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Universality of a two-dimensional Ising ferromagnetic fluid
near the second-order magnetic phase transition

W. Korneta
Faculty of Physics, Technical University, Malczewskiego 29, 26-600 Radom, Poland

~Received 3 May 2001; published 25 September 2001!

The critical behavior of a two-dimensional~2D! system of hard disks, each disk bearing an Ising spin and
interacting via Ising-like interactions, is studied near the second-order phase transition from the paramagnetic-
to-ferromagnetic fluid phase by Monte Carlo simulations combined with a finite-size scaling analysis and a
single histogram technique. The critical line is located and values of critical exponents along this line are
determined. The continuous variation of the Binder’s reduced fourth-order cumulant at the critical point and of
the critical exponentn with disk density is observed and a linear relation between these quantities is found.
Ratios of critical exponentsg/n andb/n are found to be the same as those in the 2D Ising lattice model at all
fluid densities. A statistical analysis of Voronoi diagrams generated for typical particle configurations along the
critical line is performed. The variation of parameters characterizing Voronoi diagrams at the critical point with
density is compared to the variation of critical exponents with density.
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I. INTRODUCTION

The simplest model of a fluid is a two-dimensional~2D!
hard-disk system. This model has been of concern for a n
ber of decades@1,2#, because it exhibits the freezing trans
tion and because of its use as the reference system for m
perturbation theories of fluids. A two-dimensional hard-d
system has been extensively studied by computer simula
methods: the Monte Carlo~MC! method, which evaluate
ensemble averages, and by the molecular-dynamics~MD!
method, in which dynamical equations of motion for pa
ticles are solved. Both methods are fundamental in theo
cal studies of fluid properties. They give excellent agreem
with experiment provided that sufficiently realistic potentia
energy functions are used@1#. It is widely accepted that both
MC and MD supply ‘‘experimental’’ data and any approx
mate theory of liquids can be tested against these ‘‘exp
mental’’ data. The MC method was proposed by Metropo
et al. @3# in 1953, and applied to get an equation of state
224 hard disks in two dimensions. The obtained results
not indicate any phase transition. Alder and Wainwright@4#
applied the MD method to study a 2D system of 870 h
disks and demonstrated very clearly the coexistance of s
and fluid phases at high densities, what is typical of the fi
order phase transition. Hoover and Alder@5# showed that
equations of state for a 2D hard-disk system obtained by
MC and MD methods are identical. A major conclusion fo
lowing from computer simulations is that 2D hard-disk sy
tems show the phase transition from fluid to solid phase
high densities. This transition is a weak first-order transit
with a narrow gap between the coexisting densities and
metastability barier between the solid and the disorde
fluid. The earliest approximate theories of fluids were
cell or free-volume theories@1#. They were based on the ide
that molecules in a liquid for most of the time are confined
cells formed by their neighbors. In the cell model, the co
munal entropy arising from communal sharing of the v
ume, and due to the presence of density fluctuations, is
1063-651X/2001/64~4!/041109~14!/$20.00 64 0411
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glected. In order to evaluate how bad the cell theories are
suggest the way to modify them, Hoover and Ree@6# made
MC simulations of a 2D hard-disk single-occupancy c
model, i.e., the model with one disk per cell. The autho
showed that in the fluid phase, this model reproduces
hard-disk equation of state surprisingly well. Among oth
approximate theoretical methods, the density-functio
theory was particularly useful in the study of fluid propertie
The solid near melting is considered as a perturbation on
fluid, and the order parameters characterizing the fluid-s
phase transition are the amplitudes of density waves@7–10# .
Results for 2D hard disks obtained from density-function
calculations and computer simulations were compared
Zeng and Oxtoby@10#. They are very close. There are als
approximate theories of a 2D classical hard-disk fluid ba
on the correlation functions between disks. Lado@11# and
Chae, Ree, and Ree@12# compared results from MC simula
tions and from four theories: the Born-Green-Yvon~BGY!,
the Percus-Yevick~PY!, the convolution-hypernetted-chai
~CHNC!, and the pressure-consistent~PC! theory. These ap-
proximate theories allow one to obtain the pair radial dis
bution function by numerical integrations and iterations
integral equations. The PY theory was found to provide
best results consistent with MC simulations.

In 1968, Busch and Guentherodt@13# reported the first
experimental evidence for ferromagnetism in the liquid sta
They investigated liquid alloys with transition metals that
the solid phase are amorphous ferromagnets. The p
stimulated both experimental and theoretical studies of m
netic liquids. The theoretical models of magnetic liquids a
based on the existing classical models of liquids that fa
well describe the microscopic and macroscopic static
dynamic properties of liquids@1#. In magnetic liquids, there
are additional magnetic degrees of freedom that are on
equal footing with other degrees of freedom. The interp
between spatial and magnetic degrees of freedom lead
complex phase diagrams of magnetic fluids with the fir
and second-order transitions as well as tricritical and tri
points both in the quantum@14–16# and classical@17–20#
©2001 The American Physical Society09-1
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W. KORNETA PHYSICAL REVIEW E 64 041109
limits. In this paper, we consider a model for ferromagne
fluid consisting of hard-core particles with a classical s
degrees of freedom. Frankel and Thompson@17# first exam-
ined the thermodynamic properties of this model for the
teraction potential between spins of Kac typeeDK(eur u) in
the long-range limit. The free energy in this case is a co
bination of the classical van der Waals and Curie-Weiss
pressions. The qualitative features of this model and its ph
diagram are dimension independent. Frankel and Thomp
suggested the application of the model to amorphous fe
magnets, dilute magnetic alloys, silicon spin glasses,
with suitable modifications, to liquid crystals. Hemmer a
Imbro @18# considered a system of hard-core particles int
acting with weak long-ranged exchange interactions in ad
tion to the spin-independent isotropic attractive forces. A
plying the effective-field theory, they derived two couple
equations of state for the average magnetization and p
sure. The equations were used to obtain phase diagram
the 1D system with Ising spins and the 3D system w
Heisenberg spins. Depending on the ratio of the integra
strengths of the magnetic and nonmagnetic interactions
pologically different phase diagrams occur. The same
system of hard-core particles with Heisenberg spins was
studied within the mean-field~MF! and the modified mean
field ~MMF! approximations of the density functional theo
~DFT! @20#. The different types of phase diagrams obtain
by Hemmer and Imbro were qualitatively reproduced, a
for a system without isotropic interactions a remarkable go
agreement with MC simulations@21# was noticed. Lomba
and coworkers@19# considered the 3D system of ha
spheres with embedded Heisenberg spins whose coup
constant is given by Yukawa ferromagnetic interaction. Th
carried out Gibbs’ ensemble Monte Carlo simulations to
vestigate the liquid-gas coexistence curve. They found
the system lacks a tricritical point and the line of Cu
points ends at a critical endpoint on the gas side of the g
liquid coexistence curve. This disagreed with predictions
both the DFT@20# and the effective-field theory@18#. The
contradiction was discussed in Ref.@20#.

The critical properties of ferromagnetic fluids have be
much less studied than their phase diagrams. The config
tional disorder in magnetic fluids is brought about by therm
motions, so they are classified as annealed disordered m
netic systems. According to the universality arguments, m
netic fluids with short-ranged interactions should exhibit
same critical properties as dilute localized magnets. A fix
particle density in a fluid correspond to a fixed degree
dilution in the lattice. Let us first briefly review the resul
obtained so far for ferromagnetic lattice models with co
figurational disorder that are the most related with this pa
The comprehensive review of basic static properties of di
localized magnets with both quenched and annealed, b
and site disorder, is given in Ref.@22#. The main conclusion
following from the study of the second-order magnetic ph
transition in these systems is that a small amount of diso
should not change the critical behavior and values of crit
exponents if the specific heat exponenta of the pure system
is negative. On the contrary, whena.0, critical exponents
take renormalized values@22#. Above a certain amount o
04110
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disorder one expects the critical behavior to change in b
cases. It has, however, not yet been established definitiv
whether critical exponents vary continuously with th
amount of disorder, or they adopt new universal values c
responding to the existence of a new random fixed po
Moreover, it is generally thought that scaling relations b
tween critical exponents are always preserved. First,
simulations for the simple cubic Ising model with quench
site dilution failed to get any difference of critical exponen
from pure critical exponents@23#. Because the exponenta of
the pure system is positive@22#, the critical behavior was
expected to change. Marro, Labarta, and Tejada@24# per-
formed MC analysis in larger systems and revealed a line
fixed points. They obtained critical exponents varying co
tinuously with dilution. Kim and Patrascioiu@25# studied the
2D randomly site-diluted Ising model on the square lattice
MC simulations. They observed a continuous increase
critical exponents of the magnetic susceptibilityg and of the
correlation lengthn with dilution, whereas the ratiog/n
51.75 remained as those in the pure system@22#. They also
noticed that Binder’s reduced fourth-order cumulant@26–28#
at the critical point is increasing with dilution. Ku¨hn @29#
studied the same model using the real-space renormaliza
group ~RSRG! method and a method that combines a gra
ensemble approach to disordered systems with phenom
logical renormalization. His results are in complete quali
tive and quantitative accord with MC simulations. Derrid
and coworkers@30# considered the Binder’s cumulant in th
2D quenched bond-diluted Ising lattice model in stripe g
ometry applying MC simulations. They noticed the variati
of the cumulant with the amount of disorder and sugges
also that critical exponents should vary continuously. Th
made the conjecture that the value of the cumulant at
critical point characterizes universality class. The expon
a is zero for the pure 2D Ising lattice model, so the disord
is marginally irrelevant in this case, and it is unclear if a
change of critical exponents should be expected. The inv
tigations of a randomly spin-diluted 2D Ising lattice mod
suggest weak universality in this case in the sense that e
nentsg, b, andn increase with dilution, whileg/n andb/n
are constant and the same as those in the pure 2D I
lattice model.

The critical properties of ferromagnetic fluids have be
studied since 1996, and the results obtained so far are in
clusive @21,31,32#. All authors combined MC simulations
with a finite-size scaling analysis and with single and/or m
tiple histogram techniques. The finite-size scaling~FSS!
method allows one to extract the proper critical behav
from the rounded singularities produced by the finite size
the simulated systems@26–28#. The single@33# and multiple
@34# histogram techniques proposed by Ferrenberg
Swendsen greatly enhanced the accuracy and improved
efficiency of MC simulations in the critical region. Th
single histogram technique allows one to obtain compl
thermodynamic information over the entire scaling regi
near a phase transition from a single MC run. The multi
histogram technique is an optimized method for combin
data from several MC runs both to increase the total accur
of the results and to obtain information over a wide range
9-2
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UNIVERSALITY OF A TWO-DIMENSIONAL ISING . . . PHYSICAL REVIEW E64 041109
parameter values. Ferrenberg and Swendsen tested both
niques against the exact solution of the 2D Ising latt
model and they have got an excellent agreement. MC si
lations with a finite-size scaling analysis and histogram te
niques have also been used to investigate 3D classical I
@35# and Heisenberg@36# simple cubic models for which the
exact results are as yet unknown. The critical properties h
been determined with a precision comparable to that
tained with renormalization-group and series-expansion te
niques. Nowadays, this method is the most frequently use
obtain highly accurate estimates for the location of ph
transition and values of critical exponents in systems w
unknown or partially known behavior. Nijmeijer and We
@21# considered a 3D fluid of hard spheres that carry
Heisenberg spin and interact via Yukawa-type exchange c
pling. Their estimates for exponent ratiosb/n and g/n are
the same for all fluid densities and satisfy the scaling rela
2b/n1g/n5D with D53. The Binder’s reduced fourth
order cumulant at the critical point and the value of the c
relation length critical exponentn increased at lower fluid
densities. Wilding and Nielaba@31# studied the tricritical
point properties of a 2D system of hard disks each of wh
has Ising spin interacting via a distance-dependent spin
pling of the square well type. They located the tricritic
point and determined exponents of the three relevant sca
fields controlling the behavior of the system in the vicinity
this point. Ferreira and Korneta@32# considered the sam
model assuming the Yukawa form of the exchange coup
between spins. They described critical properties of
model at low-disk density near the second-order phase t
sition from the paramagnetic to the ferromagnetic fluid. T
obtained critical exponentn is much higher than in the 2D
Ising lattice model, whereas ratios of critical exponentsb/n
andg/n are the same as those in the 2D Ising lattice mod

In this paper, we concentrate on the critical behavior
the 2D hard-disk Ising fluid near the second-order magn
phase transition in the range of densities higher than the
critical point density and lower than the freezing density. T
aim of the paper is to answer several questions follow
from the summary given above, e.g., is the weak universa
observed in dilute localized magnets also appropriate to c
acterize critical properties of magnetic fluids? Does the va
of Binder’s cumulant at the critical point follow changes
critical exponents with fluid density? Is the dependence
critical properties in the Ising and Heisenberg fluids on
density qualitatively correlated? How bad are the appro
mate cell or mean-field approximations~MFA! theories in
predicting the location of the critical line? Is the Voron
diagram useful in the description of structural changes in
magnetic fluid at the critical point with density? We pe
formed MC simulations, and the finite-size scaling analy
in the same way as it was done by Ferreira and Korneta@32#,
but in larger systems to reduce corrections to the scaling.
applied the single histogram technique to the simulation d
in order to get the thermodynamic information over the e
tire scaling regime. The model and MC simulation details
described in Sec. II. The location of the critical line dete
mined from MC simulations and obtained within the c
model and MFA theory is given in Sec. III. The critical e
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ponents of the spin-correlation length, the magnetization
magnetic susceptibility are considered in Sec. IV. The ch
acterization of structural changes of the fluid along the cr
cal line based on the analysis of Voronoi diagrams is p
sented in Sec. V. Finally, all obtained results are summari
in conclusions.

II. THE MODEL AND SIMULATION DETAILS

The model to be considered is a simplified representa
for a 2D fluid of particles with two internal magnetic state
Particles represented by hard disks of diameters have trans-
lational degrees of freedom, and each particle has an inte
Ising spin (S561). Usually, the most important contribu
tion to intermolecular potential energy is from pair intera
tions between spins and other multibody interactions
negligible. In this paper, we assume the Ising-like interact
between spins favoring their ferromagnetic alignment, w
the distance-dependent exchange couplingJ(r /s). There are
two approximations of the effective exchange coupling b
tween spins used in theoretical studies of magnetic fluids:
crude square-well approximation@14–16,31# and the
Yukawa-type smooth approximation@19,21,32#. We assume
the Yukawa-type coupling between spinsJ(r /s) in the form

JS r

s D Y kBT52K
s

r
expF2zsS r

s
21D G , ~1!

wherekB is the Boltzmann’s constant,T is the temperature
zs is the screening parameter, andK.0 expresses the ratio
of exchange energy to thermal energy. The quantity 1/zs is a
measure for the range of exchange interactions. All M
simulations in this paper were performed forzs51. This
model was studied for one fluid density in Ref.@32#.

At high temperatures, only the hard-core repulsion
mains and the system is paramagnetic for all densities
high densities, there is a temperature-independent hard-
first-order freezing transition. As the temperature is reduc
the system undergoes a second-order phase transition fr
paramagnetic hexagonal solid to ferromagnetic hexago
solid at high densities and from a paramagnetic to ferrom
netic fluid at intermediate densities. In the ferromagne
phase, the freezing density decreases with decreasing
temperature due to greater stability of the solid phase aris
from magnetic interactions. The line of critical points sep
rating the paramagnetic fluid phase from the ferromagn
fluid phase, called the critical line or the Curie line, term
inates at the tricritical point@31#. The particle density varies
continuously across this line. At low densities, there is
strong tendency to clustering in the system. Following
critical line to lower densities, the density fluctuations gro
and at the tricritical point, the critical line merges into th
gas-liquid coexistance region. This region corresponds to
so-called condensation-ordering first-order phase transi
@20#, where order-disorder and gas-liquid first-order pha
transitions are coupled. In this region, a low-density pa
magnetic gas and a high-density ferromagnetic liquid co
ist. The condensation-ordering first-order transition meet
the triple point of the freezing first-order phase transition.
9-3
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W. KORNETA PHYSICAL REVIEW E 64 041109
the triple point, ferromagnetic fluid coexists with ferroma
netic hexagonal solid. For temperatures below the tri
point temperature, there is a first-order phase transition
tween paramagnetic gas and ferromagnetic hexagonal s

MC simulations we performed in the canonical (N,V,T)
ensemble in which the particle numberN, the total volumeV,
and the temperatureT are fixed@1,37#. The square simulation
box with periodic boundary conditions was assumed, so
surface effects were avoided. In simulations, we used
nearest-image distance convention@37# and we truncated the
pair interaction at a distance 6.3246s. In order to avoid the
calculation of distances between particles that are too
apart to interact, the simulation box was partitioned into ce
and the method of linked lists of neighbors@37# was used.
We applied a regular Metropolis scheme@3# to sample posi-
tions of disks and the algorithm described by Lombaet al.
@19# to sample spin degrees of freedom. At one Monte Ca
step~MCS! we attempted to move a randomly selected p
ticle to a new position and rotate its spin. In all simulation
the total number of Monte Carlo steps per particle~MCS/N!
was the same and equal 23106. During the simulation, the
total spin and energy of the system were stored to a file ev
10 MCS/N. The disks were initially placed at random for lo
densities or on the square lattice for densities greater
half of the close-packed density. All runs started from ra
dom spin directions. The approach of the system to equ
rium in all cases was fairly rapid and discarding the fi
104 MCS/N ensured that all subsequent configurations w
generated for the system at equilibrium. The maximum
sition displacement of a particle was adjusted during the
discarded MCS, so that to get the acceptance ratio of
moves around 50%@37#. Instead of performing simulation
for various areas of the simulation box and fixed-parti
diameter, we always considered the equivalent problem
keeping the box lengthL51 fixed and changing, the particl
diameter. This is recommended in Ref.@3,37# to speed up
simulations. The stored data we binned to evaluate both
systematic and statistical errors that arise from finite len
of MC runs@38#. These errors are similar as in Ref.@32# and
we do not plot them here.

III. LOCATION OF THE CRITICAL LINE

The density of hard-disk fluid is usually expressed by t
dimensionless quantities: the number densityr5Ns2/L2

@8,10,11,14–16,19,21,31,32# and the packing fractionh
5Nps2/(4L2)5pr/4 @9#, where L is the simulation box
length. In hard-core systems, the maximum allowed den
is the close-packed density. The close packing of hard d
corresponds to their arrangement in a trigonal lattice@3# with
densitiesrcp52/A3.1.1547 andhcp5p/(2A3).0.9069.
The most suitable quantity to characterize the state of
hard-core disk system is the reduced packing fract
h/hcp5r/rcp often used in the equations of state@3–6,12#.
This ratio we use in all plots. At high densities, disks beco
sufficiently localized@4# and the fluid crystallizes. The poin
of marginal mechanical stability where the solid starts
form, and the point of marginal thermodynamic stabil
where the solid ceases to be metastable relative to the flu
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the same density, were determined by both numerical m
ods and approximate theories. The results are listed in
Table in Ref. @10#. The obtained densities of the fluid a
marginal mechanical stability are in the range betwe
h/hcp50.694@8# andh/hcp50.786@9#. We performed MC
simulations at the densityh/hcp50.693 (r50.8) and at
lower densities given in Tables I and II, i.e., in the ran
where the fluid phase is stable. For densities lower th
h/hcp50.346 (r50.4) the system approaches the tricritic
point that follows from the analysis of Voronoi diagram
discussed in the Sec. V.

Let us define byM5( iSi /N the average value of particl
spin in the system. The central quantity used to precis
locate the critical point both in localized magnets and m
netic fluids is the Binder’s reduced fourth-order cumulantU
defined as@21,26–28,32,35,36#:

U512
^M4&

3^M2&2
, ~2!

where ^ . . . & denotes the canonical ensemble average@3#.
The variation ofU with the simulation box size for a fixed
value of K can be interpreted as the renormalization-gro
flow diagram@26,27#. Upon increasing the box size, the c

TABLE I. The values of coupling parameterK for which MC
simulations were performed.N denotes the number of particles i
the system andr is the number density.

r N51296 N51156 N51024 N5900 N5784 N5676

0.8 0.198 0.198 0.198 0.197 0.198
0.7 0.238 0.239 0.239 0.239 0.238 0.239
0.6 0.296 0.298 0.296 0.296 0.299 0.296
0.6 0.290 0.290 0.290 0.290 0.290 0.290
0.55 0.337 0.338 0.338 0.338 0.338 0.33
0.55 0.320 0.320 0.320 0.320 0.320 0.32
0.5 0.389 0.389 0.389 0.386 0.386 0.389
0.5 0.370 0.370 0.370 0.370 0.370 0.370
0.45 0.460 0.460 0.460 0.450 0.455 0.46
0.45 0.430 0.425 0.431 0.430 0.420 0.41
0.4 0.546 0.545 0.545 0.545 0.546

TABLE II. The critical value of the Binder’s cumulantUc , the
critical couplingKc , and the estimated critical exponentn of the
correlation length for different Ising ferromagnetic fluid densitiesr
denotes the number density andh/hcp is the reduced packing frac
tion.

r h/hcp Kc Uc n

0.8 0.6928 0.1989 0.6050 1.00
0.7 0.6062 0.2400 0.6065 1.02
0.6 0.5196 0.2989 0.6120 1.09
0.55 0.4763 0.3386 0.6160 1.14
0.5 0.4330 0.3886 0.6210 1.20
0.45 0.3897 0.4540 0.6260 1.27
0.4 0.3464 0.5430 0.6320 1.35
9-4
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UNIVERSALITY OF A TWO-DIMENSIONAL ISING . . . PHYSICAL REVIEW E64 041109
mulant tends toU50 in the paramagnetic phase and toU
52/3 in the ferromagnetic phase. At the critical pointK
5Kc , the cumulantU approaches the nontrivial fixed-poin
value. The similar properties have also the higher-order
mulants. In the vicinity of the critical point, the probabilit
distribution function ofM satisfies the finite-size scaling hy
pothesis. The form of the distribution, however, strongly d
pends both on the boundary conditions used and on the s
of the simulation box@26,27,30#. The probability distribution
function of M at the critical point and its cumulants are th
universal only in this restricted sense. In practice, the crit
point is located by performing a single MC simulation in t
critical region and applying histogram techniques@33,34# to
get the dependence of the cumulantU on K over the entire
scaling regime. At the critical point, the curvesU5 f (K)
intersect in a common intersection point independent of
size of the simulation box. We first performed short MC ru
to get a crude approximation ofKc for all considered densi
ties. In Table I we give the number of particles in the syste
densities, and values of the coupling parameterK for which
we performed long MC simulations.

Applying a single histogram technique and locating t
intersection point of cumulants, we determined the value
the critical couplingKc and the value of the cumulant at th
critical point Uc for different densities of the ferromagnet
fluid. The intersection of curvesU5 f (K) for r50.5 and
different system sizes is shown in Fig. 1. The obtained val
of Kc andUc are given in Table II. In Fig. 2, we show th
dependence ofUc on the reduced packing fraction. Th
Binder’s cumulant at the critical point varies continuous
with the density. Metropolis and coworkers@3# determined
numerically by MC simulations the equation of state for
2D system of noninteracting hard disks. Their results co
cide with the results of the free-volume theory forh/hcp
.0.556 and with the five-term virial expansion forh/hcp
,0.4. In Fig. 2 one can notice the change in the depende
Uc5 f (h/hcp) for h/hcp.0.56. For fluid densities wher

FIG. 1. Plot of the Binder’s cumulantU versus the couplingK in
systems composed of 1296, 1156, 1024, 900, 784, and 676 d
for the reduced packing fractionh/hcp50.433. The curves resul
from a single histogram technique. The slope of the curves
creases with the number of disks in the system. The critical poin
determined by dotted lines. The estimated values of the crit
coupling Kc and of the cumulant at the critical pointUc are indi-
cated.
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deviations from the free-volume theory become large,Uc
quickly increases with decreasing fluid density. The sa
qualitatively dependence of the Binder’s cumulant on
density was found in the Heisenberg fluid@21# and in the 2D
site-diluted Ising lattice model@25#. The value of the Bind-
er’s cumulant at the critical point obtained in the 2D Isin
lattice model assuming periodic boundary conditions isUc
50.611@39#.

The critical line resulting from our MC simulations i
shown in Fig. 3. The circular data points on this line c
serve as ‘‘experimental’’ data points to be fitted by the cr
cal line obtained within approximate theories. In models
ferromagnetic fluids, the approximation can be applied to
configurational degrees of freedom and/or to spin degree

ks

-
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al

FIG. 2. The Binder’s cumulant at the critical pointUc versus the
reduced packing fractionh/hcp . The dots represent values ofUc

obtained from MC simulations via cumulant crossing meth
shown in Fig. 1. The curve is drawn to guide the eye. The dot
lines determine characteristic packing fractions described in R
@3# and in the text.

FIG. 3. The dependence of the critical couplingKc on the re-
duced packing fractionh/hcp . The dots represent critical point
obtained from MC simulations via cumulant crossing meth
shown in Fig. 1. The squares result from the approximate theor
ferromagnetic Ising fluid described in Ref.@42# and in the text. The
solid and dashed curves are critical lines in the cell model for
screening parameterzs51 andzs5A2, respectively. The dotted
lines determine characteristic packing fractions described in R
@3# and in the text.
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freedom. The earliest approximate theories of liquids w
the cell theories@1#. In the simplest uncorrelated cell mode
it is assumed that particles are constrained to occupy i
vidual cells and correlations between particles in differ
cells are ignored. In fact, one also exploits this idea in M
simulations, but a cell~simulation box! contains several hun
dred particles instead of one. The single-occupancy
model can thus be considered as a rough first approxima
of a fluid. In ferromagnetic fluid, each particle moves in t
field of the others, and this field may be replaced by a s
able average field. Lennard-Jones and Devonshire@40# pro-
posed the uncorrelated cell model for a system of interac
hard-core particles and determined the equation of state
fluid at moderate densities. They assumed that the ave
field in which any one particle moves is the field produc
by other particles localized at their most probable positio
the centers of their cells. In the model of Lennard-Jones
Devonshire, the central particle moves randomly in the sy
metrical available region of radiusd2s (d is the average
distance between nearest neighbors! about the center of its
cell, while positions of other particles are fixed. The ma
mum amplitude of motion can be interpreted as the m
radius of the free volume in the free-volume theories@41#.
We applied the same approximation to our system of h
disks with Ising spins assuming that disks are contained
regular hexagonal cells. The choice of hexagonal cells
motivated by the fact that for a 2D hard-disk system,
most probable number of neighbors is six for all densit
@2#. We calculated numerically the effective magnetic fie
acting on a central particle, and applying the mean-fi
Weiss approximation, we determined the critical line sho
as the solid line in Fig. 3. The shorter exchange coupl
makes it harder for the spins to order, and hence, yield
lower critical temperature. For the screening parameterzs
5A2, i.e., when the range of exchange interactions is sh
ened, the critical line shifts to higher values ofK and fits well
to MC simulation data. The Lennard-Jones and Devons
cell model provided the basis for other systematic theorie
fluids @6,40#, e.g., the correlated-cell theories or the clus
theories@1#. Although for zs5A2 the cell model correctly
predicts here both the shape and position of the critical l
it does not imply that the cell structure exists in real fluid

The approximate theory of a ferromagnetic fluid that h
been the most frequently used until now to predict the lo
tion of the critical line and the tricritical point is the theory
which spins are treated in the mean-field approximation
spatial correlations between particles are like in classical
uids @15,21,42#. It is based on the assumption that the ma
netic transition is determined mainly by the magnetic int
action strength and both spin correlations and
temperature do not effect the fluid structure. The effect
magnetic-fieldh acting on one spin can thus be approxima
by

h522prME JS r

s DgS r

s D r

s
dS r

s D , ~3!

where g(r /s) denotes the positional radial pai
distribution function. It expresses the local number density
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disks at a distancer /s from a disk at the origin divided byr.
g(r /s) approaches one as the distance becomes large.
most accurate correlations of particles in fluids are de
mined in computer-generated ‘‘experiments,’’ mainly M
simulations. The positional correlation functions obtain
within the approximate theories like PY, BGY, CHNC, or P
are usually compared with the function evaluated by a M
method@11,12#. Chae and coworkers performed MC simul
tions for the system of hard disks and tabulated the func
g(r /s) for the three reduced packing fractionsh/hcp : 0.4,
0.5, and 0.6. Using these results, we calculated the effec
magnetic field by numerical integration and the value of
critical coupling Kc from the Weiss magnetic equation o
state. The obtained critical points are shown by square
Fig. 3. At higher fluid densities, they coincide with the crit
cal line predicted by the cell model. We conclude that t
theory and the cell model provide only a crude approxim
tion to the critical line in our model of ferromagnetic Isin
fluid.

IV. THE CRITICAL EXPONENTS

The magnetic second-order phase transition in the Is
model of a 2D ferromagnetic fluid we studied by varying t
temperature at a fixed-particle density. We applied finite-s
scaling ~FSS! method combined with a single histogra
technique@33# to determine the critical behavior of differen
thermodynamic quantities over the entire critical region. F
predicts the critical behavior of a system in the thermod
namic limit from the properties of finite systems. The FS
approach to critical phenomena was first proposed by Fis
and Barber@43#. They confirmed the method by existing da
on a 2D Ising model, ferromagnetic spherical models, id
Bose fluids, and real helium films. There have been v
extensive and careful studies of critical properties in class
ferromagnetic lattice models by MC simulations combin
with FSS and histogram techniques@33–36#. These methods
have proven to be very useful also in the studies of ph
transitions in ferromagnetic fluids@21,31,32#.

In the critical region, there are two important character
tic lengths: the correlation lengthj of the order-paramete
fluctuations and the linear sizeL of the system. The finite-
size effects are controlled by a comparison of these leng
At the critical point, the correlation lengthj diverges and all
features on the scale of particle spacing~e.g., the structure or
the range of particle interactions! become irrelevant. The de
termination of the dependence of the spin-correlation len
on the temperature and density is thus fundamental in
analysis of magnetic phase transitions@22#. The critical be-
havior of thermodynamic quantities close to the critical po
can be described by a set of critical exponents. The div
gence of the correlation length describes the exponentn. The
straightforward method to get this exponent, after location
the critical point via cumulant intersection method, is to i
spect the slope]U/]K of the functionU5 f (K) at K5Kc .
The derivative]U/]K can be obtained by taking finite dif
ferences for small enough increments ofK. The more accu-
rate and reliable method is, however, to calculate the der
tive of the formula~2! with respect toK and to exploit the
9-6
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UNIVERSALITY OF A TWO-DIMENSIONAL ISING . . . PHYSICAL REVIEW E64 041109
following equation for the derivatives of the moments ofM
@21,32,35#:

]^uMnu&
]K

52
1

K
~^uMnuE&2^uMnu&^E&!, ~4!

whereE50.5( i j J(r /s)SiSj /kBT is the exchange energy o
the system divided by thermal energy. The values of av
ages on the right hand side atK5Kc are determined by
applying a single histogram technique. FSS predicts the
rivative (]U/]K)Kc

to scale with the system size asL1/n

@21,28,31,35,36#. In Fig. 4 we show the straight line fits o
ln(]U/]K)Kc

versus lnL for systems with different densities

The slope of the stright lines is 1/n. The estimated values o
the correlation length exponent for different densities
given in this figure. One should notice the increase ofn with
decreasing particle density. The independent estimation
the correlation length exponent in ferromagnetic fluids
usually extracted from the critical behavior of derivativ
] ln^uMu&/]K and] ln^M2&/]K @32#. These derivatives are ex
pressed in terms of cross correlations withE, and Eq.~4! can
be used to calculate them. They have the same scaling p
erties as the cumulant slope. The maxima of both derivat
are predicted to scale asL1/n. They are located further from
the critical point. At lower fluid densities, positions of th
maxima are outside the range of the single histogram ge
ated from the MC run performed nearKc , and we had to
make additional MC runs at smallerK values indicated in
Table I. The derivatives] ln^uMu&/]K and ] ln^M2&/]K allow
the estimation of the exponentn without the knowledge of
the critical couplingKc . In Fig. 5, we plot the logarithm of

FIG. 4. ln-ln plot of the derivative of the Binder’s cumulant
the critical point (]U/]K)Kc

versus the linear system sizeL. The
dots represent data obtained from MC simulations in systems c
posed of 1296, 1156, 1024, 900, 784, and 676 disks. Every lin
the straight line fit to data points corresponding to the same fl
density. The lines are shifted downwards with decreasing den
The slope of these lines gives 1/n, wheren is the correlation length
critical exponent. Our estimates ofn for the reduced packing frac
tionsh/hcp equal 0.693, 0.606, 0.520, 0.476, 0.433, and 0.390
respectively, 1.00, 1.03, 1.09, 1.13, 1.20, and 1.27. Forh/hcp

50.693 the system with 676 disks is omitted.
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the maximum values of these derivatives versus lnL and we
show values of the exponentn for different fluid densities
estimated from linear fits. These values agree well with v
ues of the exponentn estimated from the cumulant slope
The dependence of the critical exponentn on fluid density is
given in Table II and shown in Fig. 6. The valuen51.35 for
the number densityr50.4 (h/hcp.0.346) has been ob
tained before in Ref.@32#. The continuous variation of the
correlation length exponent with fluid density goes agai
standard universality considerations, but it is qualitative
consistent with the reported variation ofn with the density in
Heisenberg fluid@21# and in the 2D site-diluted Ising mode
@25,29#. Derrida, Southern, and Stauffer@30# suggested tha
in the system with critical exponents continuously varyi
with the amount of disorder, the Binder’s reduced four
order cumulant at the critical point should also vary contin

-
is
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ty.

e,

FIG. 5. ln-ln plot of the maximum values of derivative
] ln^uMu&/]K ~a! and ] ln^M2&/]K ~b! versus the linear system siz
ln L. The dots represent data obtained from MC simulations in s
tems composed of 1296, 1156, 1024, 900, 784, and 676 d
Every line is the straight line fit to data points corresponding to
same fluid density. The lines are shifted downwards with decrea
density. The slope of these lines gives 1/n, wheren is the correla-
tion length critical exponent. Our estimates ofn for the reduced
packing fractionsh/hcp equal 0.693, 0.606, 0.520, 0.476, 0.43
and 0.390, are, respectively, 1.00, 1.01, 1.08, 1.15, 1.20, and 1
for the plot ~a! and 1.00, 1.01, 1.09, 1.15, 1.21, and 1.28, for t
plot ~b!. For h/hcp50.693 the system with 676 disks is omitted.
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W. KORNETA PHYSICAL REVIEW E 64 041109
ously. In Fig. 7, we plot the critical exponent of the spi
correlation length versus the Bindr’s fourth-order cumula
at the critical point for different ferromagnetic fluid densitie
This dependence is linear, what strongly support the con
ture of Derrida and coworkers.

The basic quantity in the description of phase transitio
is the order parameter. For the second-order phase tra
tions, from the paramagnetic fluid to the ferromagnetic flu
phase, the order parameter is the spontaneous magnetiz
It varies continuously across the critical line and it is zero
the paramagnetic phase and nonzero in the ferromagn
phase. This spontaneous symmetry breaking can occur
in the thermodynamic limit. In MC simulations, the syste
passes from positive to negative values ofM and correct
estimates of the spontaneous magnetization have to be
fined. The following quantities are often used as estimate
the spontaneous magnetization for MC simulations in fin
systems: the peak position of the probability distributi
function of M, A^M2& and ^uM u& @28#. These quantities al
tend smoothly towards the spontaneous magnetization in
thermodynamic limit. In this paper, we selected the quan

FIG. 6. The correlation length critical exponentn versus the
reduced packing fractionh/hcp . The dots represent values ofn
obtained from MC simulations and given in Table II. The curve
drawn to guide the eye.

FIG. 7. The correlation length critical exponentn versus the
Binder’s cumulant at the critical pointUc . The dots represent dat
given in Table II that were obtained from MC simulations for d
ferent fluid densities. The line is the straight line fit to data poin
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^uM u&, similar to Refs.@21,32#. The critical behavior of the
spontaneous magnetization is described by the exponenb.
According to FSS, at the critical point,^uM u& varies with the
linear system sizeL as ^uM u&c.L2b/n. A straight line fit of
ln^uMu&c versus lnL gives the exponent ratiob/n. This is
shown in Fig. 8 for different fluid densities. The estimat
values ofb/n given in this figure for different reduced pack
ing fractions are all close to the valueb/n50.125, the same
as in the 2D Ising lattice model@22#. Although the ratio of
exponentsb/n in ferromagnetic fluid is independent of flui
density, both exponentsb andn separately increase with th
decreasing of the fluid density. The same qualitative va
tions of exponentsb and n were reported in Heisenber
ferromagnetic fluid@21#, and in the 3D site-diluted Ising lat
tice model@24#.

In the critical region, fluctuations of the order parame
become large and this is expressed by the critical behavio
the magnetic susceptibilityx. The magnetic susceptibility in
the thermodynamic limit shows a critical divergence, but
finite systems, it reaches a maximum of finite height. Th
are various ways to estimate the magnetic susceptibility
finite systems@27,28#. We consider the estimate of the ma
netic susceptibility defined as:x5KN(^M2&2^uM u&2)
@21,32#. The plot ofx versusK in our model presents a ver
pronounced peak for all fluid densities, similar as in R
@32#. The following scaling relations are postulated for t
maximum of the susceptibilityxmax and for the value of the
susceptibility at the critical pointxc in finite systems@27,28#:
xmax.Lg/n andxc.Lg/n. Figure 9 shows and confirms thes
scaling relations for different fluid densities. The ratio
critical exponentsg/n is given by the slope of the straigh
line fit to data in this figure. The obtained values ofg/n for
different fluid densities agree well with the valueg/n.

FIG. 8. ln-ln plot of the magnetization at the critical poin
^uM u&c versus the linear system sizeL. The dots represent dat
obtained from MC simulations in systems composed of 1296, 11
1024, 900, 784, and 676 disks. Every line is the straight line fi
data points corresponding to the same fluid density. The lines
shifted downwards with increasing density. The slope of these li
equals2b/n. Our estimates of the critical exponent ratiob/n for
the reduced packing fractionsh/hcp equal 0.693, 0.606, 0.520
0.476, 0.433, and 0.390 are, respectively, 0.128, 0.125, 0.1
0.124, 0.127, and 0.123. Forh/hcp50.693 the system with 676
disks is omitted.
9-8



e

o

2
r-
2

y
si
o

th
t

ph
led
ich
rat-
are
eral
e-

the
ard
lley
at-
noi
0.5.
terns
ies.
rd

last

ck-
ort
ich
ok
and
en-

in
the

the

ared
an-
-
trial
ion
s, it
go-
nly

of
ter

r-
rd-
SA

in

on
ors
ms
rre-

al

i
is
th
en
nt

p

UNIVERSALITY OF A TWO-DIMENSIONAL ISING . . . PHYSICAL REVIEW E64 041109
51.75 obtained in the 2D Ising lattice model@22#. The ratio
g/n, independent of the spin density, was also reported
Heisenber fluid@21# and in the 2D site diluted Ising lattic
model @25,29#.

According to the homogeneity hypothesis, critical exp
nents of various thermodynamic quantities are related@22#.
The relation that connects critical exponentsg, b, andn has
the form: 2b/n1g/n5D. This relation is satisfied by both
the exact and the mean-field critical exponents of the
Ising lattice model@22#, and by critical exponents dete
mined by several independent methods in the site-diluted
Ising lattice model@25,29#. The relation is also satisfied b
critical exponents obtained in this paper for all fluid den
ties, and our results strongly support the validity of the h
mogeneity hypothesis in ferromagnetic Ising fluid near
second-order phase transition from the paramagnetic to
ferromagnetic fluid phase.

FIG. 9. ln-ln plot of the magnetic susceptibility at the critic
point xc ~a! and at the maximumxmax ~b! versus the linear system
size L. The dots represent data obtained from MC simulations
systems composed of 1296, 1156, 1024, 900, 784, and 676 d
Every line is the straight line fit to data points corresponding to
same fluid density. The lines shift to the right with decreasing d
sity. The slope of these lines gives the ratio of critical expone
g/n. Our estimates ofg/n for the reduced packing fractionsh/hcp

equal 0.693, 0.606, 0.520, 0.476, 0.433, and 0.390, are, res
tively, 1.78, 1.71, 1.73, 1.72, 1.75, and 1.78, for the plot~a!, and
1.76, 1.75, 1.74, 1.71, 1.73, and 1.76, for the plot~b!. For h/hcp

50.693 the system with 676 disks is omitted.
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V. ANALYSIS OF THE VORONOI DIAGRAM

The Voronoi diagram in 2D is a straight-line planar gra
entirely defined by a given set of points on the plane cal
generating points. It partitions the plane into regions, wh
are convex polygons. Each polygon surrounds one gene
ing point and consists of all those points in the plane that
closer to this generating point than to the others. The gen
properties of Voronoi diagrams in 2D and numerical proc
dures to generate them are described in Ref.@44#. For sys-
tems composed of hard disks, the generating points are
centers of disks. The Voronoi diagrams of the system of h
disks attracted scientific attention some time ago. Sma
@45# proposed to model cooling-induced polygonal crack p
terns in lava flows observed in volcanic areas by the Voro
diagram of the hard-disk system at packing fraction near
The same model was also used, e.g., to simulate the pat
of receptors in the retina and to describe the fish territor
The more intensive studies of the Voronoi diagram of ha
disks at different packing fractions have been done in the
decade. Gervois, Troadec, and Lemaitre@46# studied experi-
mentally hard disks moving on an air cushion table for pa
ing fractions between 0.2 and 0.8. The disks after a sh
thermalization time form a homogeneous assembly, wh
may be though of as a 2D particle fluid. The authors to
several snapshots of the system at different moments
generated for them Voronoi diagrams. The obtained dep
dence of the average area ofn-sided polygons onn was
found to be very different from the Lewis’s law observed
many natural cellular structures. They also considered
probability distribution functionP(n) of the number of poly-
gon sidesn and obtained the universal relation between
variancem2 of P(n) and the probabilityP(6) of the occur-
rence of hexagons. The experimental system was comp
with the hard-disk system generated numerically by the r
dom sequential adsorption~RSA! procedure. In this proce
dure, disks are sequentially deposited on the plane. The
position of each disk is chosen at random, and if this posit
is not rejected due to overlap with already deposited disk
is accepted and the disk is definitely deposited. This al
rithm does not allow any reorganization of particles and o
systems with packing fractions up to 0.547 (h/hcp.0.6) can
be built in this way. One should notice that for (h/hcp
,0.6) the correlation length critical exponentn, considered
in the previous section, changes with the packing fraction
disks. The work of Gervois, Troadec, and Lemaitre was la
extended by Lemaitre and coworkers@47#. The authors de-
termined the probability distribution function of polygon a
eas and tested the validity of the Aboav-Weaire law in ha
disk systems generated both experimentally and by the R
numerical procedure. Fraser, Zuckermann, and Mouritsen@2#
performed MC simulations of 2D, the hard-disk system
(N,p,T) ensemble in which the particle numberN, the pres-
surep, and the temperatureT are fixed@1,37#. The Voronoi
diagram was constructed for the initial disk configurati
and updated dynamically during the simulation. The auth
concentrated on the statistical analysis of Voronoi diagra
for systems of 102 and 408 hard disks at pressures co
sponding to reduced packing fractionsh/hcp ranging from
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W. KORNETA PHYSICAL REVIEW E 64 041109
0.54 to 0.9. They determined the probability distributi
functions for the number of polygon sides and for the po
gon side lengths. The second distribution was fitted by
sum of two Gaussians at all densities within the fluid a
solid phases. The mean of the Gaussian corresponding
population of short polygon sides reflects the degree of st
tural order within the system, and provides a strong sig
for the fluid-solid transition in the system. All the abov
results were obtained for 2D systems composed of nonin
acting hard disks.

In this section, we analyze changes of the Voronoi d
gram in our ferromagnetic fluid model along the critical lin
We performed short MC simulations on systems with 78
900, 1024, and 1296 particles for densities andKc values
given in Table II. Knowing for each system the average v
ues of the order parameter^uM u&c and the total energŷE&c
at the critical point, we stored to a file several configuratio
for which relative deviations ofM and E with respect to
these average values were smaller than 0.005. In this wa
selected the most typical particle arrangements for the st
tical analysis. The examples of such arrangements with t
Voronoi diagrams in a system composed of 784 particle
two different densities andK5Kc are shown in Figs. 10 and
11. The Voronoi diagram for the close-packed arrangem
of disks consists only of hexagons. As the density is
creased, more and more defects~pentagons and heptagon!
appear in the diagram. For densities corresponding to
fluid-solid first-order phase transition, there are disorde
domains of ordered disks in the system. The size of th
domains decreases, as the system approaches the po
marginal mechanical stability. At lower densities, the
rangement of disks in the system is that of a disordered fl
The typical structure of the fluid close to the fluid-solid c
existence region is shown in Fig. 10. The topological pro
erties of the Voronoi diagram are usually described by
discrete probability distribution functionP(n) of the number
of polygon sidesn and its moments. This distribution for a
obtained typical particle configurations of our systems at
critical point has the maximum atn56. The first moment of
P(n) is always six, what follows from Euler’s relation an
periodic boundary conditions applied to the system. The
portance of hexagons in the Voronoi diagram is expresse
two quantities: the second momentm2, which describes the
dispersion ofn around 6@46,47#, and the number of defect
Nde f512P(6), which equals to the fraction of polygon
with nÞ6 in the diagram@2#. In Fig. 12, we show the de
pendence of both quantities on fluid density. In this and
the next figures we included the results obtained for dens
outside the range of densities given in Table II. For the
densities, we assumed values of the critical couplingKc pre-
dicted by the cell model~discussed in the Sec. III! for the
screening parameterzs5A2. The additional data we dete
mined for systems having the following number densiti
r51.0 (h/hcp.0.866, Kc50.15, the initial particle con-
figuration allowed their rearrangement during MC simu
tions!, r50.9 (h/hcp.0.779, Kc50.17), and r50.38
(h/hcp.0.329,Kc50.59). Because they were obtained
performing shorter MC runs, and the solid phase existing
high-disk densities has a structure incommensurate with
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square simulation box used@2#, points in Figs. 12, 13, and 15
corresponding to the additional data should be treated as
proximate results. Both the variancem2 and the fractional
number of defectsNde f decrease with increasing the dis
density. In the fluid phase, the decrease ofm2 can be ap-
proximated by the straight line. For the reduced pack
fraction h/hcp50.55, the fraction of hexagons in th

FIG. 10. ~a! Typical particle configuration of 2D ferromagneti
Ising fluid at the critical point for the reduced packing fractio
h/hcp50.693, i.e., close to the fluid-solid first-order phase tran
tion, with superimposed Voronoi diagram. The particles with sp
up ~down! are indicated by black-filled~empty! circles. ~b! The
Voronoi diagram alone.
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UNIVERSALITY OF A TWO-DIMENSIONAL ISING . . . PHYSICAL REVIEW E64 041109
Voronoi diagram is the same as other polygons, i.e.,P(6)
5Nde f50.5. This density coincides with the lowest dens
above which the 2D hard-disk system can be described
the free-volume equation of state@3# and critical exponents
are similar to those in the 2D Ising lattice model. F
h/hcp.0.7, there is a sharp decrease ofm2 andNde f , what
is connected with the first-order fluid-solid phase transit
and the formation of ordered domains of disks. In this

FIG. 11. ~a! Typical particle configuration of 2D ferromagnet
Ising fluid at the critical point for the reduced packing fractio
h/hcp50.346, i.e., near the tricritical point, with superimpos
Voronoi diagram. The particles with spins up~down! are indicated
by black-filled ~empty! circles.~b! The Voronoi diagram alone.
04110
y

n
-

gion, m25Nde f . This universal feature was found in variou
2D mosaics at statistical equilibrium forNde f,0.4 @46,47#.
The geometrical properties of the Voronoi diagram of t
hard-disk system are usually described by the probab
distributions of polygon areas@46,47# or polygon side
lengths@2,47#. The second probability distribution was ver
useful in the description of structural changes in the sys
of noninteracting hard disks@2#. It was also used to charac
terize and compare 2D random Voronoi froth~RVF! and ran-
dom matrix Voronoi froth@48#. RVF is the Voronoi diagram
created for points generated by the Poisson point proc
RMVF is the 2D Voronoi tessellation with respect to pos

FIG. 12. The fractional number of defectsNde f and the second
momentm2 of the probability distribution function of the number o
polygon sides in the Voronoi diagram versus the reduced pac
fraction h/hcp in 2D ferromagnetic Ising fluid at the critical point
By dotted lines is indicated fluid density for which the fraction
hexagons in the Voronoi diagram is the same as other polygon

FIG. 13. The dependence of the mean polygon side length

malized by particle diameterl̄ /s and the standard deviation for th

normalized polygon side lengthsA( l / l̄ )221 in the Voronoi dia-
gram versus the reduced packing fractionh/hcp for 2D ferromag-

netic Ising fluid at the critical point. The dependence ofl̄ /s on
h/hcp for the cell model and for 2D random Voronoi froth is show
by the long-dashed and short-dashed lines, respectively. The

dashed line indicates the valueA( l / l̄ )22150.58 for the random
matrix Voronoi froth.
9-11
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tions of eigenvalues of asymmetric complex random ma
ces. The eigenvalues show a repulsion effect character
by a zero probability of finding two identical eigenvalue
Because of this repulsion, RMVF is more regular than R
and it resembles the Voronoi diagram of the system of h
disks. We analyzed changes of the Voronoi diagram along
critical line in our model using the probability distribution o
polygon side lengths. Let us denote byl the polygon side
length. In order to compare probability distributions ofl in
systems with different densities, we scale polygon s
lengths in each system by their mean valuel̄ . Figure 13
shows the dependence of the mean polygon side length
malized by particle diameterl̄ /s versus disk density, com
pared to the dependencel̄ /s51/A3h/hcp in the cell model
with hexagonal cells and to the dependencel̄ /s
51/(1.5Ar) derived theoretically for the RVF and used
normalize polygon side lengths in Ref.@48#. It is seen in the
approach ofl̄ to the mean in the cell model at high densiti
and to the mean in RVF at low densities. In Fig. 13 we a
show the dependence of the standard deviation for the

malized polygon side lengthsA( l / l̄ )221 on disk density.
This dependence tends to the value of the standard devia
for the normalized polygon side lengths in RMVF at lo
densities, and it has a sharp decrease for densitiesh/hcp
.0.7, i.e., above the point of marginal mechanical stabil
For each Voronoi diagram, we divided the normalized po
gon side lengthsl / l̄ into bins of size 0.1 and we calculate
the discrete probability distributionP( l / l̄ ). The obtained
probability distributionsP( l / l̄ ) at the critical point in finite
systems composed of 1296, 1024, 900, and 784 particles
given in Fig. 14 for the three selected fluid densities. It
seen that probability distributionsP( l / l̄ ) in systems with
different numbers of particles coincide and they can be fit
by one function. Cae¨r and Ho@48# proposed to fitP( l / l̄ ) by
the sum of two Gaussian functions with the same stand
deviation and centered symmetrically with respect tol 50.
This function fits well the distributionP( l / l̄ ) in RVF, but not
in RMVF. Fraser and co-workers@2# used the sum of two
Gaussians with different means and widths to fit the dis
bution of Voronoi edge lengths in the system of nonintera
ing hard disks. The fit was good at all disk densities and
fitting parameters were found to reflect structural proper
of the system. In Ref.@2,48# Voronoi diagrams with severa
dozen polygons were generated and considered. For Vor
diagrams generated in our systems, we found the best fi
P( l / l̄ ) by the following probability density function:

f S l

l̄
D 5 (

i 51,2

1

2s iA2p
FexpS 2

~ l / l̄ 2mi !
2

2s i
2 D

1expS 2
~ l / l̄ 1mi !

2

2s i
2 D G , ~5!

wherem1 , m2 , s1, ands2 are the fit parameters. This func
tion is a sum of two functions having the form given in Re
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@48#. We found it the most reliable and stable for our Voron
diagrams with several hundred of polygons. The funct
P( l / l̄ ) well describes the probability density function o
polygon side lengths in RVF form15m250.9144 ands1
5s250.7623, and in RMVF form151.3927,s150.4587,

FIG. 14. The probability distributions of normalized polygo
side lengths in the Voronoi diagram obtained in systems compo
of 1296, 1024, 900, and 784 particles at the critical point for
following reduced packing fractionsh/hcp : 0.693 ~a!, 0.520 ~b!,
and 0.346~c!. The thick solid line is the fit with the probability
density function given by Eq.~5!. The thin solid lines correspond to
two component functions defined in Eq.~5!. The probability distri-
butions for random Voronoi froth and random matrix Voronoi fro
are shown by the short-dashed and long-dashed lines, respect
9-12
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m250.538, ands250.5088. The probability distribution
P( l / l̄ ) for RVF and RMVF are shown by dashed lines
Fig. 14~c!. The probability distribution of polygon side
lengths in our system for the reduced packing fract
h/hcp50.346 is closer to the distributionP( l / l̄ ) in RMVF
than in RVF. This means that the repulsion of seeds gene
ing the Voronoi diagram in RMVF is still important for th
lowest fluid densities considered in this paper. In Fig. 14
show by thin solid lines the two functions contributing to t
probability distribution functionP( l / l̄ ) according to Eq.~5!.
The dependence of their fitting parameters on fluid densit
given in Fig. 15. We denoted, similar to Ref.@2#, by the
subscript 1, the component function that is mainly resp
sible for the peak inP( l / l̄ ) and by the subscript 2, the se
ond component function that corresponds to the popula
of short polygon sides. In the solid phase, the Voronoi d
gram consists of hexagons with a few defects~pentagons and
heptagons!. The distributionP( l / l̄ ) is narrow and concen
trated aroundl / l̄ 51 in this case. In the region of the firs
order fluid-solid phase transition, there is a sharp jump in
value ofm2. This can be useful for locating the transition,
it was first proposed by Fraseret al. @2# in a system of non-
interacting hard disks. As the density of a fluid decreases,

FIG. 15. The fit parameters of the probability density functi
given by Eq.~5! to the probability distribution of normalized poly
gon side lengths in the Voronoi diagram generated for 2D ferrom
netic Ising fluid at the critical point, versus the reduced pack
fraction h/hcp .
04110
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e

distributionP( l / l̄ ) broadens. The contribution of short poly
gon sides increases andm2 moves from 1 to 0.66 for
h/hcp.0.346 (r50.4). At lower densities, we observe
again sharp decrease ofm2, which signals the approach t
the tricritical point. The quantitym2 can thus be used to
characterize the structural order within the system and i
sensitive to structural changes in the system. In the fl
phase, the quantitym1 is around 1.2 with a small maximum
at h/hcp.0.5. The parameterss1 ands2 increase with de-
creasing fluid density. The dependence ofs1 on the density
in the fluid phase is linear, whereas the dependence ofs2 on
the density has the inflexion point. This inflexion point is f
h/hcp50.55, where the fraction of hexagons in the Voron
diagram is the same as other polygons.

VI. CONCLUSIONS

We described the critical behavior of the 2D ferroma
netic Ising fluid near the second-order phase transition fr
the paramagnetic fluid to the ferromagnetic fluid phase
densities between the freezing density and the tricriti
point density. The description is based on MC simulatio
combined with finite-size scaling analysis and a single his
gram technique. We precisely located the critical line us
Binder’s reduced fourth-order cumulant, and we determin
values of critical exponentsn, b, and g. We analyzed
Voronoi diagrams generated for typical particle configu
tions along the critical line. We proposed the probability de
sity function with four fit parameters that well describes t
distribution of normalized polygon side lengths in Voron
diagram at all densities. Following are the main conclusio

~1! The critical exponent of the spin correlation lengthn
is similar to that in the 2D Ising lattice model forh/hcp
.0.6. At lower fluid densities, it increases continuously w
decreasing density from 1 to 1.35 in the investigated den
range. The ratios of critical exponentsg/n and b/n remain
the same as in the 2D Ising lattice model at all densities
the scaling relation 2b/n1g/n5D is always satisfied. The
results suggest the existence of a line of fixed points w
continuously varying critical exponents. This strongly su
ports the idea of weak universality introduced to describe
similar critical behavior observed in 2D and 3D site-dilut
Ising lattice models@24,25,29#.

~2! The value of the Binder’s reduced fourth-order cum
lant at the critical point increases continuously with decre
ing fluid density. This was also reported in the 3D Heise
berg fluid @21# and the 2D site-diluted Ising lattice mode
@25#.

~3! There is a liner relation between the critical expone
n and the value of the Binder’s cumulant at the critical poi
This supports the conjecture of Derridaet al. @30# that the
value of the cumulant at the critical point characterizes u
versality class.

~4! Both the cell model and the theory in which spins a
treated in the mean-field approximation and spatial corre
tions between particles, simillar to those in classical liqui
overestimate the critical temperature. The critical lines p
dicted by these theories coincide for the reduced pack
fraction h/hcp greater than approximately 0.6.

g-
g
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~5! The probability density function describing the dist
bution of normalized polygon side lengths in Voronoi di
grams generated for typical disk configurations along
critical line can be decomposed into two component fu
tions. The location parameter of one component function
be used to characterize the fluid structure. It signals the
proach of the fluid both to the freezing transition and to
tricritical point. This parameter corresponds to the simi
parameter defined in Ref.@2#.

~6! The fluid density below which the exponentn varies
with density coincides with

• the lowest density above which the 2D hard-disk syst
can be described by the free-volume equation of state@3#,

• the highest density below which the hard-disk syst
can be generated numerically by the random sequential
sorption algorithm@46#,
e

H.

tel

is

-

04110
e
-
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d-

• the density at which the fraction of hexagons in t
Voronoi diagram is the same as other polygons,

• the density at which the scale parameter of one com
nent function of the probability density function describin
the distribution of normalized polygon side lengths
Voronoi diagram has the inflexion point.
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@29# R. Kühn, Phys. Rev. Lett.73, 2268~1994!.
@30# B. Derrida, B.W. Southern, and D. Stauffer, J. Phys.~France!

48, 335 ~1987!.
@31# N.B. Wilding and P. Nielaba, Phys. Rev. E53, 926 ~1996!.
@32# A.L. Ferreira and W. Korneta, Phys. Rev. E57, 3107~1998!.
@33# A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett.61,

2635 ~1988!.
@34# A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett.63,

1195 ~1989!.
@35# A.M. Ferrenberg and D.P. Landau, Phys. Rev. B44, 5081

~1991!.
@36# P. Peczak, A.M. Ferrenberg, and D.P. Landau, Phys. Rev. B43,

6087 ~1991!.
@37# M. P. Allen and D. J. Tildesley,Computer Simulation of Liq-

uids ~Oxford University Press, New York, 1987!.
@38# A.M. Ferrenberg, D.P. Landau, and K. Binder, J. Stat. Ph

63, 867 ~1991!.
@39# T.W. Burkhardt and B. Derrida, Phys. Rev. B32, 7273~1985!.
@40# J.E. Lennard-Jones, F.R.S. Devonshire, and A.F. Devons

Proc. R. Soc. London, Ser. A163, 53 ~1937!.
@41# B.J. Alder, W.G. Hoover, and D.A. Young, J. Chem. Phys.49,

3688 ~1968!.
@42# L. Feijoo, C.W. Woo, and V.T. Rajan, Phys. Rev. B22, 2404

~1980!.
@43# M.E. Fisher and M.N. Barber, Phys. Rev. Lett.28, 1516

~1972!.
@44# F. P. Preparata and M. I. Shamos,Computational Geometry, An

Introduction ~Springer-Verlag, Berlin, 1985!.
@45# I.J. Smalley, Geol. Mag.103, 110 ~1966!.
@46# A. Gervois, J.P. Troadec, and J. Lemaitre, J. Phys. A25, 6169

~1992!.
@47# J. Lemaitre, A. Gervois, J.P. Troadec, N. Rivier, M. Ammi,

Oger, and D. Bideau, Philos. Mag. B67, 347 ~1993!.
@48# G. Le Cae¨r and J.S. Ho, J. Phys. A23, 3279~1990!.
9-14


