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Modeling of nonlinear Lévy processes by data analysis
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The paper presents a method to analyze time series of nonlinear Le´vy processes. The Le´vy stability index as
well as the nonlinear deterministic and stochastic parts of the dynamics together with their uncertainties can be
calculated numerically. As last step of the analysis the membership of the investigated system to the regarded
class of dynamical systems is validated. For demonstration the algorithm is applied to artificially created time
series with different Le´vy indices.
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I. INTRODUCTION

Normal diffusion under the influence of an external for
field is often described by a Langevin equation for t
d-dimensional stochastic variableX(t) ~see, e.g.,@1–3#!

dX~ t !5g„X~ t !,t…dt1h„X~ t !,t…dW~ t !. ~1!

The trajectory of the stochastic variableX(t) is determined
by a deterministic partg and a stochastic parth. dW stands
for an infinitesimal Brownian motion, i.e., an infinitesim
Wiener process. Thed-dimensional driving noise sourc
G(t) of the Wiener processdW5G(t)dt is ad-function cor-
related Gaussian white noise with

^G i~ t !&50, ~2!

^G i~ t !G j~ t8!&5d i j d~ t2t8!. ~3!

A lot of physical and biological systems can be described
models like Eq.~1! ~see, e.g.,@4,5#!.

If the deterministic partg and the stochastic parth of Eq.
~1! are not explicitly time dependent, one talks about a s
tionary process. In this case the probability density distri
tion w(x,t)5w(x) in state space$x% is stationary, i.e. it does
not change in time.

For such stationary stochastic processes that can be
scribed by a Langevin equation~1! with g5g„X(t)… and h
5h„X(t)… a data-driven method to determine the determ
istic and stochastic parts of the dynamics by data anal
directly from measured time series was proposed in R
@6,7#.

The results of an application of the method to experim
tal data sets originating from physical, technical, and med
research was shown in Refs.@8–10#.

The method can be extended to an application on non
tionary systems by a moving window technique. Then,
dynamics is assumed to be quasistationary within each w
dow.

In this paper, the class of Langevin systems~1! will be
extended to the bigger class of Langevin-like systems wh
the Gaussian white noise function is replaced by the m
general Le´vy noise~see, e.g.,@11–13#!. Stochastic Le´vy pro-
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cesses constitute an interesting generalization of normal
fusion processes~see, e.g.,@14–16#!. The typical length of
Lévy flights grows according to

^uxu&;t1/a, aP~0,2#, ~4!

wherea52 stands for the behavior of normal diffusion. Th
property has made Le´vy flights natural candidates for th
description of enhanced diffusion.

The distribution of Le´vy noise has a long-range algebra
tail corresponding to large but infrequent steps, so-called
events. Therefore, rare events become more importan
Lévy flights than in Brownian motion. The superdiffusiv
characteristics of Le´vy flights have recently been used
model a broad variety of physical processes. Some exam
are the description of anomalous transport in one dimens
with absorbing boundary@16#, the modeling of anomalous
diffusion at liquid surfaces~so-called bulk-mediated surfac
diffusion!, where the molecules execute Le´vy walks on the
surface@17#, and the application of this modeling in the cas
of porous glasses@18# and eye lenses@19#. Enhanced diffu-
sion has been observed in systems of polymerlike break
micelles @20#. Turbulence has been investigated under
point of view of Lévy flights @21#. Even the wandering of
albatrosses has been modeled by the theory of Le´vy flights
@22#.

Among the different theoretic frameworks connected w
the description of anomalous diffusion are continuous r
dom walk schemes@23,24#, fractional diffusion equations
@25,15#, and generalized Langevin and Fokker-Planck eq
tions @14#.

In the following the theoretical model of a generalize
Langevin equation as generalization of the Langevin eq
tion for normal diffusion processes~1! will be used. For
dynamic systems that are describable by such an evolu
equation an analysis method will be presented that prov
us with a direct data-driven tool to formulate model equ
tions for the dynamics of the system.

II. CONSIDERED SYSTEMS

Instead of Eq.~1! the following nonlinear Langevin-like
differential equation for a stochastic vectorX(t) is assumed
to describe the dynamics of the investigated systems~see,
e.g.,@11–13,15#!:
©2001 The American Physical Society07-1
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dX~ t !5g„X~ t !,t…1h„X~ t !,t…dLa
(g,b,m) . ~5!

dLa
(g,b,m) stands for an infinitesimald-dimensionala-stable

Lévy motion with

~dLa
(g,b,m)! i5~ fa

(g,b,m)! i~ t !dt, ~6!

where thed stochastically independently chosen compone
(fa

(g,b,m)) i(t) of the Lévy noise creating such a motion a
characterized by the four parameters: Le´vy stability a
P(0,2#, scale parameterg>0, skewnessbP@21,1#, and
centermPR. For a52, g50.5, b50, andm50 Eq. ~5! is
equal to the original Langevin equation~1!. For decreasinga
the larger deviations of the realization become larger
more frequent. On the left side of Fig. 4 realizations of Le´vy
noise are shown for different values ofa.

For simplicity of the model

dX~ t !5g„X~ t !,t…1h̃„X~ t !,t…dL̃a
(g,b,m) ~7!

with

h̃i j „X~ t !,t…5h̃i i „X~ t !,t…d i j , h̃i i .0, ~8!

dL̃a
(g,b,m)5 f̃a

(g,b,m)dt ~9!

is considered instead of Eq.~5!. Now, the d components
( f̃a

(g,b,m)) i of the introduced Le´vy-noise creating the infini-

tesimal Lévy-motions (dL̃a
(g,b,m)) i are no longer necessaril

stochastically independent.
In general, Le´vy noise is not defined by its probabilit

density, but by its characteristic function. The probabil
density distribution exists and is continuous but, with so
exceptions, it is not known in closed form. The characteris
function of each Le´vy noise component, i.e. the Fourie
transform of the probability density distributionpa

(g,b,m) of
each component, has the following form:

^eiqx&5E
2`

`

pa
(g,b,m)~x!eiqx dx

55
expH 2guquaS 12 ib~sgnq!tan

pa

2 D1 imqJ
if aÞ1,

expH 2guquS 11 ib
2

p
~sgnq!lnuqu D1 imqJ

if a51.

~10!

It is the most general form of a characteristic function o
stable process. For (b50,m50) the probability density dis-
tribution is given by

pa
(g,b50,m50)~x!5

1

pE0

`

exp~2guqua!cos~qx!dq. ~11!
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For the following considerations,g51, m50 is set with-
out loss of generality for the model equations~5! and ~7!.
Besides,b50 is chosen. In this case, a series expansion
Eq. ~11! valid for large arguments (uxu@0) is given by

pa
(g51,b50,m50)~ uxu!52

1

p (
k51

n
~21!k

k!

G~ak11!

uxuak11
sinFkpa

2 G
1R~ uxu!, ~12!

whereG(x) is the EulerG function and

R~ uxu!5O~ uxu2a(n11)21!. ~13!

From this expansion, an asymptotic approximation o
stable distribution of indexa for large values ofuxu can be
found as

pa
(g51,b50,m50)~ uxu!;

G~11a!sin~pa/2!

puxu11a
;uxu2(11a).

~14!

The asymptotic behavior for large values ofuxu is a power-
law behavior. It results in a divergence of all momen
^ uxun & with n>a whena,2. In particular, all Le´vy stable
processes witha,2 have infinite variance.

In the following, a method to determine the Le´vy stability
indexa, whenaP(1,2# and the deterministic and stochast
parts of a Langevin-like equation~7! directly from given
time series will be presented. For the analysis the process
to be stationary, i.e., deterministic and stochastic parts
not explicitly time dependent. If instationary systems are
vestigated, a moving window technique has to be appl
i.e., the system is assumed to be stationary within one w
dow and the time dependence of the functionals is estima
later on by taking together the results of the overlapp
windows.

These considerations together with the considerati
about the Le´vy parameters above lead to the following cla
of model equations for the investigated considered dyna
systems:

dX~ t !5g„X~ t !…1h̃„X~ t !…dL̃a
(g51,b50,m50) ,

aP~1,2#, hi j 5hii d i j . ~15!

For smallt the evolution equation~15! is integrated and
iterated in an analogous way to the Euler method as:

X~ t1t!'X~ t !1g„X~ t !…t1h̃„X~ t !…t1/afa
(g51,b50,m50)~ t !,

t!1. ~16!

This iteration may be understood as definition of the diff
ential equation~15! and will form the basis of the procedur
described in the following.
7-2
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III. A METHOD FOR ANALYZING
LÉVY-STOCHASTIC SYSTEMS

For the extracting of deterministic and stochastic pa
from fluctuating data, first, it is assumed that the underly
dynamics can be described by an iteration like Eq.~16!. In
the end, after all analysis results are found, this assump
can be verified.

Because ofb5m50 the functiong(x) in state space$x%
~i.e. the space$x% of all valuesx that can be taken by th
stochastic variableX(t)) can be expressed as conditional a
erage according to

g~x!5 lim
t→0

1

t
^X~ t1t!2x&uX(t)5x5 lim

t→0

1

t
T(1)~x,t!

~17!

with

T(1)~x,t!ª^X~ t1t!2x&uX(t)5x . ~18!

If stationarity is given, what has been assumed, the de
ministic and stochastic functionsg and h̃ are not explicitly
time dependent. So, the ensemble averageT(1) can be esti-
mated as conditional temporal average over the whole t
seriesX(tn). For this, the state space of the process is d
cretized. The conditionX(t)5x is fulfilled if only pairs
X(tn1t),X(tn) with X(tn)5x within some limitsDx, i.e.
with X(tn) andx lying within the same bin of the discretize
state space, are taken into consideration. In the following
is expressed by the conditionX(tn)5x6Dx. The conditional
averageT(1) has to be calculated for everyx separately.N
shall be the number of data pairs for a certainx that fulfill the
condition. Then,T(1) can be estimated as

T(1)~x,t! '
Nlarge

TE
(1)(N)~x,t!

ª

1

N (
n51

N

„X~ tn1t!2X~ tn!…U
X(tn)5x6Dx

.

~19!

The subscriptE will be added whenever an estimation val
for an observable is introduced. Generally,N is different for
every point x and has to be large for a good result~see
uncertainty discussion in next section!. To be reminded tha
N has an influence on the estimated value even if it is
treated as direct functional dependence, the index~N! is
added as superscript to the estimation value.

If TE
(1)(N) is calculated for different~but small! values oft

like e.g. Dtsamp. , 2Dtsamp. , 3Dtsamp. , . . . , whereDtsamp.
is the sampling time of the time series, the limitt→0 of
T(1)/t according to relationship~17! can be found by ex-
trapolation. By this way, an estimationgE

(N)(x) for the deter-
ministic partg(x) of the dynamics can be calculated.

To estimate the stochastic parth̃(x), the Lévy indexa has
to be determined, first. Therefore, the following condition
average is considered and approximated for smallt as
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^uXi~ t1t!2xi2gi~x!tu&uX(t)5x

5Ti
(2)~x,t!'h̃i i ~x!t1/aE

2`

`

ux8upa
(g51,b50,m50)~x8!dx8

5h̃i i ~x!t1/aF~a!, t!1, ~20!

respectively,

ln@Ti
(2)~x,t!#' ln@ h̃i i ~x!F~a!#1

1

a
ln~t!, t!1, ~21!

with

Ti
(2)~x,t!ª^uXi~ t1t!2xi2gi~x!tu&uX(t)5x , ~22!

F~a!ªE
2`

`

ux8upa
(g51,b50,m50)~x8!dx8. ~23!

For g(x) being known in form of the estimationgE
(N)(x) in

the meantime, the conditional averagesTi
(2)(x,t) can be es-

timated as

Ti
(2)~x,t!

'TiE
(2)(N)~x,t!

ª

1

N (
n51

N

uXi~ tn1t!2Xi~ tn!2giE
(N)~x!tuU

X(tn)5x6Dx

.

~24!

The proceeding is analogous to the calculations descr
above.

WhenTi
(2) is calculated for several small values oft ~e.g.

Dtsamp, 2Dtsamp, 22Dtsamp, . . . ) and isplotted for fixedx
and i in a ln-ln-plot overt, a can be determined as invers
slope of a fitted straight line. In theory, for eachx and i the
same value fora should be received by this method. I
praxis, errors because of finite time series, finite discret
tion of state space, extrapolation, and measurement~see Sec.
IV ! can be minimized by taking the mean of all values fora,
that have been calculated for the differentx and i. This av-
erage valueaE is used as an estimate for the Le´vy index. The
standard deviation of this distribution can be taken as un
tainty DaE .

Now, expressionF(a) can be estimated numerically ac
cording to Eq.~23! by simulating a Le´vy motion with (a
5aE ,g51,b50,m50) and taking the average of the abs
lute value of the realization. The realizationf a

(g51,b50,m50)

of the Lévy noise can be constructed as follows@26,27#: A
realizationr of a uniformly distributed random variable i
the interval@2p/2,p/2# is taken and, independently, a rea
ization v of an exponential random variable with mean
Then

f a
(g51,b50,m50)5

sin~ar !

~cosr !1/a S cos@~12a!r #

v D (12a)/a

.

~25!
7-3
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FIG. 1. Numerically determined integralF(a) and the derivativeF8(a)5dF(a)/da over a.
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The numerical result forF(a) in the rangeaP(1.0,2.0#
is presented on the left side of Fig. 1.

The stochastic parth̃(x) is given by

h̃i i ~x!5 lim
t→0

^uXi~ t1t!2xi2gi~x!tu& zX(t)5x

t1/aF~a!

5 lim
t→0

Ti
(2)~x,t!

t1/aF~a!
. ~26!

It can be estimated as

h̃i iE
(N,aE)

~x!5 lim
t→0

TiE
(2)(N)~x,t!

t1/aEF~aE!
. ~27!

Additionally to N, the estimated Le´vy index aE has been
added as superscript to remind on a possible uncerta
propagation caused by this estimation value. The proced
concerning the calculation of the limitt→0 is analogous to
the determination of the deterministic part.

IV. UNCERTAINTIES OF THE RESULTS

Up to this point of the analysis just the uncertainty of t
Lévy indexa has been concerned. But for experimentally
well as for numerically set up values error bars are of gr
importance for a correct interpretation and further appli
tion of the results. In addition to this quite general justific
tion for uncertainty discussions, for the presented algorit
error bars have an additional importance. The necessary
trapolations tot50 can be calculated with greater accura
if explicate uncertainties for thet-dependent values ar
known compared with an extrapolation under the assump
of unit standard deviations. The analysis results calculate
far for the Lévy index a, the deterministic partg(x) and the
stochastic parth̃(x) provide us with first~already very good!
estimations for the real observables. With the help of th
values uncertainties can be calculated as will be descr
below. Afterwards the extrapolations tot50 can be deter-
mined again, this time under the use of real error bars ins
of unit standard deviations. So, new estimations fora, g(x)
and h̃(x) can be calculated. They do not differ very mu
from the first estimations, anyhow. This procedure may
04110
ty
re

s
t
-
-

x-

n
so

e
ed

ad

e

run a few times, calculating new error bars under the use
the estimations, determining new estimations with the h
of the error bars. One will recognize that the procedure
convergent after at most one or two runs. In the followin
the analytic expressions for the uncertainties of interest
be presented.

The termTE
(1)(N)(x,t) is calculated as sum ofN indepen-

dently identically Lévy distributed stochastic variables
Therefore,TE

(1)(N)(x,t) itself is a stochastic variable, whic
is also Lévy distributed.

1

t
TE

(1)(N)~x,t!5
1

t

1

N (
n51

N

@X~ tn1t!2X~ tn!#uX(tn)5x6Dx

'g~x!1h̃~x!
1

t121/a
fa
(g51/Na21,b50,m50)

5g~x!1h̃~x!
1

~tN!121/a
fa
(g51,b50,m50) .

~28!

As uncertainty of a Le´vy distributed stochastic variableZ
5 f a

(g51,b50,m50) the widthDa
(70) is introduced with

E
2Da

(70)

Da
(70)

p~z!dz>0.7. ~29!

Da
(70) can be calculated numerically and is illustrated in F

2.

FIG. 2. Numerically determined uncertaintyDa
(70) , defined by

Eq. ~29!, overa.
7-4



MODELING OF NONLINEAR LÉVY PROCESSES BY DATA . . . PHYSICAL REVIEW E64 041107
FIG. 3. Numerically determined uncertaintyD uau
(70) , defined by Eq.~32!, overN for fixed a ~left side! and overa for fixed N54000~right

side!.
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With the help of definition ~29! the uncertainty of
1/tTE

(1)(N)(x,t) can be expressed as

1

t
DTE

(1)(N)~x,t!5h̃E
(N)~x!

1

~tN!121/aE
DaE

(70) . ~30!

The results together with their uncertainty limits have a c
fidence of 70%. This width of the confidence interval is us
in the whole contribution whenever a standard deviation
not applicable. Now, the confidence ofgE

(N)(x) can be deter-
mined by extrapolation of 1/tTE

(1)(N)(x,t) to t50 under
consideration of the error bars.

The influence of the uncertaintyDx of x will not be con-
sidered explicitly in the following. It is taken into account a
uncertainty in phase space and has the value of the disc
zation width. If differentiable functions forg(x) andh̃(x) are
assumed, the estimated values in every bin are always w
the interval from the minimum to the maximum of the actu
correct function within this bin. So, the estimated values
deterministic and stochastic parts in each bin will repres
the correct value of the observables at least somew
within the considered bin.

The uncertainty ofTiE
(2)(N)(x,t) can be found in an

equivalent way to the determination of the uncertainty
TE

(1)(N) . The only difficulty in this case is the fact thatTiE
(2)(N)

is not a sum of independently identically Le´vy distributed
stochastic variables, but the sum of absolute values of s
variables. Therefore,TiE

(2)(N) itself is of course again a sto
chastic variable, but in general not Le´vy distributed any-
more.

TiE
(2)(N)~x,t!

5
1

N (
n51

N

u@Xi~ tn1t!2Xi~ tn!2gi~x!t#uU
X(tn)5x6Dx

'
t!1

h̃i i ~x!t1/a
1

N (
n51

N

u f a
(g51,b50,m50)~ tn!u

→
N→`

h̃i i ~x!t1/aF~a!. ~31!
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The uncertainty ofTiE
(2)(N) can be expressed with the help

a new defined widthD uau
(70)(N): As uncertainty of a stochasti

variableZ51/N(n51
N u f a

(g51,b50,m50)u the width D uau
(70)(N) is

defined by

E
F(a)2D uau

(70)(N)

F(a)1D uau
(70)(N)

p~z!dz>0.7. ~32!

D uau
(70)(N) can be determined numerically by simulating Le´vy

processes as described above, calculating the stochastic
ableZ with fixed N for statistically representative times an
estimatingD uau

(70)(N) for the distribution. On the left side o
Fig. 3 the results forD uau

(70)(N) are plotted overN for different
values ofa. The right side of the figure illustrates the depe
dence of the width ona for fixed N54000.

Now, the uncertainty ofTiE
(2) can be calculated as

D„TiE
(2)(N)~x,t!…5h̃i iE

(N,aE)
~x!t1/aED uaEu

(70)~N!, ~33!

respectively,

D„ln@TiE
(2)(N)~x,t!#…5

1

TiE
(2)(N)~x,t!

DTiE
(2)(N)~x,t!

5
1

TiE
(2)(N)~x,t!

h̃i iE
(N,aE)

~x!t1/aED uaEu
(70)~N!.

~34!

These uncertainty intervals can be used in the determina
of the Lévy index a when a straight line is fitted to the dat
points. The determination of the error ofaE itself has already
been discussed above. It is taken as the standard deviatio
all single values determined for differentx and i.

As the last step, the uncertainty ofh̃i iE has to be dis-
cussed.

h̃i iE
(N,aE)

~x!5 lim
t→0

TiE
(2)(N)~x,t!

t1/aEF~aE!
5 lim

t→0
TiE

(3)(N,aE)
~x,t!

~35!

with
7-5
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FIG. 4. Realizations of Le´vy
noise for different values of the
Lévy index a and subsequences
of the affiliated integrated nonlin-
ear Lévy motion according to the
relations~40!–~42!.
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TiE
(3)(N,aE)

~x,t!ª
TiE

(2)(N)~x,t!

t1/aEF~aE!
. ~36!

Errors of this estimation are caused by the uncertainty
TiE

(2)(N) , which is primarily originated in the finite numberN
of relevant data points for every binx@X(tn)5x6Dx ;n#,
and by the uncertainty ofaE which has to be inserted in th
formulas ~35! and ~36!. The total uncertainty ofTiE

(3)(N,aE)

can be expressed under consideration of the law of e
propagation as

D„TiE
(3)(N,aE)

~x,t!…

5
DTiE

(2)(N)~x,t!

t1/aEF~aE!
1

TiiE
(2)(N)~x,t!

t2/aEF2~aE!

3S UF8~aE!t1/aE2t1/aEln t
F~aE!

aE
2 U D DaE
0411
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5
h̃i iE

(N,aE)
~x!D uaEu

(70)~N!

F~aE!
1

TiE
(2)(N)~x,t!

t1/aEF~aE!

3S F8~aE!

F~aE!
2

ln t

aE
2 D DaE . ~37!

The numerical results for the derivativeF8(a) are illustrated
on the right side of Fig. 1.

V. VALIDATION OF THE ASSUMPTIONS

The only assumption concerning the investigated sys
that has been made is the pure describability of the dynam
by an evolution equation like Eq.~16!. No further ansatz has
been taken into account, no further knowledge about the s
tem of interest is necessary. Now, after the application of
algorithm to the data set, when the deterministic and stoch
tic parts as well as the Le´vy index are known, the assumptio
07-6
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FIG. 5. Numerically determined values for the deterministic functiong(x) of system~40!–~42! in state space$x% for different Lévy
indicesa. The values were calculated directly by data analysis of the time series shown in subsequences in Fig. 4, were smoothed
compared with the theoretical curve.
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of the system belonging to this class of Langevin-like s
tems can be tested. Therefore, a new numerically calcul
time seriesY(t) can be integrated according to

Yi~ t1Dtsim.!5giE„Y~ t !…Dtsim

1h̃i iE„Y~ t !…~Dtsim!(1/aE) f (aE)
(g51,b50,m50)~ t !.

~38!

Dtsim should be in the range of the internal dynamic
time scale. If the dynamical structure is known it is possi
to choose a suitable integration step. Besides, the relatio

Dtsamp5nDtsim ~39!
04110
-
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e

should be fulfilled with largen and Dtsamp being the sam-
pling time of the measured and investigated time seriesX(t).

The needed values for the deterministic and stocha
functions can be found by interpolation within that part
the state space where numerical results exist. In the o
part of the phase space, for large deviations of the time
ries, the numerical results can be extrapolated. Accordin
the law of rare events the extrapolation is done in a lin
way.

If the investigated time seriesX(t) is describable by an
iteration like Eq. ~16! then all statistical qualities of both
seriesX(t) andY(t) should be equal within the range of th
determined uncertainties. As one example, the conditio
probability densitiesp(x1 ,t1Dtsampux0 ,t) can be calculated
for every x0 for both time series and the functions can
compared. If there is a good agreement of the distributi
7-7
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for all x0 the investigated time seriesX(t) belongs to the
class of Langevin-like equations and it was justified to ma
the assumption of the algorithm.

VI. APPLICATION OF THE ALGORITHM

Results of an application of the presented algorithm
artificially created data sets will be shown in this section.
example, the dynamical system of a one-dimensional Pi
fork bifurcation with dynamical Le´vy noise is used,

dX~ t !5g„X~ t !…1h„X~ t !…dLa
(g51,b50,m50)~ t ! ~40!

with

g~x!50.1x2x3, ~41!

h~x!5
1

1000x212000A0.1x1120

1
1

1000x222000A0.1x1120
10.05.

FIG. 6. Logarithm of the numerically calculated conditional a
erage 1/N(n51

N @X(tn1t)2X(tn)2g(x)t#uX(t)5x6Dx of the sto-
chastic variableX(t) over the logarithm of the time differencet
with x50.092. The straight line was fitted to the numerically c
culated values represented by the points with error bars.

FIG. 7. Numerically determined values for 1/a, a being the
Lévy index, over statex. The calculated values are represented
points with error bars, the straight line represents the average o
values.
04110
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h(x) has been chosen in this way to produce a posit
function with two maxima and constant asymptotic behav
for uxu→`. The differential equation has been integrated n
merically according to

X~ t1Dtsim!5X~ t !1g„X~ t !…Dtsim

1h„X~ t !…~Dtsim!1/a f a
(g51,b50,m50)~ t !.

~42!

Dtsim has been chosen as 0.001 time units, but just ev
tenth data point of the sample path has been stored for
ther analysis. This corresponds to a sampling time step
Dtsamp50.01 time units. Fora the values 2.0,1.8,1.6,1.4,1.
have been taken. Figure 4 illustrates Le´vy noise realizations
for these Le´vy indices and subsequences of the correspo
ing integrated motions according to the relations~40!–~42!.

For each of the time series the deterministic part of
underlying dynamics has been determined according to r
tion ~17!. The results are shown in Fig. 5. The numerica
determined values are represented by points with error b
which are quite small. The numerical results have been
eraged to eliminate smaller fluctuations, the results are gi
by circles. The solid line is the expected curve according
Eq. ~41!.

If g(x) is known,a can be determined. As an example f
the proceeding that has been described in detail above
ln-ln-plot and the fitted straight line fora51.6 and x5
20.092 are shown in Fig. 6. Figure 7 shows the distribut
of all numerically calculated results fora for different x in
the casea51.6 and the affiliated mean value.

In Table I the numerically determined values for 1/a and
a together with their uncertainties are listed for all inves
gated cases.

Finally, Fig. 8 shows the determined stochastic functio
for all investigated cases. As in Fig. 4 the points with er
bars stand for the numerically calculated values. The squ
are averages of these analysis results. The solid curve re
sents the expected function according to system~40!–~42!.

With the help of the numerically determined values f
the deterministic and the stochastic parts of the dynamic
new time seriesY(t) has been integrated according to re
tion ~38!. The needed values for the deterministic and s
chastic function have been found by interpolation or line
extrapolation. Figure 9 shows the original, analyzed time
ries X(t) and the with the help of the analysis results reco
structed time seriesY(t) for the different Lévy indicesa.

y
all

TABLE I. Theoretical values and numerically determined valu
with uncertainties for different Le´vy indices a and their inverse
1/a.

a 1/a a num. 1/a num.

2.0 0.50 2.0160.03 0.5060.01
1.8 0.56 1.8260.03 0.5560.01
1.6 0.63 1.6460.04 0.6160.01
1.4 0.71 1.4560.06 0.6960.03
1.2 0.83 1.2860.09 0.7860.06
7-8
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FIG. 8. Numerically determined values for the stochastic functionh(x) of system~40!–~42! in state space$x% for different Lévy indices
a. The values were calculated directly by data analysis of the time series shown in subsequences in Fig. 4, were smoothed
compared with the theoretical curve.
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As last step of the analysis, the assumption that the inv
tigated system belongs to the class~16! of dynamical sys-
tems has to be validated. This is done by comparison of
conditional probability densitiesp(x1 ,t1Dtsampux0 ,t) for
differentx0 calculated on the one hand side by the measu
trajectory and on the other hand by the reconstructed tra
tory. For the Le´vy index a52.0 ~Gaussian process! Fig. 10
shows the probability distributions for some values ofx0. For
calculating the distributions of the reconstructed time se
20 million points have been integrated.

VII. DISCUSSION OF THE RESULTS

In Figs. 5 and 8 numerical analysis results for the de
ministic and stochastic parts of the investigated dynam
system are presented. Some interesting things concer
these results shall be remarked.
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The x range in state space of the results increases w
decreasinga. Numerical results can only be calculated f
thosex values in state space that are visited statistically of
by the measured trajectory. Smaller Le´vy indicesa lead to
larger, quite frequent deviations so that the area of the ph
space that is covered by the investigated trajectory incre
with decreasing Le´vy index.

The greater the number of the trajectory’s visits of a po
x in state space is, the smaller is the uncertainty of the
merical results at this point. This explains why the error b
are bigger in the extreme regions of the covered and a
lyzed phase space than at the attracting points. The imp
sion of smaller error bars in the deterministic parts
smaller Lévy indices is just caused by different scales of t
coordinate axis.

If the behavior of the system shall be investigated in
gions that are normally not visited by the trajectory, the s
7-9
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FIG. 9. Investigated time seriesX(t), generated by iteration~42!, over timet, in comparison with the reconstructed time seriesY(t) over
time t, generated according to Eq.~38! with the numerically determined dynamical functions that have been found by data analysis.
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tem has to be disturbed by additional dynamical noise
such a way that the trajectory covers the parts of state s
of interest.

In Fig. 7 the determined values fora in the casea51.6
are plotted together with their uncertainties for different v
ues of x. Again, it can be recognized that the uncertain
increases for extreme values of the covered state space
cause of a decreasing number of visits.

In Fig. 8 numerical results for the stochastic part of t
investigated dynamical system are presented. Additionall
the comments above about both, the deterministic and
chastic results, one recognizes a strong increase of the u
tainties with smaller Le´vy index a. This can be understoo
by relation~37!.
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In Fig. 9 subsequences of the analyzed time series and
reconstructed time series are plotted for different values
a. The reconstructed time series has been calculated with
help of the numerically determined values for the determ
istic and the stochastic part and the Le´vy index. But values
for the state dependent functions exist only in those area
the phase space that have been visited by the trajectory
tistically often. In regions in the outer part results can on
be found by extrapolation. According to the law of ra
events this has been done in a linear way. When compa
the original and the reconstructed time series one recogn
a statistically identical behavior in the main part of the co
ered state space, but a slightly different behavior in stro
deviations. The extreme values are taken by the rec
7-10
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FIG. 10. Conditional probability density functionsp(x1 ,t1Dtsampux0 ,t) in arbitrary units over statex1 for different values ofx0 for
a52.0. The light curve belongs to the measured time series, the dark curve has been determined by the reconstructed time ser
041107-11
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structed trajectory statistically as often as by the origi
time series, but the recurrence to the main part of the s
space is fulfilled in a slowlier way because of the line
extrapolation.

In Fig. 10 the functions of the probability density distr
bution p(x1 ,t1Dtsampux0 ,t) are plotted for different values
of x0 for the Lévy index a52.0. A good agreement of th
affiliated distributions can be recognized. The stronger fl
tuations of the distributions of the measured trajectory
a52.0 in comparison with the distributions of the reco
structed trajectory are caused by the smaller number of
points ~factor 20!. The more data points are used for t
calculation of the probability density distributions th
smaller are the fluctuations.

VIII. SUMMARY

A method was presented that allows the data analysi
nonlinear Lévy systems. The Le´vy index a can be deter-
mined as well as the deterministic and stochastic nonlin
parts of the dynamics. Model equations for the dynami
evolution of the investigated system can be formulated. E
bars show the uncertainties of the calculated values.

One remarkable feature of the algorithm is that no p
knowledge about the system, no assumption or functio
n

e

e

.
nd
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ansatz are necessary for the analysis. The only assump
that the system belongs to the considered class of dynam
Lévy systems, is validated as last step of the procedure.

The fact that systems with nonlinear deterministic as w
as nonlinear stochastic parts, can be investigated open
the way to a lot of unknown, so far not investigated a
modeled systems, physical systems as well as biolog
medical or technical systems. Model equations that h
been set up by logical reasons, symmetry or just experie
can be validated or formulated in a more detailed way.

It was shown how time series can be reconstructed.
this way time series with any number of data points can
calculated. With the help of these reconstructed time se
the long-time behavior of the investigated system can
simulated and characteristics whose calculation requires
series can be determined.

The presented method allows a data-driven formulation
model equations for the wide class of self-consistent non
ear stochastic processes.

ACKNOWLEDGMENTS

The authors thank A. Zanker for fruitful discussions a
the German foundation ‘‘Studienstiftung des deutsch
Volkes’’ for their support of this work.
-

J.

ys.

J.

r-

-

@1# C. W. Gardiner,Handbook of Stochastic Methods, 2nd ed.
~Springer-Verlag, Berlin, 1985!.

@2# H. Risken, The Fokker-Planck Equation~Springer-Verlag,
Berlin, 1989!.

@3# J. Honerkamp,Stochastische Dynamische Systeme~VCH Ver-
lagsgesellschaft, Weinheim, 1990!.

@4# H. Haken, Advanced Synergetics~Springer-Verlag, Berlin,
1983!.

@5# H. Haken, Information and Self-Organization~Springer-
Verlag, Berlin, 1988!.

@6# S. Siegert, R. Friedrich, and J. Peinke, Phys. Lett. A243, 275
~1998!.

@7# R. Friedrich, S. Siegert, and J. Peinke, inTransport and Struc-
ture, edited by S. C. Mu¨ller, J. Parisi, and W. Zimmerman
~Springer-Verlag, Berlin, 1999!.

@8# R. Friedrich, S. Siegert, J. Peinke, St. Lu¨ck, M. Siefert, M.
Lindemann, J. Raethjen, G. Deuschl, and G. Pfister, Phys. L
A 271, 217 ~2000!.

@9# J. Gradisek, S. Siegert, R. Friedrich, and I. Grabec, Phys. R
E 62, 3146~2000!.

@10# J. Gradisek, S. Siegert, R. Friedrich, and I. Grabec, inStochas-
tic and Chaotic Dynamics in the Lakes: Stochaos, edited by D
S. Broomhead, E. A. Luchinskaya, P. V. E. McClintock, a
T. Mullin, AIP Conf. Proc. No. 502~AIP, Melville, NY,
2000!, pp. 476–481.
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