa\dsorption of the confined colloid-polymer mixtures, is stud-

Furthermore, a fundamental-measure theory for a nonadd|—ed theoretically and compareq with Fhe confingd colloid-
tive model colloid-polymer mixture was developed by colloid and polymer-polymer mixtures in detail. Finally, the
Schmidtet al. [14]. Rosenfeldet al. [15] compared the soft pore size and particle size dependence for confined colloid-
fundamental measure theory and the computer simulation fot?olymer mixtures are also discussed.
the pair correlation function in the fluid phase of penetrable
spheres by using the test-particle limit. They showed that the Il. THEORY
penetrable sphere functional is quite successful. . ) )

Kim [16] recently extended the soft fundamental-measure N the density functional theory for colloidal hard spheres
theory of Schmidf11] for the polydisperse soft-sphere fluid, Mixed with star polymers with the particle diametgr[here

and applied it to study the adsorption properties of a confine@c and o, denote the diameters of the colloidal hard sphere
and the polymer, respectivdlythe equilibrium particle den-

sity distribution p;(f) of the inhomogeneous fluid is de-
*Email address: sckim@andong.ac.kr scribed by the minimum of the grand canonical potential
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Qfp] satisfying the Euler-Lagrange relation fundamental-measure theory introduced by Schmidt to inves-
OBQ pe.ppll 5pi(F) =0, where B=1kgT is the inverse tigate the structural properties of a colloid-polymer mixture,
temperature an#lg is Boltzmann’'s constaritl9]. If the in-  because it yields very reasonable results for the structural
homogeneous fluid is in contact with the homogeneous bullproperties of a soft-sphere fluid. The set of weight functions
fluid, its chemical potential; is equal to that of the homo- appeared in Eqs4) and(5) is related to the generating func-
geneous bulk fluid. After some manipulations, the equilib-tion »®(r) through

rium particle density distribution functiofor density profile

equation p;(r) is given by Jo'3(r) 7
(@)= — 502(F) = w@(r) -
> ext, = (1) p. @i ( ar wi wi r’
pi(F)=p; ex — BuP(F) + i (Fi[ e, pp))
_Ci(l)(Pcvpp)] for i=c,p, 1) -(2)(I’) P
(1) r = 7 5(vl) )= (1) r)— 7
wherep; denotes the homogeneous bulk density, afi{i) W (N)=—7—— o (N=w(r)r, (7)
is an external potential acting on species[19,20. In Eg.
(1), c™(F;[pe.ppl) is the one-particle direct correlation o V(1)

function (DCF) of the inhomogeneous colloid-polymer mix- w!9(r)
ture, which is defined as '

OBFed pc.ppl whereo®, 0@, o, and »(® are scalar quantities and
{"® and Y are vectors. The generating weight function

Spi(f) 7
_ _ w®)(r) is determined by solving the deconvolution equation,
whereF,{ p. ,p{)] is the excess free energy functional of the yhich s an integrodifferential equatidi.1].

cM(FiLpe,ppl)=— 2

system, anct™(p.,pp) is the one-particle DCF of the ho-  For the specific form of a intermolecular potential such as
mogeneous colloid-polymer mixture. a colloidal hard sphere mixed with a star polymer, a simple
Following Schmidt's expressiofiL1], we assume an ex- generating weight function can be obtainfdd]. Following
cess free energy function&l, p.,pp] such that the colloid-polymer model proposed by Schmidt, we choose
the pairwise potentials between colloidal hard-sphere and
- & g star polymer as follows(i) The interaction between the star
Felpe.pp] kBTJ dSPLNG(S)]. ® polymer Bu,,(r) consists of a logarithmic potential for

R small distances,
where®[n,(S)] is the excess free energy per volume. Then

the one-particle DCE")(;[ p¢,p,]) is simply given, from

2
Egs.(2) and(3), as —2q|n(r/Rp)+In( qq), 0<r<R,
R o~ 9Pn(H] ... . - 2
U (rpe el = | 055 2 ol -3, Pun D=\ g o 30), Ry<r<or, @
) 0, 2Ry<r,
where the system-averaged fundamental geometric measure
of the particlesn, () is given by where €9 is the binomial coefficient, and denotes the

softness of a star polymer. The crossover function between
small and large distanceg(r) is given by

2
(=3 f d5p,(8)w{®(|F—3)). 5)

r=—In[(1+&329—&1*1B, ,F1(1,1-q;2+q;— )],
wi(“)(r) are weight functions, and the excess free energy Palr) [(1+8) ¢ a 2F 1 q 4= 8]

®[n ()] per volume is assumed as where ¢é=(r/R;)—1, Bq=2F(1+2q)F‘1(q)F‘1(2+q),

D[N, (F)]=—Nno(F)IN[1—ng(F)] gnd 2F1 is the hypergeometric functiofii) The hard _sphere_
interactionBu..(r) has been assumed for the colloid-colloid
N1(F)N(F) = A, 1 () - Ay o( 1) interaction:
1—n3(r)

n,(F)3[ 1= (A,o()/ny(7))?]° Buc(r)=o, 0<r<R,

24m[1—ng(F)]?

(6)

=0, 2R.<r. 9
Actually, the excess free energy function with the tensorial
weight densitieg7] can be introduced, which leads to supe- (iii) The colloid-polymer interactiorBu.y(r) is assumed to
rior results in highly inhomogeneous situations such as théave a hard core due to excluded volume induced by a col-
crystalline phase. However, we have chosen the sofioid and an additional logarithmic repulsion:
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Bucp(r)==, r<Rg, bulk densities of a star polymer as well as a colloidal hard
sphere. The one-particle DCchl)(pc,ps), corresponding to
a colloidal hard sphere, becomes

r—Re
=—qln R, |’ Re<r<R.+R;,

7R3N R. [n, 7R
(1) _ . . c''o . C 2 c'’1
c Ps)=IN(1—n -+
=0, otherwise. (10) ¢ (Pe:p9)=IN(1=ns) 3(1-n3) 1-ng|2 4
Here note that the colloidal and polymer are simplified with 3 47R3NN, RZnj B Ren3
the central forces. 3(1-ng)? 2(1-ng)? 9(1—ng)*"
For the above intermolecular potentidEgs. (8)—(10)], (15

the generating weight functio:nf)(r) for the colloidal hard-

sphere casg8] is identical to the pure hard-sphere case  The combined equatiori4), (4), (13), and(15) constitute the
(3) density profile equation for an additive colloid-polymer mix-
(r)=60(Rc—r), 1) ture.
On the other hand, for atadditive colloid-colloid mix-

where 6(r) is the Heaviside step function. The generating,[ure the one-particle DCEi(l)(pl p,) [6] becomes

weight functiona{?(r) for the polymer is given by
47R’ng  Rin, 4mRn;

()(r)=1—(r/RyY9, 0<r<R (1) —In(1=n.)— _
wp ( ) ( p) ’ p C| (pllPZ) ln(l n3) 3(1_n3) 1_n3 1_n3
=0, otherwise, (12 B 477Ri3n1n2_ Rizng
whereq represents the softness of a polymer. In the lignit 3(1-ng)® 2(1—ny)®
—oo the weight functioEq. (12)] approaches a step func- R3n3
tion ?(r)=6(R,—r), and the potential becomes a hard —25 for i=12, (16)
core with the radiu},. Equations(7), (11), and(12) con- 9(1—nj)
stitute the set of Welght functions for colloidal hard sphereswl,[h
and star polymers.
For the homogeneous star polymer, the one-particle DCF 2 2 2
cP(pe.pp) becomes, from Eqg4), (6), and(7), ”0:.21 Pi s ”1:21 piR, nZ:E1 AmpiR?,
i= i= i=
4mR3n,[1 1
(1) - po 2
Cp (Pcipp)=IN(1—n3)— ru 47
P P _
1 n3 3 q+3 ns_zl ?pIRI
qR, [ n,  4mRyn;| 47R3nin,
1-nglgq+1 g+2 | (1—ny)? Many authorg6,17,19 showed that, for a confined colloid-
- colloid mixture, the fundamental-measure theory yields very
1 1 Rpn2 q good results compared with the computer simulation.
X 3 q+3| 2(1-ny?|q+2 For the (additive polymer-polymer mixture, the one-
- particle DCFc(Y(p,,p,) becomes
Rpnz |1 1
- 3|3~ , (13 1 1] R
3(1-ny)°|3 q+3 (1)
. ¢ (p1,p2)=IN(1—n3)—4m| 5 37 q+3|(1-ny)
with
qRiny 4mqRiny
q - — _
No=pet pp. M=peRet g oy, (@+1)(1-ny (q+2)(1-ny)
, 4mq 3 g+3 (1 n3)2 2(q+2)(1—ngy)?
na=4mp.Rc+ ——=ppRy
q+2 3
1 1 Rn3
and 3 g+3/3(1-ny)°
A Ri+4 R for i=1 and 2,(17)
Ns="3"Pe 737 gt 3|Pre

with
since py(F)=p, and p.(f)=p. for the homogeneous
colloid-polymer mixture. Note here that the one-particle
DCF Cél)(pc,pp) for the star polymer is a function of the

2 q
n=2 7R

I
™
)
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7z for the binary fluid mixture is given ag= wEizzlpio?IG.

06 The particle diameteor has been taken to be the unit of a
- ’ length, and the bulk mole fractiot= p, /32, p; is 1/2. Ac-
° 04T tually, the size of a colloidal sphere is not large compared to
> oo | that of a polymer. However, here we used a relatively small
< - sphere for the colloidal particle to study the size effect in
adsorption properties of a colloid-polymer mixtJi&l]. As
0.0 ) A
can be seen from Fig.(4), the calculated equilibrium par-
0971 ticle density distribution strongly depends on the intermo-
~N 06| lecular interaction between two particles. For the lagge-
= value, i.e., the strong repulsive interaction between the star
03¢ polymers, a higher particle density distribution developed
0.0 ) ‘ near a slit pore; for the colloid-colloid mixture a higher par-
"o " 5 3 4 ticle density distribution can be found near a hard slit pore,
this is to be compared with the polymer-polymer mixture,
z/c which has a soft-sphere interaction between two particles.

An interesting fact is that, in a colloid-polymer mixture, the
particle density distribution for the polymer is lower com-
pared with that for a colloidal hard sphere in a colloid-
colloid mixture because of the softness of a polymer; how-
ever, the particle density distribution for a colloidal hard
sphere is almost the same as that in the colloid-colloid mix-
ture. These results suggest that in a colloid-polymer mixture
the equilibrium particle density distribution depends strongly
pRE. on the softness of a star polymer. As for the equilibrium
: particle density distribution, the distance between the two
peaks is also almost the same as the diameter of a star poly-
Note here that the polymer-polymer mixture was recentlymer. In Fig. 1b), the local relative concentration or concen-

extended to investigate the adsorption properties of confineglation profile ¢;(z) is displayed, which is defined as
polydisperse soft-sphere fluid with the continuous particle

FIG. 1. (a) Equilibrium particle density distributiop;(z) o for
the binary fluid mixtures confined in a slit pore with=8.00, 7
=0.394, anck=0.5; dotted lines represent a polymer-polymer mix-
ture (q=12 ando,/0,=0.9), dashed lines a colloid-polymer mix-
ture(q=12 ando./0,=0.5), and solid lines a colloid-colloidmix-
ture o./0,=0.5). (b) Local relative concentratiom;(z).

1 1

3 gq+3

2 471_q 2
=> ", R? =
nz—igl q+2p|R|, n3 I:2147T

distribution[16]. pi(2)
For the structureless hard slit pore, the external potential bi(2)= 55—, (21
u®™Y(z) is simply given as
Bu;"(2) ply g 21Pi(2)
iz

Bu(z)=0, R<z<L-R,

where the local relative concentration represents the effect of
the local size segregation between particles of different spe-

whereL andz are the width of the slit pore and distance from €i€S[22]. It is expected that the strong local relative concen-
a hard slit wall, respectively. The maximum distances avajlfration is related to the large particle density difference be-

able to the center of a colloidal hard sphere or a star polymgWWeen two particles. As can be seen from Figb)1 the
areL—R; . Then all quantities only depend on thexis, but calculated local relative concentration shows the strong local
(I ’

not onx andy; p(F)=p;(2), and so on. The equilibrium size segregation with local cross correlation between par-
’ | I ’ .

=, otherwise, (18

particle density distribution functiofEq. (1)] becomes ticles qf different _sizes around the bulk mole fractioxg (
=1/2) in the relative amounts of small and large particles.
pi(2)=p; EXF[—,BUTXI(ZHC?D(Z;[PC,Pp])—Ci(D(Pc,Pp)], Strong local size segregation near a slit pore was developed

(190  for a colloid-colloid mixture with a strong repulsive interac-
tion compared with that of a polymer-polymer mixture. This

with means that the large size selectivity in adsorption depends on
the softness of a star polymer. The local relative concentra-
1)/ _ ” 1) 2. 52 tion oscillates with a spatial peak close to the diameter of a

¢ (z[pe, =2 dR R¢™ (VR +2%[ pe, . ) . :
(@ lpe.pp)) ﬂfo é ( Lpe.ppl) star polymer with a large diameter, in the same way as the

(200  equilibrium particle density distribution does. In particular,
Roth and Dietrich recently showed that for a colloid-colloid
IIl. RESULTS AND DISCUSSION mixture near a hard wall the oscillatory behavior obtained by
the fundamental-measure theory agrees excellently with the
The equilibrium particle density distributign (z)o® and  computer simulatiori18].
its corresponding local relative concentratigi(z) for the In Fig. 2 we show the calculated equilibrium particle den-
binary fluid mixtures are displayed in Fig. 1 as a function ofsity distribution and its corresponding local relative concen-
the distance from a hard slit wall, where the packing fractiontration for binary fluid mixtures with different particle size
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FIG. 2. Same as in Fig. 1; dotted lines represent a polymer- FIG. 3. (a) Pore average mole fractiog; for the binary fluid
polymer mixture(q=12 ando,/o,=2.0), dashed lines a colloid- mixture, where =0.394 andx=0.5; dotted lines represent a
polymer mixture(q=12 ando/o,=2.0), and solid lines a colloid-  polymer-polymer mixturgq=12 ando,/0,=0.5), dashed lines a
colloid mixture (o./o=2.0). colloid-polymer mixture(q= 12 ando/o,=0.5), and solid lines a

colloid-colloid mixture (@./c.=0.5). (b) Same as in(a); dotted
ratios. As can be seen from Fig. 2, the equilibrium particlelines represent a polymer-polymer mixtufg=12 and o,/
density distribution depends on the intermolecular potentiaf 2.0, dashed lines a colloid-polymer mixtutq=12 ando./o,
between two particles. Higher particle density distributions=2.0, and solid lines a colloid-colloid mixtureo./o.=2).
are developed for the colloidal hard sphere, while lower par-
ticle density distributions are found in a star polymer. Inshow that for a small particle size ratio the pore average
particular, the particle density distribution for a colloidal mole fraction is relatively smaller than that for a large par-
hard sphere in a colloid-colloid mixture is almost the same agicle size ratio. This means that the particle size selectivity
that of a colloidal hard sphere in a colloid-polymer mixture. for a binary fluid mixture increases with increasing particle
For the small particle size ratio the effect of softness isSize ratio in the mixture.
smaller than that in the large particle size ratio. However, a The calculated pore average mole fractions for three dif-
comparison with Fig. 1 shows that the local size segregatioferent binary mixtures are shown in Figag#as a function of
depends both on the particle size ratio and on the softness 8fe star polymer diameter,, where the diameter of a col-
a star polymer. The local relative concentration oscillatedoidal hard sphere is taken as the unit diametgro. As
with a spatial peak close to the diameter of a large particlegan be seen from Figs. 3 anda# the pore average mole
as does the equilibrium particle density distribution.

The pore average mole fractiogy for the binary fluid
mixture is displayed in Fig. 3 as a function of the slit width

L/o. Here the pore average mole fractign is defined as 0.60 1
0.45
dePi(Z)
b=, (220 < o030
2 dzpi(2) 0.60 -
=1

0.45

and represents the size selectivity of a confined binary fluic
mixture. For the binary fluid mixture, the adsorption of par-
ticles with a sizeo; is preferred when the pore average mole
fraction ¢; is greater thag. For a large particle size ratio the
pore average mole fraction for a colloid-colloid mixture is G /o

larger than that for a polymer-polymer mixture. However, P

the pore average mole fraction for a colloid-colloid mixture £, 4. () Pore average mole fractios; for the binary fluid

is almost the same as that for a colloid-polymer mixture. Onyixture, whereL=4.00, g=5, x=0.5, o.= o, and 7=0.4; the

the other hand, for a small particle size ratio the pore averaggotted lines represent a polymer-polymer mixture, dashed lines a
mole fraction for a colloid-polymer mixture is smaller than colloid-polymer mixture, and solid lines a colloid-colloid mixture.
that for a polymer-polymer mixture. The pore average molgb) Pore average mole fraction for a colloid-polymer mixture with
fraction for a polymer-polymer mixture is almost the same ashe different softness, where=4.00, x=0.5, o,=0, and g

that for a colloid-colloid mixture. The calculated results also=0.4; dotted =5), dashed = 15), and solid =30) lines.

0.30
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FIG. 5. (a) Equilibrium particle density distribution for the FIG. 6. Same as in Fig.(8); dotted (,/0.=2.0) and solid
colloid-polymer mixture, wherd.=8.00, »=0.394,x=0.5, and  (o,/0,=0.5) lines.
q=12; dotted ¢,/ o.=2.0) and solid ¢,/0o.=0.5) lines.(b) Lo-
cal relative concentratiogp;(z). ratios o, /0. The calculated result shows that the equilib-

rium particle density distribution depends on the softness of

fraction shows very different size selectivities depending ort star polymer in a colloid-polymer mixture. The strong re-
the diameter of a star polymer. For colloid-colloid and pulsive interaction causes a higher density development and
polymer-polymer mixtures, the pore average mole fractiora strong local relative concentration near a hard wall. For a
decreases with the increasing diameter of a star polymer, uprge polymer, the effect of softness is larger than that for a
to o,=1, and again increases with increasingwheno, is small polymer, and increases with an increasing particle size
greater than the unit of a diameter. At a large particle ratiojatio. The distance between two particle density distributions
the adsorption for a colloid-colloid mixture is larger than thatdepends on the diameter of a large particle, but not on a
for a polymer-polymer mixture. However, one interesting colloidal hard sphere and a star polymer. The calculated pore
thing is that for the small particle size ratio the pore averagewverage mole fraction for colloid-polymer mixtures with dif-
mole fraction for a colloid-polymer mixture is smaller than ferent particle size ratios is shown in Fig. 7 as a function of
that for a colloid-colloid mixture, but it increases with in- the slit pore widthL/o. The calculated results again show
creasing particle size ratio and exceeds those of other binatiat the softness of a star polymer affects the size selectivity
fluid mixtures. For a colloid-polymer mixture, the same poreof a colloid-polymer mixture. With an increasing diameter of
average mole fractionp,= ¢, for a colloidal hard-sphere a polymer, the pore average mole fraction increases. In this
and a star polymer has been found negr-0.75r, due to ~ case, the pore average mole fraction values for small or large
the softness of a star polymer. The above result suggests thparticles result almost linearly with an increase in the pore
there seems to exist no direct relationship between the intesize.
molecular potential and the pore average mole fraction of the
binary fluid mixture. In Fig. 4b), the pore average mole
fraction for a colloid-polymer mixture with three different
softnesses is displayed. As for a small particle size ratio,
colloid-polymer mixture with a highy value shows a large
pore average mole fraction, whereas for a large patrticle siz
ratio a colloid-polymer mixture with a lowrvalue shows a N
large pore average mole fraction. This means that the siz © 068
selectivity of a confined colloid-polymer mixture depends (b)
not only on the particle size ratio, but also on the softnessa [T e
a star polymer. In adsorption, the particle size dependenc 05t ]
can be explained by the results of a competition between th
Helmholz free energy and the chemical potenf20]. The
excess free energy increases whenghvalue of a star poly- 0.4
mer is increased. Then the excess free energy is more impc
tant than the chemical potential. The larger the particle size L/c
the higher the free energy. Thus the pore average mole frac-
tion for a colloid-polymer mixture increases with an increas-  FIG. 7. (a) Pore average mole fraction for the colloid-polymer
ing g value of a star polymer. mixture, where »=0.394, x=0.5, and q=12; dotted ¢ /o

In Figs. 5 and 6, we show equilibrium particle density =0.5) and solid ¢,/o.=2.0) lines.(b) same as in(a); dotted
distributions for colloid-polymer mixtures with different size (o,/0,=0.5) and solid ¢,/o.=2.0) lines.
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FIG. 9. Pore average mole fractiapy for a colloid-polymer
mixture, where,L=8.0c, x=0.5, 20.=0,, and =0.4; dotted
(g=5), dashed ¢=15), and solid ¢=30) lines.

FIG. 8. Pore average mole fractiop for a colloid-polymer
mixture, wherel =4.00, x=0.5, o.=0,, and =0.4; dotted (
=5), dashed ¢=15), and solid ¢=30) lines.

less hard slit pore. The adsorption for a confined colloid-
polymer mixture is very different from that for colloid-
colloid and polymer-polymer mixtures. For a fixed slit pore
the equilibrium particle density distribution and local relative

. h . Eoncentration depend on the intermolecular interaction be-
for a colloidal hard-sphere. Ata low bulk packing fraction, 4 yeen fyo particles and the softness of a star polymer. The
the pole a\ierage mole fraction approaches the bulk mOIgize selectivity of a confined colloid-polymer mixture de-
fraction x=3, and the softness of a star p_olymer' does r.‘o(\fends not only on the particle size ratio but also on the
affect the. pore average mole fraction. With an INCréasiNGpfiness of a star polymer. The calculated result suggests that
bulk _packlng fract_lon, the_ pore average mo!e fr_actlon for 8here seem to exist no general relationship between the pore
coII0|d-ponm_er mixture with a lowg v_alue rapld_ly INCreases - average mole fraction for a binary fluid mixture and the in-
compared with colloid-polymer. mixtures with a high-  termolecular potential of the mixture. Here one interesting

. ; X Ur¥act is that for the slit pore system the pore average mole
at the lowq value and at a high bulk packing fraction. ThiS 4 tion for a large particle decreases with an increasing bulk
kind of result can be seen in the adsorption of a polydispers acking fraction, whereas for a closed system such as a
soft-sphere fluid confined in a structureless hard pore, whe §pherica| cage t’he pore average mole fraction for a large

it has the continuous distribution of the particle d|ametersp(,irtic|e increases with an increasing bulk packing fraction.

[16]. The calculateq pore average mole fraction for a COllo'd'ActuaIIy, the adsorption behavior of an open system is very
polymer mixture witho /o

10p/0=2 is presented in Fig. 9. AS  jiterent from that of a closed system such as a spherical
can be seen from this figure, the pore average mole fractuE

The calculated pore average mole fraction for a colloid-
polymer mixture witho,/o.=1 is presented in Fig. 8 as a
function of the packing fractiory. In this case, the pole
average mole fraction for a star polymer is larger than tha

. ; X ; “pore, where the number of particlbkis fixed[16]. Another
for a large particle decreases with an increasing bulk packin

o ) . . ) teresting point is the effect of wall deformations on the
fraction; for a binary hard-sphere mixture confined in a har dditive colloid-polymer mixture confined in a slit of de-

spherical pore, the pore average mole fraction for a 1arg@,maple walls [23], and the phase separation in a star

particle increases with an increasing bulk packing fraCtio'bolymer-colloid mixture [24]. We will investigate these
[16]. problems in the near future.
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