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Universality of a two-dimensional Ising ferromagnetic fluid
near the second-order magnetic phase transition
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The critical behavior of a two-dimensioné2D) system of hard disks, each disk bearing an Ising spin and
interacting via Ising-like interactions, is studied near the second-order phase transition from the paramagnetic-
to-ferromagnetic fluid phase by Monte Carlo simulations combined with a finite-size scaling analysis and a
single histogram technique. The critical line is located and values of critical exponents along this line are
determined. The continuous variation of the Binder’s reduced fourth-order cumulant at the critical point and of
the critical exponent with disk density is observed and a linear relation between these quantities is found.
Ratios of critical exponentg/v and /v are found to be the same as those in the 2D Ising lattice model at all
fluid densities. A statistical analysis of Voronoi diagrams generated for typical particle configurations along the
critical line is performed. The variation of parameters characterizing Voronoi diagrams at the critical point with
density is compared to the variation of critical exponents with density.
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[. INTRODUCTION glected. In order to evaluate how bad the cell theories are and
suggest the way to modify them, Hoover and Régmade
The simplest model of a fluid is a two-dimensioriaD) MC simulations of a 2D hard-disk single-occupancy cell
hard-disk system. This model has been of concern for a nunmodel, i.e., the model with one disk per cell. The authors
ber of decade§l,2], because it exhibits the freezing transi- Showed that in the fluid phase, this model reproduces the
tion and because of its use as the reference system for mahjard-disk equation of state surprisingly well. Among other
perturbation theories of fluids. A two-dimensional hard-disk@PProximate theoretical methods, the density-functional
system has been extensively studied by computer simulatioff€0ry was particularly useful in the study of fluid properties.
methods: the Monte CarléMC) method, which evaluates The solid near melting is considered as a perturbation on the

; fluid, and the order parameters characterizing the fluid-solid
ensemble averages, and by the molecular-dynarthtis) . i .
: - - . : _phase transition are the amplitudes of density wgved (] .
method, in which dynamical equations of motion for par Results for 2D hard disks obtained from density-functional

ticles are solved. Both methods are fundamental in theoreti- . . .
cal studies of fluid properties. They give excellent agreeme alculations and computer simulations were compared by
i . ) ' ) . . eng and Oxtoby10]. They are very close. There are also
with experlm'ent provided that'suff.|C|entIy realistic potential- approximate theories of a 2D classical hard-disk fluid based
energy functions are uséd]. It is widely accepted that both on the correlation functions between disks. Lddd] and
MC and MD supply “experimental” data and any approxi- chae Ree, and Ré&2] compared results from MC simula-
mate theory of liquids can be tested against these “expe_riﬂons and from four theories: the Born-Green-YuBGY),
mental” data. The MC method was proposed by Metropolishe percus-YevickPY), the convolution-hypernetted-chain
et al. [3] in 1953, and applled to get an equation of state for(CHNC), and the pressure_consistéﬁc) theory_ These ap-
224 hard disks in two dimensions. The obtained results digyroximate theories allow one to obtain the pair radial distri-
not indicate any phase transition. Alder and Wainwrighit ~ bution function by numerical integrations and iterations of
applied the MD method to study a 2D system of 870 hardntegral equations. The PY theory was found to provide the
disks and demonstrated very clearly the coexistance of solidest results consistent with MC simulations.
and fluid phases at high densities, what is typical of the first- In 1968, Busch and Guentherofdt3] reported the first
order phase transition. Hoover and Aldér] showed that experimental evidence for ferromagnetism in the liquid state.
equations of state for a 2D hard-disk system obtained by th&hey investigated liquid alloys with transition metals that in
MC and MD methods are identical. A major conclusion fol- the solid phase are amorphous ferromagnets. The paper
lowing from computer simulations is that 2D hard-disk sys-stimulated both experimental and theoretical studies of mag-
tems show the phase transition from fluid to solid phases atetic liquids. The theoretical models of magnetic liquids are
high densities. This transition is a weak first-order transitionbased on the existing classical models of liquids that fairly
with a narrow gap between the coexisting densities and lowvell describe the microscopic and macroscopic static and
metastability barier between the solid and the disorderedynamic properties of liquidgl]. In magnetic liquids, there
fluid. The earliest approximate theories of fluids were theare additional magnetic degrees of freedom that are on an
cell or free-volume theorigd]. They were based on the idea equal footing with other degrees of freedom. The interplay
that molecules in a liquid for most of the time are confined tobetween spatial and magnetic degrees of freedom leads to
cells formed by their neighbors. In the cell model, the com-complex phase diagrams of magnetic fluids with the first-
munal entropy arising from communal sharing of the vol-and second-order transitions as well as tricritical and triple
ume, and due to the presence of density fluctuations, is ngoints both in the quanturfil4—16 and classica[17—-20
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limits. In this paper, we consider a model for ferromagneticdisorder one expects the critical behavior to change in both
fluid consisting of hard-core particles with a classical spincases. It has, however, not yet been established definitively,
degrees of freedom. Frankel and Thomp§br| first exam-  whether critical exponents vary continuously with the
ined the thermodynamic properties of this model for the in-amount of disorder, or they adopt new universal values cor-
teraction potential between spins of Kac tyg&K (e|r|) in  responding to the existence of a new random fixed point.
the long-range limit. The free energy in this case is a comMoreover, it is generally thought that scaling relations be-
bination of the classical van der Waals and Curie-Weiss extween critical exponents are always preserved. First, MC
pressions. The qualitative features of this model and its phassimulations for the simple cubic Ising model with quenched
diagram are dimension independent. Frankel and Thompsagite dilution failed to get any difference of critical exponents
suggested the application of the model to amorphous ferrdrom pure critical exponen{23]. Because the exponeatof
magnets, dilute magnetic alloys, silicon spin glasses, anthe pure system is positivi22], the critical behavior was
with suitable modifications, to liquid crystals. Hemmer andexpected to change. Marro, Labarta, and Tejg2# per-
Imbro [18] considered a system of hard-core particles interformed MC analysis in larger systems and revealed a line of
acting with weak long-ranged exchange interactions in addifixed points. They obtained critical exponents varying con-
tion to the spin-independent isotropic attractive forces. Aptinuously with dilution. Kim and Patrascio{25] studied the
plying the effective-field theory, they derived two coupled 2D randomly site-diluted Ising model on the square lattice by
equations of state for the average magnetization and pre$4C simulations. They observed a continuous increase of
sure. The equations were used to obtain phase diagrams foritical exponents of the magnetic susceptibilityand of the
the 1D system with Ising spins and the 3D system withcorrelation lengthy with dilution, whereas the ratioy/v
Heisenberg spins. Depending on the ratio of the integratee- 1.75 remained as those in the pure sysfeg]. They also
strengths of the magnetic and nonmagnetic interactions, taioticed that Binder’s reduced fourth-order cumul@—2§
pologically different phase diagrams occur. The same 3[at the critical point is increasing with dilution. Ka [29]
system of hard-core particles with Heisenberg spins was alsstudied the same model using the real-space renormalization
studied within the mean-fielMF) and the modified mean- group (RSRG method and a method that combines a grand
field (MMF) approximations of the density functional theory ensemble approach to disordered systems with phenomeno-
(DFT) [20]. The different types of phase diagrams obtainedogical renormalization. His results are in complete qualita-
by Hemmer and Imbro were qualitatively reproduced, andive and quantitative accord with MC simulations. Derrida
for a system without isotropic interactions a remarkable goodnd coworker$30] considered the Binder’s cumulant in the
agreement with MC simulationg21] was noticed. Lomba 2D quenched bond-diluted Ising lattice model in stripe ge-
and coworkers[19] considered the 3D system of hard ometry applying MC simulations. They noticed the variation
spheres with embedded Heisenberg spins whose couplimgf the cumulant with the amount of disorder and suggested
constant is given by Yukawa ferromagnetic interaction. Theyalso that critical exponents should vary continuously. They
carried out Gibbs’ ensemble Monte Carlo simulations to in-made the conjecture that the value of the cumulant at the
vestigate the liquid-gas coexistence curve. They found thatritical point characterizes universality class. The exponent
the system lacks a tricritical point and the line of Curie « is zero for the pure 2D Ising lattice model, so the disorder
points ends at a critical endpoint on the gas side of the gass marginally irrelevant in this case, and it is unclear if any
liquid coexistence curve. This disagreed with predictions ofthange of critical exponents should be expected. The inves-
both the DFT[20] and the effective-field theor}18]. The tigations of a randomly spin-diluted 2D Ising lattice model
contradiction was discussed in RE20]. suggest weak universality in this case in the sense that expo-
The critical properties of ferromagnetic fluids have beennentsy, 8, andv increase with dilution, whiley/v and 8/ v
much less studied than their phase diagrams. The configurare constant and the same as those in the pure 2D Ising
tional disorder in magnetic fluids is brought about by thermallattice model.
motions, so they are classified as annealed disordered mag- The critical properties of ferromagnetic fluids have been
netic systems. According to the universality arguments, magstudied since 1996, and the results obtained so far are incon-
netic fluids with short-ranged interactions should exhibit theclusive [21,31,33. All authors combined MC simulations
same critical properties as dilute localized magnets. A fixedvith a finite-size scaling analysis and with single and/or mul-
particle density in a fluid correspond to a fixed degree oftiple histogram techniques. The finite-size scaliffS9
dilution in the lattice. Let us first briefly review the results method allows one to extract the proper critical behavior
obtained so far for ferromagnetic lattice models with con-from the rounded singularities produced by the finite size of
figurational disorder that are the most related with this papetthe simulated systenj26—28. The singlg/33] and multiple
The comprehensive review of basic static properties of dilut¢34] histogram techniques proposed by Ferrenberg and
localized magnets with both quenched and annealed, bor@wendsen greatly enhanced the accuracy and improved the
and site disorder, is given in RgR2]. The main conclusion efficiency of MC simulations in the critical region. The
following from the study of the second-order magnetic phaseingle histogram technique allows one to obtain complete
transition in these systems is that a small amount of disordehermodynamic information over the entire scaling region
should not change the critical behavior and values of criticahear a phase transition from a single MC run. The multiple
exponents if the specific heat exponentf the pure system histogram technique is an optimized method for combining
is negative. On the contrary, when>0, critical exponents data from several MC runs both to increase the total accuracy
take renormalized valug22]. Above a certain amount of of the results and to obtain information over a wide range of
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parameter values. Ferrenberg and Swendsen tested both tegenents of the spin-correlation length, the magnetization and
niques against the exact solution of the 2D Ising latticemagnetic susceptibility are considered in Sec. IV. The char-
model and they have got an excellent agreement. MC simuacterization of structural changes of the fluid along the criti-

lations with a finite-size scaling analysis and histogram techcal line based on the analysis of Voronoi diagrams is pre-
niques have also been used to in\/estigate 3D classical |Sir@nt8d in SEC. V. Finally, all obtained results are summarized
[35] and Heisenber{B36] simple cubic models for which the N conclusions.

exact results are as yet unknown. The critical properties have

been determined with a precision comparable to that ob- Il. THE MODEL AND SIMULATION DETAILS

tained with renormalization-group and series-expansion tech-

, @

niques. Nowadays, this method is the most frequently used to 1€ Model to be considered is a simplified representation
obtain highly accurate estimates for the location of phasd®r & 2D fluid of particles with two internal magnetic states.
transition and values of critical exponents in systems witharticles represented by hard disks of diametéave trans-
unknown or partially known behavior. Nijmeijer and Weis Iafuonal c_jegrees of freedom, and each partlcle has an mternal
[21] considered a 3D fluid of hard spheres that carry dSing spin §==1). Usually, the most important contribu-
Heisenberg spin and interact via Yukawa-type exchange codion to intermolecular potential energy is from pair interac-
pling. Their estimates for exponent ratigéy and /v are tions _between spins and other multlbod_y interactions are
the same for all fluid densities and satisfy the scaling relatioff€9ligible. In this paper, we assume the Ising-like interaction
2B/v+ylv=D with D=3. The Binder's reduced fourth- betW(_een spins favoring their ferromagnghc alignment, with
order cumulant at the critical point and the value of the cor-th€ distance-dependent exchange couplifigo). There are
relation length critical exponent increased at lower fluid WO approximations of the effective exchange coupling be-
densities. Wilding and Nielab&31] studied the tricritical tween spins used mtheoretl(_:al s;udles of magnetic fluids: the
point properties of a 2D system of hard disks each of whictfrude square-well approximatiorj14-16,31 and the

has Ising spin interacting via a distance-dependent spin coulukéwa-type smooth approximatiga9,21,33. We assume
pling of the square well type. They located the tricritical tN€ Yukawa-type coupling between spii(g/o) in the form
point and determined exponents of the three relevant scaling : ;

fields controlling the behavior of the system in the vicinity of o _ 9 _ o

this point. Ferreira and Kornete82] considered the same J(a)/ kgT=—K r exp ZU(O‘ 1)

model assuming the Yukawa form of the exchange coupling

between spins. They described critical properties of thevherekg is the Boltzmann’'s constant, is the temperature,
model at low-disk density near the second-order phase trarzo is the screening parameter, akd-0 expresses the ratio
sition from the paramagnetic to the ferromagnetic fluid. Theof exchange energy to thermal energy. The quantity 1¢ a
obtained critical exponent is much higher than in the 2D measure for the range of exchange interactions. All MC
Ising lattice model, whereas ratios of critical exponefite  simulations in this paper were performed fosr=1. This
andy/v are the same as those in the 2D Ising lattice modelmodel was studied for one fluid density in RE32].

In this paper, we concentrate on the critical behavior of At high temperatures, only the hard-core repulsion re-
the 2D hard-disk Ising fluid near the second-order magnetienains and the system is paramagnetic for all densities. At
phase transition in the range of densities higher than the triigh densities, there is a temperature-independent hard-disk
critical point density and lower than the freezing density. Thefirst-order freezing transition. As the temperature is reduced,
aim of the paper is to answer several questions followinghe system undergoes a second-order phase transition from a
from the summary given above, e.g., is the weak universalitparamagnetic hexagonal solid to ferromagnetic hexagonal
observed in dilute localized magnets also appropriate to chasolid at high densities and from a paramagnetic to ferromag-
acterize critical properties of magnetic fluids? Does the valuaetic fluid at intermediate densities. In the ferromagnetic
of Binder’'s cumulant at the critical point follow changes of phase, the freezing density decreases with decreasing the
critical exponents with fluid density? Is the dependence otemperature due to greater stability of the solid phase arising
critical properties in the Ising and Heisenberg fluids on thefrom magnetic interactions. The line of critical points sepa-
density qualitatively correlated? How bad are the approxitating the paramagnetic fluid phase from the ferromagnetic
mate cell or mean-field approximatioidFA) theories in  fluid phase, called the critical line or the Curie line, term-
predicting the location of the critical line? Is the Voronoi inates at the tricritical poinft31]. The particle density varies
diagram useful in the description of structural changes in theontinuously across this line. At low densities, there is a
magnetic fluid at the critical point with density? We per- strong tendency to clustering in the system. Following the
formed MC simulations, and the finite-size scaling analysiritical line to lower densities, the density fluctuations grow,
in the same way as it was done by Ferreira and Korf@2h  and at the tricritical point, the critical line merges into the
but in larger systems to reduce corrections to the scaling. Wgas-liquid coexistance region. This region corresponds to the
applied the single histogram technique to the simulation datao-called condensation-ordering first-order phase transition
in order to get the thermodynamic information over the en{20], where order-disorder and gas-liquid first-order phase
tire scaling regime. The model and MC simulation details ardransitions are coupled. In this region, a low-density para-
described in Sec. Il. The location of the critical line deter-magnetic gas and a high-density ferromagnetic liquid coex-
mined from MC simulations and obtained within the cell ist. The condensation-ordering first-order transition meets at
model and MFA theory is given in Sec. lll. The critical ex- the triple point of the freezing first-order phase transition. At
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the triple point, ferromagnetic fluid coexists with ferromag-  TABLE I. The values of coupling parameté for which MC
netic hexagonal solid. For temperatures below the triplesimulations were performed denotes the number of particles in
point temperature, there is a first-order phase transition behe system ang is the number density.
tween paramagnetic gas and ferromagnetic hexagonal solid:
MC simulations we performed in the canonic,{/,T) p N=1296 N=1156 N=1024 N=900 N=784 N=676
ensemble in which the particle numbérthe total volumev, 0.8 0.198 0.198 0198 0197 0.198
and the temperaturBare fixed[1,37]. The square simulation . 0.238 0.239 0239 0239 0238 0239
box with periodic boundary conditions was assumed, so th . 0296 0298 0296 0296 0299 0.296
surface effectsdwere avoided. I[n s]imuéations, we ugeﬁ th%6 0.290 0.290 0.290 0290 0290  0.290
nearest-image distance convent|@7] and we truncated the ' ' ' ' ' '
pair interaction at a distance 6.3246In order to avoid the 0'22 8'223 g'gzg 8'223 8'223 8222 gggg
calculation of distances between particles that are too far’ ' : ) ) : '
apart to interact, the simulation box was partitioned into cells™ 0.389 0.389 0389 0386 0386 0.389
and the method of linked lists of neighbdi37] was used. 0.5 0.370 0.370 0.370 0370 0370 0370
We applied a regular Metropolis scher8 to sample posi- 0.45  0.460 0.460 0460  0.450  0.455  0.460
tions of disks and the algorithm described by Lonedal. 045 0430 0425 0431 0430 0420 0415
[19] to sample spin degrees of freedom. At one Monte Carld®-4 0546 0545 0545  0.545  0.546
step(MCS) we attempted to move a randomly selected par-
ticle to a new position and rotate its spin. In all simulations,
the total number of Monte Carlo steps per partidCS/N)
was the same and equak2(®. During the simulation, the
total spin and energy of the system were stored to a file eve% i : - .
10 MCSI/N. The disks were initially placed at random for low arginal mechanical stability are in the range between
densities or on the square lattice for densities greater thaff/ 7cp=0-694[8] and #/ 7.,,=0.786[9]. We performed MC
half of the close-packed density. All runs started from ran-Simulations at the densityy/ 7,,=0.693 (=0.8) and at
dom spin directions. The approach of the system to equiliblower densme_s given in Tables | and II, 1.€., 1N the range
rium in all cases was fairly rapid and discarding the ﬁrstWhere the fluid phase is stable. For densities '°V.Ver. 'than
10* MCS/N ensured that all subsequent configurations werd! 7cp=0.346 (0=0.4) the system approaches the tricritical
generated for the system at equilibrium. The maximum pop_Olnt that .fOHOWS from the analysis of Voronoi diagrams
sition displacement of a particle was adjusted during the ﬁrsglscussed m_the Sec. V. .
discarded MCS, so that to get the acceptance ratio of trial _Lef[ us define bM =25 /N the average value of partlc_le
moves around 50%37]. Instead of performing simulations spin in the system. _The Cef?”a' quantity used to precisely
for various areas of the simulation box and ﬁxed—par'[iclelocate the critical point both in localized magnets and mag-
diameter, we always considered the equivalent problem

o etic fluids is the Binder’s reduced fourth-order cumulént
keeping the box length=1 fixed and changing, the particle defined ag21,26-28,32,35,36
diameter. This is recommended in REB,37] to speed up

the same density, were determined by both numerical meth-
ods and approximate theories. The results are listed in the
Table in Ref.[10]. The obtained densities of the fluid at

(M%)

simulations. The stored data we binned to evaluate both the U=1- ' )
systematic and statistical errors that arise from finite length 3(M?)?

of MC runs[38]. These errors are similar as in RE82] and

we do not plot them here. where( ...) denotes the canonical ensemble avergRje

The variation ofU with the simulation box size for a fixed
value ofK can be interpreted as the renormalization-group
flow diagram[26,27]. Upon increasing the box size, the cu-

The density of hard-disk fluid is usually expressed by two . _
dimensionless quantities: the number density No2/L2 __TABLE II._The critical value qf the Blnqlt_ar’s cumulatd ., the
[8,10,11,14—16,19,21,31,B2and the packing fractiony critical couplingK,, and the estimated critical exponemntof the
_ 'l\l77,0'2/'(4L2) ='77p,/4 ’[9]’ whereL is the simulation box correlation length for diﬁer.ent Ising fgrromagnetic fluid dgnsities.
length. In hard-core systéms, the maximum allowed densitd.enOtes the number density antl., is the reduced packing frac-

is the close-packed density. The close packing of hard diske

corresponds to their arrangement in a trigonal laft8evith

IIl. LOCATION OF THE CRITICAL LINE

densities p,= 2/3=1.1547 and ;= /(2y/3)~0.9069. P 7/ e i Ve Y

The most suitable quantity to characterize the state of the 0.8 0.6928 0.1989 0.6050 1.00
hard-core disk system is the reduced packing fraction 0.7 0.6062 0.2400 0.6065 1.02
7l nep=plpcp Often used in the equations of st@8e-6,12. 0.6 0.5196 0.2989 0.6120 1.09
This ratio we use in all plots. At high densities, disks become 0.55 0.4763 0.3386 0.6160 1.14
sufficiently localized 4] and the fluid crystallizes. The point 0.5 0.4330 0.3886 0.6210 1.20
of marginal mechanical stability where the solid starts to 0.45 0.3897 0.4540 0.6260 1.27
form, and the point of marginal thermodynamic stability 0.4 0.3464 0.5430 0.6320 1.35

where the solid ceases to be metastable relative to the fluid ef
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FIG. 1. Plot of the Binder’s cumulaht versus the couplin in
systems composed of 1296, 1156, 1024, 900, 784, and 676 disks FIG. 2. The Binder’s cumulant at the critical poldt versus the
for the reduced packing fractiop/ 7.,=0.433. The curves result reduced packing fractiom/7.,. The dots represent values of;
from a Sing|e histogram technique_ The S|ope of the curves inDbtained from MC simulations via cumulant CrOSSing method
creases with the number of disks in the system. The critical point i$hown in Fig. 1. The curve is drawn to guide the eye. The dotted
determined by dotted lines. The estimated values of the criticalines determine characteristic packing fractions described in Ref.
couplingK, and of the cumulant at the critical poit, are indi-  [3] and in the text.
cated.

deviations from the free-volume theory become large,

mulant tends tdJ=0 in the paramagnetic phase andUo quickly increases with decreasing fluid density. The same
=2/3 in the ferromagnetic phase. At the critical pokit qualitatively dependence of the Binder’'s cumulant on the
=K., the cumulanU approaches the nontrivial fixed-point density was found in the Heisenberg fl§i2ll] and in the 2D
value. The similar properties have also the higher-order cusite-diluted Ising lattice modgR5]. The value of the Bind-
mulants. In the vicinity of the critical point, the probability er’s cumulant at the critical point obtained in the 2D Ising
distribution function ofM satisfies the finite-size scaling hy- lattice model assuming periodic boundary condition&Jis
pothesis. The form of the distribution, however, strongly de-=0.611[39].
pends both on the boundary conditions used and on the shape The critical line resulting from our MC simulations is
of the simulation bo%26,27,3Q. The probability distribution shown in Fig. 3. The circular data points on this line can
function of M at the critical point and its cumulants are thus serve as “experimental” data points to be fitted by the criti-
universal only in this restricted sense. In practice, the criticatal line obtained within approximate theories. In models of
point is located by performing a single MC simulation in the ferromagnetic fluids, the approximation can be applied to the
critical region and applying histogram techniqui88,34 to  configurational degrees of freedom and/or to spin degrees of
get the dependence of the cumul&hibn K over the entire
scaling regime. At the critical point, the curvés=f(K) 06 —
intersect in a common intersection point independent of the
size of the simulation box. We first performed short MC runs
to get a crude approximation &, for all considered densi-
ties. In Table | we give the number of particles in the system,
densities, and values of the coupling paramétdor which %
we performed long MC simulations. ¢

Applying a single histogram technique and locating the
intersection point of cumulants, we determined the value of
the critical couplingk. and the value of the cumulant at the
critical point U, for different densities of the ferromagnetic

fluid. The intersection of curvebl =f(K) for p=0.5 and 0.1 ; , ‘
different system sizes is shown in Fig. 1. The obtained values 03 0.4 | 05 06 07
of K. andU_ are given in Table Il. In Fig. 2, we show the MM,y

dependence otJ. on the reduced packing fraction. The
B!nder’s cumqlant at the prmcal point varies contm.uouslyduced packing fraction/ 7,,. The dots represent critical points
with the density. Metropolis and coworkef8] determined  gptained from MC simulations via cumulant crossing method
numerically by MC simulations the equation of state for aspown in Fig. 1. The squares result from the approximate theory of
2D system of noninteracting hard disks. Their results coinferromagnetic Ising fluid described in REA2] and in the text. The
cide with the results of the free-volume theory fgfn.;,  solid and dashed curves are critical lines in the cell model for the
>0.556 and with the five-term virial expansion fe 7.,  screening parametetr=1 andzo= 2, respectively. The dotted
<0.4. In Fig. 2 one can notice the change in the dependendies determine characteristic packing fractions described in Ref.
Uc="F(n/nep) for n/5.,=0.56. For fluid densities where [3]and in the text.

FIG. 3. The dependence of the critical couplidg on the re-
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freedom. The earliest approximate theories of liquids weralisks at a distance/ o from a disk at the origin divided by.

the cell theorie$1]. In the simplest uncorrelated cell models, g(r/o) approaches one as the distance becomes large. The
it is assumed that particles are constrained to occupy indimost accurate correlations of particles in fluids are deter-
vidual cells and correlations between particles in differentmined in computer-generated “experiments,” mainly MC
cells are ignored. In fact, one also exploits this idea in MCsimulations. The positional correlation functions obtained
simulations, but a cellsimulation box contains several hun- within the approximate theories like PY, BGY, CHNC, or PC
dred particles instead of one. The single-occupancy celare usually compared with the function evaluated by a MC
model can thus be considered as a rough first approximatiomethod[11,12. Chae and coworkers performed MC simula-
of a fluid. In ferromagnetic fluid, each particle moves in thetions for the system of hard disks and tabulated the function
field of the others, and this field may be replaced by a suitg(r/o) for the three reduced packing fractiopgz,,: 0.4,
able average field. Lennard-Jones and Devongdi@¢pro- 0.5, and 0.6. Using these results, we calculated the effective
posed the uncorrelated cell model for a system of interactingnagnetic field by numerical integration and the value of the
hard-core particles and determined the equation of state of @itical coupling K. from the Weiss magnetic equation of
fluid at moderate densities. They assumed that the averaggate. The obtained critical points are shown by squares in
field in which any one particle moves is the field producedFig. 3. At higher fluid densities, they coincide with the criti-
by other particles localized at their most probable positionscal line predicted by the cell model. We conclude that this
the centers of their cells. In the model of Lennard-Jones antheory and the cell model provide only a crude approxima-
Devonshire, the central particle moves randomly in the symtion to the critical line in our model of ferromagnetic Ising
metrical available region of radiud— o (d is the average fluid.

distance between nearest neighbabout the center of its

cell, while positions of other particles are fixed. The maxi-

mum amplitude of motion can be interpreted as the mean IV. THE CRITICAL EXPONENTS

radius of the free volume in the free-volume theorfiés]. The magnetic second-order phase transition in the Ising
We applied the same approximation to our system of harghodel of a 2D ferromagnetic fluid we studied by varying the
disks with Ising spins assuming that disks are contained ifemperature at a fixed-particle density. We applied finite-size
regglar hexagonal cells. The choice of hexagonal cells i%caling (FSS method combined with a single histogram
motivated by the fact that for a 2D hard-disk system, therechnique33] to determine the critical behavior of different
most probable number of neighbors is six for all densitieghermodynamic quantities over the entire critical region. FSS
[2]. We calculated numerically the effective magnetic fieldyredicts the critical behavior of a system in the thermody-
acting on a central particle, and applying the mean-fielthamic limit from the properties of finite systems. The FSS
Weiss approximation, we determined the critical line showngpproach to critical phenomena was first proposed by Fisher
as the solid line in Fig. 3. The shorter exchange couplingand Barbef43]. They confirmed the method by existing data
makes it harder for the spins to order, and hence, yields gn g 2D Ising model, ferromagnetic spherical models, ideal
lower critical temperature. For the screening parameter Bose fluids, and real helium films. There have been very
=12, i.e., when the range of exchange interactions is shortextensive and careful studies of critical properties in classical
ened, the critical line shifts to higher valueskofind fits well ferromagnetic lattice models by MC simulations combined
to MC simulation data. The Lennard-Jones and Devonshirgjith FSS and histogram techniquig3—36. These methods
cell model provided the basis for other systematic theories ofave proven to be very useful also in the studies of phase
fluids [6,40], e.g., the correlated-cell theories or the clustertransitions in ferromagnetic fluid®1,31,33.
theories[1]. Although for zo= \/5 the cell model correctly In the critical region, there are two important characteris-
predicts here both the shape and position of the critical linetic lengths: the correlation length of the order-parameter
it does not imply that the cell structure exists in real fluids. fluctuations and the linear side of the system. The finite-

The approximate theory of a ferromagnetic fluid that hassize effects are controlled by a comparison of these lengths.
been the most frequently used until now to predict the locaAt the critical point, the correlation lengthdiverges and all
tion of the critical line and the tricritical point is the theory in features on the scale of particle spacieg., the structure or
which spins are treated in the mean-field approximation anghe range of particle interactionsecome irrelevant. The de-
spatial correlations between particles are like in classical ligtermination of the dependence of the spin-correlation length
uids[15,21,43. It is based on the assumption that the mag-on the temperature and density is thus fundamental in the
netic transition is determined mainly by the magnetic inter-analysis of magnetic phase transitid@®]. The critical be-
action strength and both spin correlations and thenhavior of thermodynamic quantities close to the critical point
temperature do not effect the fluid structure. The effectivecan be described by a set of critical exponents. The diver-
magnetic-fielch acting on one spin can thus be approximatedgence of the correlation length describes the exponefihe
by straightforward method to get this exponent, after location of

spect the slopgU/dK of the functionU=f(K) at K=K_.
The derivativedU/dK can be obtained by taking finite dif-

where g(r/o) denotes the positional radial pair- rate and reliable method is, however, to calculate the deriva-

distribution function. It expresses the local number density ofive of the formula(2) with respect toK and to exploit the

: )

the critical point via cumulant intersection method, is to in-
r ryr [r
h=—-2m7pM —lgl—|—=d|—
o [ ool ol
ferences for small enough incrementskof The more accu-
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FIG. 4. In-In plot of the derivative of the Binder's cumulant at /
the critical point (9U/&K)Kc versus the linear system site The
dots represent data obtained from MC simulations in systems com
posed of 1296, 1156, 1024, 900, 784, and 676 disks. Every line is 451
the straight line fit to data points corresponding to the same fluid An(M?)
density. The lines are shifted downwards with decreasing densityl“[aKJ /

The slope of these lines givesvlvherev is the correlation length

critical exponent. Our estimates offor the reduced packing frac- 4

tions 7/ 5, equal 0.693, 0.606, 0.520, 0.476, 0.433, and 0.390 are,

respectively, 1.00, 1.03, 1.09, 1.13, 1.20, and 1.27. hbw, //
=0.693 the system with 676 disks is omitted.

35 . ‘
following equation for the derivatives of the momentshof 3.4 36 n(L) 3.8 4
[21,32,3%: (v)
‘9<|Mn|> 1 FIG. 5. In-In plot of the maximum values of derivatives
oK R(<|MH|E>_<|MH|><E>)' ) aIn(M[)/éK (@) and g In{(M?)/dK (b) versus the linear system size

InL. The dots represent data obtained from MC simulations in sys-
whereE=0.52;;J(r/0)S;S;/kgT is the exchange energy of tems composed of 1296, 1156, 1024, 900, 784, and 676 disks.
the system divided by thermal energy. The values of averEvery line is the straight line fit to data points corresponding to the
ages on the right hand side Kt=K_. are determined by same fluid density. The lines are shifted downwards with decreasing
applying a single histogram technique. FSS predicts the dedensity. The slope of these lines gives, IWherew is the correla-
rivative (5U/5K)Kc to scale with the system size ad/»  tion length critical exponent. Our estimates offor the reduced

[21,28,31,35,3 In Fig. 4 we show the straight line fits of packing fractionsp/ 5., equal 0.693, 0.606, 0.520, 0.476, 0.433,

. . " and 0.390, are, respectively, 1.00, 1.01, 1.08, 1.15, 1.20, and 1.27,
In(&U/&K)KC versus IrL for systems with different densities. for the plot(a and 1.00, 1.01, 1.09, 1.15, 1.21, and 1.28, for the

The slope of the stright lines is 1/ The estimated values of plot (b). For 7/7.,=0.693 the system with 676 disks is omitted.
the correlation length exponent for different densities are

given in this figure. One should notice the increase @fith ~ the maximum values of these derivatives versus émd we
decreasing particle density. The independent estimation afhow values of the exponent for different fluid densities
the correlation length exponent in ferromagnetic fluids isestimated from linear fits. These values agree well with val-
usually extracted from the critical behavior of derivativesues of the exponent estimated from the cumulant slope.
dIn{[M|y/oK and d In{M3)/3K [32]. These derivatives are ex- The dependence of the critical exponentn fluid density is
pressed in terms of cross correlations viiihand Eq.(4) can  given in Table Il and shown in Fig. 6. The valwe=1.35 for

be used to calculate them. They have the same scaling proghe number densitp=0.4 (5/ 7.,=0.346) has been ob-
erties as the cumulant slope. The maxima of both derivativegined before in Ref[32]. The continuous variation of the
are predicted to scale &s”. They are located further from correlation length exponent with fluid density goes against
the critical point. At lower fluid densities, positions of the standard universality considerations, but it is qualitatively
maxima are outside the range of the single histogram genegonsistent with the reported variation @fvith the density in
ated from the MC run performed ne#r,, and we had to Heisenberg fluid21] and in the 2D site-diluted Ising model
make additional MC runs at smallé values indicated in [25,29. Derrida, Southern, and Stauffg80] suggested that
Table I. The derivativeg In(|M|)/dK and 3 In{(M?)/dK allow  in the system with critical exponents continuously varying
the estimation of the exponemtwithout the knowledge of with the amount of disorder, the Binder’s reduced fourth-
the critical couplingK, . In Fig. 5, we plot the logarithm of order cumulant at the critical point should also vary continu-
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FIG. 6. The correlation length critical exponentversus the
reduced packing fractiony/ 7.,. The dots represent values of
obtained from MC simulations and given in Table Il. The curve is
drawn to guide the eye.

FIG. 8. In-In plot of the magnetization at the critical point
(IM[)¢ versus the linear system size The dots represent data
obtained from MC simulations in systems composed of 1296, 1156,
1024, 900, 784, and 676 disks. Every line is the straight line fit to
data points corresponding to the same fluid density. The lines are

ously. In Fig. 7, we plot the critical exponent of the Spin- gpifteq downwards with increasing density. The slope of these lines
correlation length versus the Bindr’s fourth-order cumulantequa|s_'3/,,_ Our estimates of the critical exponent rafiéy for

at the critical point for different ferromagnetic fluid densities. the reduced packing fractions/ 7, equal 0.693, 0.606, 0.520,
This dependence is linear, what strongly support the conje® 476, 0.433, and 0.390 are, respectively, 0.128, 0.125, 0.128,
ture of Derrida and coworkers. 0.124, 0.127, and 0.123. Foy/ 7.,=0.693 the system with 676

The basic quantity in the description of phase transitionsiisks is omitted.
is the order parameter. For the second-order phase transi-
tions, from the paramagnetic fluid to the ferromagnetic fluid(|M|), similar to Refs[21,32. The critical behavior of the
phase, the order parameter is the spontaneous magnetizatispontaneous magnetization is described by the expgBent
It varies continuously across the critical line and it is zero inAccording to FSS, at the critical poin,M|) varies with the
the paramagnetic phase and nonzero in the ferromagnetimear system sizé& as(|M|).=L~#. A straight line fit of
phase. This spontaneous symmetry breaking can occur onlg(|M|). versus IrL gives the exponent rati@/v. This is
in the thermodynamic limit. In MC simulations, the system shown in Fig. 8 for different fluid densities. The estimated
passes from positive to negative valuesMfand correct values of/v given in this figure for different reduced pack-
estimates of the spontaneous magnetization have to be dig fractions are all close to the valy v=0.125, the same
fined. The following quantities are often used as estimates dds in the 2D Ising lattice mod¢P2]. Although the ratio of
the spontaneous magnetization for MC simulations in finiteexponentss/v in ferromagnetic fluid is independent of fluid
systems: the peak position of the probability distributiondensity, both exponeni8 and v separately increase with the
function of M, \(M?) and(|M|) [28]. These quantities all decreasing of the fluid density. The same qualitative varia-
tend smoothly towards the spontaneous magnetization in th@ns of exponents8 and v were reported in Heisenberg
thermodynamic limit. In this paper, we selected the quantityferromagnetic fluid21], and in the 3D site-diluted Ising lat-

tice model[24].
1.35 » In the critical region, fluctuations of the order parameter

1301 become large and this is expressed by the critical behavior of
' the magnetic susceptibility. The magnetic susceptibility in
1.25 the thermodynamic limit shows a critical divergence, but in
finite systems, it reaches a maximum of finite height. There
5 ] are various ways to estimate the magnetic susceptibility in
115 ] finite systemg27,28. We consider the estimate of the mag-
netic susceptibility defined asy=KN((M?)—{|M|)?)
1.10 [21,32. The plot ofy versusK in our model presents a very
105 1 pronounced peak for all fluid densities, similar as in Ref.
[32]. The following scaling relations are postulated for the
1.00 maximum of the susceptibility,,.x and for the value of the

0605 0610 0615 0620 0625 0830 088  susceptibility at the critical poing. in finite system$27,28:
¢ Xmax=L"" and y.=L""". Figure 9 shows and confirms these
FIG. 7. The correlation length critical exponentversus the Scaling relations for different fluid densities. The ratio of
Binder’s cumulant at the critical poird.. . The dots represent data Critical exponentsy/v is given by the slope of the straight
given in Table Il that were obtained from MC simulations for dif- line fit to data in this figure. The obtained valuesa for
ferent fluid densities. The line is the straight line fit to data points.different fluid densities agree well with the valug/v
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35 V. ANALYSIS OF THE VORONOI DIAGRAM

as The Voronoi diagram in 2D is a straight-line planar graph

e entirely defined by a given set of points on the plane called
generating points. It partitions the plane into regions, which
31 are convex polygons. Each polygon surrounds one generat-
In(X.) ing point and consists of all those points in the plane that are
2.9 1 4 closer to this generating point than to the others. The general
properties of Voronoi diagrams in 2D and numerical proce-

27 dures to generate them are described in R&f]. For sys-
tems composed of hard disks, the generating points are the
25 . ‘ centers of disks. The Voronoi diagrams of the system of hard
3.4 36 3.8 40 disks attracted scientific attention some time ago. Smalley

[45] proposed to model cooling-induced polygonal crack pat-
terns in lava flows observed in volcanic areas by the Voronoi
38 diagram of the hard-disk system at packing fraction near 0.5.

[ ]
The same model was also used, e.g., to simulate the patterns
of receptors in the retina and to describe the fish territories.
361 The more intensive studies of the Voronoi diagram of hard
In(X,. ) disks at different packing fractions have been done in the last
34 decade. Gervois, Troadec, and Lemaj#6] studied experi-
mentally hard disks moving on an air cushion table for pack-
ing fractions between 0.2 and 0.8. The disks after a short
32 | thermalization time form a homogeneous assembly, which

may be though of as a 2D patrticle fluid. The authors took
several snapshots of the system at different moments and
3.0 ; . generated for them Voronoi diagrams. The obtained depen-

3.4 36 (L) 38 4.0 dence of the average area ofsided pqugons om was

® found to be very different from the Lewis’s law observed in
many natural cellular structures. They also considered the

FIG. 9. In-In plot of the magnetic susceptibility at the critical Probability distribution functiorP(n) of the number of poly-
point . (a) and at the maximuny, (b) versus the linear system gon sidesn and obtained the universal relation between the
size L. The dots represent data obtained from MC simulations invarianceu, of P(n) and the probability?(6) of the occur-
systems composed of 1296, 1156, 1024, 900, 784, and 676 diskeence of hexagons. The experimental system was compared
Every line is the straight line fit to data points corresponding to thewith the hard-disk system generated numerically by the ran-
same fluid density. The lines shift to the right with decreasing dendom sequential adsorptiofRSA) procedure. In this proce-
sity. The slope of these lines gives the ratio of critical exponentsiure, disks are sequentially deposited on the plane. The trial
y/v. Our estimates of/v for the reduced packing fractiong 7.,  position of each disk is chosen at random, and if this position
equal 0.693, 0.606, 0.520, 0.476, 0.433, and 0.390, are, respegs not rejected due to overlap with already deposited disks, it
tively, 1.78, 1.71, 1.73, 1.72, 1.75, and 1.78, for the gt and s accepted and the disk is definitely deposited. This algo-
1.76, 1.75, 1.74, 1.71, 1.73, and 1.76, for the gt For #/7c,  rithm does not allow any reorganization of particles and only
=0.693 the system with 676 disks is omitted. systems with packing fractions up to 0.54/ 7.,~0.6) can

=1.75 obtained in the 2D Ising lattice modéR]. The ratio b€ built in this way. One should notice that for/(zc,
¥l v, independent of the spin density, was also reported ir<0.6) the correlation length critical exponent considered
Heisenber fluid21] and in the 2D site diluted Ising lattice in the previous section, changes with the packing fraction of
model[25,29. disks. The work of Gervois, Troadec, and Lemaitre was later
According to the homogeneity hypothesis, critical expo-extended by Lemaitre and coworkde?]. The authors de-
nents of various thermodynamic quantities are relg®].  termined the probability distribution function of polygon ar-
The relation that connects critical exponemtss, andv has  eas and tested the validity of the Aboav-Weaire law in hard-
the form: 28/v+ y/v=D. This relation is satisfied by both disk systems generated both experimentally and by the RSA
the exact and the mean-field critical exponents of the 2Dwmerical procedure. Fraser, Zuckermann, and Mour{tagn
Ising lattice model[22], and by critical exponents deter- performed MC simulations of 2D, the hard-disk system in
mined by several independent methods in the site-diluted 20N, p,T) ensemble in which the particle numiéy the pres-
Ising lattice mode[25,29. The relation is also satisfied by surep, and the temperatur€ are fixed[1,37]. The Voronoi
critical exponents obtained in this paper for all fluid densi-diagram was constructed for the initial disk configuration
ties, and our results strongly support the validity of the ho-and updated dynamically during the simulation. The authors
mogeneity hypothesis in ferromagnetic Ising fluid near theconcentrated on the statistical analysis of Voronoi diagrams
second-order phase transition from the paramagnetic to ther systems of 102 and 408 hard disks at pressures corre-
ferromagnetic fluid phase. sponding to reduced packing fractiong ., ranging from
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0.54 to 0.9. They determined the probability distribution ENFENRNITE= S Eas
functions for the number of polygon sides and for the poly- g o (‘GTJ(Q f.f%!
gon side lengths. The second distribution was fitted by "CQ\

sum of two Gaussians at all densities within the fluid and Dig4

for the fluid-solid transition in the system. All the above %E <
N7

results were obtained for 2D systems composed of noninter
acting hard disks. ﬂ:f:‘!;

In this section, we analyze changes of the Voronoi dia- g4
gram in our ferromagnetic fluid model along the critical line. I )
We performed short MC simulations on systems with 784,
900, 1024, and 1296 particles for densities aqdvalues
given in Table II. Knowing for each system the average val-
ues of the order parametéM|). and the total energyE).
at the critical point, we stored to a file several configuration
for which relative deviations oM and E with respect to
these average values were smaller than 0.005. In this way w

. . -
selected the most typical particle arrangements for the statisj
tical analysis. The examples of such arrangements with thei 3
Voronoi diagrams in a system composed of 784 particles al @
two different densities and =K are shown in Figs. 10 and

Y >
P 90
YL

-)

11. The Voronoi diagram for the close-packed arrangemen{] <> SVanYe 48700 20V

of disks consists only of hexagons. As the density is de- 8’:’.‘3‘%‘3’:’.:":".‘” % :.
creased, more and more defe@®ntagons and heptagdns .Qz.g..e....“’%‘.g..“. .’gg'.
appear in the diagram. For densities corresponding to thg gb"..z'g.“".‘.‘...‘..“'.."'.
fluid-solid first-order phase transition, there are disordered Qg.‘g....."“.."“‘“'.e...
domains of ordered disks in the system. The size of thesd[ '.."..“‘." TN ()
domains decreases, as the system approaches the point < [)

marginal mechanical stability. At lower densities, the ar-
rangement of disks in the system is that of a disordered fluid
The typical structure of the fluid close to the fluid-solid co-
existence region is shown in Fig. 10. The topological prop-
erties of the Voronoi diagram are usually described by the
discrete probability distribution functioR(n) of the number

of polygon sidesh and its moments. This distribution for all
obtained typical particle configurations of our systems at the
critical point has the maximum at= 6. The first moment of
P(n) is always six, what follows from Euler’s relation and
periodic boundary conditions applied to the system. The im-
portance of hexagons in the Voronoi diagram is expressed by
two quantities: the second momes, which describes the
dispersion ofn around 6[46,47), and the number of defects
Nger=1—P(6), which equals to the fraction of polygons
with n#6 in the diagram2]. In Fig. 12, we show the de- FIG. 10. (a) Typical particle configuration of 2D ferromagnetic

(b)

pendence of both quantities on fluid density. In this and inlsing fluid at the critical point for the reduced packing fraction
the next figures we included the results obtained for densitieg/ 7c,=0.693, i.e., close to the fluid-solid first-order phase transi-
outside the range of densities given in Table Il. For thesdion, with superimposed Voronoi diagram. The particles with spins

densities' we assumed values of the critical Coumg)re_ up (dOWn) are indicated by blaCk-flllec[empt)b circles. (b) The
dicted by the cell modeldiscussed in the Sec. )Ifor the  Voronoi diagram alone.

screening parameter= 2. The additional data we deter-

mined for systems having the following number densities:square simulation box us¢#], points in Figs. 12, 13, and 15

p=1.0 (n/7.,=0.866, K;=0.15, the initial particle con- corresponding to the additional data should be treated as ap-

figuration allowed their rearrangement during MC simula-proximate results. Both the variange, and the fractional
tions), p=0.9 (9/7p=0.779, K.=0.17), and p=0.38 number of defectdNye; decrease with increasing the disk
(7! 7cp=0.329,K.=0.59). Because they were obtained by density. In the fluid phase, the decreasewsf can be ap-

performing shorter MC runs, and the solid phase existing aproximated by the straight line. For the reduced packing

high-disk densities has a structure incommensurate with thigaction #/7.,=0.55, the fraction of hexagons in the
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FIG. 12. The fractional number of defedtg. and the second
momentu, of the probability distribution function of the number of
polygon sides in the Voronoi diagram versus the reduced packing
fraction 5/ ., in 2D ferromagnetic Ising fluid at the critical point.
By dotted lines is indicated fluid density for which the fraction of
hexagons in the Voronoi diagram is the same as other polygons.
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gion, u,=Ngyes. This universal feature was found in various

L) 0 2D mosaics at statistical equilibrium fo¥y.<0.4 [46,47).
> ~."’.g‘h."’“ The geometrical properties of the Voronoi diagram of the
.gé:.fg" hard-disk system are usually described by the probability
~‘Q"Q“ distributions of polygon area$4(_3,_47] or pol_ygon side
“"" Iengths_[2,47]. The _se_cond probability dlstr|but|qn was very
> X useful in the description of structural changes in the system

2 . : .
of noninteracting hard diskK]. It was also used to charac-
terize and compare 2D random Voronoi fr¢iVF) and ran-
dom matrix Voronoi froth48]. RVF is the Voronoi diagram
created for points generated by the Poisson point process.
RMVF is the 2D Voronoi tessellation with respect to posi-
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FIG. 11. (a) Typical particle configuration of 2D ferromagnetic
Ising fluid at the critical point for the reduced packing fraction
n/n.,=0.346, i.e., near the tricritical point, with superimposed
Voronoi diagram. The particles with spins ggown) are indicated nin,
by black-filled (empty circles.(b) The Voronoi diagram alone.

0.1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 13. The dependence of the mean polygon side length nor-

- . malized by particle diameter o and the standard deviation for the
Voronoi diagram is the same as other polygons, F6)

—Nger=0.5. This density coincides with the lowest density normalized polygon side lengths (I/1)?~1 in the Voronoi dia-
above which the 2D hard-disk system can be described b§ram versus the reduced packing fractighv,, for 2D ferromag-

the free-volume equation of Staﬂ@] and critical exponents netic Ising fluid at the critical point. The dependencel 66 on

are similar to those in the 2D lIsing lattice model. For 7/ 7cp for the cell model and for 2D random Voronoi froth is shown
7l 7ep>0.7, there is a sharp decreasewof and Ny, what by the long-dashed and short-dashed lines, respectively. The dot-

is connected with the first-order fluid-solid phase transitiondashed line indicates the valué(l/l_)z—lzo.Ss for the random
and the formation of ordered domains of disks. In this re-matrix Voronoi froth.
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tions of eigenvalues of asymmetric complex random matri- 0.14
ces. The eigenvalues show a repulsion effect characterized
by a zero probability of finding two identical eigenvalues.
Because of this repulsion, RMVF is more regular than RVF 0.1
and it resembles the Voronoi diagram of the system of hard

disks. We analyzed changes of the Voronoi diagram along the , %%
critical line in our model using the probability distribution of P(”l)o.os_
polygon side lengths. Let us denote byhe polygon side
length. In order to compare probability distributions|ah 0.04 1
systems with different densities, we scale polygon side

lengths in each system by their mean vaEeFigure 13
shows the dependence of the mean polygon side length nor- 0

malized by particle diametel_r/a versus disk density, com-
pared to the dependentéo=1/y37/ 7., in the cell model

0.12 |
1296
1024
900
784

* > A e

with hexagonal cells and to the dependend_éo 01
=1/(1.5/p) derived theoretically for the RVF and used to
normalize polygon side lengths in R48]. It is seen in the 0.08 |

approach of to the mean in the cell model at high densities
and to the mean in RVF at low densities. In Fig. 13 we also 0.06 -

show the dependence of the standard deviation for the nor- P

malized polygon side Iengths/(lll_)2—1 on disk density. 0.04 1
This dependence tends to the value of the standard deviation ]
for the normalized polygon side lengths in RMVF at low 0.02 |
densities, and it has a sharp decrease for densitieg,
>0.7, i.e., above the point of marginal mechanical stability.
For each Voronoi_diagram, we divided the normalized poly- 0
gon side length$/1 into bins of size 0.1 and we calculated )
the discrete probability distributioP(l/1). The obtained
probability distributionsP(l/1) at the critical point in finite
systems composed of 1296, 1024, 900, and 784 particles are
given in Fig. 14 for the three selected fluid densities. It is 0.06
seen that probability distributionB(1/1) in systems with
different numbers of particles coincide and they can be fitted
by one function. Caeand Ho[48] proposed to fiP(1/1) by 0.04 1
the sum of two Gaussian functions with the same standard
deviation and centered symmetrically with respect +c0.

This function fits well the distributio®(1/1) in RVF, but not
in RMVF. Fraser and co-workel®] used the sum of two
Gaussians with different means and widths to fit the distri-
bution of Voronoi edge lengths in the system of noninteract-
ing hard disks. The fit was good at all disk densities and the
fitting parameters were found to rgflgct structural properties FIG. 14. The probability distributions of normalized polygon
8];;2?1 T)%T;ngﬁslnwzfgéﬁr?e?ﬁ[&%nglngliggasrigz:ggh Fsgrv\e/g?:)nglde lengths in the Voronoi diagran_w obtained in §)_/stems_ composed
. . . 1296, 1024, 900, and 784 particles at the critical point for the
diagrams generated in our systems, we found the best fit Q llowing reduced packing fractions/.,: 0.693 (a), 0.520 (b),

0.08

P/

P(1/1) by the following probability density function: and 0.346(c). The thick solid line is the fit with the probability
density function given by Eq5). The thin solid lines correspond to
| 1 (|/|__ mi)2 two component functions defined in E&). The probability distri-
fl = =.E Pl B S butions for random Voronoi froth and random matrix Voronoi froth
| =12 20 \/ﬂ 20 are shown by the short-dashed and long-dashed lines, respectively.

TH 2
+exd — (I/I+—m,) (5) [48]. We found it the most reliable and stable for our Voronoi
20'i2 diagrams with several hundred of polygons. The function
P(I/1) well describes the probability density function of
wherem;, m,, o4, ando, are the fit parameters. This func- polygon side lengths in RVF fom;=m,=0.9144 ando
tion is a sum of two functions having the form given in Ref. =¢,=0.7623, and in RMVF fom;=1.3927,0,=0.4587,
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FIG. 15. The fit parameters of the probability density function
given by Eq.(5) to the probability distribution of normalized poly-

gon side lengths in the Voronoi diagram generated for 2D ferromag-
netic Ising fluid at the critical point, versus the reduced packing

fraction 7/ 5. .

m,=0.538, ando,=0.5088. The probability distributions

P(I/I_) for RVF and RMVF are shown by dashed lines in
Fig. 14(c). The probability distribution of polygon side

PHYSICAL REVIEW E64 041109

distributionP(1/1) broadens. The contribution of short poly-
gon sides increases amu, moves from 1 to 0.66 for

1l 7.p=0.346 (p=0.4). At lower densities, we observed
again sharp decrease of,, which signals the approach to
the tricritical point. The quantityn, can thus be used to
characterize the structural order within the system and it is
sensitive to structural changes in the system. In the fluid
phase, the quantityn; is around 1.2 with a small maximum
at n/ .,=0.5. The parameters,; and o, increase with de-
creasing fluid density. The dependenceogfon the density

in the fluid phase is linear, whereas the dependenee, ahn

the density has the inflexion point. This inflexion point is for
nl ncp,=0.55, where the fraction of hexagons in the Voronoi
diagram is the same as other polygons.

VI. CONCLUSIONS

We described the critical behavior of the 2D ferromag-
netic Ising fluid near the second-order phase transition from
the paramagnetic fluid to the ferromagnetic fluid phase for
densities between the freezing density and the tricritical
point density. The description is based on MC simulations
combined with finite-size scaling analysis and a single histo-
gram technique. We precisely located the critical line using
Binder’s reduced fourth-order cumulant, and we determined
values of critical exponents, B, and y. We analyzed
Voronoi diagrams generated for typical particle configura-
tions along the critical line. We proposed the probability den-
sity function with four fit parameters that well describes the
distribution of normalized polygon side lengths in Voronoi
diagram at all densities. Following are the main conclusions:
(1) The critical exponent of the spin correlation length
is similar to that in the 2D Ising lattice model fay/ 7.,
>0.6. At lower fluid densities, it increases continuously with
decreasing density from 1 to 1.35 in the investigated density
range. The ratios of critical exponenygv and 8/v remain
the same as in the 2D Ising lattice model at all densities, so
the scaling relation B/v+ y/v=D is always satisfied. The

lengths in our system for the reduced packing fractionresults suggest the existence of a line of fixed points with

7l 7c,=0.346 is closer to the distributioﬁ(l/l_) in RMVF

continuously varying critical exponents. This strongly sup-

than in RVF. This means that the repu'sion of seeds generap_orts the idea of weak Universality introduced to describe the

ing the Voronoi diagram in RMVF is still important for the

similar critical behavior observed in 2D and 3D site-diluted

lowest fluid densities considered in this paper. In Fig. 14 wesing lattice model$24,25,29.

show by thin solid lines the two functions contributing to the
probability distribution functiorP(I/1) according to Eq(5).

The dependence of their fitting parameters on fluid density i

given in Fig. 15. We denoted, similar to RdR], by the

subscript 1, the component function that is mainly respon

sible for the peak irP(I/I_) and by the subscript 2, the sec-

(2) The value of the Binder’s reduced fourth-order cumu-
lant at the critical point increases continuously with decreas-
ing fluid density. This was also reported in the 3D Heisen-

erg fluid [21] and the 2D site-diluted Ising lattice model
[25].

(3) There is a liner relation between the critical exponent

v and the value of the Binder’s cumulant at the critical point.

ond component function that corresponds to the populatiofg supports the conjecture of Derrigal. [30] that the

of short polygon sides. In the solid phase, the Voronoi dia

gram consists of hexagons with a few defegtsntagons and
heptagons The distributionP(I/1) is narrow and concen-

‘value of the cumulant at the critical point characterizes uni-

versality class.
(4) Both the cell model and the theory in which spins are

trated around/l =1 in this case. In the region of the first- treated in the mean-field approximation and spatial correla-
order fluid-solid phase transition, there is a sharp jump in théions between particles, simillar to those in classical liquids,
value ofm,. This can be useful for locating the transition, asoverestimate the critical temperature. The critical lines pre-
it was first proposed by Fraset al.[2] in a system of non- dicted by these theories coincide for the reduced packing
interacting hard disks. As the density of a fluid decreases, th&action 5/ 5., greater than approximately 0.6.
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(5) The probability density function describing the distri-  « the density at which the fraction of hexagons in the
bution of normalized polygon side lengths in Voronoi dia- Voronoi diagram is the same as other polygons,
grams generated for typical disk configurations along the « the density at which the scale parameter of one compo-
critical line can be decomposed into two component funcnent function of the probability density function describing
tions. The location parameter of one component function cafhe distribution of normalized polygon side lengths in
be used to characterize the fluid structure. It signals the apyoronoi diagram has the inflexion point.
proach of the fluid both to the freezing transition and to the
tricritical point. This parameter corresponds to the similar
parameter defined in Rdf2].

(6) The fluid density below which the exponentvaries
with density coincides with | thank Raul Toral for discussions and his kind hospitality

« the lowest density above which the 2D hard-disk systenat Instituto Mediteraneo De Estudios AvanzadbddEDEA)
can be described by the free-volume equation of $t&fe in Spain, the institute IMEDEA for the grant, and the Depart-

« the highest density below which the hard-disk systenment of Physics at the University de les llles Balears in
can be generated numerically by the random sequential adpain for the permission to use computers in the Department
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