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Persistence in the one-dimensionah+ B —J reaction-diffusion model
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The persistence properties of a set of random walkers obeying thB— J reaction, with equal initial
density of particles and homogeneous initial conditions, is studied using two definitions of persistence. The
probability P(t) that an annihilation process has not occurred at a given site has the asymptotie (fgrm
~const+t~?, whered is the persistence expondigpe | persistende We argue that, for a density of particles
p>1, this nontrivial exponent is identical to that governing the persistence properties of the one-dimensional
diffusion equationg, ¢ = dy,¢, whered=0.1207[S. N. Majumdar, C. Sire, A. J. Bray, and S. J. Cornell, Phys.
Rev. Lett.77, 2867(1996)]. In the case of an initial low densitpy<1, we find §=1/4 asymptotically. The
probability that a site remains unvisited by any random walkgre |l persistenceis also investigated and
found to decay with a stretched exponential fof{t) ~exp(—consix p(l)/ztl"‘), providedpy<1. A heuristic
argument for this behavior, based on an exactly solvable toy model, is presented.
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[. INTRODUCTION a stochastic variable fluctuating in space and time according
to some dynamics. The persistence probability is simply the

Diffusion-limited reactions are used to model a wide probability P(t) that at a fixed point in space, the quantity
range of phenomena in physics, chemistry and biology, andgn[ ¢(x,t) —(#(x,t))] does not change up to time In
continue to stimulate current research. Reaction-diffusiormany systems of physical interest a power law de@¥y)
processes have been applied to studies such as stochasti¢~? is observed, wheré is the persistence exponent and
spin-flip dynamics[2], exciton-exciton dynamics in tetra- js in general, nontrivial. The nontriviality of emerges as a
methylammonium manganese trichlorif8, the kinetics of  consequence of the coupling of the fiekdx,t) to its neigh-
bipolymerization[4], reptation of DNA in gel§5], interface )5 since such coupling implies that the stochastic process
growth [6], diffusion of zeoliteg[7], and other phenomena at a fixed point in space and time is non-Markovian.
such as competing species in biology, self-organized critical- Two distinct types of persistence emerge naturally in the

ity, pattern formation, and dynamic phase transitions. e ;
Much of the effort to date has focused on reactions of theStUdy of theA+B—(J reaction-diffusion model. Consider a

form A+A—@ andA+B—, with a variety of boundary n_onequilibr?um fieldq&(x?t) _that takes v_alues a_t each_ Iat_tice
and initial conditiong2]. It is well appreciated that within sngx. The field evolves in tlmethrough_mteracuons with _|ts
the context of these models there exists an upper criticdl€/9hPOrs. In type | persistence, the fiebfx,t) changes its
dimensiond, , below which spatial fluctuations in the initial SI9n Whenever an event occurs at the lattice siat timet,
distribution of the reactants play a significant role in theWhere an event is defined to be the reaction progess
evolution of the density of the particles. This dependence o< Type Il persistence satisfies the conventional definition
the microscopic fluctuations invalidates traditional ap-and the fieldg(x,t) changes sign when the lattice skes
proaches such as the mean-field approximation. Attempts t@isited by either arA or B particle at timet. The persistence
understand the role played by fluctuations have involved nuprobability at timet is defined as the fraction of sites in
merous techniques, including Smoluchowski-type approxiwhich the stochastic fielg(x,t) did not change its value in
mations[8] and field-theoretic method8—11]. In this paper the time interva[0t]. Our analysis suggests, in the case of
we set out to elucidate the effects of these fluctuations ofype | persistence, that when the initial density of particles is
persistencewithin the context of thed+B— & model. high (po>1, wherep, is the density of eitheA or B par-
Persistence phenomena have received considerable attdi¢les), the value of the persistence exponent is identical to
tion in recent yeard1,12—-23. Theoretical and computa- that which emerges in the study of the one-dimensional dif-
tional studies include spin systems in di€,14 and higher  fusion equationd;¢p=dy,¢, as long as the running density
[15] dimensions, diffusion fieldgl,16)], fluctuating interfaces  p(t) satisfiesp(t)>1. This yields #=0.1207 [1]. When,
[17] and phase ordering dynamicks]. Experimental studies however, the initial density of particles is low{<1), we
include the coarsening dynamics of breath figuid, soap find §=1/4, in agreement with a simple heuristic argument
froths [20], and twisted nematic liquid crystaj&1]. Persis- based on the decay of the density. In the case of type I
tence in nonequilibrium critical phenomena has also beepersistence we show that the persistence decays with the
studied in the context of the global order paramevg(t) “stretched exponential” forrrP(t)~exp(—const><pé’2t1’4),
regarded as a stochastic procd®@2]. Reaction-diffusion and we provide a heuristic derivation of this based on the
models offer much scope for the study of persistence antehavior of a toy model.
have already contributed significantly to our understanding The paper is organized as follows. In Sec. | we introduce
in this areq23]. the model and calculate the evolution of the particle density
The definition of persistence is as follows. Lgfx,t) be  for all pg, includingpg>1. In Sec. Il we present our results
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for type | persistence. In Sec. Il we introduce a generalizednto simple diffusion. As a precursor to looking at the per-
toy model of noninteracting diffusing particles and illumi- sistence, therefore, we first consider how the particle density
nate, through a special case, the type Il persistence propertidecays with time in this limit.

of the A+ B—J model. All our predictions are tested by  In the high-density limit, where there are many particles

extensive numerical simulations. per site, one can neglect dynamical fluctuations in the den-
sity. If N,(t) is the number of particles at siteat timet, the
Il. PARTICLE DENSITY IN THE A+B—J MODEL dynamics ofN(t) is governed by diffusion,
We are concerned with the following model. Consider the Nn(t): D[Nps1(t) = 2N, (t) +Ny_1(1)]. 2)

A-+B— reaction involving two types of particles, both
executing diffusive random walks. The particles move on aHere we have adopted the convention tRgt>0 means that
one-dimensional lattice with periodic boundary conditions,siten is occupied byN, A particles, whileN,<0 means that
and react upon contact to form an inert particle. tAt0, it is occupied by—N, B particles. Then the annihilation
exactly equal number$J,(0)=Ng(0), of A particles and3  process is automatically built into the diffusion equati@n
particles are randomly distributed on the lattice. This is dondntroducing a discrete Fourier transform and taking the limit
by randomly assigning each lattice site to be eitheAamite ~ L—, gives

or aB site with equal probability. Thé sites andB sites are - dk
then randomly filled withA andB particles, respectively, i.e. N, (1) = E N,(0) -
each A(B) particle occupies each of th&(B) sites with m —x2T
equal probability such that, at large scales, both densities

pa(0) andpg(0) are initially homogeneous. We defipg

=pa(0)=pe(0)=Na(0)/L whereL is the size of the lattice. 4 {51 we are justified in using the approximation 1

The two species are also given the same diffusion constant .o ~k2/2 in the integrand, and extending the limits on

Da=Dg=D=1/2. Our model then evolves permitting mul- . integral to = oc. This gives

tiple occupancy of sites, but we impose an instantaneous

reaction so that each lattice site contains only one type of s 1 (n—m)?2

particle. N, (t)= Nn(0) —ex;{ -
The mean-field approach yields an asymptotic decay of m V4Dt 4Dt

the particle density according te(t) = pg(t)~constxt !

with an amplitude independent of the initial density. How- becomes, asymptotically, a Gaussian random variatfiere

evir, in low enough sptattl_al ﬁmen&mﬂfﬁ;k tdhe dom|f- th the randomness comes from the initial conditjoris mean
nating process asymptotically 1S the diftusive decay ol theg clearly zero, sincéN,,(0))=0 by symmetry, so its distri-

I(Iil;ctgatlonnsdlr}tﬂ\:\(la |n|t|ﬁl svonn%ltlogs. Thlfnlteacrjlz t\c;vﬁn;&?lousoution is completely specified by its variance. This is inde-
etics a as sho y toussaint a ¢ pendent oh by translational invariance, so we drop the sub-

Xexg —2D(1—cosk)t+ik(n—m)]. 3

4

For t—o, the Gaussian kernel becomes broad, ahdt)

that script and write(again fort— o)
Vo Np(0)N (O
t))= tW~——— (Dt *d/4_ 1 2 _ < m( ) m’( ))
(pa(1))=(pa(1)) 771/2(877)d/4( ) (1) (N2(1)) n%)n o
This result has been confirmed using field-theoretic methods (n—m)2  (n—m’")?
for 2<d<4 by Lee and Card}10]. The exponent-d/4 has XeXD T ~upt abt |- ®

also been rigorously confirmed by Bramson and Lebowitz

[25]. The numerical simulations that have been performed irJsing (Ny,(0)N0)=(N2(0)) 8w We obtain, asymptoti-
one[24,26], two [24,27], and three dimensiorf28] are also cally,

in good agreement with the analytical predictions of the de- 5

cay exponent. However, it was noted by Lee and Caidy (N2(1)) = (N“(0))
that, although in one dimension reasonable agreement with 87Dt
the dependence on the initial density has been found, in

higher dimensions the/p(0) amplitude dependence has not At time t=0 the number of particles of a given type on a
been observed. They suggest that, in the one-dimensiongiven site has a Poisson distribution with megs,,2where
simulations, the initial average occupation number per sitéecall thatpy is half the total density. Hence the variance is
was kept low, whereas for the higher dimensional simulagiven by(N?(0))=(|N(0)|?)=(2po)?+ 2po, giving

tions it was necessary to start with a nearly full lattice in

(6)

order to reach the asymptotic regime and therefore that Eq. N2(1)) = 4p5+2po _ o2t 7
(1) might not be a universal result, but rather a limit for small (N“(1))= 87Dt =o(b), @

initial density. We believe this to be the case. We focus on

the particle density in one dimension. In our study of type Iwhereo is the standard deviation, and the probability distri-
persistence we are particularly interested in the limit of highbution of N(t) is simply P[N(t)]= (127 o?)exp(N¥
initial particle densitypo>1, where the problem should map 202).
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The total particle density, recalling that, with our conven- 6 . r
tion, B particles have been assigned negative values ol

N,(t), is given b ---- p,=500
n(t), is g y -

2 (e N2 \/E \\\ — Pp=50
<|N(t)|>=\/FIOdNNex;<—ZT‘2)= —o. (8 4 Y 1

Substituting foro from Eq. (7) yields, finally, §< Ny .
c \\\ S
(4p5+2po) - o
(IND)=——— 9) . |
(27°Dt) :
The individual particle densities, therefore, decay asymptoti-
cally according to
(2p5+po) 2 . ‘
(pa(D)=(pg(t))=———— (DO~ (10 % 5 10 15
(2m) Int
It is interesting that in the low density limjy<1, we FIG. 1. Log-log plot of the particle density as a function of time
recover the result of Toussaint and WilcZeid], for po="50, 250, and 500.

pé’z high density of particles are performed on a one-dimensional

<PA(t)>:<PB(t)>ZW(Dt) Y pe<l. (1D lattice of size 16. Each run is performed for $10* time
m steps and we average our results over 100 runs. The results
are shown for three different initial densities in Fig. 1. After
decay exponent 1/4 as for low density but a different am- initial transients, the log-log plots apparently approach
plitude. The amplitude now scales ag in contrast to the straight lines in each case. The valu_es e>§tracted for the decay
low density limit where it scales Iikpé’z: exponenty and the amplitud& are given in Table I, where
the quoted errors are purely statistical. We attribute the small
differences between the measured and theoretical values to a

However, in the high density limjip>1 we obtain the same

Po . . - .
(pat))=(pg(t))= W(Dt) Va4 po>1. (12) failure to reach the true asymptotic regime.
Given the correctness of EGLO) in both low and high den- ll. TYPE | PERSISTENCE

sity limits, we expect it to be a good approximation across
the whole range of densities.

For convenience, let us write Eq12) as {(pa(t))
=(pg(t))=Kpo(Dt) " ?. The analytical values oK and y
are thenK=0.3563% ... andy=1/4. Numerical evidence
has already substantiated E@l1) [24,26. Below, we
present numerical support for our high density calculation.

In conducting numerical simulations of this nature one
must naturally consider how to increment time. A physically
realistic and computationally simple method is to incremen
dt by 1/current number of particlegsHowever, the expedi-
ency of this technique clearly does not extend to system
with high densities of particles. A more efficient method is to
allow all particles to move simultaneously. In our simula- )
tions, therefore, one time step constitutes a jump by all par- TABLE I. Numerical values of the decay exponeptand the
ticles in the system to a nearest neighbor site with equafonstant< where(pa(t))=(ps(t))~Kpo(Dt)" 7 for po=50, 250,
probability. In the low density limit, we have made compari- @d 500. The numerical values &f were obtained by plotting
sons of the two methods of updating and find asymptotically:PA(0))vst " and evaluatind,,, from the gradient of the curve.
that the results are identical. Within the context of a low "¢ @nalytical values arg=1/4 andk =0.356 45.
initial density, systems that permit multiple occupancy of

Consider theA+B—J reaction-diffusion process on a
one-dimensional continuum. The rate equations for the con-
centrations are 9;Na=d,,Nas—R and JNg=0dy,Ng—R
whereR is the reaction rate per unit volume. The concentra-
tion difference AN=N,—Ng obeys the simple diffusion
equationd, = dy,¢. It is well known that, below the critical
dimensiond.=4, the A+ B—J model evolves to a coars-
ened state in which the two species segregate into domains
f either A or B particles. The “domain walls” are defined
y AN=0, where the diffusion field representing the coarse-
rained particle density has it zer@zcall that thesign of
the density is associated with the particle type — positive for

lattice sites generate indistinguishable results from those that__”° Youm Knum

permit a maximum of one particle per site. For the purposes 50 0.2576-0.0005 0.3592 0.0007
of this paper, therefore, all of the simulations are based on a 250 0.2524-0.0002 0.3568 0.0003
parallel updating of the particles and permit multiple occu- 500 0.2548 0.0005 0.3669 0.0008

pancy of lattice sites. Our numerical simulations for an initial
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A and negative foB) and their motion is clearly determined 0.8
by the annihilation process+B— . The persistent sites in 500 .
this model are therefore defined as those sites that have n¢ 07 [ — ﬁ:‘ead?'ms '
been crossed by the zera@sN=0, of the diffusion field, i.e. urve
those sites that have never seen an annihilation process. | 06 | i
order to overcome the discrete nature of our problem and
model the diffusive process of the domain walls as describec 05 )
above, we allow our model to approach the continuum limit A
by starting with a very high initial density of particlegg o 04 T ~. i
>1. One might think that, in this limit, the entire system will 03 | T~ |
asymptotically become nonpersistent. However, we find this
not to be true. The persistence decays according () sl \
~A+t~%whereAis a constant, i.e., there are some sites that
are always isolated from the diffusing boundaries between , | i
domains. We expect the offs&tto vanish agy—: clearly,
in the real, continuous diffusion probleR(t)~t~*, with no 0 . ‘
offset. Our hypothesis is that, in the limit of a large initial 0 5| t 10

n

density of particlegpy>1, the offset tends to zero and the
persistence exponent is identical to that which emerges from F|g. 2. A nonlinear fit of the formA+ Bt~ is made to the
a study of the diffusion equation in one dimensiofl, fraction of persistent sites at tintefor an initial densitypy=500.
=0.1207[1]. This should hold if the density during the en- The values of the fit parameters afe=0.05+0.02, B=0.57
tire run remains large enouglp(t)>1] that the continuum +0.005, andd,=0.13+0.01.

description in terms of the diffusion equation remains valid.

If, on the other hand, the simulation enters the low denSi%wanner is denotedy;;; . We consider the high density limit

regime at late times, we expect the approach of the PErSISiist and take as our initial valuesy,=500 and 250. The

tence to its asymptotic value to be described by the I()V\Eimulations are performed on a one-dimensional lattice of

de?sig th|¢0'rty'f| initial densityon<1 listi size 10 and run for 5<10* time steps. We average our
rt] i N mf“tho dqf\:,v ni Iab en3| YPo a rg,\.a |st|c trﬁpr;".}f results over 100 runs. In the nonlinear fits, the reginses
sentation of the diffusing boundaries according to the diffu-, 1 o4 (¢ fieq. corresponding to k10.3.

sion equation is not feasible, due to the discrete nature of the The data are presented in Figs. 2, 3, and 4. Figure 2 shows

problem. In this case it is clear that the entire system cann%e nonlinear fit forpo=500, from which the exponert
become persistent since, by definition, the total number oL §13+0.01 is exlt]roacted ’consistent with the diffljlsion

rHesggnti:J;S;gzhﬁwvzgeiil;ltighies Séize%i(atgevlﬂxe. valuleé-, 6=0.1207. The plot, in Fig. 3, of P(t)) against
—1 aspo—0. The large mean separation between particlet._O- " (where 0.129 is the best-fit value 6}, from Fig. 9
imoli ’f[?] t : e that . hilati %lelds a good straight line at large The unbiased determi-
Implies that any site thal experiences an anniniation proce€Se. o, o g from a numerical differentiation of the data is
is unlikely to witness such an event again, i.e., every reaction

processA+B—(J leads to a single, isolated nonpersistent

site. Given that the total number of reaction processes is 098 '
governed by the initial density of walkers, in the limit of

sufficiently low density one can set a lower bound on the 07 P=>% 7
persistencg P(»))=A=1—py. The persistence properties
are therefore determined by the decay of the walker density ’
The walkers decay according tet™** and we therefore 05 | |
expect that, fopy<1, 6=1/4. ’

Our numerical results are presented below. The algebrai& 04 L |

form for the persistence prevents a simple evaluation of the%
exponent. A three parameter nonlinear curve of the fé&rm 03 |
+ Bt~ % was fitted to the data to ascertain the valig
where the subscript denotes the implementation of a nonlin- 4o | ]
ear curve fitting technique. The fit was carried out udiag
the independent variable, though the data are plotted agains 1 L _
Int for clarity of presentation. To demonstrate the validity of
determining# in this manner, we also plot our data in the 0 w w :
form (P(t)) againstt™ %I, where the correct value o, in 0.2 0.4 28 0.8 1
such a plot, manifests itself as a straight line graph. An un-
biased method of determining the exponent is also presented, FIG. 3. The fraction of persistent sites is plotted againét' for
by numerically differentiating the data and displaying thep,=500. The valuegd,;=0.129 is taken from the nonlinear curve fit
results on a log-log plot. The value @éfdetermined in this in Fig. 2.
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_y | Pe=500
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-3

In [~d<P(t)>/d(In t)]

-5

-6

10

-7 w

Int

FIG. 4. The fraction of persistent sites at timés numerically
differentiated[ A(Int)=0.1] and presented on a log-log plot for
po="500. The gradient, taken between the arrows, givgs;
=0.12£0.01. The straight line has slope0.1207.

shown in Fig. 4, where the logarithmic derivative (&(t))

is plotted against on a log-log plot. The resulting data
should be a straight line of slope #. The best-fit value of
the slope is— f4iri= —0.12+=0.01. Note that the data be-
come noisier at later times as the number of persistent sit
decreases and statistical fluctuations between different ru
increase. The slope in Fig. 4 was extracted from the regio
between the arrows, where initial transients have decayed b

the data are not yet too noisy. The expected slopeI

—0.1207, is shown as a guide to the eye.

Equivalent data generated fai,=250 give 60,,,= O4is;
=0.13£0.01, again consistent with the diffusion equation
result, while the other fit parameters ake=0.07+0.02, B
=0.55+0.005. Notice that the values #fobtained from the
nonlinear fits are quite small — 0.05(2) and 0.07(2) for

1.02 T
Po=0.1 —— data points
. - - -~ fitted curve
10 8
A
£ 098t :
v
T
0.96 - ) .
0.94 . L
0 5 10

Int

FIG. 5. Same as Fig. 2, but fap=0.1. The fit parameters are
A=0.95+0.02, B=0.05+0.005, ¢,,=0.26+0.01.

PHYSICAL REVIEW E 64 041105

TABLE II. Values of the exponen® in the relationshipP(t)
=A+Bt"?, where g has been evaluated according to a nonlinear
curve fitting technique {,,) and through a method of numerical
differentiation (@qis;). We expect, asymptoticallyg=0.1207 for
po>1 and 9= 1/4 for py<<1.

Po A B Oni Oaitt
500 0.05-0.02 0.57#0.005 0.130.01 0.12-0.01
250 0.0#0.02 0.55-0.005 0.130.01 0.13-0.01

0.2 0.96:0.02 0.06:0.005 0.25:0.01 0.25:0.01
0.1 0.95-0.02 0.05-0.005 0.26:0.01 0.270.01

po=500 andpy=250, respectively. An equivalent fit for
po=50 gives the larger valuA=0.172), so thedata are
consistent with the hypothesis that—0 for py—, al-
though the data are not good enough to extract the functional
dependence oA on pg in this limit.

We now present our low density results. We choose as
our initial densitiespg=0.2 and 0.1. In this regime, our
simulations are performed on a lattice of siz&€ &0d run for
10° time steps. The system takes longer to enter the
asymptotic regime due to the low initial density and this is
reflected in our extended number of time steps. We average
our results over 50 runs. Figure 5 shows the same type of
nonlinear fit,( P(t))= A+ B/t% that was used in Fig. 2. The
fit parameters forp=0.2 are included in Table Il. The fit

SNorks well except at early times, and the fitted values are
Wose tos=1/4 as anticipated. Note that the logarithmic scale

r the abscissa greatly expands the early-time regime. The
H(E)nlinear fit was restricted to the range*4a <10 (i.e., the
'ast 90% of each run corresponding to 92Int<11.5. Fig-
ure 6 show the same data plotted{ &t) ) against 1, and
reveals the expected linear behavior at late times. Finally,
Fig. 7 gives the log-log plots for the differentiated data, from
which the exponent estimatég;s; are obtained. The slope is
measured between the arrows in Fig. 7, corresponding to a
region similar to that used for the nonlinear fits.

The estimate9),, and 6y4;;; of the persistence exponent,

0.957

p,=0.1

0.956

0.955

<P(t)>

0.954

0.953
0.04

0.05 0.06 0.07 0.08 0.09

0.264
1

FIG. 6. Same as Fig. 3, but fap=0.1. 6, =0.264.
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_2 T T \\\ T T T
3 py=0.1 —— p,=0.002
- o5 | ---- p,=0.005 |
4 1 .
]
3 5 &
A O
= v
o £
° -6 15 | ]
<
-7
-8
-25 L . .
-9 ' ' ‘ ‘ 0 100 200 300
2 4 6 8 10 12 {2
Int
. B B . FIG. 8. Log-linear plot of the persistence for a system of non-
FIG. 7. Same as Fig. 4 fqio=0.1. 611 =0.27=0.01. interacting diffusing particles with no decay.

for both low and high density regimes, are summarized in
Table Il. A natural consequence of the slow algebraic deca
of the particle density is that the asymptotic regime, in the
casepg<<1l, occurs only after many time steps. We expect
the result9=1/4 for the low density regime to manifest itself
more clearly in systems run for a greater number of tim

assage-time distributioR,(t), whereP,(t)dt is the prob-
bility that the first crossing of the origin occurs im,t(
+dt). Then P,(t)dt=Q(x,t) —Q(x,t+dt) gives P,(t)=
—dQ/dt. Since the diffusing particle survives to tinhavith
eprobabilityf(t), the probability for the origin to be persistent
at timet is given by

steps.
t
IV. TYPE Il PERSISTENCE Q(X't)zl_f dt’'P,(t")f(t")
0
In this section we address the following question: What is
the asymptotic probability(t) that a given site has never X tds X2
been visited by amA or B particle, in a one dimensional :1_2\/D_7-J03T’2f(s)ex ~1Ds/" (13

system of A and B random walkers subject to tha+B

—(J reaction-diffusion process? Necessarily, we pose this
question within the context of a low initial density. In the presence of many random walkers, whose random

Our approach involves the introduction of a toy model,i”itia| positipns haye a uniform distribution over space, the
whose predictions we will compare to simulation results. Thé€an persistence is given k(1)) =(Q(|x|,t))?", where
model consists of a system of noninteracting diffusing par2oL =N is the total number of initial walkers and the average
ticles, with initial densitypo=N(0)/L, on a one-dimensional S OVer the mmal position of a walker, assumed uniform in
lattice with diffusion constanD = 1/2. Note that the defini- (—L/2.L/2). This gives
tion of pg in type Il persistence refers to the total density of

initial particles, in contrast to type | persistence, whege 1 L2 tds
referred to half the total density. (P()=|1- \/—J dX|X|J —,f(s)
Particle decay is invoked by allowing each particle to 2LyDmr L oS
vanish at every time step with someéusually time- 2 \ ]Pot
dependentprobability. We define (t) to be the fraction of ><exp( ——) (14
particles remaining at timg i.e., f(t) = p(t)/po. We are then 4Ds
free to mimic the behavior of any reaction-diffusion process
by a suitable choice of(t). For L— we obtain,
The analysis of persistence in this toy model is straight-
forward. We first define the probabilit(x,t), that the ori- D (tds
gin has not been crossed by a given diffusing particle with (P(t))zexp( —2po \ﬁj lef(s)>_ (15)
initial positionx>0. We define our lattice to be the interval mJos

(—=L/2L/2). Then an elementary calculation givex,t)

=erf(x/2\/Dt), where we have assumed tha&L and L? A system of strictly diffusing particles with no decay is
>Dt, i.e., we have effectively taken the limit— in the  modeled by settingf(s)=1. In this case,(P(t))=exp
calculation ofQ(x,t). A simple approach in the calculation (—At*?) where A=4p,\D/#. In Fig. 8 we present a nu-
of the number of persistent sites is to consider the firstmerical verification of our calculation. The gradient of the
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TABLE IIl. The persistence properties of a system of noninter- = ' '
acting particles with zero probability of decay is described by
(P(t)>~exp(—At1’2). Above we provide a comparison of the values -1 r
of A as deduced from the theoAy,.,, and from numerical simula-
tions Apym-

Po Atheor Anum

0.002 0.00319 0.00320(5)
0.005 0.00797 0.00790(5)

In <P(t)>

graphs gives—A. The values ofA extracted from the data
are compared with the numerical predictions in Table IIl.
The agreement is excellent.

Our model can also be applied to thestate Potts model, ~ . .
which hasq distinct but equivalent ordered phases. The 0 5 10 15 20
+A—@ model corresponds tq=2, while A+ A—A cor- t
responds tog=. The density of walkers in the one-
dimensional1D) Potts model is known to decay asymptoti-
cally according td29],

FIG. 9. Log-linear plot of the persistence for tiet B—
reaction-diffusion procesgP(t))~exp(—Bt") with y=1/4.

g-1 1 while (P(t)) will approach a nonzero constant far>1/2.
t)=—— 16 The borderline casey=1/2, yields power-law decay of the
p(t) _
4 2nDt persistence, as we have seen.

We naturally now turn our attention to the+B—J re-
We can derive a generalized valuedgfy) for our toy model  action process to see if the correct time dependence of the
by substitutingf (s) = p(s)/po into Eq. (15) wherep(s) is  persistence also emerges from our model. The densi#y of
given by Eq.(16). This gives and B particles in this case in given by E¢L1). Therefore

(P(t))~t~ (@), 17 (p(t)) is given by

where p(1)/z
V2 (q-1 <p(t)>~m(m>*1’{ po<1, (20)
9T(Q):—( )
an

q (18)

and the subscripE denotes toy. Despite the simplistic nature WNere p(1) =pa(t) +pg(t) and po=N(0)/L. Substituting

; : f(s)=p(s)/pg, Wherep(s) is given by Eq.(20), into Eq.
of our model, a power law decay for the persistence is pre- | 0 T 9 14 12
dicted, in agreement with known results. Our expression fof 19 Yields (P(t)) ~exp(-Bt™) with B=(2""D/m)"p5".
0(q) [Eq. (18)] is clearly a poor approximation to the exact For theA+B—(J reaction we therefore predict a stretched

expression for the 1D Potts model obtained by Deretial. ~ €xponential decay of the persistence, with exponent 1/4.
[14]: The results of our numerical simulations are presented

below. The simulations are performed on a one-dimensional

2-q 2 lattice of size 1B for 10° time steps. We choose as our initial
cos‘l(—) (19 densities pg=0.02 and py=0.04. A direct test of the

\/5 q stretched exponential prediction is obtained by plotting

In(P(t)) againstt¥’, as in Fig. 9. The fact that the data do not
where the subscrig? denotes Potts. The values of the per-clearly show the expected straight line behavior may indicate
sistence exponent returned by our model for ¢fe2 and that the density is not yet in the regime where it is well
q=c cases arefr(q=2)=0.225 and#;(q==)=0.450. described by tha ¥* form given by Eq.(20). Indeed, a
The values given by Eq19) for the Potts model arép(q  direct study of the density indicates that thé’* behavior is
=2)=3/8 and #p(gq=>)=1. The encouraging feature of only evident at the latest times reached in the simulations.
our toy model, however, is that the essential dynamics of thén alternative analysis involves differentiating the data with
system leading to the power-law decay of the persistence irespect to It and presenting the result as a double logarith-
Eq. (17) is correctly identified as the” ¥ decay in the num- mic plot, as in Fig. 10 for the cage=0.02. Here again the
ber of surviving random walkers at timtelf the number of  evidence that the data approach the expected slope of 1/4 at
surviving walkers decays s ¢ for larget, the toy model late times is less than unambiguous. In particular, the noisy
predicts, via Eq.(15), that the persistence will decay as a character of the differentiated data at the very latest times
stretched exponential,P(t))~exp(—At/2~®), for a<1/2, tends to obscure the asymptotic behavior.

1 2
9P(Q)=—§+;
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2 1.5 T
p,=0.02 - p(it"
—— =d(In <P(t)>)/d(In 1)

: i |
3
2
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£
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-6 I I Q0 BE= = 1

0 5 10 0 5 10
Int Int

FIG. 10. The log of the persistent fraction at times numeri- FIG. 11. A direct test of Eq(21) for po=0.02.
cally differentiated[ A(Int)=0.1] and presented on a log-log plot
for po=0.02 The gradient of the curve gives The straight line has

a slope of 1/4.

V. SUMMARY

In this paper we have investigated the persistence proper-
ties of theA+B—J reaction-diffusion process using two
In short, the data as presented in Figs. 9 and 1Qistinct definitions of persistence. In type | persistence, we
do not provide a convincing test of our prediction studied the fraction of sites that had never witnessed an an-
(P(t))~exp(—Bt") with y=1/4. The slow approach of the nihilation process. In the high density limit>1 we argued
particle density to its asympotic t}# behavior is, in our that the persistence exponent is that which emerges from a
view, the reason for this. A better test of our model, there-study of the one-dimensional diffusion equatios,¢
fore, is to consider the persistence as a function of the actuat dxx¢, Where §=0.1207[1], and presented data consistent
running density of particles, rather than using the asymptotigvith this result. In the low density limipo<1 we argued
behavior of the density in Eq15). Taking the log of Eq. that the persistence properties are governed by the same ex-
(15) and differentiating with respect to tryields, ponent that (_jescrlbes the decay of the part[cl_e density, giving
6=1/4. Again, the data support this prediction. In type Il
din{P(t)) \F 1o per_sistence,_ we cons_idered the prob_ability that a site re-
- WZZ ;P(t)t ; (21) mained unvisited by either ah or B particle. Our approach,
in this case, was to develop a toy model, which can be ap-
since pof (t) = p(t), the running density. The left-hand side p_Iied to any reac_tion_—diﬁusion process an(_zl expresses the per-
of Eq. (21) andp(t)tY2 (without the factor 2/D/) are plot- ~ Sistence properties in terms of the density of the reactants.
ted in Fig. 11 for the caspo=0.02. The two curves agree FOr the At B—(J process the model predictsP(t))
rather well over the whole range of tnexcept at the latest ~&XP(~Bt™). The data are consistent with this result when
times, where the data are noisy. The equivalent plotfpr allowance is made for the actual time dependence of the
=0.04 is similar except that data are even noisier at latd@article density(rather than just its asymptotic foymAn

times. The factor 2D/ in Eq. (21), omitted from the plot, ©OPVious goal for future study would be to place this
has the numerical valug2/m=0.8 (recall D = 1/2), whereas stretched-exponential decay on a firmer theoretical founda-

Fig. 11 suggests this number should be closer to Uaiydo tion
the equivalent data fgi,= 0.04). Given the crudeness of the
toy model, however, the agreement between the data and the
model is surprisingly good.
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