
PHYSICAL REVIEW E, VOLUME 64, 041105
Persistence in the one-dimensionalA¿B\B reaction-diffusion model
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The persistence properties of a set of random walkers obeying theA1B→B reaction, with equal initial
density of particles and homogeneous initial conditions, is studied using two definitions of persistence. The
probability P(t) that an annihilation process has not occurred at a given site has the asymptotic formP(t)
;const1t2u, whereu is the persistence exponent~type I persistence!. We argue that, for a density of particles
r@1, this nontrivial exponent is identical to that governing the persistence properties of the one-dimensional
diffusion equation,] tf5]xxf, whereu.0.1207@S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Phys.
Rev. Lett.77, 2867~1996!#. In the case of an initial low density,r0!1, we findu.1/4 asymptotically. The
probability that a site remains unvisited by any random walker~type II persistence! is also investigated and
found to decay with a stretched exponential form,P(t);exp(2const3r0

1/2t1/4), providedr0!1. A heuristic
argument for this behavior, based on an exactly solvable toy model, is presented.

DOI: 10.1103/PhysRevE.64.041105 PACS number~s!: 05.40.2a, 05.50.1q, 82.40.Bj, 05.70.Ln
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I. INTRODUCTION

Diffusion-limited reactions are used to model a wi
range of phenomena in physics, chemistry and biology,
continue to stimulate current research. Reaction-diffus
processes have been applied to studies such as stoch
spin-flip dynamics@2#, exciton-exciton dynamics in tetra
methylammonium manganese trichloride@3#, the kinetics of
bipolymerization@4#, reptation of DNA in gels@5#, interface
growth @6#, diffusion of zeolites@7#, and other phenomen
such as competing species in biology, self-organized criti
ity, pattern formation, and dynamic phase transitions.

Much of the effort to date has focused on reactions of
form A1A→B andA1B→B, with a variety of boundary
and initial conditions@2#. It is well appreciated that within
the context of these models there exists an upper crit
dimensiondc , below which spatial fluctuations in the initia
distribution of the reactants play a significant role in t
evolution of the density of the particles. This dependence
the microscopic fluctuations invalidates traditional a
proaches such as the mean-field approximation. Attempt
understand the role played by fluctuations have involved
merous techniques, including Smoluchowski-type appro
mations@8# and field-theoretic methods@9–11#. In this paper
we set out to elucidate the effects of these fluctuations
persistencewithin the context of theA1B→B model.

Persistence phenomena have received considerable a
tion in recent years@1,12–23#. Theoretical and computa
tional studies include spin systems in one@12,14# and higher
@15# dimensions, diffusion fields@1,16#, fluctuating interfaces
@17# and phase ordering dynamics@18#. Experimental studies
include the coarsening dynamics of breath figures@19#, soap
froths @20#, and twisted nematic liquid crystals@21#. Persis-
tence in nonequilibrium critical phenomena has also b
studied in the context of the global order parameterM (t)
regarded as a stochastic process@22#. Reaction-diffusion
models offer much scope for the study of persistence
have already contributed significantly to our understand
in this area@23#.

The definition of persistence is as follows. Letf(x,t) be
1063-651X/2001/64~4!/041105~9!/$20.00 64 0411
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a stochastic variable fluctuating in space and time accord
to some dynamics. The persistence probability is simply
probability P(t) that at a fixed point in space, the quanti
sgn@f(x,t)2^f(x,t)&# does not change up to timet. In
many systems of physical interest a power law decay,P(t)
;t2u, is observed, whereu is the persistence exponent an
is, in general, nontrivial. The nontriviality ofu emerges as a
consequence of the coupling of the fieldf(x,t) to its neigh-
bors, since such coupling implies that the stochastic proc
at a fixed point in space and time is non-Markovian.

Two distinct types of persistence emerge naturally in
study of theA1B→B reaction-diffusion model. Consider
nonequilibrium fieldf(x,t) that takes values at each lattic
sitex. The field evolves in timet through interactions with its
neighbors. In type I persistence, the fieldf(x,t) changes its
sign whenever an event occurs at the lattice sitex at time t,
where an event is defined to be the reaction processA1B
→B. Type II persistence satisfies the conventional definit
and the fieldf(x,t) changes sign when the lattice sitex is
visited by either anA or B particle at timet. The persistence
probability at time t is defined as the fraction of sites i
which the stochastic fieldf(x,t) did not change its value in
the time interval@0,t#. Our analysis suggests, in the case
type I persistence, that when the initial density of particles
high (r0@1, wherer0 is the density of eitherA or B par-
ticles!, the value of the persistence exponent is identica
that which emerges in the study of the one-dimensional
fusion equation] tf5]xxf, as long as the running densit
r(t) satisfiesr(t)@1. This yields u.0.1207 @1#. When,
however, the initial density of particles is low (r0!1), we
find u.1/4, in agreement with a simple heuristic argume
based on the decay of the density. In the case of typ
persistence we show that the persistence decays with
‘‘stretched exponential’’ formP(t);exp(2const3r0

1/2t1/4),
and we provide a heuristic derivation of this based on
behavior of a toy model.

The paper is organized as follows. In Sec. I we introdu
the model and calculate the evolution of the particle den
for all r0, includingr0@1. In Sec. II we present our result
©2001 The American Physical Society05-1



e
i-
rt
y

h
h
n
s

n

.

itie

.
ta
l-
o

o

w-

th
u

od

it

de

w
,
ot
on
si
la
in
E
al
o

e
ig
p

r-
sity

es
en-

it

1
n

e-
b-

a

is

ri-

S. J. O’DONOGHUE AND A. J. BRAY PHYSICAL REVIEW E64 041105
for type I persistence. In Sec. III we introduce a generaliz
toy model of noninteracting diffusing particles and illum
nate, through a special case, the type II persistence prope
of the A1B→B model. All our predictions are tested b
extensive numerical simulations.

II. PARTICLE DENSITY IN THE A¿B\B MODEL

We are concerned with the following model. Consider t
A1B→B reaction involving two types of particles, bot
executing diffusive random walks. The particles move o
one-dimensional lattice with periodic boundary condition
and react upon contact to form an inert particle. Att50,
exactly equal numbers,NA(0)5NB(0), of A particles andB
particles are randomly distributed on the lattice. This is do
by randomly assigning each lattice site to be either anA site
or aB site with equal probability. TheA sites andB sites are
then randomly filled withA andB particles, respectively, i.e
each A(B) particle occupies each of theA(B) sites with
equal probability such that, at large scales, both dens
rA(0) andrB(0) are initially homogeneous. We definer0
5rA(0)5rB(0)5NA(0)/L whereL is the size of the lattice
The two species are also given the same diffusion cons
DA5DB5D51/2. Our model then evolves permitting mu
tiple occupancy of sites, but we impose an instantane
reaction so that each lattice site contains only one type
particle.

The mean-field approach yields an asymptotic decay
the particle density according torA(t)5rB(t);const3t21

with an amplitude independent of the initial density. Ho
ever, in low enough spatial dimension,d<dc54, the domi-
nating process asymptotically is the diffusive decay of
fluctuations in the initial conditions. This leads to anomalo
kinetics and it was shown by Toussaint and Wilczek@24#
that

^rA~ t !&5^rB~ t !&;
Ar0

p1/2~8p!d/4
~Dt !2d/4. ~1!

This result has been confirmed using field-theoretic meth
for 2,d,4 by Lee and Cardy@10#. The exponent2d/4 has
also been rigorously confirmed by Bramson and Lebow
@25#. The numerical simulations that have been performed
one@24,26#, two @24,27#, and three dimensions@28# are also
in good agreement with the analytical predictions of the
cay exponent. However, it was noted by Lee and Cardy@10#
that, although in one dimension reasonable agreement
the dependence on the initial density has been found
higher dimensions theAr(0) amplitude dependence has n
been observed. They suggest that, in the one-dimensi
simulations, the initial average occupation number per
was kept low, whereas for the higher dimensional simu
tions it was necessary to start with a nearly full lattice
order to reach the asymptotic regime and therefore that
~1! might not be a universal result, but rather a limit for sm
initial density. We believe this to be the case. We focus
the particle density in one dimension. In our study of typ
persistence we are particularly interested in the limit of h
initial particle density,r0@1, where the problem should ma
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onto simple diffusion. As a precursor to looking at the pe
sistence, therefore, we first consider how the particle den
decays with time in this limit.

In the high-density limit, where there are many particl
per site, one can neglect dynamical fluctuations in the d
sity. If Nn(t) is the number of particles at siten at timet, the
dynamics ofNn(t) is governed by diffusion,

Ṅn~ t !5D@Nn11~ t !22Nn~ t !1Nn21~ t !#. ~2!

Here we have adopted the convention thatNn.0 means that
siten is occupied byNn A particles, whileNn,0 means that
it is occupied by2Nn B particles. Then the annihilation
process is automatically built into the diffusion equation~2!.
Introducing a discrete Fourier transform and taking the lim
L→`, gives

Nn~ t !5(
m

Nm~0!E
2p

p dk

2p

3exp@22D~12cosk!t1 ik~n2m!#. ~3!

For t@1 we are justified in using the approximation
2cosk.k2/2 in the integrand, and extending the limits o
the k integral to6`. This gives

Nn~ t !5(
m

Nm~0!
1

A4pDt
expF2

~n2m!2

4Dt G . ~4!

For t→`, the Gaussian kernel becomes broad, andNn(t)
becomes, asymptotically, a Gaussian random variable~where
the randomness comes from the initial conditions!. Its mean
is clearly zero, sincêNm(0)&50 by symmetry, so its distri-
bution is completely specified by its variance. This is ind
pendent ofn by translational invariance, so we drop the su
script and write~again fort→`)

^N2~ t !&5 (
m,m8

^Nm~0!Nm8~0!&
4pDt

3expH 2
~n2m!2

4Dt
2

~n2m8!2

4Dt J . ~5!

Using ^Nm(0)Nm80&5^Nm
2 (0)&dmm8 we obtain, asymptoti-

cally,

^N2~ t !&5
^N2~0!&

A8pDt
. ~6!

At time t50 the number of particles of a given type on
given site has a Poisson distribution with mean 2r0, where
recall thatr0 is half the total density. Hence the variance
given by ^N2(0)&5^uN(0)u2&5(2r0)212r0, giving

^N2~ t !&5
4r0

212r0

A8pDt
5s2~ t !, ~7!

wheres is the standard deviation, and the probability dist
bution of N(t) is simply P@N(t)#5(1/A2ps2)exp(2N2/
2s2).
5-2
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PERSISTENCE IN THE ONE-DIMENSIONALA1B→B . . . PHYSICAL REVIEW E 64 041105
The total particle density, recalling that, with our conve
tion, B particles have been assigned negative values
Nn(t), is given by

^uN~ t !u&5A 2

ps2E0

`

dNNexpS 2
N2

2s2D 5A2

p
s. ~8!

Substituting fors from Eq. ~7! yields, finally,

^uN~ t !u&5
~4r0

212r0!1/2

~2p3Dt !1/4
. ~9!

The individual particle densities, therefore, decay asympt
cally according to

^rA~ t !&5^rB~ t !&.
~2r0

21r0!1/2

~2p!3/4
~Dt !21/4. ~10!

It is interesting that in the low density limitr0!1, we
recover the result of Toussaint and Wilczek@24#,

^rA~ t !&5^rB~ t !&.
r0

1/2

~2p!3/4
~Dt !21/4, r0!1. ~11!

However, in the high density limitr0@1 we obtain the same
decay exponent21/4 as for low density but a different am
plitude. The amplitude now scales asr0 in contrast to the
low density limit where it scales liker0

1/2:

^rA~ t !&5^rB~ t !&.
r0

~2p3!1/4
~Dt !21/4, r0@1. ~12!

Given the correctness of Eq.~10! in both low and high den-
sity limits, we expect it to be a good approximation acro
the whole range of densities.

For convenience, let us write Eq.~12! as ^rA(t)&
5^rB(t)&.Kr0(Dt)2g. The analytical values ofK and g
are thenK50.356 35 . . . andg51/4. Numerical evidence
has already substantiated Eq.~11! @24,26#. Below, we
present numerical support for our high density calculatio

In conducting numerical simulations of this nature o
must naturally consider how to increment time. A physica
realistic and computationally simple method is to increm
dt by 1/~current number of particles!. However, the expedi-
ency of this technique clearly does not extend to syste
with high densities of particles. A more efficient method is
allow all particles to move simultaneously. In our simul
tions, therefore, one time step constitutes a jump by all p
ticles in the system to a nearest neighbor site with eq
probability. In the low density limit, we have made compa
sons of the two methods of updating and find asymptotic
that the results are identical. Within the context of a lo
initial density, systems that permit multiple occupancy
lattice sites generate indistinguishable results from those
permit a maximum of one particle per site. For the purpo
of this paper, therefore, all of the simulations are based o
parallel updating of the particles and permit multiple occ
pancy of lattice sites. Our numerical simulations for an init
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high density of particles are performed on a one-dimensio
lattice of size 104. Each run is performed for 53104 time
steps and we average our results over 100 runs. The re
are shown for three different initial densities in Fig. 1. Aft
initial transients, the log-log plots apparently approa
straight lines in each case. The values extracted for the de
exponentg and the amplitudeK are given in Table I, where
the quoted errors are purely statistical. We attribute the sm
differences between the measured and theoretical values
failure to reach the true asymptotic regime.

III. TYPE I PERSISTENCE

Consider theA1B→B reaction-diffusion process on
one-dimensional continuum. The rate equations for the c
centrations are ] tNA5]xxNA2R and ] tNB5]xxNB2R
whereR is the reaction rate per unit volume. The concent
tion difference DN5NA2NB obeys the simple diffusion
equation] tf5]xxf. It is well known that, below the critica
dimensiondc54, theA1B→B model evolves to a coars
ened state in which the two species segregate into dom
of eitherA or B particles. The ‘‘domain walls’’ are defined
by DN50, where the diffusion field representing the coars
grained particle density has it zeros~recall that thesign of
the density is associated with the particle type — positive

FIG. 1. Log-log plot of the particle density as a function of tim
for r0550, 250, and 500.

TABLE I. Numerical values of the decay exponentg and the
constantK where^rA(t)&5^rB(t)&;Kr0(Dt)2g for r0550, 250,
and 500. The numerical values ofK were obtained by plotting
^rA(t)&vs t2g and evaluatingKnum from the gradient of the curve
The analytical values areg51/4 andK50.356 45.

r0 gnum Knum

50 0.257660.0005 0.359960.0007
250 0.252460.0002 0.356860.0003
500 0.254860.0005 0.366960.0008
5-3
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S. J. O’DONOGHUE AND A. J. BRAY PHYSICAL REVIEW E64 041105
A and negative forB) and their motion is clearly determine
by the annihilation processA1B→B. The persistent sites in
this model are therefore defined as those sites that have
been crossed by the zeros,DN50, of the diffusion field, i.e.
those sites that have never seen an annihilation proces
order to overcome the discrete nature of our problem
model the diffusive process of the domain walls as descri
above, we allow our model to approach the continuum lim
by starting with a very high initial density of particles,r0
@1. One might think that, in this limit, the entire system w
asymptotically become nonpersistent. However, we find
not to be true. The persistence decays according toP(t)
;A1t2u whereA is a constant, i.e., there are some sites t
are always isolated from the diffusing boundaries betw
domains. We expect the offsetA to vanish asr0→`: clearly,
in the real, continuous diffusion problemP(t);t2u, with no
offset. Our hypothesis is that, in the limit of a large initi
density of particlesr0@1, the offset tends to zero and th
persistence exponent is identical to that which emerges f
a study of the diffusion equation in one dimension,u
.0.1207@1#. This should hold if the density during the en
tire run remains large enough@r(t)@1# that the continuum
description in terms of the diffusion equation remains va
If, on the other hand, the simulation enters the low den
regime at late times, we expect the approach of the pe
tence to its asymptotic value to be described by the
density theory.

In the limit of low initial densityr0!1 a realistic repre-
sentation of the diffusing boundaries according to the dif
sion equation is not feasible, due to the discrete nature of
problem. In this case it is clear that the entire system can
become persistent since, by definition, the total numbe
reactionsA1B→B!L where L is the size of the lattice
Hence the relationshipP(t);A1t2u is expected, withA
→1 asr0→0. The large mean separation between partic
implies that any site that experiences an annihilation proc
is unlikely to witness such an event again, i.e., every reac
processA1B→B leads to a single, isolated nonpersiste
site. Given that the total number of reaction processe
governed by the initial density of walkers, in the limit o
sufficiently low density one can set a lower bound on
persistencê P(`)&5A>12r0. The persistence propertie
are therefore determined by the decay of the walker den
The walkers decay according to;t21/4 and we therefore
expect that, forr0!1, u51/4.

Our numerical results are presented below. The algeb
form for the persistence prevents a simple evaluation of
exponent. A three parameter nonlinear curve of the formA
1Bt2unl was fitted to the data to ascertain the valueunl
where the subscript denotes the implementation of a non
ear curve fitting technique. The fit was carried out usingt as
the independent variable, though the data are plotted ag
ln t for clarity of presentation. To demonstrate the validity
determiningu in this manner, we also plot our data in th
form ^P(t)& againstt2unl, where the correct value ofu, in
such a plot, manifests itself as a straight line graph. An
biased method of determining the exponent is also presen
by numerically differentiating the data and displaying t
results on a log-log plot. The value ofu determined in this
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manner is denotedudi f f . We consider the high density limi
first and take as our initial valuesr05500 and 250. The
simulations are performed on a one-dimensional lattice
size 104 and run for 53104 time steps. We average ou
results over 100 runs. In the nonlinear fits, the regimet<3
3104 is fitted, corresponding to lnt<10.3.

The data are presented in Figs. 2, 3, and 4. Figure 2 sh
the nonlinear fit forr05500, from which the exponentunl
50.1360.01 is extracted, consistent with the diffusio
value, u.0.1207. The plot, in Fig. 3, of̂ P(t)& against
t20.129 ~where 0.129 is the best-fit value ofunl from Fig. 2!
yields a good straight line at larget. The unbiased determi
nation of u from a numerical differentiation of the data

FIG. 2. A nonlinear fit of the formA1Bt2unl is made to the
fraction of persistent sites at timet for an initial densityr05500.
The values of the fit parameters areA50.0560.02, B50.57
60.005, andunl50.1360.01.

FIG. 3. The fraction of persistent sites is plotted againstt2unl for
r05500. The valueunl50.129 is taken from the nonlinear curve fi
in Fig. 2.
5-4
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PERSISTENCE IN THE ONE-DIMENSIONALA1B→B . . . PHYSICAL REVIEW E 64 041105
shown in Fig. 4, where the logarithmic derivative of^P(t)&
is plotted againstt on a log-log plot. The resulting dat
should be a straight line of slope2u. The best-fit value of
the slope is2udi f f520.1260.01. Note that the data be
come noisier at later times as the number of persistent s
decreases and statistical fluctuations between different
increase. The slope in Fig. 4 was extracted from the reg
between the arrows, where initial transients have decayed
the data are not yet too noisy. The expected slo
20.1207, is shown as a guide to the eye.

Equivalent data generated forr05250 give unl5udi f f
50.1360.01, again consistent with the diffusion equati
result, while the other fit parameters areA50.0760.02, B
50.5560.005. Notice that the values ofA obtained from the
nonlinear fits are quite small — 0.05(2) and 0.07(2)

FIG. 4. The fraction of persistent sites at timet is numerically
differentiated@D(ln t)50.1# and presented on a log-log plot fo
r05500. The gradient, taken between the arrows, givesudi f f

50.1260.01. The straight line has slope20.1207.

FIG. 5. Same as Fig. 2, but forr050.1. The fit parameters ar
A50.9560.02, B50.0560.005,unl50.2660.01.
04110
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r05500 andr05250, respectively. An equivalent fit fo
r0550 gives the larger valueA50.17(2), so thedata are
consistent with the hypothesis thatA→0 for r0→`, al-
though the data are not good enough to extract the functio
dependence ofA on r0 in this limit.

We now present our low density results. We choose
our initial densitiesr050.2 and 0.1. In this regime, ou
simulations are performed on a lattice of size 105 and run for
105 time steps. The system takes longer to enter
asymptotic regime due to the low initial density and this
reflected in our extended number of time steps. We aver
our results over 50 runs. Figure 5 shows the same type
nonlinear fit,^P(t)&5A1B/tunl that was used in Fig. 2. The
fit parameters forr50.2 are included in Table II. The fi
works well except at early times, and the fitted values
close tou51/4 as anticipated. Note that the logarithmic sca
for the abscissa greatly expands the early-time regime.
nonlinear fit was restricted to the range 104,t,105 ~i.e., the
last 90% of each run!, corresponding to 9.2, ln t,11.5. Fig-
ure 6 show the same data plotted as^P(t)& againstt2unl, and
reveals the expected linear behavior at late times. Fina
Fig. 7 gives the log-log plots for the differentiated data, fro
which the exponent estimatesudi f f are obtained. The slope i
measured between the arrows in Fig. 7, corresponding
region similar to that used for the nonlinear fits.

The estimatesunl and udi f f of the persistence exponen

FIG. 6. Same as Fig. 3, but forr050.1. unl50.264.

TABLE II. Values of the exponentu in the relationshipP(t)
5A1Bt2u, whereu has been evaluated according to a nonline
curve fitting technique (unl) and through a method of numerica
differentiation (udi f f). We expect, asymptotically,u.0.1207 for
r0@1 andu51/4 for r0!1.

r0 A B unl udi f f

500 0.0560.02 0.5760.005 0.1360.01 0.1260.01
250 0.0760.02 0.5560.005 0.1360.01 0.1360.01

0.2 0.9060.02 0.0660.005 0.2560.01 0.2560.01
0.1 0.9560.02 0.0560.005 0.2660.01 0.2760.01
5-5
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S. J. O’DONOGHUE AND A. J. BRAY PHYSICAL REVIEW E64 041105
for both low and high density regimes, are summarized
Table II. A natural consequence of the slow algebraic de
of the particle density is that the asymptotic regime, in
caser0!1, occurs only after many time steps. We exp
the resultu.1/4 for the low density regime to manifest itse
more clearly in systems run for a greater number of ti
steps.

IV. TYPE II PERSISTENCE

In this section we address the following question: Wha
the asymptotic probabilityP(t) that a given site has neve
been visited by anA or B particle, in a one dimensiona
system ofA and B random walkers subject to theA1B
→B reaction-diffusion process? Necessarily, we pose
question within the context of a low initial density.

Our approach involves the introduction of a toy mod
whose predictions we will compare to simulation results. T
model consists of a system of noninteracting diffusing p
ticles, with initial densityr05N(0)/L, on a one-dimensiona
lattice with diffusion constantD51/2. Note that the defini-
tion of r0 in type II persistence refers to the total density
initial particles, in contrast to type I persistence, wherer0
referred to half the total density.

Particle decay is invoked by allowing each particle
vanish at every time step with some~usually time-
dependent! probability. We definef (t) to be the fraction of
particles remaining at timet, i.e., f (t)5r(t)/r0. We are then
free to mimic the behavior of any reaction-diffusion proce
by a suitable choice off (t).

The analysis of persistence in this toy model is straig
forward. We first define the probability,Q(x,t), that the ori-
gin has not been crossed by a given diffusing particle w
initial position x.0. We define our lattice to be the interv
(2L/2,L/2). Then an elementary calculation givesQ(x,t)
5erf(x/2ADt), where we have assumed thatx!L and L2

@Dt, i.e., we have effectively taken the limitL→` in the
calculation ofQ(x,t). A simple approach in the calculatio
of the number of persistent sites is to consider the fi

FIG. 7. Same as Fig. 4 forr050.1. udi f f50.2760.01.
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passage-time distributionP1(t), whereP1(t)dt is the prob-
ability that the first crossing of the origin occurs in (t,t
1dt). Then P1(t)dt5Q(x,t)2Q(x,t1dt) gives P1(t)5
2dQ/dt. Since the diffusing particle survives to timet with
probability f (t), the probability for the origin to be persisten
at time t is given by

Q~x,t !512E
0

t

dt8P1~ t8! f ~ t8!

512
x

2ADp
E

0

t ds

s3/2
f ~s!expS 2

x2

4DsD . ~13!

In the presence of many random walkers, whose rand
initial positions have a uniform distribution over space, t
mean persistence is given by^P(t)&5^Q(uxu,t)&r0L, where
r0L5N is the total number of initial walkers and the avera
is over the initial position of a walker, assumed uniform
(2L/2,L/2). This gives

^P~ t !&5F12
1

2LADp
E

2L/2

L/2

dxuxu E
0

t ds

s3/2
f ~s!

3expS 2
x2

4DsD G r0L

. ~14!

For L→` we obtain,

^P~ t !&5expS 22r0AD

pE0

t ds

s1/2
f ~s!D . ~15!

A system of strictly diffusing particles with no decay
modeled by settingf (s)51. In this case,^P(t)&5exp
(2At1/2) where A54r0AD/p. In Fig. 8 we present a nu
merical verification of our calculation. The gradient of th

FIG. 8. Log-linear plot of the persistence for a system of no
interacting diffusing particles with no decay.
5-6
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graphs gives2A. The values ofA extracted from the data
are compared with the numerical predictions in Table
The agreement is excellent.

Our model can also be applied to theq-state Potts model
which hasq distinct but equivalent ordered phases. TheA
1A→B model corresponds toq52, while A1A→A cor-
responds toq5`. The density of walkers in the one
dimensional~1D! Potts model is known to decay asympto
cally according to@29#,

r~ t !.
q21

q

1

A2pDt
. ~16!

We can derive a generalized value ofu(q) for our toy model
by substitutingf (s)5r(s)/r0 into Eq. ~15! where r(s) is
given by Eq.~16!. This gives

^P~ t !&;t2uT(q), ~17!

where

uT~q!5
A2

p S q21

q D , ~18!

and the subscriptT denotes toy. Despite the simplistic natu
of our model, a power law decay for the persistence is p
dicted, in agreement with known results. Our expression
u(q) @Eq. ~18!# is clearly a poor approximation to the exa
expression for the 1D Potts model obtained by Derridaet al.
@14#:

uP~q!52
1

8
1

2

p2 Fcos21S 22q

A2 q
D G 2

, ~19!

where the subscriptP denotes Potts. The values of the pe
sistence exponent returned by our model for theq52 and
q5` cases are,uT(q52)50.225 anduT(q5`)50.450.
The values given by Eq.~19! for the Potts model areuP(q
52)53/8 and uP(q5`)51. The encouraging feature o
our toy model, however, is that the essential dynamics of
system leading to the power-law decay of the persistenc
Eq. ~17! is correctly identified as thet21/2 decay in the num-
ber of surviving random walkers at timet. If the number of
surviving walkers decays ast2a for large t, the toy model
predicts, via Eq.~15!, that the persistence will decay as
stretched exponential,̂P(t)&;exp(2At1/22a), for a,1/2,

TABLE III. The persistence properties of a system of nonint
acting particles with zero probability of decay is described
^P(t)&;exp(2At1/2). Above we provide a comparison of the valu
of A as deduced from the theoryAtheor and from numerical simula-
tions Anum.

r0 Atheor Anum

0.002 0.00319 0.00320(5)
0.005 0.00797 0.00790(5)
04110
.

-
r

-

e
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while ^P(t)& will approach a nonzero constant fora.1/2.
The borderline case,a51/2, yields power-law decay of the
persistence, as we have seen.

We naturally now turn our attention to theA1B→B re-
action process to see if the correct time dependence of
persistence also emerges from our model. The density oA
andB particles in this case in given by Eq.~11!. Therefore
^r(t)& is given by

^r~ t !&;
r0

1/2

~2p3!1/4
~Dt !21/4, r0!1, ~20!

where r(t)5rA(t)1rB(t) and r05N(0)/L. Substituting
f (s)5r(s)/r0, wherer(s) is given by Eq.~20!, into Eq.
~15! yields ^P(t)&;exp(2Bt1/4) with B5(211D/p5)1/4r0

1/2.
For theA1B→B reaction we therefore predict a stretch
exponential decay of the persistence, with exponent 1/4.

The results of our numerical simulations are presen
below. The simulations are performed on a one-dimensio
lattice of size 105 for 105 time steps. We choose as our initi
densities r050.02 and r050.04. A direct test of the
stretched exponential prediction is obtained by plotti
ln ^P(t)& againstt1/4, as in Fig. 9. The fact that the data do n
clearly show the expected straight line behavior may indic
that the density is not yet in the regime where it is w
described by thet21/4 form given by Eq.~20!. Indeed, a
direct study of the density indicates that thet21/4 behavior is
only evident at the latest times reached in the simulatio
An alternative analysis involves differentiating the data w
respect to lnt and presenting the result as a double logari
mic plot, as in Fig. 10 for the caser050.02. Here again the
evidence that the data approach the expected slope of 1
late times is less than unambiguous. In particular, the no
character of the differentiated data at the very latest tim
tends to obscure the asymptotic behavior.

-

FIG. 9. Log-linear plot of the persistence for theA1B→B
reaction-diffusion process.^P(t)&;exp(2Btg) with g51/4.
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In short, the data as presented in Figs. 9 and
do not provide a convincing test of our predictio
^P(t)&;exp(2Btg) with g51/4. The slow approach of th
particle density to its asympotic 1/t1/4 behavior is, in our
view, the reason for this. A better test of our model, the
fore, is to consider the persistence as a function of the ac
running density of particles, rather than using the asympt
behavior of the density in Eq.~15!. Taking the log of Eq.
~15! and differentiating with respect to lnt yields,

2
d ln ^P~ t !&

d ln t
52AD

p
r~ t !t1/2, ~21!

sincer0f (t)5r(t), the running density. The left-hand sid
of Eq. ~21! andr(t)t1/2 ~without the factor 2AD/p) are plot-
ted in Fig. 11 for the caser050.02. The two curves agre
rather well over the whole range of lnt, except at the lates
times, where the data are noisy. The equivalent plot forr0
50.04 is similar except that data are even noisier at
times. The factor 2AD/p in Eq. ~21!, omitted from the plot,
has the numerical valueA2/p.0.8 ~recallD51/2), whereas
Fig. 11 suggests this number should be closer to unity~as do
the equivalent data forr050.04). Given the crudeness of th
toy model, however, the agreement between the data an
model is surprisingly good.

FIG. 10. The log of the persistent fraction at timet is numeri-
cally differentiated@D(ln t)50.1# and presented on a log-log plo
for r050.02 The gradient of the curve givesg. The straight line has
a slope of 1/4.
ys
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V. SUMMARY

In this paper we have investigated the persistence pro
ties of theA1B→B reaction-diffusion process using tw
distinct definitions of persistence. In type I persistence,
studied the fraction of sites that had never witnessed an
nihilation process. In the high density limitr0@1 we argued
that the persistence exponent is that which emerges fro
study of the one-dimensional diffusion equation,] tf
5]xxf, whereu.0.1207@1#, and presented data consiste
with this result. In the low density limitr0!1 we argued
that the persistence properties are governed by the sam
ponent that describes the decay of the particle density, giv
u51/4. Again, the data support this prediction. In type
persistence, we considered the probability that a site
mained unvisited by either anA or B particle. Our approach
in this case, was to develop a toy model, which can be
plied to any reaction-diffusion process and expresses the
sistence properties in terms of the density of the reacta
For the A1B→B process the model predictŝP(t)&
;exp(2Bt1/4). The data are consistent with this result wh
allowance is made for the actual time dependence of
particle density~rather than just its asymptotic form!. An
obvious goal for future study would be to place th
stretched-exponential decay on a firmer theoretical foun
tion.
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FIG. 11. A direct test of Eq.~21! for r050.02.
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