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Modeling of nonlinear Lévy processes by data analysis
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The paper presents a method to analyze time series of nonlineaiptecesses. The'lvg stability index as
well as the nonlinear deterministic and stochastic parts of the dynamics together with their uncertainties can be
calculated numerically. As last step of the analysis the membership of the investigated system to the regarded
class of dynamical systems is validated. For demonstration the algorithm is applied to artificially created time
series with different Ley indices.
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[. INTRODUCTION cesses constitute an interesting generalization of normal dif-
fusion processetsee, e.g.[14—-16). The typical length of

Normal diffusion under the influence of an external forceLévy flights grows according to
field is often described by a Langevin equation for the
d-dimensional stochastic variab¥(t) (see, e.g.[1-3]) (Ix|)~tY,  ae(0,2], (4)

dX(t)=g(X(t),t)dt+h(X(t),)dW(t). (1) wherea=2 stands for the behavior of normal diffusion. This
property has made 'vg flights natural candidates for the
description of enhanced diffusion.

The distribution of Ley noise has a long-range algebraic
tail corresponding to large but infrequent steps, so-called rare
events. Therefore, rare events become more important in
Lévy flights than in Brownian motion. The superdiffusive
characteristics of Ly flights have recently been used to

The trajectory of the stochastic variab¥€t) is determined
by a deterministic pargy and a stochastic palt dW stands
for an infinitesimal Brownian motion, i.e., an infinitesimal
Wiener process. Thel-dimensional driving noise source
I'(t) of the Wiener procesdW=TI'(t)dt is a 5-function cor-
related Gaussian white noise with

(Ti(1))=0 2) model a broad variety of physical processes. Some examples
' ’ are the description of anomalous transport in one dimension
(TY(OT; (1)) =8 8(t—t"). (3)  With absorbing boundary16], the modeling of anomalous

diffusion at liquid surfacesso-called bulk-mediated surface
A lot of physical and biological systems can be described byiffusion), where the molecules executévyewalks on the
models like Eq(1) (see, e.g.[4,5]). surfacd 17], and the application of this modeling in the cases
If the deterministic part and the stochastic patof Eq.  Of porous glasseEl8] and eye lensefl9]. Enhanced diffu-
(1) are not explicitly time dependent, one talks about a staSion has been observed in systems of polymerlike breakable
tionary process. In this case the probability density distribumicelles [20]. Turbulence has been investigated under the
tion w(x,t) =w(x) in state spacéx! is stationary, i.e. it does Point of view of Levy flights [21]. Even the wandering of

not change in time. albatrosses has been modeled by the theory o Iftights
For such stationary stochastic processes that can be de22]. ) _ _
scribed by a Langevin equatidd) with g=g(X(t)) andh Among the different theoretic frameworks connected with

=h(X(t)) a data-driven method to determine the determinthe description of anomalous diffusion are continuous ran-
istic and stochastic parts of the dynamics by data analysidom walk scheme$23,24, fractional diffusion equations
directly from measured time series was proposed in Refsg_25,1[ﬂlv4f]’md generalized Langevin and Fokker-Planck equa-
[6,7]. 1ons . . _ _

The results of an application of the method to experimen- In the following the theoretical model of a generalized
tal data sets originating from physical, technical, and medical-2ngevin equation as generalization of the Langevin equa-

The method can be extended to an application on nonst&lynamic systems that are describable by such an evolution
tionary systems by a moving window technique. Then, the2quation an analysis method will be presented that provides
dynamics is assumed to be quasistationary within each wird$ With a direct data-driven tool to formulate model equa-
dow. tions for the dynamics of the system.

In this paper, the class of Langevin syste( will be
extended to the bigger class of Langevin-like systems where Il. CONSIDERED SYSTEMS
the Gaussian white noise function is replaced by the more _ _ o
general Ley noise(see, e.g[11-13). Stochastic Ley pro- Instead of Eq(1) the following nonlinear Langevin-like

differential equation for a stochastic vec(t) is assumed

E— to describe the dynamics of the investigated systésee,
*Email address: silke@theo3.physik.uni-stuttgart.de e.g.,[11-13,19):
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dX(t)=g(X(t),t)+h(X(t),t)dLA») (5)

dL("##) stands for an infinitesimal-dimensionala-stable
Lévy motion with

(dL (B = (£ 2, (1), ©

where thed stochastically independently chosen components

(f0»A:1)).(t) of the Levy noise creating such a motion are
characterized by the four parameters:vyestability a
e(0,2], scale parametey=0, skewnessBe[—1,1], and
centerue R. Fora=2, y=0.5, =0, andu=0 Eq.(5) is
equal to the original Langevin equatiéh). For decreasing

the larger deviations of the realization become larger and

more frequent. On the left side of Fig. 4 realizations o¥y.e
noise are shown for different values of
For simplicity of the model

dX(t)=g(X(t),t)+R(X(t),t)ydL (A 7

with
h;(X(0),D=h;X(1),0)8;, h;>0, (8)
ALOrBm) <FOrBum gt 9

is considered instead of E@5). Now, the d components
(A1), of the introduced [ey-noise creating the infini-

tesimal Lery-motions @NL(j'ﬁ'“))i are no longer necessarily
stochastically independent.
In general, Lgy noise is not defined by its probability
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For the following considerationg;=1, ©«=0 is set with-
out loss of generality for the model equatiof® and (7).
Besides,3=0 is chosen. In this case, a series expansion of
Eq. (1) valid for large arguments|X|>0) is given by

plr=18=04=0) |y) = — % él (—kll)k F|(X6|v:k‘ill)sin qum
+R(Ix), (12
wherel'(x) is the EulerI” function and
R(|x)=O(]x| =« D7), (13

From this expansion, an asymptotic approximation of a
stable distribution of indexy for large values ofx| can be
found as

I'(1+ a)sin(7al2)

p(a}/=1,ﬁ=0,,u=0)(|x|)~ ~|X|7(1+a).

7T|X|l+a

(14

The asymptotic behavior for large values|af is a power-
law behavior. It results in a divergence of all moments
(|x|") with n=a whena<2. In particular, all Ley stable
processes witlw<<2 have infinite variance.

In the following, a method to determine théwyestability
index a, whena e (1,2] and the deterministic and stochastic
parts of a Langevin-like equatiof) directly from given
time series will be presented. For the analysis the process has
to be stationary, i.e., deterministic and stochastic parts are

density, but by its characteristic function. The probability . explicitly time dependent. If instationary systems are in-

density distribution exists and is continuous but, with som
function of each Ley noise component, i.e. the Fourier

transform of the probability density distributiqel”#*) of
each component, has the following form:

<e“”>=J_;p&V‘B"‘)(X)e‘qxdx

( . 7Ta .
eXp{_ﬂqp(l_'B(SgnQ)tan? +iuq
if a#l,
=
.2 .
ex%‘ﬂ‘ﬂ 1+|,3;(SQHQ)|n|Q|)+|Mq
if a=1.

\

(10

evestigated, a moving window technique has to be applied,

exceptions, it is not known in closed form. The characterlsth_e_, the system is assumed to be stationary within one win-

dow and the time dependence of the functionals is estimated
later on by taking together the results of the overlapping
windows.

These considerations together with the considerations
about the Lgy parameters above lead to the following class
of model equations for the investigated considered dynamic
systems:

dX (1) =g(X(t))+h(X(t))dL (= 18=0s=0)

CYE(l,Z], h”:h“(S” (15)
For small 7 the evolution equatioril5) is integrated and
iterated in an analogous way to the Euler method as:

X(t+7)=X(t)+g(X(t)) 7+ h(X (1)) 7Hefly=18=04=0) 1)

It is the most general form of a characteristic function of a

stable process. FoB(=0,u=0) the probability density dis-
tribution is given by

o 1=
p{yA=0m=0)(y)= ;fo exp(— y|g|*)coggx)dg. (11)

7<1. (16)

This iteration may be understood as definition of the differ-
ential equatior(15) and will form the basis of the procedure
described in the following.
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lll. A METHOD FOR ANALYZING (IXi(t+ 1) =% = G007 (0 =x
LEVY-STOCHASTIC SYSTEMS
For the extracting of deterministic and stochastic parts =T®(x, r)%ﬁ“(x)rl’“J’ |x'|ply=1A=0u=0)(x")dx
from fluctuating data, first, it is assumed that the underlying o
dynamics can be described by an iteration like Bd). In T Ve .
the end, after all analysis results are found, this assumption =hi() 7 F(e),  7<1, (20)
can be verified. respectively

Because of3= w=0 the functiong(x) in state spacéx}
(i.e. the spacdx} of all valuesx that can be taken by the @) - 1
stochastic variablX(t)) can be expressed as conditional av- In[Ti~(x, »)]~In[h;i X)F (@) ]+—In(7),  7<1, (21)
erage according to

. with
900 =lim HOKE ) Wl lim ZTH0x,) T, 1) =(X,(t+ D =X =G0 D xx, (22
17
with F(a) ==f |x'|plr=1A=0u=0)(x"\dx', (23
TO(X, 7) :=(X(t+7) = X)|x () =x - (18)  For g(x) being known in form of the estimatiogd™(x) in
i o the meantime, the conditional averaﬁé)(x 7) can be es-
If stationarity is given, what has been assumed, the dete‘hmated as
ministic and stochastic functiorgandh are not explicitly
time dependent. So, the ensemble averaige can be esti-  T(?(x,7)
mated as conditional temporal average over the whole time 2N
seriesX(t,,). For this, the state space of the process is dis-  ~Tig"  (%7)
cretized. The conditionX(t)=x is fulfilled if only pairs 1 N
X(tn+ ), X(tn) Wlt_h X(fcn).=x within some I|m|t54x, I.e. — 2 (ty+ )= Xi(t,) — g(N) X) 7]
with X(t,) andx lying within the same bin of the discretized N A= X(t )= x= Ax

state space, are taken into consideration. In the following this
is expressed by the conditiof(t,) =x= Ax. The conditional (24)
averageT® has to be calculated for everyseparatelyN
shall be the number of data pairs for a certathat fulfill the
condition. ThenT®) can be estimated as

The proceeding is analogous to the calculations described
above.
WhenT(? is calculated for several small valuesofe.g.
Niarge Atsamp 2Atsamp, 2%Atsamp, - .. ) and isplotted for fixedx
TO(x,7) ~ TON(x 7) andi in a In-In-plot overr, a can be determined as inverse
slope of a fitted straight line. In theory, for eagtandi the
N same value fora should be received by this method. In
Z (X(th+7) = X(tn)) : praxis, errors because of finite time series, finite discretiza-
- X(ty)=x+Ax tion of state space, extrapolation, and measurerfsee Sec.
(19) IV) can be minimized by taking the mean of all valuesdor
that have been calculated for the differenéndi. This av-
The subscripte will be added whenever an estimation value erage valuere is used as an estimate for thévyendex. The
for an observable is introduced. Generalyis different for ~ standard deviation of this distribution can be taken as uncer-
every pointx and has to be large for a good res(gee tainty Acg.
uncertainty discussion in next sectjofo be reminded that Now, expressiorF(a) can be estimated numerically ac-
N has an influence on the estimated value even if it is nogording to Eq.(23) by simulating a Lgy motion with (a

Z||—\

treated as direct functional dependence, the intdxis  =ag,y=1,8=0,u=0) and taking the average of the abso-
added as superscript to the estimation value. lute value of the realization. The realizatidff='#=%#=%

If TM is calculated for differentbut smal) values ofr  of the Levy noise can be constructed as folloy26,27: A
like €.9. Atgamp, 2Ateamp» 3Atsamp. - - ., WhereAtg,,,  realizationr of a uniformly distributed random variable in

is the sampling time of the time series, the limit-0 of  the intervall — 7/2,7/2] is taken and, independently, a real-
T/ 7 according to relationshigl7) can be found by ex- izationv of an exponential random variable with mean 1.
trapolation. By this way, an estimati@i")(x) for the deter-  Then

ministic partg(x) of the dynamics can be calculated.

_ , : _ (1-a)la
To estimate the stochastic p&(ix), the Lery indexa has F(r=18=04=0)_ sin(ar) (coi(l “)r]) )
to be determined, first. Therefore, the following conditional “ (cosr)Ye v
average is considered and approximated for smals (25
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FIG. 1. Numerically determined integrkl(«) and the derivativé-' (o) =dF(a)/da over a.

The numerical result foF («) in the rangea e (1.0,2.0 run a few times, calculating new error bars under the use of

is presented on the left side of Fig. 1. the estimations, determining new estimations with the help
The stochastic paft(x) is given by of the error bars. One will recognize that the procedure is
convergent after at most one or two runs. In the following,
_ Xt D =X = 600 7Y x ) =x the analytic expressions for the uncertainties of interest will
h;; (x)=lim T be presented.
70 7 “F(a) The termT& M (x, 7) is calculated as sum &f indepen-
T@(x, 1) dently identically Ley distributed stochastic variables.
= lim———" (26)  Therefore,TEV™(x,7) itself is a stochastic variable, which
0T F(a) is also Lavy distributed.

N

It can be estimated as 1 11
ZTEM00n =25 2 DXt 7) =X (1) Il -ceax

TN (x,7)
=~ (N,ag) . iE !
h 2 “F(x)= lim————. (27) ~ 1 _ane-1 g0,
" 0 TR (ag) =900+ R0 07 emonmo
Additionally to N, the estimated Ly index ag has been 5 1
added as superscript to remind on a possible uncertainty =9(x) + R0 717070
propagation caused by this estimation value. The procedure (TN)=—
concerning the calculation of the limit— 0 is analogous to (28

the determination of the deterministic part. ) o ) _
As uncertainty of a [ey distributed stochastic variab&

IV. UNCERTAINTIES OF THE RESULTS = 77170479 the width A{ s introduced with

Up to this point of the analysis just the uncertainty of the J'Afo) p(z)dz=0.7. (29)
Lévy index a has been concerned. But for experimentally as -al0
well as for numerically set up values error bars are of great
importance for a correct interpretation and further applicaA(JO) can be calculated numerically and is illustrated in Fig.
tion of the results. In addition to this quite general justifica-2.
tion for uncertainty discussions, for the presented algorithm

error bars have an additional importance. The necessary ex- o e
trapolations tor=0 can be calculated with greater accuracy 19 r 1
if explicate uncertainties for the-dependent values are 185 ¢

known compared with an extrapolation under the assumption 18 1

of unit standard deviations. The analysis results calculatedso g 7

far for the Levry index «, the deterministic pamg(x) and the 5 Y

stochastic pari(x) provide us with firs{already very good 1'62 I

estimations for the real observables. With the help of these 1;5

values uncertainties can be calculated as will be described s |

below. Afterwards the extrapolations te=0 can be deter- 1‘;5 e
mined again, this time under the use of real error bars instead U111 12 13 14 15 16 17 18 19 2
of unit standard deviations. So, new estimationsdomg(x) a

andh(x) can be calculated. They do not differ very much  FIG. 2. Numerically determined uncertaint{’®, defined by
from the first estimations, anyhow. This procedure may beeq. (29), over a.
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FIG. 3. Numerically determined uncertaimﬂf), defined by Eq(32), overN for fixed « (left sidg) and overa for fixed N=4000(right
side.

With the help of definition (29) the uncertainty of The uncertainty off (2™ can be expressed with the help of

17T M (x,7) can be expressed as a new defined widtiA(/P(N): As uncertainty of a stochastic
variableZ=1/NS|_,[f{~1#79#=9)] the width A{J(N) is
}AT(l)(N)(X 7) :ﬁ(N)(X);AUO) (30) defined by
T E ! E (TN)lfllaE g T (70)
F(a)+A{ZP(N)
f p(z)dz=0.7. (32
F(a) -

The results together with their uncertainty limits have a con-
fidence of 70%. This width of the confidence interval is usedy (7

X Lo TR P
in the whole contribution whenever a standard deviation ig,rqcesses as described above, calculating the stochastic vari-

not applicable. Now, the confld(ell;((':\g o’ (x) can be deter-  apie 7 with fixed N for statistically representative times and
mined by extrapolation of TTg ™ (x,7) to 7=0 under  estimatingA(/”(N) for the distribution. On the left side of
consideration of the error bars. _ Fig. 3 the results foA(/P(N) are plotted oveN for different

_ The influence of the uncertainyx of x will not be con- 5165 ofw. The right side of the figure illustrates the depen-
sidered explicitly in the following. It is taken into account as dence of the width o for fixed N=4000.

uncertainty in phase space and has the value of the discreti- /"o uncertainty oT® can be calculated as
zation width. If differentiable functions fag(x) andh(x) are ’ '
assumed, the estimated values in every bin are always within ATEMN(x, 7)=h"ee) (x) Tl/aEA(70f(N), (33
the interval from the minimum to the maximum of the actual, ' e e
correct function within this bin. So, the estimated values forrespectively,
deterministic and stochastic parts in each bin will represent
the correct value of the observables at least somewhere
within the considered bin. A(m[Ti(g)(N)(x,r)]):W

The uncertainty of T@™)(x,7) can be found in an e (x,7)
iE

equivalent way to the determination of the uncertainty of

?)(N) can be determined numerically by simulatingvize

AT (x,7)

TE)™ . The only difficulty in this case is the fact thi? ™) _ ﬁﬁ’\éa@(x) TUeeA(T(N).

is not a sum of independently identically \ne distributed Tie’"V (X, 1) E

stochastic variables, but the sum of absolute values of such (34)
2)(N)

variables. ThereforeT @™ itself is of course again a sto-
chastic variable, but in general not\e distributed any- These uncertainty intervals can be used in the determination

more. of the Levy index @ when a straight line is fitted to the data
points. The determination of the error @f itself has already
TN (x,7) been discussed above. It is taken as the standard deviation of

LN all single values determined for differentandi.

=5 > X (th+ 7) = Xi(t) — gi () 7] As the last step, the uncertainty bfz has to be dis-
n=1 X(t)=x+ Ax cussed.
D=X=
(2)(N)

re1 1 N = (Noag) T (T (3 (Nag)
~ P Lo — (y=18=0,u=0) h-2“F(x)=lim ———=1lim T.2"""F(x,7)

h; (X) 7 N nzl |fa (tn)| iiE ( 0 Tl/aEF(aE) 0 iE (

(35

N—>oc~
— hi() 7F(a). (31)  with

041107-5
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Errors of this estimation are caused by the uncertainty of
T@MN which is primarily originated in the finite numbar
of relevant data points for every b X(t,)=x=Ax Vn],
and by the uncertainty ot which has to be inserted in the
formulas (35) and (36). The total uncertainty oﬂ'i(?(N'“E)

T,

TVEF (ag)

Time Series X(t) Time Series X(t)

Time Series X(t)

Time Series X(t)

Time Series X(t)
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The numerical results for the derivati¥e («) are illustrated
on the right side of Fig. 1.

can be expressed under consideration of the law of error

propagation as
AT D (x, 7))

AT 5,7

Tie™(x,7)

rVeeF (ag)

|

F'(ag) Yee— rYE|n 7

TZ/QEFZ(QE)

ag)

2
g

V. VALIDATION OF THE ASSUMPTIONS

The only assumption concerning the investigated system
that has been made is the pure describability of the dynamics
by an evolution equation like Eq16). No further ansatz has
been taken into account, no further knowledge about the sys-
tem of interest is necessary. Now, after the application of the
algorithm to the data set, when the deterministic and stochas-
tic parts as well as the vy index are known, the assumption

)AQE
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FIG. 5. Numerically determined values for the deterministic functi¢r) of system(40)—(42) in state spacgx} for different Levy
indicesa. The values were calculated directly by data analysis of the time series shown in subsequences in Fig. 4, were smoothed, and were
compared with the theoretical curve.

of the system belonging to this class of Langevin-like sys-should be fulfilled with largen and Atg,,, being the sam-
tems can be tested. Therefore, a new numerically calculatgaling time of the measured and investigated time sefigs.
time seriesY(t) can be integrated according to The needed values for the deterministic and stochastic
functions can be found by interpolation within that part of
_ . _ the state space where numerical results exist. In the outer
Yilt+ Atsim) = gie (Y (D)Atsim part of the phase space, for large deviations of the time se-
+ﬁ”E(Y(t))(msim)(llag)fEZ:)LB:O,M:O)(U_ ries, the numerical results can be extrapolated. According to
E the law of rare events the extrapolation is done in a linear
(39 way.
If the investigated time seried(t) is describable by an
Aty should be in the range of the internal dynamicaliter_ation like Eq.(16) then all statistic_al_qualities of both
time scale. If the dynamical structure is known it is possibleS€"€sX(t) and¥ (t) should be equal within the range of the

to choose a suitable integration step. Besides, the relation dét€rmined uncertainties. As one example, the conditional
probability densmesp(xl,t+Atsam,Jxo,t) can be calculated

for every x, for both time series and the functions can be
Atsamp=NAtsim (39 compared. If there is a good agreement of the distributions

041107-7
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o=1.6 TABLE I. Theoretical values and numerically determined values
3.8 with uncertainties for different lvgy indices « and their inverse
& la.
;%? 42
x a lla a num. 1l num.
)
B 46 2.0 0.50 2.0%0.03 0.56:0.01
© 18 0.56 1.82:0.03 0.55-0.01
sg S 0092 - 1 1.6 0.63 1.640.04 0.61-0.01
g Num, Results —s— 14 0.71 1.45:0.06 0.69-0.03
54 . ,fitted line: 0.623x-2.290 ——, 1.2 0.83 1.280.09 0.78-0.06
-4.5 4 35 3 25
In(7)

h(x) has been chosen in this way to produce a positive
function with two maxima and constant asymptotic behavior
for |x|— . The differential equation has been integrated nu-
|- merically according to

FIG. 6. Logarithm of the numerically calculated conditional av-
erage NS i[X(ty+ 7) = X(ty) = g(X) 7]lx(y—xsax Of the sto-
chastic variableX(t) over the logarithm of the time difference
with x=0.092. The straight line was fitted to the numerically cal

culated values represented by the points with error bars.

P yamep X(t+ Atgim) = X(8) + g(X() At
for all x, the investigated time serie(t) belongs to the FRX(0))(Atgy) Yt = HE70R=0) (1)
class of Langevin-like equations and it was justified to make (42)

the assumption of the algorithm.
Atg;m has been chosen as 0.001 time units, but just every

tenth data point of the sample path has been stored for fur-
VI. APPLICATION OF THE ALGORITHM ther analysis. This corresponds to a sampling time step of
Atsamp= 0.01 time units. For the values 2.0,1.8,1.6,1.4,1.2

Results of an application of the presented algorithm t : X B ) N
have been taken. Figure 4 illustratesvizenoise realizations

artificially created data sets will be shown in this section. As

example, the dynamical system of a one-dimensional Pitch©" these Ley indices and subsequences of the correspond-

fork bifurcation with dynamical Ley noise is used, ing integrated motions according to the relatigd8)—(42).
For each of the time series the deterministic part of the

underlying dynamics has been determined according to rela-
dX(t)=g(X(t))+hX(t)dLy=H#=%=%t)  (40)  tion (17). The results are shown in Fig. 5. The numerically
determined values are represented by points with error bars,
which are quite small. The numerical results have been av-
eraged to eliminate smaller fluctuations, the results are given
by circles. The solid line is the expected curve according to
g(x)=0.1x—x?, (41)  Eq.(4D).
If g(x) is known,«a can be determined. As an example for
the proceeding that has been described in detail above, the
h(x)= 1 In-In-plot and the fitted straight line for=1.6 andx=
1000¢%+ 2000\/0.1x + 120 —0.092 are shown in Fig. 6. Figure 7 shows the distribution
of all numerically calculated results far for differentx in
N 1 005 the casex=1.6 and the affiliated mean value.
2 In Table | the numerically determined values forrldnd
1000¢*~2000/0.1x + 120 a together with their uncertainties are listed for all investi-
gated cases.
0=1.6 Finally, Fig. 8 shows the determined stochastic functions
0.74 F ' " j " Num. Results —— ] for all investigated cases. As in Fig. 4 the points with error
0.7 ¢ average: 0.609 —— 1 bars stand for the numerically calculated values. The squares
3123 : I hi ] are averages of these analysis results. The solid curve repre-
058 | ] sents the expected function according to systé—(42).

054 | 1 With the help of the numerically determined values for
0.5 : : ‘ : . . . the deterministic and the stochastic parts of the dynamics a
08 06 04 02 0 02 04 06 038 new time series((t) has been integrated according to rela-

State x tion (38). The needed values for the deterministic and sto-

FIG. 7. Numerically determined values foral/ a being the  Cchastic function have been found by interpolation or linear

Lévy index, over state. The calculated values are represented by€xtrapolation. Figure 9 shows the original, analyzed time se-

points with error bars, the straight line represents the average of alies X(t) and the with the help of the analysis results recon-
values. structed time serie¥(t) for the different Lery indicesa.

with

1/ou
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a=2.0 a=1.6
z )
= =
g E
£ 4
2 2
7} @
Num. Results Num. Result:
Expected Result Expected Result
i . . . Num.Res. aver. = { ) ) ) _ Num. Res. aver. .
08 -06 -04 -02 0 02 04 06 08 -1 08 06 04 02 0 02 04 06 08 1
State x State x
o=1.8 o=1.4
= =
; :
= =
2 2
@ 7]
Num. Results Num. Results
} Expected Result Expected Result {
) Num. Res. aver. . { { Num. Res. aver.  ®

08 06 04 02 0 02 04 06 08 -1 08 06 04 02 0 02 04 06 08 1

State x State x
o=1.2
0.1
z
=
B
a
=
[¥4 -
]
@
Num. Re; T
Expected Result
) .  Num. Res. aver. -H
-1.5 -1 -0.5 0 0.5 1 15

State x

FIG. 8. Numerically determined values for the stochastic fundtipr) of system(40)—(42) in state spacéx} for different Levy indices
a. The values were calculated directly by data analysis of the time series shown in subsequences in Fig. 4, were smoothed and were
compared with the theoretical curve.

As last step of the analysis, the assumption that the inves- The x range in state space of the results increases with
tigated system belongs to the clad$) of dynamical sys- decreasingy. Numerical results can only be calculated for
tems has to be validated. This is done by comparison of thehosex values in state space that are visited statistically often
conditional probability densitiep(x;,t+AtsamdXo,t) for by the measured trajectory. Smallervyeindices « lead to
differentx, calculated on the one hand side by the measurethrger, quite frequent deviations so that the area of the phase
trajectory and on the other hand by the reconstructed trajegpace that is covered by the investigated trajectory increases
tory. For the Ley index a= 2.0 (Gaussian proces&ig. 10  with decreasing Ley index.

shows the probability distributions for some valuexgfFor The greater the number of the trajectory’s visits of a point
calculating the distributions of the reconstructed time seriex in state space is, the smaller is the uncertainty of the nu-
20 million points have been integrated. merical results at this point. This explains why the error bars

are bigger in the extreme regions of the covered and ana-

lyzed phase space than at the attracting points. The impres-

sion of smaller error bars in the deterministic parts for
In Figs. 5 and 8 numerical analysis results for the detersmaller Lery indices is just caused by different scales of the

ministic and stochastic parts of the investigated dynamicatoordinate axis.

system are presented. Some interesting things concerning If the behavior of the system shall be investigated in re-

these results shall be remarked. gions that are normally not visited by the trajectory, the sys-

VIl. DISCUSSION OF THE RESULTS
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FIG. 9. Investigated time serieqt), generated by iteratio@2), over timet, in comparison with the reconstructed time seli¢t) over
time t, generated according to E8) with the numerically determined dynamical functions that have been found by data analysis.

tem has to be disturbed by additional dynamical noise in In Fig. 9 subsequences of the analyzed time series and the
such a way that the trajectory covers the parts of state spaceconstructed time series are plotted for different values of
of interest. a. The reconstructed time series has been calculated with the
In Fig. 7 the determined values far in the casew=1.6  help of the numerically determined values for the determin-
are plotted together with their uncertainties for different val-istic and the stochastic part and thevigendex. But values
ues ofx. Again, it can be recognized that the uncertaintyfor the state dependent functions exist only in those areas of
increases for extreme values of the covered state space ke phase space that have been visited by the trajectory sta-
cause of a decreasing number of visits. tistically often. In regions in the outer part results can only
In Fig. 8 numerical results for the stochastic part of thebe found by extrapolation. According to the law of rare
investigated dynamical system are presented. Additionally tevents this has been done in a linear way. When comparing
the comments above about both, the deterministic and stdhe original and the reconstructed time series one recognizes
chastic results, one recognizes a strong increase of the uncer-statistically identical behavior in the main part of the cov-
tainties with smaller Ley index . This can be understood ered state space, but a slightly different behavior in strong
by relation(37). deviations. The extreme values are taken by the recon-
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FIG. 10. Conditional probability density functiorp{xl,t-kAtsamAxo,t) in arbitrary units over statg, for different values ofx, for
a=2.0. The light curve belongs to the measured time series, the dark curve has been determined by the reconstructed time series.
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structed trajectory statistically as often as by the originalansatz are necessary for the analysis. The only assumption,
time series, but the recurrence to the main part of the statéhat the system belongs to the considered class of dynamical
space is fulfilled in a slowlier way because of the linearLévy systems, is validated as last step of the procedure.
extrapolation. The fact that systems with nonlinear deterministic as well
In Fig. 10 the functions of the probability density distri- as nonlinear stochastic parts, can be investigated opens up
bution p(xl,t+AtsamAx0 t) are plotted for different values the way to a lot of unknown, so far not investigated and
of x, for the Levy index «=2.0. A good agreement of the modeled systems, physical systems as well as biological,
affiliated distributions can be recognized. The stronger flucmedical or technical systems. Model equations that have
tuations of the distributions of the measured trajectory fobeen set up by logical reasons, symmetry or just experience
a=2.0 in comparison with the distributions of the recon-can be validated or formulated in a more detailed way.
structed trajectory are caused by the smaller number of data It was shown how time series can be reconstructed. By
points (factor 20. The more data points are used for thethis way time series with any number of data points can be
calculation of the probability density distributions the calculated. With the help of these reconstructed time series

smaller are the fluctuations. the long-time behavior of the investigated system can be
simulated and characteristics whose calculation requires long
VIIl. SUMMARY series can be determined.

The presented method allows a data-driven formulation of

A method was presented that allows the data analysis afodel equations for the wide class of self-consistent nonlin-
nonlinear Ley systems. The Ly index @ can be deter- ear stochastic processes.

mined as well as the deterministic and stochastic nonlinear
parts of the dynamics. Model equations for the dynamical
evolution of the investigated system can be formulated. Error
bars show the uncertainties of the calculated values. The authors thank A. Zanker for fruitful discussions and

One remarkable feature of the algorithm is that no prethe German foundation “Studienstiftung des deutschen
knowledge about the system, no assumption or functionaVolkes” for their support of this work.
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