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Simultaneous regularization method for the determination of radius distributions
from experimental multiangle correlation functions
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Dynamic light scattering experiments have become a powerful tool in order to investigate the dynamical
properties of complex fluids. In many applications in both soft matter research and industry so-called ‘‘real
world’’ systems are subject of great interest. Here, the dilution of the investigated system often cannot be
changed without getting measurement artifacts, so that one often has to deal with highly concentrated and
turbid media. The investigation of such systems requires techniques that suppress the influence of multiple
scattering, e.g., cross correlation techniques. However, measurements at turbid as well as highly diluted media
lead to data with low signal-to-noise ratio, which complicates data analysis and leads to unreliable results. In
this article amultiangle regularization methodis discussed, which copes with the difficulties arising from such
samples and enhances enormously the quality of the estimated solution. In order to demonstrate the efficiency
of this multiangle regularization method we applied it to cross correlation functions measured at highly turbid
samples.
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I. INTRODUCTION

Dynamic light scattering~DLS! experiments have becom
a powerful tool in order to investigate the dynamical prop
ties of complex fluids, e.g., through the diffusion constants
the hydrodynamicradius distribution of soluted particles.
These distributions have to be inferred from measured
relation functions of the scattered light by inverting a no
linear integral equation. This is known to be anill-posed
inverse problem, since the distribution does not depend co
tinuously upon the data@1,2#. Accordingly, small aberrations
in the experimental data, which are inevitably effected
measurement errors, will result in large or even unboun
errors of the reconstructed distribution. Thus, one might
that the data do not contain the whole information in orde
reconstruct properly the distribution. Accordingly, in order
solve such ill-posed problems so-called regularization me
ods are necessary corresponding to maximum a poste
~MAP! estimators,@3–6#. These methods impose some pri
information on the solution in order to compensate the ‘‘la
of information’’ in the data due to the measurement erro

The inversion of an ill-posed problem becomes comp
cated for low signal-to-noise ratios and for small numbers
data points, i.e., for a small amount of data information.
the case of DLS data the error is mainly given by an estim
tion error of the hardware correlator, which is used in ord
to estimate the correlation of the detected photons. This
error increases with decreasing number of singly scatte
photons, which may be due to multiple scattering proces
in the case of turbid media or due to a small number
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scattering processes in the case of highly diluted me
Therefore, especially in such cases of low signal-to-no
ratio ~or if a high resolution is desired@7#!, common regu-
larization methods based on the data of onlyone scattering
angle are not able to resolve properly the distribution.

However, this problem can be overcome by using
maximum data information obtained from the experime
Therefore, all measured data of all scattering angles hav
be taken into account. The simultaneous analysis of all d
from all scattering angles takes advantage of three impor
points.

~1! Much more data—and thus much mo
information—is used for the inversion of the ill-posed pro
lem.

~2! The scattering characteristics of the soluted partic
vary for different scattering angles. Thus—in dependence
the measurement angle—specific particle sizes contrib
less to the entire scattering intensity. Accordingly, these p
ticle sizes are worse resolvable using a single angle anal
Simultaneous multiangle regularization method, howev
compensates these lower information inonecorrelation func-
tion by the correlation functions ofthe othermeasurement
angles. Thus, all particle sizes can be resolved quite equ

These two points lead to a ‘‘better conditioning’’ of th
inverse problem as discussed in@8#. Thus, in case of high
signal-to-noise ratio simple inversion methods such as ‘‘m
tiangle’’ non-negative least squares or singular value an
sis may succeed@9,10#. However, these methods, which a
based entirely on the data information but do not impose
prior information on the solution, break down for data with
low signal-to-noise ratio as discussed in this article. Furth
more, in addition to these common advantages of multian
analysis, a third advantage has to be regarded.

~3! A separate analysis of correlation functions for ea
©2001 The American Physical Society04-1
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scattering angle leads to a couple of estimates of the des
size distribution. Each of them satisfies the prior informati
e.g., that the distribution is smooth, but not necessarily th
combination, i.e., their weighted mean. Thus, the prior inf
mation is not defined consistently. However, the simu
neous analysis of all data leads toone consistent estimate
which satisfies properly the prior information.

In this paper we demonstrate the efficiency of this mo
fied MAP estimator, in the following called multiangle MA
~maMAP! estimator. Therefore, it is compared with the co
monly used single angle MAP~saMAP! estimator by apply-
ing both saMAP and maMAP to cross correlation functio
measured with ratherturbid samples.

These so-called ‘‘real world’’ samples, which are of gre
interest in both soft condensed matter research and indu
often cannot be investigated by conventional DLS. This
due to the fact that turbid media in general lead to signific
amounts of multiple scattering that results in unreliable a
erroneous evaluation of the data.

In order to overcome this problem in the last decad
number of different measurement schemes based on c
correlation techniques have been developed and it has
demonstrated that these techniques are powerful tools fo
effective suppression of the disturbing influence of multip
scattered light in turbid media@11–18#.

The measurements presented in this article were
formed with the three-dimensional~3D! cross correlation
technique@19–21#, which is a very handy method for ang
dependent measurements. With cross correlation experim
the error is due to two different reasons: On the one hand
signal-to-noise ratio of measured cross correlation functi
strongly depends on the alignment of the optical eleme
which is highly pretentious. This experimental disadvanta
is counterbalanced by the fact that no systematic errors
to multiple scattering occur. On the other hand for ve
strongly scattering samples the fraction of singly scatte
light become very small due to an overwhelming amount
multiple scattering processes. Thus the statistical accurac
cross correlation experiments decreases. As known from
ventional light scattering experiments with nearly transpar
samples, noise on the experimental data can lead to br
ened size distributions and unreproducible peak positio
Therefore, it has been a challenge to code a multian
evaluation scheme that keeps pace with the experimenta
velopments for investigation of turbid samples and optim
the evaluation of experimental data by multiangle d
analysis.

This article is structured in the following way: After th
presentation of the multiangle regularization procedure i
applied to data of cross correlation functions obtained w
turbid samples containing monomodal latex particles. It
shown that the maMAP estimator indeed enhances e
mously the quality of the calculated radical distribution
Furthermore, maMAP leads tooneconsistent estimate of th
radius distribution for all data with a proper reconstruction
the distribution shape, which is close to reality.

We go further and analyze cross correlation functions
tained with samples containing two types of spherical p
ticles that have fairly well defined and rather similar partic
04140
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sizes but much different volume fractions. In such ca
evaluation of correlation functions is considered as hig
problematic and inverse Laplace procedures require corr
tion functions of high quality and with a high signal-to-nois
ratio. Otherwise, deviations of the resulting correlation fun
tions from a simple exponential can hardly be recogniz
not to mention be evaluated. In order to enhance the res
tion one has to perform measurements for different scatte
angles@9,22#. However, the results of the Laplace inversio
techniques are still sensitive to noise on the experime
data. We demonstrate that our multiangle regularizat
method as proposed in@6,7# copes with the difficulties aris-
ing from such samples and yields correct radius distributio

II. 3D CROSS CORRELATION METHOD

The performance of the 3D cross correlation apparatu
described in detail in@20#. Therefore, in this paper we restric
the description to the basic ideas of the method and of
setup. The 3D cross correlation technique takes advantag
the fact that the properties of singly scattered light depen
a unique way on the scattering vectorq, which is given by
the difference of the initial and final wave vector. The idea
to perform simultaneously two scattering experiments in
three-dimensional geometry in such a way that the twoscat-
tering vectorsand scattering volumesare the same, but the
correspondingwave vectorsdo not coincide.

Figure 1 shows a sketch explaining of this idea in a som
what oversimplified way. Here, the sample is illuminated
two laser beams tilted against each other by an angle of.
On a screen in the far field these two laser beams give ris
two speckle patterns that are also shifted with respect to e
other according tof. It is then obvious that the signals o
two detectors placed at the positions of equivalent spec
are correlated. However, the correlation is not perfect: On

FIG. 1. Schematic sketch of the 3D principle. Two scatteri
experiments,~1! and~2!, are tilted against each other in such a w
that the two scattering vectors and scattering volumes are the s
but the corresponding wave vectors do not coincide. On a scree
the far field the two laser beams give rise to two speckle patte
that are also shifted with respect to each other. The signals of
tectors placed at the positions of equivalent speckles~marked by
identical numbers! are correlated. A more detailed description
given in the text.
4-2
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one hand both detectors also ‘‘see’’ light from the other sc
tering experiment, on the other hand, they detect multi
scattered light of the two incoming laser beams. The mu
ply scattered light, however, is totally uncorrelated. The
two contributions to the detector signal do not contribute
the time dependent signal of the correlated intensities
only to an enhanced background.

As mentioned above each of both detectors receives s
tered light from both illuminating laser beams. Therefore
denote byEA1(t) andEA2(t) the field amplitudes of the sca
tered light components detected by detectorA and resulting
from the illuminating light beams 1 and 2, respective
Then, the entire field amplitudeEA(t) can be decomposed a

EA~ t !5EA1
s ~ t !1EA1

m ~ t !1EA2
s ~ t !1EA2

m ~ t !, ~2.1!

where the superscriptss andm stand forsingly andmultiply
scattered light, respectively. The corresponding expres
for EB(t) is obtained by replacingA andB in Eq. ~2.1!.

Considering the correlations between these field am
tudes, one finds that only the correlations betweenEA1

s and
EB2

s do not vanish: The multiply scattered contributionsEA1
m ,

EA2
m , EB1

m , and EB2
m have different intermediate scatterin

vectors and are therefore uncorrelated. Furthermore, it ca
shown that if the anglef between the laser beams 1 and
complies with the relationDq5uqA22qB1u.u2p/du, where
d denotes the diameter of the scattering volume in direc
of the vectorDq, the correlations betweenEA2

s (t) andEB1
s (t)

can be neglected@23,24#, too.
In general, thenormalized cross correlation functio

C(7t,u) of scattering angleu is given by

C~t,u!5
^I A~0,u!I B~t,u!&

^I A~t,u!&^I B~t,u!&
, ~2.2!

with the lag timet and the intensityI A(t)5uEA(t)EA* (t)u.
The brackets ‘‘̂ & ’’ denote a time average, which for er
godic processes is equal to the ensemble average.
above assumptions the normalized 3D cross correlation fu
tion C(t,u) is related to the well investigated normalize
field correlation functionG(t,u) of singly scattered light
@20#:

C~t,u!5
^I A1

s ~u!&^I B2
s ~u!&

^I A~u!&^I B~u!&
buuG~t,u!u211. ~2.3!

bu denotes a prefactor that considers the reduction of
amplitude by misalignment effects and the finite detec
size.bu can be determined experimentally by measurem
of the amplitude for nearly transparent samples with conc
tration c→0 where^I A(u)&5^I A

s (u)&.
By Eq. ~2.3!, the direct problem of the 3D cross correl

tion method is reduced to the common direct problem
DLS, which has to be modified for the multiangle analysis
described in the following section.
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III. DIRECT PROBLEM AND OBSERVATION EQUATION

For an ideal light scattering experiment the relation b
tween the normalized field correlation function and the
laxation time spectrum is given by

G~t,u!5E
2`

`

d ln ah̃a~a,u!e2t/a. ~3.1!

The relaxation time spectrumh̃a(a,u) describes~in depen-
dence on the scattering angleu) the relative scattering con
tribution of a particle with relaxation timea to the normal-
ized field correlation function. For spherical particles t
relaxation timea can be related to thehydrodynamic radius
r h using the Einstein-Stokes relation@25#

a5
6ph

q2~u!kBT
r h5:

1

c~u!
r h , ~3.2!

whereh is the viscosity andT the temperature of the fluid
and kB denotes the Boltzmann constant. Introducing t
angle dependent parameterc(u) in Eq. ~3.2! and substituting
the relaxation timea by the hydrodynamic radiusr h the
cross correlation function now reads according to Eq.~2.3!

C~t,u!5auF E
2`

`

d ln r hh̃r~r h ,u!e2c(u)t/r hG2

11,

~3.3!

with h̃r(r h ,u) being the relative scattering contribution of
particle with radiusr h , which again depends on the scatte
ing angle. The prefactorau is given by

au5
^I A1

s ~u!&^I B2
s ~u!&

^I A~u!&^I B~u!&
bu . ~3.4!

In the next step the angle dependence of the distributionh̃r is
‘‘removed,’’ i.e., the relative scattering contribution is su
stituted by theradius distribution hr that is, of course, inde-
pendent of the scattering angle. The angle dependence o
relative scattering contributionh̃r(r h ,u) is evoked by the
scattering characteristic of the particles which is describ
for spherical particles by the Mie coefficientsf Mie(r h ,u).
The scattering characteristic can be calculated for other ty
of particles, but their shape have to be uniform and kno
beforehand.1 In the following spherical particles are as
sumed.

Introducing the Mie coefficients and the angle indepe
dent radius distributionhr(r h) into Eq. ~3.3! the direct prob-
lem now reads

1Note that Eq.~3.2! has to be modified for nonspherical particle
too.
4-3
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BUTTGEREIT, ROTHS, HONERKAMP, AND ABERLE PHYSICAL REVIEW E64 041404
C~t,u!5auF E
2`

`

d ln r hhr~r h! f Mie~r h ,u!e2c(u)t/r hG2

11,

~3.5!

so that one can describeall data of all scattering angles b
onedistributionhr(r h).

Sometimes, however, it is favorable or even necessar
estimate the relative scattering contributionh̃(r h ,u ref) with
regard to a reference angleu ref @8#. Then the direct problem
can be written as

C~t,u!5auF E
2`

`

d ln r hh̃r
uref~r h!

f Mie~r h ,u!

f Mie~r h ,u ref!
e2c(u) t/r hG2

11 ~3.6!

and foru→u ref Eq. ~3.6! becomes equal to Eq.~3.3!. Thus,
one again can describe the data ofall scattering angles by
onedistribution h̃r

uref(r h).
Empirically, the estimation of distributions in such dire

problems depends sensitively on aberrations in the base
of the data. Furthermore, not even all hardware correla
are able to estimate thenormalized correlation function.
Therefore, in the following the more general case of a n
normalized correlation function is considered and the ba
lines of the correlation functions, denoted withbu , for each
measurement angleu l are estimated simultaneously, to
Thus, Eq.~3.5! and ~3.6! read

C~t,u!@hr ,au ,bu#

5auF E
2`

`

d ln r hhr~r h! f Mie~r h ,u!e2c(u)t/r hG2

1bu ,

~3.7!

C~t,u!@ h̃r
uref ,au ,bu#

5auF E
2`

`

d ln r hh̃r
uref~r h!

f Mie~r h ,u!

f Mie~r h ,u ref!
e2c(u)t/r hG2

1bu . ~3.8!

Here, the squared brackets indicate that Eqs.~3.7! and ~3.8!
can be interpreted as functionals of the parametersau ,bu and
the distributionhr or h̃r

uref , respectively. These relations b
tween the data and the distribution represent the so-ca
direct problem that has to be inverted in order to obta
au ,bu andhr or h̃r

uref , respectively.
The measured correlation function Cs(t,u) can be as-

sumed as a realization of a Gaussian random variable
meanC(t,u):

Cs~t i ,u l !5C~t i ,u l !1e~t i ,u l !, ~3.9!

where thedata errors e(t i ,u l) are a realization of a random
variableE(t i ,u l) with
04140
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^E~t i ,u l !&50, ~3.10!

Var@E~t i ,u l !#5s i
2~u!. ~3.11!

Eq. ~3.9! represents the so-calledobservation equation.
The assumption of Gaussian distributed errors is due

the fact that the correlation functionC(t i ,u l) sums up the
photon numbers that itself can be regarded as realization
random variables with bounded variance. Thus, accordin
the law of large numbers, the distribution of the random
variableCs(t i ,u l) converges to a Gaussian distribution.

IV. REGULARIZATION METHOD

In Sec. II the cross correlation function of 3D cross co
relation measurements has been related to the well inv
gated normalized field correlation function and thus to
common direct problem of DLS. Then, in Sec. III this dire
problem has been modified by introducing the scatter
characteristic of the solved particles, so that the data of
measurement angles can be described byonedistributionhr

or h̃r
uref , respectively. In the following, regularization meth

ods are adapted to the results of Sec. III to obtain a mu
angle estimator for the radius distribution.

Commonly, the regularization solution is obtained
minimizing the following functional:

Vl@h#5(
i 51

N
1

s i
~Ci

s2Ci@h# !21lR@h#, ~4.1!

whereN is the number of data points ands i is the standard
deviation of the measurement error of the data pointCi

s .
For a given data model~i.e., direct problem! expressed by

C@h#, the sum in Eq.~4.1! determines thediscrepancyof the
measured dataCs from the corresponding valueC@h# under
the hypothesis thath is the true distribution. The smaller th
discrepancy, the betterh fits the data on the basis of th
model. Thus the regularization solution is forced to be co
patible with the data. The minimization of this term alon
corresponds to ordinary~non negative! least square estima
tions.

Theregularization term R@h# imposes the constraint from
some prior information by assigning toh a value that is the
smaller the betterh complies with the prior information, i.e.
the more probable it is considered. Note that the prior inf
mation is independent from the data.

The regularization parameterl weights the constrain
from the prior information in comparison with the constrai
from the data. For a proper estimation ofh an optimal value
of l has to be chosen. This optimal value highly depends
the measurement errors and the number of data points. In
article l is selected by means of the self-consistent meth
introduced by Honerkamp and Weese@4#.

Minimization of the functionalVl@h# in Eq. ~4.1! in order
to obtain an estimate of the distributionh corresponds to a
MAP estimator~see, e.g.,@6,26#!. With Eq.~3.7! or Eq.~3.8!,
respectively, and Eq.~4.1! the multiangle MAP estimator o
the radius distributionhr and the parametersau l

andbu l
reads
4-4
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$ĥr
ma,âu l

,b̂u l
%5arg min

hr ,au l
,bu l

H (
l 51

L

(
i 51

Nl $Cs~t i ,u l !2C@hr ,au l
,bu l

#~t i ,u l !%
2

s i
2

1lR@hr #J . ~4.2!

Here,L denotes the number of measurement angles andNl is the number of data points of the correlation functionCs(t i ,u l)
obtained at angleu l .

Analogously, for the single angle MAP estimator it follows that

$ĥr
sa,âu ,b̂u%5arg min

hr ,au ,bu

H (
i 51

Nu $Cs~t i ,u!2C@hr ,au ,bu#~t i ,u!%2

s i
2

1lR@hr #J . ~4.3!
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In the case of radius distributions one prior information is
positivity constrainthr(r )>0;r . The positivity constraint is
enforced by the minimization algorithm, which allows on
positive values for the distribution. Furthermore, one can
sume, that the distribution islimited. This prior information
is modeled by the so-calledTikhonov regularization term

R@hr #5(
l 51

M

hr
2~r i !. ~4.4!

This functional has been used for the estimation of
monomodal radius distributionhr in Sec. VI.

For broadened distributions the prior information that t
distribution is smooth may be more appropriate. Thi
smoothness constraint is modeled by thePhillips regulariza-
tion term

R@hr #5 (
i 52

M21

@hr~r i 11!22hr~r i !1hr~r i 21!#, ~4.5!

which sums up the numerical approximation of the seco
derivatives of the distribution. This functional has been us
for the estimation of the bimodal relative scattering con
bution h̃r

50 ° in the second part of Sec. VI.
As mentioned above, regularization methods can be in

preted in the framework of Bayesian estimators as MAP
timators. From this point of view the minimization of th
functional Vl@h# corresponds to the maximization of thea
posteriori distribution r(huCs), which represents the mos
probable distributionh given the dataCs. For a more de-
tailed discussion we refer to@6,26#.

V. EXPERIMENT

All measurements have been performed using an o
mized 3D cross correlation instrument. As demonstrated
@21,20,27# this measurement scheme avoids any deterio
tion of the measured correlation function by multiply sc
tered light and allows the investigation of samples up
fairly high turbidity levels. The radii of the latex particle
obtained by TEM measurements provided by the manu
turer ~Dow! are 226.564.5 nm, 66.0 nm~no standard devia
tion given by the manufacturer!, and 53.565.25 nm. The
investigated samples contain latex particles with a refrac
index of n51.59 and a density ofr51.05 g/ml. For all
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measurements the temperature was kept at 20.660.2°C. In
the following we consider two different types of sample:
aqueous suspension of latex particles with a fairly narr
size distribution and a bimodal sample containing la
spheres of two distinct sizes.

a. Monomodal sample.Figure 2 shows the cross correla
tion functions of the scattered intensity for the monomo
sample (t axis with logarithmic scale! for different scattering
angles. The radius of the latex particles obtained by TE

FIG. 2. Cross correlation functions obtained for a monomo
suspension. TEM radius of the suspended latex particle is 5
65.25 nm. The scattering angleu l ranges from 30° to 130° in step
of 20°.
4-5
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measurements provided by the manufacturer is 53.565.25
nm. The range of the measurement angles has been ch
from 30° to 130° in steps of 20°. The mass ratio of latex
solvent is 0.3%. Accordingly, the sample is indeed quite t
bid. The turbidityt of the samples was obtained using t
relation t5 ln(I0 /Itrans)/ l , whereI trans is the intensity of the
transmitted laser light in the presence of the sample,I o is the
corresponding value for the cell filled with pure water a
l 510 mm is the thickness of the sample. Witht53.08 cm21

the monomodal sample was rather turbid.
Obviously, the errors of the cross correlation functio

increase for long relaxation times, which complicates
proper estimation of the baseline. Furthermore, this beha
of the errors stands in contradiction to the error model
autocorrelation functions proposed by Scha¨tzel @28# that pre-
dicts substantially an exponential decay of the estima
errors for long relaxation times. Accordingly, this err
model isad hocnot transferable to the case of cross cor
lation functions and in the following a simple but more a
equate error model with absolute errors is assumed.

b. Bimodal sample.Next we performed measuremen
with a strongly scattering bimodal sample containing p
ticles with radii of 226.564.5 nm and 66.0 nm~no standard
deviation available!, obtained by TEM measurements pr
vided by the manufacturer. The ratio of the mass concen
tion c1 /c2 of the particles is 1:20.2. The turbidity of th
sample wast52.60 cm21. Figure 3 shows 3D cross corre
lation functions of the electric field amplitude for sever
scattering angles (G axis with logarithmic scale!.

The time dependence of the measured 3D cross cor
tion functions—which takes only single scattering proces
into account—does not show observable deviations from
simple exponential~indicated by the solid line!. Despite this
simple exponential behavior the sample is bimodal, howe
The appearance of justone single exponential is due to th

FIG. 3. 3D cross correlation functions obtained for a bimo
suspension. The TEM radii of the suspended latex particles h
been 226.5 and 66.0 nm. The cross correlation functions hav
been measured in an angular range of 50°<u<110° at intervals of
20°, the turbidity has been 2.60 cm21. For clarity of presentation
the data of the auto correlation functions foru550°,70°, and 90°
have been given an offset.
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relatively small size ratio of 1:3.4 where the two contrib
tions result in a cross correlation function that appears to
monoexponential~but actually is bimodal!. This example
demonstrates, that in many cases it is difficult or even
possible to yield reliable information about the constitue
by measurements from asinglescattering angle only.

VI. EVALUATION

In the following section the radii distributionhr calculated
for the monomodal sample and the relative scattering con
bution h̃r

uref of the bimodal sample are estimated with bo
thesingle angleand themultiangleMAP estimator. Further-
more, for the bimodal sample the volume fraction of the tw
components is calculated from the relative scattering con
bution estimated by the maMAP estimator. Then, this v
ume fraction is compared to the experimentally determin
volume fraction. It is shown that the multiangle analysis e
hances enormously the resolution of the estimation. Mo
over, the calculated volume fraction agrees qualitatively w
the ‘‘real’’ volume fraction—despite the low signal-to-nois
ratio.

a. Monomodal sample.First we consider the results ob
tained for the monomodal sample. Here, the simultane
analysis of cross correlation functions for only three differe
scattering angles is sufficient to enhance the quality of
reconstructed radius distribution enormously. In order
demonstrate that this result is consistent and quite indep
dent of the choice of the measurement angles the radius
tribution is estimated for two different sets of three cro
correlation functions. These sets consist of the cross corr
tion functions measured at 30°,70°,110° and 50°,90°,13
respectively.

The shape of the radius distribution is shown in Fig.
The estimates of the radius distribution~error bars! were cal-
culated with the saMAP estimator. Each single angle estim
tion leads to strongly broadened and asymmetric radius
tributions in contrast to the TEM measurements. Moreov
the estimation of the radius distribution of the measurem
angleu5110° is even bimodal. Obviously, the shape of t
radius distribution cannot be reconstructed from these no
data using the saMAP estimator.

Figure 5 shows the estimates of the radius distribut
obtained with the maMAP estimator: Unlike the saMAP e
timator the maMAP estimator is able to reconstruct prope
the shape of the radius distribution: the estimates are nar
distributions with mean 50 nm and a standard deviation
2.2 nm.

We now turn to a rather important subject that in practi
applications is astonishingly often neglected. This is
comparison of the position of the maximum values ofr max
with the mean radiir mean. For single angle estimates~cf.
Table I! the maxima vary from 46 nm up to 53 nm. Furthe
more, the asymmetric shape of the distribution has an imp
on the mean radii, which differs significantly from the pos
tion of the maximum radii and also from the ‘‘real’’ radiu
measured by TEM. This means, in such cases it is difficul
make a clear prediction about particle size and distri
tion shape.
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In contrast to that, evaluation of the 3D cross correlat
function by the maMAP estimator give reliable results: no
the maximum value of the size distribution for eachset of
scattering angles yields the same value 50 nm. Furtherm
this result is consistent with the results of the mean radiu
50 nm for each set. To conclude, we state that theparticle
sizeas well as thedistribution shapeare properly estimated
by the maMAP estimator~cf. Fig. 5!.

b. Bimodal sample.In this section we consider the evalu
ation of the bimodal sample. Here, the volume fractions
the two components are very different~1:20.2!. Thus, an es-
timation of the radius distribution might lead to an smoo
ing of the smaller component~large particles!, although the
data contain sufficient information about this component d
to the strong increase of the scattering characteristic for

FIG. 4. Estimates~error bars! of a monomodal radius distribu
tion using the saMAP estimator. The radius size obtained from T
measurements provided by the manufacturer isr 553,565.25 nm
~indicated by the solid line!. For each measurement angle a broa
ened radius distribution is calculated. In particular, the width of
distributions are far larger than the width of the original distrib
tion. The maxima and mean radii of the distributions vary stron
for all measurement angles as shown in Table I.

FIG. 5. Estimates~error bars! of a monomodal radius distribu
tion using the maMAP estimator. The radius size obtained fr
TEM measurements provided by the manufacturer isr 553,5
65.25 nm~indicated by the solid line!. Both estimations lead to the
same consistent maximum at 50 nm. Furthermore the shape o
distribution is very close to the TEM measurements.
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larger particles. However, this problem can be overcome
estimation of the relative scattering contributionh̃r

uref instead
of hr @cf. Eqs.~3.7! and~3.8!# as described in Sec. III. Figur
6 shows the estimates of the relative scattering contribu
h̃r

50° for the reference angleu ref550°, calculated by the
saMAP estimator. Again, the saMAP estimator is not able
reconstruct properly the shape of the radius distribution.
particular, it cannot resolve the bimodal character of the d
tribution. The relative scattering contributions estimat
from cross correlation functions of the measurement ang
50°, 70°, and 110° show contributions of the large parti
component, indicated by an increase of the distribution
large particle sizes (50°,70°), or by a broadening of the d

-
e

y

he

TABLE I. Monomodal distribution: Estimated maximum an
mean radius in nanometers.

Radius~TEM!: 53.0
saMAP maMAP

u
r max

~nm!
r mean

~nm! u
r max

~nm!
r mean

~nm!

30° 52 48 30°, 70°, 110° 50 50
50° 47 42 50°, 90°, 130° 50 50
70° 47 43
90° 46 43

110° (22)a, 53 (39)b, 51
130° 52 48

aFirst peak of the bimodal reconstruction.
bTaking both peaks into consideration.

FIG. 6. Single angle estimates~error bars! of a bimodal relative

scattering contributionh̃r
50° to the reference angleu ref550°. The

radii sizes obtained from TEM measurements provided by
manufacturer arer 1566.0 nm andr 25226.5 nm~indicated by the
solid lines!. The saMAP estimator is not able to reconstruct t
bimodal character of the radius distribution.
4-7
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tribution (110°). This is due to the fact that larger particl
have a scattering minimum betweenu580° and u590°.
Therefore the result atu590° results mostly from light scat
tered by the smaller particles. Consequently, the time dep
dence of the cross correlation functions at this scatte
angle mostly reflects the dynamic of smaller particles and
contribution of the particles with radiusr 5226.5 nm is neg-
ligible.

The maMAP estimate of the relative scattering contrib
tion h̃r

50° ~Fig. 7!, however, resolves both components
r 1

maMAP562 nm andr 2
maMAP5237 nm in good agreemen

with the TEM measurements~indicated by the solid lines!.
The two small peaks atr 514 nm and atr 5357 nm are
affected with large estimation errors and are not signific
since they are compatible with zero. On the right hand s
of Fig. 7 the volume fraction calculated from the relati
scattering contributionh̃r

50° is shown. The calculated volum
fraction of 10.3:1 differs from the ‘‘real’’ volume fraction o
20.2:1 by a factor of 2. This is probably due to the lo
signal-to-noise ratio of the experimental data.

VII. SUMMARY AND DISCUSSION

In this paper we have demonstrated that the combina
of modern measurement methods and enhanced data an
enables to analyze ‘‘real world’’ systems, even for high tu
bidity levels. Especially when the signal-to-noise ratio of t
experimentally obtained data is low, e.g., in the case of
cross correlation measurements of turbid media, the m
angle analysis combined with the simultaneous regular
tion method~maMAP estimator! enhances enormously th
quality of the evaluation results.

For the investigation of turbid media it is essential to a
ply measurement methods that select only that part of
scattered light that stems from single scattering proces
This is especially important for bimodal samples, where

FIG. 7. Left: Multiangle estimate~error bars! of a bimodal rela-

tive scattering contributionh̃r
50° for the reference angleu ref550°.

The radii sizes obtained from TEM measurements provided by
manufacturer arer 1566.0 nm andr 25226.5 nm~indicated by the
solid lines!. The multiangle estimator reconstructs properly bo
components of the bimodal distribution. The small peaks atr 514
nm and atr 5357 nm are affected with large errors and are n
significant. Accordingly, they can be neglected in comparison w
the main peaks. Right: Volume fraction calculated from the relat

scattering contributionh̃r
50° rendering a mass concentration

10.3:1.
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effect of multiple scattering can be mistaken as if caused
a broad size distribution. This is demonstrated in Fig. 8 t
shows autocorrelation functions of the electric field amp
tude obtained with a conventional DLS experiment for t
same sample as in Fig. 3. As can be inferred from Fig. 8
measured autocorrelation functions differ significantly fro
a monoexponential decay~indicated by solid line!, especially
for small scattering angles. This could easily lead to mis
terpretations of the data: These deviations could be in
preted as if they were caused by a broad or multimodal
tribution of particle sizes. However, in this case the obser
deviations do not result from different contributions of sc
tering particles but from the influence of multiple scatterin
This is confirmed by the 3D cross correlation functions
Fig. 3 that result only from single scattering processes
are not affected by the disturbing influence of multiple sc
tering.

Furthermore, the 3D cross correlation functions of the
modal sample also show that it is often not possible to yi
reliable results from measurements at only one scatte
angle. The correlation functions of Fig. 3 appear to be
single exponential as expected for samples containing o
one type of scatterer, despite the fact that the sample con
scatterer of two distinct sizes. In such cases, only evalua
schemes on the basis of multiangle procedures lead to
desired information about the constituents of the sam
This has been shown in@29# in a straight forward way, where
a simple fit procedure has been presented that is based o
simultaneous evaluation of dynamic and static light scat
ing data. It has been shown that this procedure leads to
able results concerning the composition of the bimo
samples under investigation, even for samples where the
of the scattering particles differ only by a factor of 1.9. T
clear advantage of this simple fit procedure is its easy h
dling: one only needs to determine the initial slope of t

e

t
h
e

FIG. 8. Conventional auto correlation functions obtained fo
bimodal suspension. The TEM radii of the suspended latex parti
have been 226.5 and 66.0 nm. The auto correlation functions h
been measured in an angular range of 50°<u<110° at intervals of
20°, the turbidity has been 2.60 cm21. For clarity of presentation
the data of the auto correlation functions foru550°,70°, and 90°
have been given an offset.
4-8
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SIMULTANEOUS REGULARIZATION METHOD FOR THE . . . PHYSICAL REVIEW E 64 041404
correlation functions, which in general can easily be do
even for correlation functions with low signal-to-noise rat
This of course means, that this simple procedure is not a
to determine theshapeof the particle size distribution.

In contrast to that, we have demonstrated that the maM
estimator is able to reconstruct properly both the position
the shape of bimodal particle size distributions—in contr
to evaluations of the saMAP estimator for just one scatter
angle. The improved resolution of the multiangle estima
compared to the single angle estimator is due to a numbe
reasons.

~1! The resolution of a single angle estimator varies
specific particle sizes in dependence of the measurem
angle. This is caused by the fact that—in dependence on
scattering angle—specific particle sizes contribute less to
entire scattering intensity and thus to the entire correla
function. The multiangle estimator, however, compensa
the lower information on specific particle sizes atonemea-
surement angle by information ofthe other measuremen
angles. Thus the resolution of the multiangle estimato
quite equal for all particle sizes.

~2! Furthermore, for every particle size the resolution
the multiangle estimator is better than the resolution of
‘‘best’’ single angle estimator, which is due to a larger nu
ber of data.

~3! At last, in the case of the maMAP estimator the pr
information is imposed tooneconsistent solution on basis o
all measured data, whereas in the case of the saMAP est
tor the prior information is imposed to each single an
solution separately. Thus the combination of all single an
-
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solutions is not the best solution with respect to the pr
information and all data@6#.

Concluding, one can state that the simultaneous regu
ization method discussed in this paper is a powerful too
order to reconstruct the radius distribution or relative scat
ing contribution, respectively—especially from data with
low signal-to-noise ratio as in the case of turbid media
highly diluted samples when single angle regularizat
methods fail in resolving the distribution. In some public
tions @28,30# more elaborated error models have been p
posed, where the correlations of errors have to be taken
consideration. In particular, it has been shown that in cas
high intensities and short measurement times the correlat
of the errors should not be neglected@7,31#. However, an
improved error model for the present 3D cross correlat
data has—according to our knowledge—not been propo
up to now and the transferability of Scha¨tzels error model to
cross correlation data is still not proved. Also in this pap
we focus on themultiangledata analysis, so that we restri
ourselves to the simplified error model.

Finally, if the distribution cannot be reconstructed pro
erly using the simplified error model, one should investig
the data using an improved error model. However, if t
distribution is reconstructed well with the simplified err
model an improved error model will not enhance sign
cantly the resolution@31#. As shown below for the data use
in this paper the results of the MAP estimator are quite go
so that one cannot expect improving results by taking
count of an improved error model.
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