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Binary Gaussian core model: Fluid-fluid phase separation and interfacial properties
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Using a mean-field equation of state we calculate the density-concentration phase diagrams for a binary
mixture of repulsive Gaussian core particles over a range of size ratios. A simple mean-field density functional
(DFT) approach, equivalent to the random phase approximation, is used to calculate the surface tension and
density profiles of the interface between the demixed fluid phases of the binary mixture. For certain coexisting
states oscillations are found in the density profiles on both sides of the interface, i.e., approaching both bulk
phases. The form of the oscillations is determined by the asymptotic decay of the bulk total pairwise correla-
tions, and the onset of oscillations in the interfacial density profiles depends on the location of the crossover
line (Fisher-Widom ling in the bulk phase diagram where the asymptotic decay changes from monotonic to
damped oscillatory. For certain particle size ratios we find another crossover line that separates a region of the
phase diagram where the longest-range decay of the pairwise correlations is damped oscillatory from a region
where the longest-range decay is damped oscillatory but with a different wavelength. We argue that many of
the predictions of the simple DFT approach should remain valid in more refined treatments.
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[. INTRODUCTION cores where short-rangégdacking inducejlcorrelations al-
ways persist. For this soft-core model in the lipR3— o,

In recent years increasing attention has been paid to théhe mean inter-particle separatipn > becomes very much
properties of a particular “soft-particle” model of fluids, less tharR and a central particle interacts with a very large
namely, the Gaussian core mod€CM) in which particles number of neighbors—a classic mean-field situation.
interact via the repulsive pairwise potentiab(r) Since the RPA is accurate over such a large range of bulk
= e exp(—r?/R?), wheree>0 sets the energy scale aRdhe  densities it is tempting to argyé,8] that the simplest mean-
range of the potential. The GCM was introduced in the mid-field Helmholtz free energy functional
1970s by Stillingef1]. It regained some popularity because
(i) the GCM can yield a negative thermal expansion coeffi- 1
cient in the quuidyphaséz] e?nd (i) a Gaussiar? serves asa  JLPI=Fidlplt Ef drlf drap(ry)p(ryv(lri=raf)

good approximation for the effective interaction between the (1)
centers of mass of two polymer chains in an athermal solvent
[3-6]. should yield a realistic description of thehomogeneous

The mathematical properties of the GCM are of specialGCM provided the one-body densip(r) does not acquire
interest[2] and the phase behavior is rather well establishedrery small values. The density functiond)) generateshe
[2,6,7. In the temperature-densityT(p) plane there is a RPA: c®(r)=—Buv(r). Physically one is arguing that the
region belowkgT/e=0.01 where increasing leads to freez- excesgover the ideal gas;q) free energy of the fluid can be
ing into a fcc phase, followed by a fcc-bece transition, andapproximated by the internal energy with the pairwise distri-
then melting so that the fluid is stable at high densities. Fobution functionp®)(r,,r,) replaced by its uncorrelated limit
€*=Be<100 whereB=(kgT) %, the fluid is stable agll p(r{)p(rq). Louiset al.used the functiondll) to investigate
densities. Recently Lanet al. [7] and Louiset al. [8] have  the density profiles of Gaussian core particles adsorbed at a
studied the fluid region of the phase diagram using Montehard wall. Their results agree closely with those from Monte
Carlo simulations and integral equation theories. WhatCarlo simulations fore* =2 and the three bulk densities
emerges is that for high densities the hypernetted-chaipR®=1,0.5,0.1, confirming that the GCM does behave as a
(HNC) approximation provides an excellent account of themean-field fluid—at least for this type of inhomogend#y.
Monte Carlo results for the radial distribution functigfr), Given the success of the simple mean-field theory in de-
structure factorS(q), and equation of state. In the limit scribing the pure fluid it is natural to ask what the corre-
pR3— it is argued that the HNC closure should becomesponding theory yields for a binary mixture of repulsive
exact[7]. Particularly striking is the observation that a very Gaussian core particles. This question was addressed par-
simple closure, the random phase approximati&PA), tially in Ref. [8] and the authors showed that for certain
which sets the pair direct correlation functioef?)(r) choices of the energy and range parameters fluid-fluid de-
=—Buv(r), becomes very accurate for very high densities:mixing is predicted by the mean-fiel(RPA) approach. Al-
pR®=5 [7,8]. This implies that the GCM behaves as athough it is not clear that this phase separation mimics that
“mean-field fluid” over a very wide density and temperature which is found in polymer blend8], the observation that a
range. As the density increases the correlation hole becomeystem with purely repulsive interparticle potentials can
weaker andg(r)—1, for all separations of the particles. separate into two fluid phases is of intrinsic interest. Recall
Such behavior is very different from that of fluids with hard that the pure GCM exhibits only a single fluid phase.
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In the present paper we investigate the nature of the init follows that
terface between the two coexisting fluid phases in the binary @) )

GCM using the two-component generalization of Ej), i (ra,ra)=ci’([ra—ro))=—pBuvij(Iry—=ra), (5
i.e., the density functional that generates the RPA for the . . L
three partial pair direct correlation functionﬁz)(r) of the which IS the standard_ _random phase approx'g“ atlo_n_. In the
mixture. We find that in spite of its simplicity this mean-field bulk mixture the densities are c_onstamg(,r) P ._\_Nr|t|ng .
theory predicts surprisingly structured density profiles; therd€S€ in terms of the total densigyand a composition vari-

is a wide range of thermodynamic states where the profiles '€, such thap;=(1—x)p andp;=xp, we can write the
both species exhibit oscillations decaying into the bulk onPUlk Helmholtz free energy per particteas[8]

each side of the interface. The occurrence of oscillations is 1

d|rectly_rel_ated to the_ form of _the asymptotic decay of the f(p,x)=fig(p,x)+ Epvo(x)_ (6)

total pairwise correlationh;;(r) in the bulk mixture.

Our paper is arranged as follows. In Sec. Il we describe . . -
the binary GCM and the determination of the bulk binodalﬁfidI colntams the |I<Ijeal free elnergy o?f mn:jmdn(x)ﬂ%h
(fluid-fluid coexistence curyewithin the mean-field approxi- —X) n(_ _X.) as well as an irrelevant dependent term. The
mation, showing how the phase separation varies with thg“?"’lr]'f":}Id Interaction term Is
size ratioR,,/Ry;. Section Il presents results for the density 9 a2t A 27
profilesp;(z), i=1,2, and surface tension at the planar fluid- Vo(x¥)=(17)7012(0) + 2X(1=X)v12(0) + X 022 0) @
fluid interface. In Sec. IV we determine the asymptotic decay

of hj;(r) and the crossover lingFisher-Widom ling in the whereu;;(0) is theq=0 limit of the Fourier transforntFT)

bulk phase diagram where the character of the longest-rangg the pair potentialthe caret denotes a FT with respect to
decay changes from monotonic to oscillatory. The location ofne wave vector):

these lines determines whether or not oscillations can occur

in the interfacial density profileg9]. For certain size ratios R 3 3

we find a different line, away from the binodal, that separates Uij(o):f drojj(r)=m""€;Rj . ®

a region where pairwise correlations exhibit oscillatory de-

cay from a region where the oscillations have a differentSince the free energ) has the simple mean-field form, the

wavelength. We conclude in Sec. V with a discussion of outhermodynamic stability conditions for the binary mixture

results and possible limitations of the mean-field approactalso take a very simple form and Lowgs al.[8] showed that

for interfacial properties. fluid-fluid phase separation is possible at constant volume
provided

Il. THE MODEL MIXTURE AND ITS PHASE DIAGRAM

. . . . . B~ 'x=20120)~[v11(0) +v,%0)]>0 9
The GCM binary mixture is specified by the pair poten-
tials between particle speciesindj. These are given by the or at constant pressure provided
Gaussian form . A A
R B~ ?A=[v150)]?=v11(0)v,,(0)>0. (10
Uij(r):ﬂjexq_r /le) (2) ]

In order to observe phase separation we must choose the
where €;>0 denotes the energy arig; determines the parameters;; andR;; so that these conditions are satisfied.
range of thej interaction; ki,j<2. Thinking of the par- The choice of parameters can be restricted further by making
ticles as representing polymeiR; is roughly the radius of contact with simulation studies of binary solutions of self-
gyration of species. avoiding polymer coils at infinite dilutiofd] in which it was

We use a simple mean-field form for the intrinsic Helm- suggested that the effective potentials between the polymer
holtz free energy functional of the inhomogeneous mixture:centers of mass could be modeled quite well by the GCM,
defined by Eq(2), with

1
f[{Pi}]:]:id[{Pi}]"'E %‘4 f dry €17 €11= € (11

and
Xfdrzpi(rl)Pj(rz)Uij(|r1_r2|) ©) 1
. . . Rizzi(Riﬁ' R3)). (12
where F,4 is the ideal gas part of the free energy functional.

Equation(3) is a straightforward generalization to mixtures Clear : T :

. . . : y, relation(11) favors mixing; the energy penalty is
of the functional introduced in Ed1). Recalling that the |51 jf uniike species are neighbors. It is relatici®) that
two-body direct correlation functions are given by favors demixing since it implieR;,>(R1;+ R,,)/2, which

5 _ corresponds to positive nonadditivity, known to drive demix-
cA(ry,ry)=— B (Alpit]~ Fiallpit]) , (4) ing in hard-sphere mixturd8]. The majority of our calcula-
b 3pi(r1) dpj(ra) tions for interfacial properties will be for a mixture with
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FIG. 1. The bulk phase diagram for a mixture of Gaussian par- FIG. 2. As in Fig. 1 but nowe;,/e;;=0.825 andR,,/Ry;
ticles with €1,/ €,,=0.944 andR,,/R;,=0.665, which is equivalent =0.524, which is equivalent to a mixture of two polymers with
to a mixture of two polymers with length ratio 2:4.is the total  length ratio 3:1. The gray lines are lines of constant pressure; the
density and is the concentration of the smaller species 2. The graylowest is at reduced pressuPRgBR3,=100 and the others increase
lines are lines of constant pressure; the lowest is at reduced pressufreincrements of 100. The right hand branch of the FW lidashed
PBR3;=100, the next aPBR3,=150, then 200, and the subse- line) lies close to thec=1 axis but the solid line in the bottom right
quent ones increase in increments of 100. The points makkéd  corner denoting oscillatory-oscillatory crossover is still present for
are the points where the gray lines intersect the bingztdid line). these parameters.

The density profiles for the corresponding fluid-fluid interfaces are

shown in Figs. 6 and 7 below. The dashed line denotes the Fisher- of of

Widom (FW) line where the asymptotic decay of the bulk pairwise wp=f— v(—) + (1—)()(—) , (14
correlation functions crosses over from oscillatory to monotonic. du X IxX v

The solid line in the bottom right corner denotes a line of crossover

from asymptotic oscillatory decay with a certain wavelength to aand

similar oscillatory decay but with a different wavelength—see Sec.

IV. of
. . p=— ((9—) . (15)
BellE €11~ €Exp= 2, €10= 1888, R22/R11: 0665, and R12 v X

given by Eq.(12). (Henceforward we usR;4, the radius of

gyration of the longer polymer, as the length scale in ourThe calculation of the binodal is simpler to perform in the
analysis) This choice of parameters was motivated by theensemble where the pressure is the independent variable in-
study of Louiset al.[8] where theR;; were chosen to model stead of the total density=1/v. We Legendre transform to

a mixture of self-avoiding polymers with=200(species 1 = g=f+ Py whereg(x,P) is the Gibbs free energy per par-
and L =100 (species 2 monomers. The radius of gyration ticle. In this ensemble the conditions of equal chemical po-

Ry~L" where»=0.588 is the Flory exponent. - tential and pressure lead to the common tangent construction
For €* =2 the pure GCM remains fluid for all densities. If 5 ¢

the mixture is treated within the present mean-field approxi-

mation the temperature scales out of the free energy in Eq. (ag

ox

_(%9

(_ _ 9(Xa,P)—9(xg,P)
== =

XA~ Xp

(6) and the phase behavior is that of an athermal sy$&m
depending only on the ratias,/ €1 andR,,/R;;. We chose
€1,/ €11 SO that the critical point of the fluid-fluid demixing
was the same as that3 in the mixture considered in F8f.  \yherex,, andx are the concentrations of species 2 in phases
i.e., atx,=0.70, pcR7;=5.6. In Fig. 1 we plot the phase A angB, respectively.
diagram for this particular choice of parameters. The spin- The gray lines in Fig. 1 denote lines of constant pressure
odal (dash-dotted lingis obtained as described in R¢8]. i the (p,x) phase diagram. Also plotted is the Fisher-Widom
We determined the binodal by standard procedures. For twgryy) fine to which we shall return later. Other representative
demixed phaseé andB to be in equilibrium the chemical phase diagrams are shown in Figs. 2—4. These are obtained
potentialsy; and the pressured of the two phases must be from the same mean-field free energy but correspond to dif-
equal, i.e.,uj a=puip for i=1,2 andP,=Pg. In terms of  ferent choices ofR,,/Ry;, i.e., different length ratios. In
v=1/p, the volume per particle, these quantities are given bysach case;,/ e, is chosen to keep thigotal) critical density
af) ((ﬁ) at a similar value to that of the original mixture. &5,/R;

v

(16)

P P

XA XB

— (13)  is reduced the critical concentratiag shifts to higher values
and the shape of the FW line is altered significantly.

m1=f-v

X [—
Jdv X
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FIG. 5. As in Fig. 1 but nowe;,/e1,=1.035 andR,,/Ry;

FIG. 3. As in Fig. 1 but nowe;,/€,;,=0.70 and R,,/Ry4 ) - i )
=0.388, which is equivalent to a mixture of two polymers with =1.0. In this symmetrical case there is no crossover line between
length ratio 5:1. The gray lines are lines of constant pressure; thiVO types of oscillatory decay and no cusp in the FW line. Note the

perfect symmetry about the line=0.5. The tie lines are horizontal

lowest is at reduced pressuPgBR3,=25, the next aPBR3,=100,  PeMe
and then increasing in increments of 100. It becomes increasinglif this case.

difficult to determine the binodal &B is increased; the coexisting
interfacial properties are quite different in this class of mix-

phase to the right is almost pure speciesx2() and the total
densityp becomes very high. The right hand branch of the FW lineture from those in the former class.

and the oscillatory-oscillatory crossover cannot be seen due to their

proximity to thex=1 axis.
Ill. PROPERTIES OF THE FLUID-FLUID INTERFACE

Fin_aIIy in Fig. 5 we consider a d*ifferent i:lass of mixture 1, this section we investigate the one-body density pro-
described by the parametess;=ex=2, €1,=2.07, and fjes ,.(7), i=1,2, and the surface tensionfor the planar
R11=Rg;=Ry,. Now the demixing occurs not because of thejnterfaces that arise between coexisting fluid phases in the
nonaddivity of theR;; but because there is a lower energy Gcm. Since our approach is based on the mean-field free
penalty when like species are neighbors. The phase diagraghergy functional3) effects of capillary-wave fluctuations

is symmetrical about=0.5. We shall find that several of the are omitted andaway from the critical pointthe interfacial
width remains finite in vanishing gravitational field. Thus we

work with the grand potential functional

al
/ / Q\/[{pi}]=}"[{pi}]—2i f drlumi—Vi(r)]ei(r), (17)
/ h
//’ !’ |
/// taking from the outset the external potenti&lgr)=V;(2)
s 2 ! =0,i=1,2. This procedure yields well-defined planar den-
R11 @ - i i 1 .! X )
P — / sity profilesp;(z), with z normal to the surface, from which
N the surface tension can be calculated.
5r1 o MONOTONIC / 1
\\IEWﬁr{e// A. Density profiles
In order to calculate the equilibrium density profiles
BSCILLATOR across the free interface we take the functional derivative of
%5 05 : Eq. (17) which, using Eq(3) and in the absence of an exter-
% nal field, yields the Euler-Lagrange equation
FIG. 4. As in Fig. 1 but nowe;,/€;,=1.0 andRy,/R;;=0.8,
9 2o o Mi:Mi,id(Pi(Zl))ﬁL; f dropj(z2)vij([ri—ro)). (18)

which is equivalent to a mixture of two polymers with length ratio

1.46:1. The gray lines are lines of constant pressure; the lowest is at

reduced pressu@3R3,= 100 and the others increase in increments

of 100. For these parameters there is no crossover line between twéi i iS the chemical potential of species an ideal gas and
,B,ui'id(pi)=|n(/\i3pi) (A; is the thermal de Broglie wave-

types of oscillatory decay and no cusp in the FW line.
041501-4
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FIG. 6. The equilibrium density profiles of species 1, the larger FIG. 7. The equilibrium density profiles of species 2, the smaller
particles, at the planar interface between coexisting fluid phases fqrarticles, corresponding to Fig. 6. The insets show magnifications
states specified in Fig. 1, i.e., a mixture of two polymers with lengthof regions where the profiles exhibit oscillations. Note that the pro-
ratio 2:1. For statéd near the critical point, the interface is broad, files of both species decay into a given bulk state with the same
whereas far from the critical point, stat€&sand F, the interface  decay length and, when oscillatory, the same wavelength. The am-
becomes much sharper. Oscillatory profiles are found for s@tes plitude and the phase do depend on the species.

F.

which colloid-colloid and colloid-polymer interactions are
hard-sphere-like. The oscillations were found in both the col-
loid and polymer profiles but only on the colloid rich side of
the interface. Here we find, for a range of thermodynamic
states, oscillations ohoth sides of the interface. Moreover,
these oscillations arise for a system in which the interparticle
pi(z1)=p} ex;{; f dro[p = pj(z2) Juij(Ira=ra) | (19) potentials are very soft and are treated by means of the sim-
plest mean-field DFT.
This coupled pair of equations can be solved self- In the original analysis of oscillatory one-body density
consistently for the density profiles of the two species. Theprofiles p(z) at the liquid-vapor interface it was shov8]
results for a mixture of Gaussian particles representing #at oscillations should occur when the bulk fluid, in that
mixture of polymers of length ratio 2:1 are shown in Figs. 6case a liquid, lies on the oscillatory side of the FW line. The
and 7. The striking feature is the development of pronouncetatter divides the bulk phase diagram into regions where the
oscillations in the density profile of the larger specjegz),  longest-range decay ah(r) is either pure exponential or
for states well removed from the critical point. Closer in- (exponentially damped oscillatoryf11]. h(r)=g(r)—1 is
spection shows that for stat€ D, E, and F both density  the total pairwise correlation function of the fluid. It was also
profiles p,(z) and p,(z) exhibit nonmonotonic decay into argued that the wavelength and the decay length of the os-
the bulk phase that is rich in species 1. On the other side dfillations in p(z) asz— (deep into the bulk phasehould
the interface, approaching the bulk phase rich in species de identical to those characterizing the asymptotic decay (
magnification shows that botp,(z) and p,(z) are non- —) of rh(r) [9]. In order to understand the genesis of
monotonic for state®, E, andF. For statesA andB, closer  oscillations inp;(z) and p,(z) for our present model we
to the critical point, there is no sign of oscillations on eithercalculated the FW line for the bulk mixture, now defined as
side of the interface. the line in the phase diagram where the leading asymptotic
This is not the first time that damped oscillatory densitydecay of all three pairwise correlation functiohg(r), 1
profiles have been calculated for fluid-fluid interfaces treated<i,j<2, crosses over from monotonic to oscillatory; these
by DFT. Evanset al. [9] found that the planar liquid-vapor FW lines are shown in Figs. 1-5. Details of the calculations
density profiles for a one-component square-well fluidare described in Sec. IV. Here it suffices to say that we find
treated by means of a nonlocal weighted density approximasscillations on both sides of the interface when the tie lines
tion for repulsive forces exhibited oscillations on the liquid intersect both sides of the binodal at points that lie above the
side of the interface provided the thermodynamic state laywo intersections of the FW lin@his has two branchgsvith
sufficiently far from the bulk critical point. The oscillations the binodal, i.e., stated, E, andF in Fig. 1. A similar situ-
we find for species 1 in the present calculations are considation occurs for the more symmetrical casg/e;,=1.0 and
erably more pronounced than those found in Réf.and R,,/R;;=0.8, shown in Fig. 4. However, for the more asym-
resemble those found for the colloidal profile in a recent DFTmetrical cases in Figs. 2 and 3 where the right hand branch
study [10] of a model colloididea) polymer mixture in  of the FW line lies very close to the=1 axis and therefore

length. Eliminating the chemical potentials in favor of the
bulk coexisting densitiepib that were found from the calcu-
lation of the binodal, we have
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FIG. 8. Equilibrium density profiles of species 1 for the sym-  FIG. 9. The reduced surface tensigh=8yR2, calculated for
metric mixture withe;,/e1;=1.035 andR,,/R;;=1.0 whose phase the planar interface between coexisting fluid phases in the system
diagram is given in Flg 5. The density profiles are calculated atspecmed in F|g 1, i.e., a mixture of two polymers with length ratio
total bulk densitiepR3,=6, 8, 11, 14, and 16rom bottom to top ~ 2:1. (p2A— pPB)R3, , the difference in density of species 1 between
in the left hand phageThe density profiles of species 2 are merely bulk phases\ andB, and y vanish at the critical point. The circles
reflections of these profiles in the liéR,;=25.6. are the results of our calculations and the solid line joining these is

a guide to the eye.
intersects the binodal at very high densities, oscillations are
observable at fairly low pressures on the side of the mterfac%e same for both speciésee Sec. Iy, Only the amplitudes
rich in species Xsmall x) whereas for the side rich in spe-
cies 2 very high pressures are required before the oscillatiorf3i andA; and, for oscillatory profiles, the phasi depend
arise. on the part|cular specids Our numerical results are consis-

For the perfectly symmetrical mixturdR,,/Ry;=1.0, tent with these general predictions. Note that on the FW line
whose phase diagram is shown in Fig. 5, the binodal and the,=a, and that for states near this line both types of con-
FW line are symmetric abowt= 0.5 and the density profiles tribution must be taken into account.
p1(2) and p,(2) are simply reflections of each other—see
Fig. 8. Because of the symmetry, if oscillations occur in the
profiles on one side of the interface they must occur on the B. Surface tension
other side. As can be seen from Fig. 5, the intersection of the
FW line with the binodal is at a total density not very far
above the critical density and oscillatory profiles should oc-
cur for pR3,>6.5. However, for states not too far above the
intersection of the FW line and the binodal the amplitude o
the oscillatory contribution to the profile is often small, mak- o
ing it difficult to distinguish this contribution in the numeri- ‘y=J’ dZ P+ w(2)] (22
cal results. -

The general theory of the asymptotic decay of correlations
in fluid mixtures with short-ranged interparticle potentials
predicts[12] that the longest-range decay of the profileswhereP is the bulk pressure at coexistence an(x) is the
should be grand potential density obtained from E¢R) and(17) with

Vi(2)=0. The reduced tensiop* = 8yR3, is plotted in Fig.
pi(2)— pP~ pPA exp(— apz), z—, (200 9 for the interfaces corresponding to Figs. 6 and 7, i.e., the
phase diagram of Fig. 1. We have chosen to plbtversus
on the monotonic side of the FW line and the order parameterpﬁ A—p )Rll, Whereptl"A is the bulk
density of species 1 in phage rich in species 1, anﬂE'B
pi(2)— pP~pPA; exp( —agz)cod a;z— 6;), z—°, the same quantity in phas® poor in species 113]. On
(21)  approaching the critical point simple mean-field arguments
imply that y* should vanish asg*—p2)3 and this is
on the oscillatory side. Equivalent relations apply for confirmed by our numerical results. A similar plot gt for
— —, with the appropriate identification of the bulk densi- the perfectly symmetric mixture is displayed in Fig. 10. Note
t|e5pI The decay IengthafO anda0 and the wavelength that for a given value Of[(]_ —p )Rll, * is significantly
of oscillations 27/ a4 are properties of the bulk fluid and are larger for the asymmetric mixturg-ig. 9).

Having calculated the equilibrium density profiles at the
free interface, these can be used to obtain the surface tension
of the interface. The latter is defined as the excess grand
fpotent|al per unit area and can be written as
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FIG. 11. The top grapiia) shows the functiom\(z) obtained

FIG. 10. The reduced surface tensigh=8yR?, calculated for ~ from the density profiles shown in Figs. 6 andA1z), defined by
the planar interface between coexisting fluid phases in the perfectlfzd- (25, measures the surface segregation at the interface. Below it
symmetric system specified in Fig. 52"~ p>B)R%,, the differ- I (b) is plotted[ w(z) + P], the integral of which is the surface
ence in density of species 1 between bulk phasemndB, andy  tension. Each set of curves corresponds to state péirEs on the
vanish at the critical point. The circles are the results of our calcuPhase diagranFig. 1); the most oscillatory refers to staffe Apart
lations and the solid line joining these is a guide to the eye. from the scales on thg axes the two sets of curves are almost

identical, demonstrating that the surface tension arises primarily

We can obtain an estimate for the surface tension of &#0m concentration fluctuations. The total densi(z)=p,(2)
phase separated mixture of “polymers” by choosifiy=5, +p»(2), shown ip thg inset t¢a), has very different variation from
corresponding to a state well removed from the critical point e Surface tension integrand.

T=300 K andR;;=20 nm. We findy=52 uN/m, a value ) i o

one order of magnitude greater than that calculated and me¥4th A andB referring to the two coexisting phases. Clearly
sured for a colloid-polymer mixturEL3], but two orders of @1+a;=1. A(z) may also be expressed as

magnitude smaller than the tensions of simple atomic fluids

near their triple points. a[p1(2)— p2B1—ay[ pa(z) — p5B]

Further insight into the factors that determine the surface A(2)= a,a, . @7
tension in our binary mixtures can be obtained by working
with linear combinations of the density profileg(z) and
po(2). The total number densiti(z) and a local concentra-
tion variableC(z), the surface segregation, may be define
for a fluid-fluid interface by

The integral of A(z) yields the thermodynamic function
2.1, .., the relative adsorption of species 2 with respect to
species 114]:

N(2)=p1(2)+ ps(2), (23 Iy= - a, f " dza). (29)
xp1(2) —(1—X)pa(2)
C(2)= X(1—x) ' @9 Thus A(z), which has the dimension of number density,

measures the variation of local concentration through the in-
wherex is the concentration of species 2 in the bulk liquid terface. Figure 11 shows a plot &f(z) calculated from the
phase. These variables are normally introduced for a liquidprofiles in Figs. 6 and 7. Below it is display¢d(z)+ P],
gas interface. For the situation where the “gas” phase has the integrand of Eq(22), which gives the surface tension.
nonzero density, the integral ov&(z) diverges. When the Both functions are nonzero only in the interfacial region. The
densities of both phases are comparaBigz) should be re- similarity between the two sets of curves shows that the ma-

placed by the symmetrized segregatjdd] jor contribution to the surface tension comes from concen-
tration fluctuations at the interface rather than from fluctua-
a p1(2)— P2 —ay[ pa(2) — 5™ tions of the total density sincél(z) has a very different
A(z)= aa (25  form—see the inset to paf#) of the figure.
142 . . . . . .
The situation is quite different for the perfectly symmetric
here thea: : b mixture considered in Fig. 5 Because of the symmetry ex-
where thes; are given by hibited by the density profilesa,A(z)=p°—N(z), where
bA_ b8 pP=pPA+ pbA is the total density in both bulk phases. In
= Pi Pi = Fig. 12 we compare plots of the surface tension integrand
a b,A b,A b,B b,By ’ ! 1’2' (26) .~ i
(p1"+p2") = (p1~+p3 [w(z) + P] and the functioN(z)=p°—N(z) corresponding
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I A W = dogddm ——— 32
YRV | 477 D(q) (32

which can be evaluated by contour integratidr2]. From
‘ ‘ ‘ ‘ ‘ Eq. (5) it follows that within our mean-field treatment of the
2r 9 i 1 GCM

(- N@IR, A Cij(q)=—Bujj(q) = — Bm¥R} € exp —R3q%/4) (33)

-1t Voo 8 and the singularities d?iij(q) are simple poles. Choosing an
infinite radius semicircle in the upper half of the complex

20 2 2 2 28 30 plane, we obtain
Z/R,,
FIG. 12. The top graplfa) shows the functior w(z) + P] ob- rhi(r)= i 2 eianRH' (34)
tained from the density profiles of the symmetrical mixture shown 27 “§

in Fig. 8, the integral of which is the surface tension. Below ittin -

is plotted the total density fluctuation variabi(z)=pP—N(z). ~ whereR]! is the residue of|N;;(q)/D(q) for thenth pole at

Apart from the scales on theaxes the two sets of curves are aimost q=(,,. The g, are solutions oD(q,)=0 and there is nor-

identical, demonstrating that the surface tension arises primarilynally an infinite number of poles. If a pole lies on the imagi-

from total density fluctuations. nary axis,g,=1i«g, it contributes a pure exponential term of
the form exp{ aqr) to the sum in Eq(34). Poles Iy|ng off

to the density profiles of Fig. 8. It is clear that the two sets ofthe imaginary axis occur in conjugate pagjs= = a;+iaq

curves are very similar. and such a pair contributes a damped oscillatory term of the
form exp(—agr)cosr—6) to the sum in Eq.(34). The
IV. ASYMPTOTIC DECAY OF CORRELATION longest-range decay df;;(r) is determined by the pole or
FUNCTIONS AND THE FISHER-WIDOM LINE the conjugate pair of poles with the smallest imaginary part.

In this section we describe the asymptotic decayw, of | @0<ao the longest-range decay is monoto(peire expo-
the total pairwise correlation functioris;(r) in our model nentia), otherwise it is damped oscillatory. Since all three
mixture and the determination of the FW line. The basichij(d) have a common denominat@(q) all three hy;(r)
procedure follows that ifil2]. In Fourier space the Ornstein- decay ultimately with the same decay length and wave-
Zernike equations foh;;(r) in terms of the pairwise direct ength; only the residues depend on the particular species and

correlation functiong;;(r) of a two-component liquid are ~ these determine only the amplitudes and phases of the lead-
ing order decay12,15. Similar argument§12] apply for the

N;;(Q) one-body density profiles in a binary mixture and give rise to

D) (29 Egs.(20) and (21). The ay, ao, and e, appearing in these
equations are determined by the poles I:raf(q)—as de-

f scribed above.

The FW line alluded to earlier is the crossover line in the
phase diagram whereo=a,. As the fluid-fluid spinodal
corresponds to points in the phase diagram at which the pure
imaginary pole vanishes, i.exy=0, crossover from oscilla-
tory to monotonic decay must occur before the spinodal is

hij(q)=

where ﬁij(q) is the three-dimensional Fourier transform o
hi;(r). The numerator is given by

N11(0) = C11(0) + p2(CTAA) — C11(A) C2( @),

N @)= Coo( ) + p3(CA(A) — C11(A) C2o(T)), reached, which implies that the FW line lies below the spin-
odal in the p,x) plane. By calculating the zeros &f(q),
N _A i.e., the first few poles, for a range of state points it is
12@)=C1Aa), S straightforward to map out the FW lines displayed in Figs.
1-5.

and For the first three cases, Figs. 1-3, the dashed FW line

- . . has two separate branches terminating in a cusp at low total
D(q)=[1-p3ciu(a)I[1-p5CoAa)]—pIp5C5q). densityp.,. As the mixture is made more asymmetric, i.e.,
R,,/R; decreases, the right hand branch lies closer to the
. axis x=1. On the left hand branch the crossovat fixed
Inverting the FT and noting thdt;; (q) is even we can write  p>p.,) is from longest-range oscillatory decay with wave-
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length 27/ a,~2R;; to monotonic decay, whereas on the
right hand branch it is from monotonic to oscillatory with
wavelength~2R,,. For p<p., there is a separate crossover
line, denoted by the solid line in the bottom right corner of
Figs. 1-3. On each side the long-range decay is given by

rhij(r)~Zij exXp —agr )cog aqr — 6;))

r—oo,

+5\ij exp(— agr )cos ajr — 0},
(35

where a,~ /Ry, and a;~m/Ry,. To the left of the line

ao<a, While on the right,ay™> &, i.e., there is crossover
from oscillatory decay with one wavelength to oscillatory

decay with another wavelength when = &,. At the cusp,

where the two branches of the FW line meet this line, theg,ssian particles wite* =

pure imaginary(monotonig pole ay= ay= a.
Making the mixture more symmetric shifts the cusp to
smallerx and forR,,/R;,>0.707 there is no cusp in the FW

PHYSICAL REVIEW E64 041501
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FIG. 13. The radial distribution functiog(r) for a pure fluid of

2 and radiusR, calculated at reduced
densitiespR®=2,4,6 (from bottom to top. For each density the
dotted line is the HNC result and the solid line is that of the RPA
closure. The inset shows a magnification of the oscillations.

line and the crossover line separating regions with different

types of oscillatory decay is absent—see Figs. 4 and 5. Fu

r- Further evidence for the existence of the oscillatory-

ther details of the pole structure that gives rise to the crossescillatory crossover line comes from considering the low

over lines will be given elsewhere.

density approximation

To the best of our knowledge this is the first time that the

FW line has been mapped out for a binary mixture exhibiting

fluid-fluid phase separation of the type displayed Ha®

cij(r)=fjj(r)=exd — Bv;j(r)] -1 (36)

and it is important to inquire how robust results based on thevheref;;(r) denotes the Mayer function. We calculated the

simple RPA(5) might be. For the pure GCM the comprehen-
sive study of Louiset al. [8] showed that fore* =2 the
radial distribution functiongy(r) obtained from the hyper-
netted chain approximation were virtually indistinguishable
from Monte Carlo data at reduced densitjg3=0.1, 0.5,
and 2.0. These authors also argued that the HNC should b

zeros ofD(q), Eqg. (31), using this approximation and found
a crossover line approaching=0, x=1, similar to that
shown in the bottom right corner of Figs. 1 and 2.

Finally, we should remark that the accuracy of the RPA
for determining the spinodal and the fluid-fluid coexistence
eurve of the binary GCM has been examined by Fink&eal.

come exact in the high density limit and suggested that th¢18]. For parameters close to those employed in Fig. 1 They

HNC pair correlation function should provide d&fexact”)

find that the HNC and the RPA coexistence curves are close.

reference against which other approximations might be

gauged. In this spirit we compare, in Fig. 13, the RPA results

for g(r) with those obtained from our own HNC calculations
at reduced densitiesR® 2, 4, and 6. As the density is in-
creased the correlation hole is reduced and the degree
particle overlap increases, leading tg@) that is closer to
that of the ideal gaf8]. For pR®=2 the RPA result lies well
below the HNC forr/R=<0.4, i.e., in the central overlap re-
gion. However, fopR3=6 the two closures yield very simi-
lar results for all except the smallest separationg/hat is

V. DISCUSSION

In this paper we have calculated the properties of the pla-
afr interface between two coexisting fluid phases in the bi-
nary GCM using the simplest mean-field free energy func-
tional (3). We considered various choices of the size ratio
R,,/R;;, employing the rule(12) for the range parameter
Ri,. It is the positive nonadditivity embodied in E¢L2)
that drives the demixing in Figs. 2—4 since the correspond-

more significant for our present purposes is that for all threéng energy parameters favor mixing, i.ej;= €5,= €3,. The
densities the simple RPA result is very close to that of thesurface tension in these systems is governed by the segrega-

HNC for large separations, i.er/R=0.8. In particular, the
oscillations ing(r) are very well captured by the RPA—see

tion A(z), which measures the local relative concentration in
the interface, rather than by the local total denblfg)—see

the inset to Fig. 13. This implies that the RPA provides aFig. 11. For comparison we also considered a symmetric

rather accurate account of the asymptotic decag(oj and

therefore of the leading pole ih(q) [17], at least for re-
duced densities= 2. But this is the range dftotal) densities
most relevant in determining the FW lines in the mixtures
(see Figs. 1-bso we are confident that our results for the
latter should be qualitatively correct.

system withR,,/R;,=1.0 andej,> €}, where the demixing

is driven by energy considerations. Symmetry then dictates
that the phase diagram is symmetric abmet0.5 (Fig. 5

and the surface tension is governed W{z)—see Fig. 12.
However, in all the cases we considered, plots of the reduced
surface tensiony* versus the order parameterptl’(A
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—p?'B)Ril showed similar behavior to those in Figs. 9 and 107/Ry; or /R,,. The roughnesg, depends on the interfa-
with y* vanishing at the critical point apf”—p2?)3. Be-  cial areaL: and on the external potential, e.g., gravity, that
yond the mean field approximation to the exponent should b&night be present at a real planar interface. If we ignore the
replaced by the ratio 2 8, wherev denotes the correlation Iatter§i=(27r,8y)‘1 IN(K max!/ Kmin) WhereK ax andKin
length andB the coexistence curv@rder parameterritical — are the upper and lower cutoff wave numbers for the
exponent, respectively. As we expect the critical behavior otapillary-wave fluctuations[20]. We may take K,

this system to lie in the Ising universality class, for which =27/L, andK ,.,=27/¢ whereé=a,* is the bulk corre-
2v/p~3.9, the curves in Figs. 9 and 10 should, in reality, bejation length. It follows that the amplitude of the oscillations
flatter near the origin. in the density profile should be reduced by a factor
The most striking aspect of our resulSigs. 6 and 8is (| /¢)~el(e1/@0*~1] where w=(47B87¢2) ! is the stan-
the presence of pronounced oscillations in the interfaciajjard dimensionless parameter that measures the strength of
density profiles for certain thermodynamic states. We accapillary-wave fluctuations. Clearly, the larger the value of
counted for the occurrence of damped oscillations in terms of,, i.e., the smaller the surface tensignthe more damped
general arguments involving the asymptotic decay of theare the oscillations. What is significant about this formula is
bulk pairwise correlation functionis;;(r), i.e., by means of that the amplitude is predicted to have a power-law depen-

an analysis of the leading poles M(Q) and determination dence on the interfacial ardaﬁ. This prediction has been
of the FW lines that parallels earlier DFT treatments of in-examined by Toxvaerd and Sted@2] in molecular dynam-
terfaces[9,10]. The oscillations arise from packing effects ics simulations of a liquid-liquid interface. Their model is an
which are still present in these soft-core systems. Althougiequimolar binary mixture in which the 11 and 22 interatomic
our present mean-field functionéd) should provide reliable ~potentials are identicdboth are(truncated Lennard-Jongls

estimates forv, anda; and hence for the decay length and whereas the 12 potential is purely repulsive. Thus their

wavelength of the oscillationsee Eq.(21)], it is not clear model mixture resembles the symmetric case in our present

that it will yield reliable amplitudeg\; . The latter depend on study. For small., the density profiles reported [i22] ex-

the strength and extent of the inhomogeneity rather than Onlblt oscillations similar to those in Fig. 8. The oscillations

oroperties of the bulk phase. Thus for states such asdF appear to be insensitive to the length of the simulation box

in Fig. 1, which are very far from the critical point and deep(perpendu:ular {0 the interfacéut their amplitude depends

2 . .
in the oscillatory region of the phase diagram, the theoryOn the ared., of the box. Increasing., reduces the ampli-

. ' 3 tude in a manner that is consistent with power-law decay
must treat density profiles that decrease frppiRy;=9 to . : « ) o
3 . [22], lending support to the picture of “Gaussian unfreezing
extremely low valueg;Rj;=0.03 over a distance of about

oR Fi Id il he f ional of fluctuations on an intrinsic profile that is oscillatory.
Ry, (see Fig. 6. One would certainly expect the functional 1 is important to consider the various length scales in the
(i.e., the RPA to fall in the very low density region. The

. 9 problem. For the mixture in Ref22] we expecté~ o, the
situation s<3aems rather more favora}ble for speci€Big. 7) | annard-Jones diameter, and~ 2w/ o for states well re-
where p,R;;=0.3 throughout the interface for all states. y,yeqd from the critical point where pronounced oscillations
However, even for statg, the oscillations inp,(z) are ex- 51 observeds would be a few angstroms if we were mod-
tremely weak! The total densitiN(z) is, of course, large

eling an atomic mixture. In our present GCM we have in

throughout the intgrface anq shows only mild variation for g polymers where the radius of gyratigg, is, of course,

all states(see the inset to Fig. 11But the theory must be ,ch jonger. Nevertheless, it is evident that the absolute
able to describe the individual profiles. These exhibit a dei th | | out in th binati " V2_q
gree of inhomogeneity that is higher than for the pure Gemengih scales cancel out in the combina i0ig; cro)

near a hard wall where the functional performs W8l We and w. Thus one might expect similar power laws for the

believe that a more refined DFT, which incorporates a moréiamplng of oscillations with interfacial area. Detailed esti-

accurate treatment of low densities, might yield smaller amNates depend on the precise values of the reduced tension

plitudes for the oscillations irp,(z) without significantly ~ ¥*» @o, @nday. As an illustration we consider the symmetric
a|tering their decay |ength and Wave|en@ﬂg]' case of the GCM with total bulk densiw%l: 14 where the
All approximate DFT treatments omit the effects of oscillations are fairly well pronounced—see Fig. 8. At coex-
capillary-wave fluctuations of the interfa¢20]. Incorporat-  istence we finda;R;;=4.69, aoR;;=1.34, and the reduced
ing the latter usually requires sonaél hocprescription. The  surface tensiony* =17.1, which impliesw=8.37x103
standard procedure is to assume that DFT furnishes thgng (a,/a,)2—1=11.3. Thus the exponent in the power-

“bare” or “intrinsic” profiles—which might be oscillatory, gy js —0.1, implying that the amplitude of the oscillations
as in the present case—and that fluctuations can be unfrozeg onjy weakly damped by the capillary-wave fluctuations. If

on these. At the simplest level one performs a Gaussiafye repeat the calculation for the interface simulated by Tox-
smearing of the profiles over the interfacial thermal rough-

nessé, . If the profile has an oscillatory tail with the form of vaerd and Steckj22), using their valuesroo=0.28, ayo

. =6.98, andy* =Byc?=2.7, we find a much stronger damp-
Eq. (21) one finds that the wavelengthn2a, and decay ing: the exponent is- 1.4. For the liquid-vapor interface of a

Z _ :
length oy~ are unaltered but the amplitude is reduced by ajmple one-component fluid near its triple point the corre-

factor expp—(a2—ad)£2/2] [12,21]. As we have seeny; is  sponding exponent is usually estimated to be abe8t In
an intrinsic property of the bulk fluid and is approximately other words, our present binary GCM exhibits a particularly
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“stiff” interface for those states where the oscillations in the has great appeal as the monomer degrees of freedom no
mean-field treatment are pronounced. Of course, these statlemger appear; one treats the chains as “soft colloids!

are far from the critical point and correspond to very highMuch less is established for mixtures of polymers; it is not
total densities and very high surface tensions. One does n@hown how well the phase separation found for the GCM
observe such a situation at the liquid-vapor interface of theusing the RPA and the HN[18]) accounts for that which is
one-component fluid since the triple poifsolid phasgin-  ghserved at high concentration in mixtures of polymers with
tervenes. There should be no solid phases in the relevagifferent chain length§24]. Phase separation is, of course,
high density region of the phase diagram of the binary GCMa|so observed in polymer blendsielts. Given the predic-
This suggests that computer simulations of the fluid-fluidtions of rich interfacial behavior that have emerged from the
interface might be very revealif@3]. present study of the GCM, it would be worthwhile to pursue

To conclude, we return to possible applications of the bifyrther possible connections between demixing in polymer
nary GCM to mixtures of polymers. As mentioned in the systems and in the GCM.

Introduction, the effective interaction between two identical As a final remark we note that the binary Gaussian core

isolated nonintersecting polymer chains, averaged over th@odel is very different from the binary Gaussian model in-
internal conformations, is well represented by a Gaussia§oduced by Helfand and Stillingg25]. In the latterv 15(r)
whose widthR is of the same order as the radius of gyration—,,,(r)=0 while the Mayer f function fyr)

tential is entropic, so that is simply proportional to the fjyjd-fluid phase separation at high densitj@s].
temperatureT, for an athermal solveri6]. Recently, Louis

et al.[5] have shown that the Gaussian shape remains a good
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