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Simultaneous regularization method for the determination of radius distributions
from experimental multiangle correlation functions
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Dynamic light scattering experiments have become a powerful tool in order to investigate the dynamical
properties of complex fluids. In many applications in both soft matter research and industry so-called “real
world” systems are subject of great interest. Here, the dilution of the investigated system often cannot be
changed without getting measurement artifacts, so that one often has to deal with highly concentrated and
turbid media. The investigation of such systems requires techniques that suppress the influence of multiple
scattering, e.g., cross correlation techniques. However, measurements at turbid as well as highly diluted media
lead to data with low signal-to-noise ratio, which complicates data analysis and leads to unreliable results. In
this article amultiangle regularization method discussed, which copes with the difficulties arising from such
samples and enhances enormously the quality of the estimated solution. In order to demonstrate the efficiency
of this multiangle regularization method we applied it to cross correlation functions measured at highly turbid
samples.
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[. INTRODUCTION scattering processes in the case of highly diluted media.
Therefore, especially in such cases of low signal-to-noise
Dynamic light scatteringDLS) experiments have become ratio (or if a high resolution is desiref7]), common regu-
a powerful tool in order to investigate the dynamical proper-larization methods based on the data of oohe scattering
ties of complex fluids, e.g., through the diffusion constants ogngle are not able to resolve properly the distribution.
the hydrodynamicradius distribution of soluted particles. However, this problem can be overcome by using the
These distributions have to be inferred from measured coraximum data information obtained from the experiment.
relation functions of the scattered light by inverting a non- Therefore, all measured data of all scattering angles have to
linear integral equation. This is known to be #hposed be taken into account. The simultaneous analysis of all data
inverse problemsince the distribution does not depend con-from all scattering angles takes advantage of three important
tinuously upon the datfl,2]. Accordingly, small aberrations POINtS.
in the experimental data, which are inevitably effected by (1) Much more data—and thus much more
measurement errors, will result in large or even unboundeéformation—is used for the inversion of the ill-posed prob-
errors of the reconstructed distribution. Thus, one might saiﬁ'm-
that the data do not contain the whole information in order to  (2) The scattering characteristics of the soluted particles
reconstruct properly the distribution. Accordingly, in order to vary for different scattering angles. Thus—in dependence on
solve such ill-posed problems so-called regularization meththe measurement angle—specific particle sizes contribute
ods are necessary corresponding to maximum a posterioss to the entire scattering intensity. Accordingly, these par-
(MAP) estimators[3—6]. These methods impose some priorticle sizes are worse resolvable using a single angle analysis.
information on the solution in order to compensate the “lackSimultaneous multiangle regularization method, however,
of information” in the data due to the measurement errors. compensates these lower informatioroimecorrelation func-
The inversion of an ill-posed problem becomes compli-tion by the correlation functions dhe othermeasurement
cated for low signal-to-noise ratios and for small numbers ofingles. Thus, all particle sizes can be resolved quite equally.
data points, i.e., for a small amount of data information. In  These two points lead to a “better conditioning™ of the
the case of DLS data the error is mainly given by an estimainverse problem as discussed[®]. Thus, in case of high
tion error of the hardware correlator, which is used in ordersignal-to-noise ratio simple inversion methods such as “mul-
to estimate the correlation of the detected photons. This daf#ngle” non-negative least squares or singular value analy-
error increases with decreasing number of singly scattere®iS may succeef,10]. However, these methods, which are

photons, which may be due to multiple scattering processelased entirely on the data information but do not impose any
in the case of turbid media or due to a small number innor |nf0rmat|0n on the Solutlon, bl’eak dOWh f0r data W|th a

low signal-to-noise ratio as discussed in this article. Further-
more, in addition to these common advantages of multiangle
*Email address: buttgere@fmf.uni-freiburg.de analysis, a third advantage has to be regarded.
TEmail address: ab@ifam.fhg.de (3) A separate analysis of correlation functions for each
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scattering angle leads to a couple of estimates of the desired sample
size distribution. Each of them satisfies the prior information,
e.g., that the distribution is smooth, but not necessarily their
combination, i.e., their weighted mean. Thus, the prior infor-

mation is not defined consistently. However, the simulta- 1
neous analysis of all data leads doe consistent estimate, -
which satisfies properly the prior information. 2

In this paper we demonstrate the efficiency of this modi-
fied MAP estimator, in the following called multiangle MAP
(maMAP) estimator. Therefore, it is compared with the com-
monly used single angle MABaMAP estimator by apply-
ing both saMAP and maMAP to cross correlation functions
measured with ratheurbid samples

These so-called “real world” samples, which are of great
interest in both soft condensed matter research and industry, FiG. 1. Schematic sketch of the 3D principle. Two scattering
often cannot be investigated by conventional DLS. This isexperiments(1) and(2), are tilted against each other in such a way
due to the fact that turbid media in general lead to significanthat the two scattering vectors and scattering volumes are the same,
amounts of multiple scattering that results in unreliable andut the corresponding wave vectors do not coincide. On a screen in
erroneous evaluation of the data. the far field the two laser beams give rise to two speckle patterns

In order to overcome this problem in the last decade ahat are also shifted with respect to each other. The signals of de-
number of different measurement schemes based on crotgstors placed at the positions of equivalent speckiearked by
correlation techniques have been developed and it has beégentical numbersare correlated. A more detailed description is
demonstrated that these techniques are powerful tools for gfiven in the text.
effective suppression of the disturbing influence of multiply
scattered light in turbid medigl1-18§. sizes but much different volume fractions. In such cases

The measurements presented in this article were pegvaluation of correlation functions is considered as highly
formed with the three-dimensiondBD) cross correlation problematic and inverse Laplace procedures require correla-
technique[19-21], which is a very handy method for angle tion functions of high quality and with a high signal-to-noise
dependent measurements. With cross correlation experimenitio. Otherwise, deviations of the resulting correlation func-
the error is due to two different reasons: On the one hand théons from a simple exponential can hardly be recognized,
signal-to-noise ratio of measured cross correlation functiongot to mention be evaluated. In order to enhance the resolu-
strongly depends on the alignment of the optical elementdjon one has to perform measurements for different scattering
which is highly pretentious. This experimental disadvantageangles[9,22]. However, the results of the Laplace inversion
is counterbalanced by the fact that no systematic errors duechniques are still sensitive to noise on the experimental
to multiple scattering occur. On the other hand for verydata. We demonstrate that our multiangle regularization
strongly scattering samples the fraction of singly scatterednethod as proposed [i6,7] copes with the difficulties aris-
light become very small due to an overwhelming amount ofing from such samples and yields correct radius distributions.
multiple scattering processes. Thus the statistical accuracy of
cross corrglation expgriments Qecrease;:. As known from con- Il. 3D CROSS CORRELATION METHOD
ventional light scattering experiments with nearly transparent
samples, noise on the experimental data can lead to broad- The performance of the 3D cross correlation apparatus is
ened size distributions and unreproducible peak positionglescribed in detail ifi20]. Therefore, in this paper we restrict
Therefore, it has been a challenge to code a multiangléhe description to the basic ideas of the method and of the
evaluation scheme that keeps pace with the experimental deetup. The 3D cross correlation technique takes advantage of
velopments for investigation of turbid samples and optimizethe fact that the properties of singly scattered light depend in
the evaluation of experimental data by multiangle dataa unique way on the scattering vectprwhich is given by
analysis. the difference of the initial and final wave vector. The idea is

This article is structured in the following way: After the to perform simultaneously two scattering experiments in a
presentation of the multiangle regularization procedure it ighree-dimensional geometry in such a way that the $oat-
applied to data of cross correlation functions obtained withtering vectorsand scattering volumesre the same, but the
turbid samples containing monomodal latex particles. It iscorrespondingvave vectorslo not coincide.
shown that the maMAP estimator indeed enhances enor- Figure 1 shows a sketch explaining of this idea in a some-
mously the quality of the calculated radical distributions.what oversimplified way. Here, the sample is illuminated by
Furthermore, maMAP leads tineconsistent estimate of the two laser beams tilted against each other by an angl. of
radius distribution for all data with a proper reconstruction ofOn a screen in the far field these two laser beams give rise to
the distribution shape, which is close to reality. two speckle patterns that are also shifted with respect to each

We go further and analyze cross correlation functions obether according tap. It is then obvious that the signals of
tained with samples containing two types of spherical partwo detectors placed at the positions of equivalent speckles
ticles that have fairly well defined and rather similar particleare correlated. However, the correlation is not perfect: On the

Screen
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one hand both detectors also “see” light from the other scat-ll. DIRECT PROBLEM AND OBSERVATION EQUATION
tering experiment, on the other hand, they detect multiply

scattered light of the two incoming laser beams. The multi—twé:;r: 3{; 'gﬁ?&gﬁ?g;?ﬂgr?ﬁrgg Ft)i?)rrlun:‘ﬁm:ttigﬁ ;erigt'g]ne t;g:
ply scattered light, however, is totally uncorrelated. Thes

two contributions to the detector signal do not contribute tgiaxatlon time spectrum is given by

the time dependent signal of the correlated intensities but
only to an enhanced background.

As mentioned above each of both detectors receives scat-
tered light from both illuminating laser beams. Therefore we
denote byE,4(t) andEp,(t) the field amplitudes of the scat- _
tered light components detected by detedcand resulting The relaxation time spectruim,(«,6) describegin depen-
from the illuminating light beams 1 and 2, respectively. dence on the scattering anghk the relative scattering con-
Then, the entire field amplitudg,(t) can be decomposed as tribution of a particle with relaxation time to the normal-
ized field correlation function. For spherical particles the
relaxation timea can be related to thieydrodynamic radius
r, using the Einstein-Stokes relatipp5]

G(r,0)= f dinah,(a,8)e " (3.0

Ea(t)=Ea(t) +EQi (1) +ER() +ERy(), (2.1

where the superscriptsand m stand forsingly and multiply 6 1
scattered light, respectively. The corresponding expression a= T rh=": Ths
for Eg(t) is obtained by replacing andB in Eq. (2.1). q*(O)kgT c(8)
Considering the correlations between these field ampli-
tudes, one finds that only the correlations beME%g and  \here 5 is the viscosity and’ the temperature of the fluid,
Eg. do not vanish: The multiply scattered contributid®$,  and ks denotes the Boltzmann constant. Introducing the
Ex. Egi, and Eg, have different intermediate scattering angle dependent parametg) in Eq. (3.2) and substituting
vectors and are therefore uncorrelated. Furthermore, it can e relaxation timea by the hydrodynamic radius;, the
shown that if the angled between the laser beams 1 and 2 cross correlation function now reads according to @)
complies with the relatiodAq=|qa,— dg1|>|27/d|, where
d denotes the diameter of the scattering volume in direction
of the vectorAq, the correlations betwedsi ,(t) andEg, (t) C(r,0)=a,
can be neglecte®3,24], too.
In general, thenormalized cross correlation function 3.3
C(71,6) of scattering angl® is given by

(3.2

o 2
f din rhh,(rh,e)e‘c(e)ﬂfh} +1,

with h,(ry,,6) being the relative scattering contribution of a

(1A(0,0)15(7,6)) particle with radiusy,, which again depends on the scatter-
C(7,0)= RCOCT)S (2.2 ing angle. The prefactaa, is given by
S S
with the lag timer and the intensity a(t) =|EA()EX (). a,=m(O15(0) 3.4
The brackets ¢ )" denote a time average, which for er- (1a(0))(18(0))

godic processes is equal to the ensemble average. With
above assumptions the normalized 3D cross correlation fun
tion C(7,0) is related to the well investigated normalized
field correlation functionG(7,0) of singly scattered light
[20]:

G the next step the angle dependence of the distribiitjas
“removed,” i.e., the relative scattering contribution is sub-
stituted by theradius distribution h that is, of course, inde-
pendent of the scattering angle. The angle dependence of the

relative scattering contributioh,(ry,,6) is evoked by the
scattering characteristic of the particles which is described
for spherical particles by the Mie coefficientge(ry,6).

The scattering characteristic can be calculated for other types
) ) of particles, but their shape have to be uniform and known
By denotes a prefactor that considers the reduction of thgeforehand. In the following spherical particles are as-
amplitude by misalignment effects and the finite detectorg;,meq.

size. 3, can be determined experimentally by measurement |hroducing the Mie coefficients and the angle indepen-
of the amplitude for nearly transparent samples with concengent radius distributiom, () into Eq.(3.3) the direct prob-

By Eq. (2.3, the direct problem of the 3D cross correla-

tion method is reduced to the common direct problem of——
DLS, which has to be modified for the multiangle analysis as Note that Eq(3.2) has to be modified for nonspherical particles,
described in the following section. too.

(1Aa(0))(182(0))

)= O Te(6)

BolG(7,0)|?+1. (2.3
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o’} 2 - _
f dinryh, () fuie(ry, 0)e O] +1, (E(7i,6)))=0, (3.10
(3.5 VarfE(r;,6)]= o7 (6). (3.19)

Eq. (3.9 represents the so-calledbservation equatian

The assumption of Gaussian distributed errors is due to
Bhe fact that the correlation functio@(7;,6,) sums up the
) ) i o~ ] photon numbers that itself can be regarded as realizations of
estimate the relative scattering contributio(ry, 6re) With  3ndom variables with bounded variance. Thus, according to
regard to a reference angfi [8]. Then the direct problem  ihe jaw of large numbersthe distribution of the random

can be written as variableC(;,6,) converges to a Gaussian distribution.

C(T, 0)=alg

so that one can descriladl data of all scattering angles by
onedistributionh,(ry).
Sometimes, however, it is favorable or even necessary t

o i 2
f dinr Rf(ry) Puie(n20) () o, IV. REGULARIZATION METHOD

ftie(Th , Orer) . :

Miek T Tret In Sec. Il the cross correlation function of 3D cross cor-
+1 (3.6)  relation measurements has been related to the well investi-
gated normalized field correlation function and thus to the

and for 6— 6, Eq. (3.6) becomes equal to E¢3.3). Thus, common direct problem of DLS. Then, in Sec. lll this direct

one again can describe the dataatif scattering angles by pLobIem has b?er? moldifigd by :erdUCirTg tﬂe (jcatte;in?l
one distribution " (r ). characteristic of the solved particles, so that the data of a

Empirically, the estimation of distributions in such direct meNasurement angles can be describediydistributionh

problems depends sensitively on aberrations in the baselif h"!, respectively. In the following, regularization meth-

of the data. Furthermore, not even all hardware correlatorgds are adapted to the results of Sec. Il to obtain a multi-
are able to estimate thmormalized correlation function. ~angle estimator for the radius distribution.

Therefore, in the following the more general case of a non- Commonly, the regularization solution is obtained by
normalized correlation function is considered and the basehinimizing the following functional:

lines of the correlation functions, denoted wiih, for each

measurement angl®, are estimated simultaneously, too. Noq 5
Thus, Eq.(3.5) and (3.6) read Vilhl=2, —(C/-C[hD?+AR[h], (4.1
= i

C(T, 0):a€

C(7,0)[h,,a,,b _ : .
(m.0)LIe.a,.bo] whereN is the number of data points anq is the standard

deviation of the measurement error of the data p@iht

For a given data modéi.e., direct problemexpressed by
C[h], the sum in Eq(4.1) determines théiscrepancyof the
3.7) measured dat&” from the corresponding valug[ h] under
the hypothesis thdt is the true distribution. The smaller the

o0 2
=aﬁf dinrph, (ry) fyie(rn, 0)e A7l +p,,

C(r, 0)[Efref,a0,b0] discrepancy, the bettdr fits the data on the basis of the
) model. Thus the regularization solution is forced to be com-
” T Oret fuiie(Th . 60) —c(0)7ir patible with the data. The minimization of this term alone
=ay dinryh ™ (rp)z————e h ; : ;
o fiie(Th + Orer) corresponds to ordinargnon negativg least square estima-
tions.
+by. 3.8 Theregularization term Rh] imposes the constraint from

some prior information by assigning toa value that is the
Here, the squared brackets indicate that E§<) and (3.9 smaller the betten complies with the prior information, i.e.,
can be interpreted as functionals of the parametgrb, and  the more probable it is considered. Note that the prior infor-

the distributionh, or h”, respectively. These relations be- mation is independent from the data.

tween the data and the distribution represent the so-called 1N€ regularization parameten weights the constraint
direct problemthat has to be inverted in order to obtain ToM the prior information in comparison with the constraint

= Ot . from the data. For a proper estimationtofin optimal value
ay,by andh, or h ™, respectively.

_ ) of \ has to be chosen. This optimal value highly depends on
The measured correlation function ©7,60) can be as-  he measurement errors and the number of data points. In this
sumed as a realization of a Gaussian random variable Withicie )\ is selected by means of the self-consistent method
meanC(7, 6): introduced by Honerkamp and Wedgg.
Minimization of the functionaV,[h] in Eq. (4.1) in order
Co(r,6)=C(7,0)+e(r,6), (3.9  to obtain an estimate of the distributitncorresponds to a
MAP estimator(see, e.g.,6,26]). With Eq.(3.7) or Eq.(3.8),
where thedata errors €7 ,6,) are a realization of a random respectively, and Eq4.1) the multiangle MAP estimator of
variableE( 7, 6,) with the radius distributiomn, and the parametees, andbaI reads
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{ﬁ["a,égl,f)[,l}= arg min
hy.ag,.bg,

LN {C(m,6)—Clh;,a4,b4]1(7i,6)}?
[Z > — +AR[N,] |- (4.2
I=1i=1 o;
Here,L denotes the number of measurement angles\yrid the number of data points of the correlation functof( 7; , ;)
obtained at angl®, .

Analogously, for the single angle MAP estimator it follows that

N ~ " N(i O( . _ h ) 2
{hf’a,ae,bg}:argh mir:) 2,1 {C%(n1.9) C[(;?’aﬁ’bG](T"m} +)\R[h,]]. 4.3

In the case of radius distributions one prior information is themeasurements the temperature was kept at20.8°C. In
positivity constrainth,(r)=0Vr. The positivity constraintis  the following we consider two different types of sample: an
enforced by the minimization algorithm, which allows only aqueous suspension of latex particles with a fairly narrow
positive values for the distribution. Furthermore, one can assjze distribution and a bimodal sample containing latex
sume, that the distribution iémited. This prior information  spheres of two distinct sizes.
is modeled by the so-calletikhonov regularization term a. Monomodal sampleFigure 2 shows the cross correla-
M tion functions of the scattered intensity for the monomodal
R[h,]= E h2(r) 4.4 sample ¢ axis Wi'.[h logarithmic scaDefo'r different.scattering

e R ' angles. The radius of the latex particles obtained by TEM

This functional has been used for the estimation of the

monomodal radius distributioh, in Sec. VI. 0.09 |- A 30°
For broadened distributions the prior information that the o 500
distribution is smooth may be more appropriate. This 0.07 |
smoothness constraint is modeled by Biellips regulariza-
tion term D" 0.05
M-1 &
0.0:
RIh]= 3 [0(rsn) =2 (r)+h(ripl, @5 Q0
. . . . 0.01 |
which sums up the numerical approximation of the seconc
derivatives of the distribution. This functional has been usec 0.01 , ‘

for the estimation of the bimodal relative scattering contri- 0.01 1 100

butionh>®" in the second part of Sec. VI.

As mentioned above, regularization methods can be inter
preted in the framework of Bayesian estimators as MAP es
timators. From this point of view the minimization of the

functional V,[ h] corresponds to the maximization of thae o0
posteriori distribution p(h|C“), which represents the most prl
probable distributiorh given the dataC?. For a more de-
tailed discussion we refer {®,26).
—~ 0.05 |
D
V. EXPERIMENT % st L
All measurements have been performed using an opti
mized 3D cross correlation instrument. As demonstrated i 0.01 1
[21,20,27 this measurement scheme avoids any deteriora
tion of the measured correlation function by multiply scat- -0.01 ‘ : i
tered light and allows the investigation of samples up ta 001
fairly high turbidity levels. The radii of the latex particles T [ms]
obtained by TEM measurements provided by the manufac-
turer (Dow) are 226.5-4.5 nm, 66.0 nntno standard devia- FIG. 2. Cross correlation functions obtained for a monomodal

tion given by the manufacturgrand 53.5-5.25 nm. The  suspension. TEM radius of the suspended latex particle is 53.5
investigated samples contain latex particles with a refractive-5.25 nm. The scattering angle ranges from 30° to 130° in steps
index of n=1.59 and a density op=1.05 g/ml. For all of 20°.
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relatively small size ratio of 1:3.4 where the two contribu-
tions result in a cross correlation function that appears to be
monoexponentialbut actually is bimoda). This example
demonstrates, that in many cases it is difficult or even im-
possible to yield reliable information about the constituents
by measurements fromsngle scattering angle only.

0=50°

VI. EVALUATION

In the following section the radii distributiom, calculated
for the monomodal sample and the relative scattering contri-
bution ﬁf'ef of the bimodal sample are estimated with both
the single angleand themultiangleMAP estimator. Further-
more, for the bimodal sample the volume fraction of the two
components is calculated from the relative scattering contri-
bution estimated by the maMAP estimator. Then, this vol-
FIG. 3. 3D cross correlation functions obtained for a bimodalY™M€ fraction is compared to the experimentally determined

suspension. The TEM radii of the suspended latex particles hav\éOlume fraction. It is shown that. the multiangl'e an.alysis en-
been 226.5 and 66.0 nm. The cross correlation functions have Nances enormously the resolution of the estimation. More-

been measured in an angular range of§@%<110° at intervals of  OVer, the calculated volume fraction agrees qualitatively with
20°, the turbidity has been 2.60 cth For clarity of presentation the “real” volume fraction—despite the low signal-to-noise
the data of the auto correlation functions f+50°,70°, and 90°  ratio.
have been given an offset. a. Monomodal samplerirst we consider the results ob-
tained for the monomodal sample. Here, the simultaneous
measurements provided by the manufacturer is 53.25  analysis of cross correlation functions for only three different
nm. The range of the measurement angles has been chossrattering angles is sufficient to enhance the quality of the
from 30° to 130° in steps of 20°. The mass ratio of latex toreconstructed radius distribution enormously. In order to
solvent is 0.3%. Accordingly, the sample is indeed quite tur-demonstrate that this result is consistent and quite indepen-
bid. The turbidity 7 of the samples was obtained using thedent of the choice of the measurement angles the radius dis-

G(6,7) "R(6) / Reso(B)

7 [ms]

relation 7= In(lg/lyand/!, Wherel ;a0 i the intensity of the
transmitted laser light in the presence of the samplés the

tribution is estimated for two different sets of three cross
correlation functions. These sets consist of the cross correla-

corresponding value for the cell filled with pure water andtion functions measured at 30°,70°,110° and 50°,90°,130°,

| =10 mm is the thickness of the sample. Wit 3.08 cm 't
the monomodal sample was rather turbid.

respectively.
The shape of the radius distribution is shown in Fig. 4.

Obviously, the errors of the cross correlation functionsThe estimates of the radius distributiGerror barg were cal-
increase for long relaxation times, which complicates aculated with the saMAP estimator. Each single angle estima-
proper estimation of the baseline. Furthermore, this behavidiion leads to strongly broadened and asymmetric radius dis-
of the errors stands in contradiction to the error model foitributions in contrast to the TEM measurements. Moreover,
autocorrelation functions proposed by Sieh[28] that pre-  the estimation of the radius distribution of the measurement
dicts substantially an exponential decay of the estimatiorangle #=110° is even bimodal. Obviously, the shape of the
errors for long relaxation times. Accordingly, this error radius distribution cannot be reconstructed from these noisy
model isad hocnot transferable to the case of cross corre-data using the saMAP estimator.
lation functions and in the following a simple but more ad-  Figure 5 shows the estimates of the radius distribution
equate error model with absolute errors is assumed. obtained with the maMAP estimator: Unlike the saMAP es-

b. Bimodal sampleNext we performed measurements timator the maMAP estimator is able to reconstruct properly
with a strongly scattering bimodal sample containing par-the shape of the radius distribution: the estimates are narrow
ticles with radii of 226.5-4.5 nm and 66.0 nnino standard distributions with mean 50 nm and a standard deviation of
deviation availablg obtained by TEM measurements pro- 2.2 nm.
vided by the manufacturer. The ratio of the mass concentra- We now turn to a rather important subject that in practical
tion c,/c, of the particles is 1:20.2. The turbidity of the applications is astonishingly often neglected. This is the
sample wasr=2.60 cm L. Figure 3 shows 3D cross corre- comparison of the position of the maximum valuesr gf,
lation functions of the electric field amplitude for several with the mean radiir ea, FOr single angle estimatgsf.
scattering angles@ axis with logarithmic scale Table ) the maxima vary from 46 nm up to 53 nm. Further-

The time dependence of the measured 3D cross correlanore, the asymmetric shape of the distribution has an impact
tion functions—which takes only single scattering processesn the mean radii, which differs significantly from the posi-
into account—does not show observable deviations from &on of the maximum radii and also from the “real” radius
simple exponentiafindicated by the solid line Despite this measured by TEM. This means, in such cases it is difficult to
simple exponential behavior the sample is bimodal, howeveimake a clear prediction about particle size and distribu-
The appearance of jusine single exponential is due to the tion shape.
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by 0=30° By 0=50° h, 0=70° TABLE I. Monomodal distribution: Estimated maximum and
04 sasam 0.1 s3sam 0.1 58.5nm mean radius in nanometers.
0.05 0.05 0.05 Radius(TEM): 53.0
saMAP maMAP
i r max r mean r max r mean
35 60 85 35 60 85 0 (nm)  (nm) (nm)  (nm)
rinml rinml 30° 52 48  30°, 70°, 110° 50 50
50° 47 42 50°, 90°, 130° 50 50
110° O.Ihr 130° 70° 47 43
53.5nm : 53.5nm 900 46 43
- 110° (22} 53 (39P, 51
0.05 130° 52 48
- \ First peak of the bimodal reconstruction.
o P A Taking both peaks into consideration.
r [nm] r [nm]

larger particles. However, this problem can be overcome by

FIG. 4. Estimategerror bar$ of a monomodal radius distribu-

estimation of the relative scattering contributiT(bjziEf instead

tion using the saMAP estimator. The radius size obtained from TEMyf h, [cf. Egs.(3.7) and(3.8)] as described in Sec. lIl. Figure

measurements provided by the manufacturer=$3,5+5.25 nm
(indicated by the solid line For each measurement angle a broad-+
ened radius distribution is calculated. In particular, the width of the
distributions are far larger than the width of the original distribu-
tion. The maxima and mean radii of the distributions vary strongly
for all measurement angles as shown in Table I.

6 shows the estimates of the relative scattering contribution

h>%" for the reference anglé,.=50°, calculated by the

saMAP estimator. Again, the saMAP estimator is not able to
reconstruct properly the shape of the radius distribution. In
particular, it cannot resolve the bimodal character of the dis-

tribution. The relative scattering contributions estimated
In contrast to that. evaluation of the 3D cross correlationffom cross correlation functions of the measurement angles

function by the maMAP estimator give reliable results: now,
the maximum value of the size distribution for easdt of

50°, 70°, and 110° show contributions of the large particle
component, indicated by an increase of the distribution for

scattering angles yields the same value 50 nm. Furthermortdrge particle sizes (50°,70°), or by a broadening of the dis-

this result is consistent with the results of the mean radius of

50 nm for each set. To conclude, we state thatpheicle 5 O2hr 6=50° ) Ozh, 6=70°
H H : : : el " 7 66.0 2265
sizeas well as thaistribution shapeare properly estimated 1 i
by the maMAP estimatofcf. Fig. 5. ] ]
b. Bimodal sampleln this section we consider the evalu- 0.01] 0.01.
ation of the bimodal sample. Here, the volume fractions of o o
the two components are very differgfit20.2. Thus, an es- ] ]
timation of the radius distribution might lead to an smooth- 0.0 0.0
. . M v T T T T
ing of the smaller componeritarge particlel although the 10 30 60100 300 10 3060100 300
data contain sufficient information about this component due r [nm] r [nm]
to the strong increase of the scattering characteristic for the
a0 70 110° o010 h*  g=90° he  e=110°
0_1h’r oo ,7:3,.1;:m 0_17hr e ’9:3'_;3:[“ 0.02 660 (2265 0.027 660 |2265
0.05 0.05; 0-015 0-015
0.0 i I T T T 0.0 i T T T T
PP I e 10 3060100 300 10 3060100 30
r [nm] r [nm] r [nm] r[nm]

FIG. 5. Estimategerror bar$ of a monomodal radius distribu-

FIG. 6. Single angle estimatésrror bar$ of a bimodal relative

tion using the maMAP estimator. The radius size obtained fromscattering contributiorh®® to the reference anglé,.=50°. The

TEM measurements provided by the manufacturerris53,5

radii sizes obtained from TEM measurements provided by the

+5.25 nm(indicated by the solid line Both estimations lead to the manufacturer are;=66.0 nm and ,=226.5 nm(indicated by the
same consistent maximum at 50 nm. Furthermore the shape of ttelid lineg. The saMAP estimator is not able to reconstruct the
distribution is very close to the TEM measurements.

bimodal character of the radius distribution.
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g

h h
0.02: 66.0 2265 :r 66.0 2265
] 0.05
0.0H b D
] ] o
: L ool }% -
0.0 I [ T 0.0 T T T T{
10 30 60100 300 10 3060100 300 ©
r [nm] r [nm] O
FIG. 7. Left: Multiangle estimatéerror bar$ of a bimodal rela-
tive scattering contributiom>"” for the reference anglé,e=50°.
The radii sizes obtained from TEM measurements provided by the ,

manufacturer are;=66.0 nm and ,=226.5 nm(indicated by the
solid lineg. The multiangle estimator reconstructs properly both
components of the bimodal distribution. The small peaks=ai4

nm and atr =357 nm are affected with large errors and are not g 8. Conventional auto correlation functions obtained for a
significant. Accordingly, they can be neglected in comparison withyimodal suspension. The TEM radii of the suspended latex particles
the main peaks. nght:N\/qume fraction calculated from the relativen ave peen 226.5 and 66.0 nm. The auto correlation functions have
scattering contributionh;”" rendering a mass concentration of peen measured in an angular range of$$@%<110° at intervals of
10.3:1. 20°, the turbidity has been 2.60 ¢t For clarity of presentation
the data of the auto correlation functions #+50°,70°, and 90°
tribution (110°). This is due to the fact that larger particleshave been given an offset.
have a scattering minimum betweeh=80° and 6=90°.
Therefore the result at=90° results mostly from light scat- €ffect of multiple scattering can be mistaken as if caused by
tered by the smaller particles. Consequently, the time depert broad size distribution. This is demonstrated in Fig. 8 that
dence of the cross correlation functions at this scatteringhows autocorrelation functions of the electric field ampli-
angle mostly reflects the dynamic of smaller particles and théude obtained with a conventional DLS experiment for the
contribution of the particles with radius=226.5 nm is neg- Same sample as in Fig. 3. As can be inferred from Fig. 8 the
ligible. measured autocorrelation functions differ significantly from
The maMAP estimate of the relative scattering contribu-a2 monoexponential decdindicated by solid ling especially
tion F;r’°° (Fig. 7), however, resolves both components atfor small' scattering angles. This coulq Qasﬂy lead to misin-
rmaMAP_ 6> nm andrT*AP=237 nm in good agreement terpre(z;aﬂor;shof the data: Thdeze de;)watlé)ns COLIII_d bg |In(;¢_ar-
with the TEM measurementsndicated by the solid lings p_rete_ as It €y were caused by a broad or multimodal dis-
The two small peaks at=14 nm and ar =357 nm are tnbgtpn of particle sizes. Howeyer, in this case _the observed
affected with large estimation errors and are not significanfj 6\./IatIOI’IS.dO not result from different contrlb_utlons of spat-
since they are compatible with zero. On the right hand sid ering partlcl'es but from the influence of mu!tlple scaf[term.g.
his is confirmed by the 3D cross correlation functions in

of Flg'_7 the vglume%cggnon calculated from the relative Fig. 3 that result only from single scattering processes and
scattering contribution™ is shown. The calculated volume gre not affected by the disturbing influence of multiple scat-
fraction of 10.3:1 differs from the “real” volume fraction of tering.
20.2:1 by a factor of 2. This is probably due to the low  Fyrthermore, the 3D cross correlation functions of the bi-
signal-to-noise ratio of the experimental data. modal sample also show that it is often not possible to yield
reliable results from measurements at only one scattering
angle. The correlation functions of Fig. 3 appear to be a
single exponential as expected for samples containing only
In this paper we have demonstrated that the combinatioone type of scatterer, despite the fact that the sample contains
of modern measurement methods and enhanced data analyscatterer of two distinct sizes. In such cases, only evaluation
enables to analyze “real world” systems, even for high tur-schemes on the basis of multiangle procedures lead to the
bidity levels. Especially when the signal-to-noise ratio of thedesired information about the constituents of the sample.
experimentally obtained data is low, e.g., in the case of 3DThis has been shown [29] in a straight forward way, where
cross correlation measurements of turbid media, the multia simple fit procedure has been presented that is based on the
angle analysis combined with the simultaneous regularizasimultaneous evaluation of dynamic and static light scatter-
tion method(maMAP estimator enhances enormously the ing data. It has been shown that this procedure leads to reli-
quality of the evaluation results. able results concerning the composition of the bimodal
For the investigation of turbid media it is essential to ap-samples under investigation, even for samples where the size
ply measurement methods that select only that part of thef the scattering particles differ only by a factor of 1.9. The
scattered light that stems from single scattering processeslear advantage of this simple fit procedure is its easy han-
This is especially important for bimodal samples, where thealling: one only needs to determine the initial slope of the

T [ms]

VIl. SUMMARY AND DISCUSSION
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correlation functions, which in general can easily be donesolutions is not the best solution with respect to the prior
even for correlation functions with low signal-to-noise ratio. information and all dat$6].
This of course means, that this simple procedure is not able Concluding, one can state that the simultaneous regular-
to determine theshapeof the particle size distribution. ization method discussed in this paper is a powerful tool in
In contrast to that, we have demonstrated that the maMARder to reconstruct the radius distribution or relative scatter-
estimator is able to reconstruct properly both the position anang contribution, respectively—especially from data with a
the shape of bimodal particle size distributions—in contrasjoyy signal-to-noise ratio as in the case of turbid media or
to evaluations of the saMAP estimator for just one scattering“gmy diluted samples when single angle regularization
angle. The improved resolution of the multiangle estimator,eihods fail in resolving the distribution. In some publica-

compared to the single angle estimator is due to a number Yons [28,30 more elaborated error models have been pro-

rea(slc))nTsr.]e resolution of a sinale anale estimator varies forposed, where the correlations of errors have to be taken into
9 9 ansideration. In particular, it has been shown that in case of

specific_particle sizes in dependence of the measureme Igh intensities and short measurement times the correlations
angle. This is caused by the fact that—in dependence on th
g y b f the errors should not be neglectEd31]. However, an

scattering angle—specific particle sizes contribute less to th@ d del for th 3D lati
entire scattering intensity and thus to the entire correlatiof"'PTOVEd €rTor model for the present cross correlation
s—according to our knowledge—not been proposed

function. The multiangle estimator, however, compensatedata ha KT p
the lower information on specific particle sizescate mea-  UP 10 now ano_l the tran_sfera_\b|l|ty of Sdbals error mo_del to
surement angle by information dhe other measurement Cross correlation data is still not proved. Also in this paper
angles. Thus the resolution of the multiangle estimator igve focus on thenultiangledata analysis, so that we restrict
quite equal for all particle sizes. ourselves to the simplified error model.

(2) Furthermore, for every particle size the resolution of  Finally, if the distribution cannot be reconstructed prop-
the multiangle estimator is better than the resolution of theerly using the simplified error model, one should investigate
“best” single angle estimator, which is due to a larger num-the data using an improved error model. However, if the
ber of data. distribution is reconstructed well with the simplified error

(3) At last, in the case of the maMAP estimator the priormodel an improved error model will not enhance signifi-
information is imposed toneconsistent solution on basis of cantly the resolutiofid1]. As shown below for the data used
all measured data, whereas in the case of the saMAP estimarthis paper the results of the MAP estimator are quite good
tor the prior information is imposed to each single angleso that one cannot expect improving results by taking ac-
solution separately. Thus the combination of all single angleeount of an improved error model.
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