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Stochastic dynamics with a mesoscopic bath
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We consider the effects of bath size on the nature of the dynamics and transport properties for two simple
models in which the bath is composed of a collinear chain of harmonic oscillators. The first model consists of
an untwisted rotating chaitelastic rotoy for which we obtain a non-Markovian equation analogous to the
generalized Langevin equation for the rotational degrees of freedom. We demonstrate that the corresponding
memory function oscillates with a frequency close to that of the lowest mode of the chain. The second model
considered consists of a tagged oscillator in a finite harmonic chain. For this model, we find an additional
harmonic force in the generalized Langevin equation for the terminal atom that does not appear in the equation
of motion for the semi-infinite chain. It is demonstrated that the force constant for the additional harmonic
force scales as W, whereN is the number of oscillators in the chain. Using an exact representation for the
velocity correlation function, the transport properties of the model are discussed.
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I. INTRODUCTION finite bath[4]. The aim of this paper is to consider two el-
ementary situations when the fact that the bath is finite can-
The dynamics of a system interacting with a bath has beenot be neglected and may lead to effects surviving in the
the subject of sustained study for decades. While the equithermodynamic limit.
librium properties of the system are essentially insensitive to The coupling of a system to a sufficiently large bath often
bath properties, the character of the relaxation processes ustauses the dynamics of the system to appear to be stochastic
ally depends crucially on the temporal and spatial scales adind irreversible. While this situation is quite common, there
the dynamics of the batfil]. One systematic approach for are situations in which the bath produces an almost regular,
examining how the physical characteristics of the bath influrather than stochastic, force acting on the system. In fact, one
ence the dynamics of the system is based on the Zwanzigan anticipate that, if only a small number of bath modes
Mori projection operator formalism which provides an exactcouple effectively with a system, the dynamics of the system
but formal procedure for the elimination of irrelevant bath appears more deterministic than stochastic in spite of the fact
variables. The elimination procedure leads to the generalizethat the number of bath degrees of freedom may be very
Langevin equatiofGLE) in which the total force acting on large. A simple model that exhibits behavior of this kind is
the variable of interest is represented as a sum of a coloresh elastic untwisted rotor, which we consider in Sec. Il. The
noise termrF(t) and a non-Markovian dissipative term con- elastic rotor system is modeled as a finite collinear chain of
taining a memory function satisfying the fluctuation- harmonic oscillators rotating as a whole around one of its
dissipation relation. A particular decomposition of the totalends. For this system, we focus on the dynamics of the an-
force into fluctuating and regular parts in the GLE is notgular velocity of the chain, while intrinsic vibrational de-
unique, and corresponds to a specific choice of the projectiogrees of freedom are treated as irrelevant bath variables. Vi-
operator. Some forms of the projection operator lead to equasrations of the bath lead to fluctuations of the moment of
tions for the relevant variables that differ from the GLE butinertia of the rotor and therefore to fluctuations of the angu-
conserve the non-Markovian character of the dissipatiortar velocity of the chain. It will be shown that, even in the
(see, for exampld,2]). case in which a wide separation of time scales exists between
If the bath variables evolve much faster than the variableghe rotational and bath motions, their coupling does not lead
of interest, one can expect that the dissipative memory funco Brownian rotational motion, but rather gives a regular
tion decays rapidly to zero and can be approximated by a contribution which oscillates with a frequency close to that
function on time scales relevant to the dynamics of the sysef the lowest vibrational mode of the bath. Although effects
tem. This assumption is of vital importance in many appli-of quasimonochromatic external noise have been investi-
cations, including the Brownian dynamic simulation methodgated recently5], microscopic models leading to the intrin-
and its numerous variations. For a large system in which aic harmonic noise have not been considered.
full molecular dynamics simulation becomes very expensive, While obviously oversimplified, the elastic rotor model
it is desirable to consider explicitly only the dynamics of captures the main physical features of rotation-translational
relevant variables while fast variabléseferred to as bath coupling, and is relevant to the dynamics of long, linear mol-
variable$ are treated phenomenologically through a modelecules, stiff fragments of branched polymer systems, and
incorporating fluctuating and dissipative forces acting on thenany other molecular systems. Although rotation-vibrational
relevant variables. For a few model systems, such as a heagpupling is usually relatively small, it may be an important
isotope in a chain of linear oscillators, the validity of the factor in the dynamics of orientational ordering of linear
stochastic equation of motion has been demonstrated analytinolecules anchored to a surface and other processes of mo-
cally in the thermodynamic limif3] and numerically for a lecular nanotechnology. Moreover, the model can provide

1063-651X/2001/641)/04110310)/$20.00 64 041103-1 ©2001 The American Physical Society



ALEXANDER V. PLYUKHIN AND JEREMY SCHOFIELD PHYSICAL REVIEW E64 041103

valuable insight into the intrinsic rotational dynamics of coupled to the bath variablds);,p;}. We restrict ourselves

macromolecules with complex three-dimensional structuregy the regime whemp(t) is small compared with the lowest
such as DNA, since in many cases only fixed-conformatior}node wo Of the unperturbed chain, namel<w,. This

dynamics of polymer fragments is importd0]. condition of a wide separation of time scales for rotational

In Se_c. III,_the dynamics O.f a tagged particle in a finite and vibrational motion is simultaneously the condition of
harmonic oscillator assembly is considered. The motion of %\f

¢ 4 varticle in h ) ; has b h biect eak rotation-vibration coupling and guarantees that the dis-
tagged particie In harmonic systems has been the Subject g, .o ments of atoms are close to those in a nonrotating chain
intensive study over many years and still continues to attra

ttention in th text of i tigating th tiot rovided the kinetic energy of the harmonic atoms is not too
attention in the context ot investigating the spatiotempora igh. When this condition holds, the fluctuating part of the
evolution of the initial energy pulsgs]. In this article, we

focus on the dynamics of a terminal atom of an anchored anawoment of inertia is small,

finite chain. This model has been considered by many au- |51(t)] <l (5)
thors in the semi-infinite chain limit, mainly in the context of "
studies of gas/surface interactions and condensed-phase
action dynamicq7,8] where the GLE can be derived by
explicitly integrating the equations of motion for the bath

%1d the angular velocity can be approximated as a linear
function of 61,

variableq 7]. We shall show that for the case of a finite chain P S|

an additional harmonic force appears in the GLE. In Sec. IV, ~ —¢( 1——) (6)
we discuss transport properties of the finite chain system e Iy

using the exact representation for the velocity autocorrelation ) )
func?ion. P y It should be stressed that inequali®) does not imply that

the displacements of all atoms are small. In fact, the fluctua-

tions in the unperturbed system gaf)=i/(fmw?), where

B is the inverse temperature, which increases wahd may
Consider an elastic rotor system governed by the Hamilbe comparable to or even larger tharfor a long enough

tonian chain. However, sincedl ~Xiq;~2i%? scales adN®? the

ratio 81/1,~1/\/N<1.

Il. ELASTIC ROTOR

2

_ e In the weak coupling approximation, the Hamiltonian for
H= 2l FHytU(9), @ the system can be decomposed as
where the Hamiltonian of the nonrotating chaieferred to H=H,+H,+H,, (7)
as the “bath”) is
N N whereH, is the Hamiltonian of the rigid chain,
Hy=o |o-2+m—°’2 > (4—gi-1)° 2
b 2mi=l i 2 “~ i i—1) » P?;ﬁ
H =5 +U(), ®
r

andq; andp; are the displacements and momenta of khe
+1 atqms of the chain, re;pectlvely. The Cham‘ rotates as ﬁb is the bath Hamiltonian defined in E€®) above, andH.
whole in an external potenti&l (¢) around an axis perpen- :

: . ) : is the coupling term,
dicular to the chain and passing through the terminal atom
anchoring the end of the chain. The anchoring atom is as- 1/P.\2
sumed to be fixed at the origing=0. In Eq. (1) the conju- H.=— —< "’) Sl
gate momentunP , of the rotation anglep is the angular
momentum of the chairP¢=I£;5, while the moment of in-
ertia is| == ;m(x’+q;)?, wherex=ia is the position of
atomi in equilibrium. We write the moment of inertia in the
form I(t)=1,+ 8l1(t), where

€)

It is interesting to note that the coupling of the system to the
bath occurs through the kinetic energy term of the system
due to the form of the Hamiltonian in generalized coordi-
nates. This is quite different from the more common form of

N 1 the coupling through an interaction potential for the system
I, =m&Y, i’=-maN(N-1)(2N-1)  (3)  and bath9] _ _ _
i=1 6 It is useful to describe the dynamics of the bath in terms

. o o o ] of the normal coordinatelQ; , P;} for unperturbed bath mo-
is the moment of inertia of the rigid chain in which the atomstion corresponding to a nonrotating chain with one fixed end.
are frozen in their equilibrium positions, and The normal mode transformation is of the form

. N—1 N—1
sl(Hy=2ma, iq;(tH)+mY, g(t) (4) 1
I I g=— > AiiQ;, pi=\m>, APy, (10
\/ﬁ i=0 j=0
is the fluctuating part of. We focus on the angular velocity
of the chain$=P,/l, which, in general, is nonlinearly where the eigenvectors have the components
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2 2j+1 2 Py ol d
= inl 71l —— =—— — — (22
Ajj _2N+1sm(7r|2N+1 , (11) ¢ 1, 96
and satisfy orthogonality conditions with respect to both USing the Liouville operators, one obtains an evolution
indices, equation for the rotation angk(t),
N N-1 . du(¢) . .
2 AjAK= i 2 AjAG= Bk (12 'rd’(t):_w_(ﬁ(t)l(t)’ @3
=1 =0
The transformed bath Hamiltonian in the normal coordinatd© !€ading order in the small parametéf/l,. The term
representation is — ¢l, where
Nt N-1
Ho= 20 [P+ w?QR), (13) I=L£81=22 (Q+B)P;, (24)
i= =0
where can be interpreted as a fluctuating torque due to intrinsic

noise. Our aim is to derive an equation of motion for rota-
0 =20 sin(— (14) tional motion that does not explicitly include bath variables.
j

2 2N+1 In what follows, we shall express the functib(t) through

are the normal mode frequencies of the bath. In terms of (1), eliminating vibrational degrees of freedom using the

normal coordinates, the variation of the moment of inertia ian’OjehC'[Ion operator te_chrrw:que. dent
Eq. (9) for the coupling HamiltoniarH . takes the form The starting point is the operator identity

T 2j+1

N—-1

t
(B+C)t_ Bt B(t—7)~a(B+C)7
e =e°'+ [ dre Ce . 25
o= 3 {Qf+2B,Q)}, (15) Joge @9

Differentiating Eq. (25 and definingB=L and C=PL,

where the constant vect@®; is defined as . ' .
whereP is an arbitrary operator, one obtains

N N
= Op. — A t
Bj=m2, XA = \ma, iA;. (16 el L= elPL 1 F(t) + J drefCIPLA D), (26)
0

Explicitly calculating the sum, one obtains ot ,
where F(t)=e<“'QL, andQ=1—P. Then for any dynami-

cal variableA(t) =e*'A one can write the evolution equation

oo M V2 w\2 2j+1
Bj=2a INF1 w_J sin WNm ) (A7) for A(t) as
where the sine can be approximated byl()! if N>1. A(t) = eLUPA + + Jt L(t—7)
The Liouville operator corresponding to the Hamiltonian Al =e"PA+F() odTe PLR(). (2D

(7) can be written as
F(t)=e2*'QLA. 28
L=Lo+ Lot Lo, (18) (Hy=e*"Q 28
Here and below a dynamical functighiwith its time argu-
ment omitted denotes an initial value, namelysA(0). Let
us define the operatd? by the equation

where the Liouville operators for the rigid chains and for the
isolated bath are

Py, & U 4
L=t = (19
I, 96 dd oP, PB=(B)= | ppB dl'y, (29)
S (o P o @ hereB is an arbitrary dynamical variablp, = Z; ‘e~ A" |
Lo= 3 | Pj—a — 02Q |, (20  WhereBis an arbitrary dynamical variablp,=Z;, ‘e is
i= 9Q; P, the equilibrium distribution function for the isolated bath,

and dI',=11}=5'dQ; dP; is the bath phase space element.

respectively. The coupling term gives rise to the Liouvillian \y i this definition, the operatdP satisfies the properties of
L. which can be conveniently decomposed into two parts, projection operator sincB2=P. Other important proper-

— (@ (2) . . )
L=L+ L7, where ties of the operator includ®L,=0 andPF(t)=0, the first
p | 2N-1 P of which can be proved by integration by parts and noting
5(1):(_¢) B ) 21 that £,p,=0, while the second property follows from the
¢ Iy jZO @ J)ﬁPj @) fact thatPF(t)~PQ=0.
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Since’P commutes withZ, , the termPLF(t) appearing
in the integral in Eq.(27) is reduced thLCF(t)=P(££1)
+L£®)F(t). The contribution frome (") can be calculated
by integrating by parts,

PLOF(t)=- f (LB pp)F(1) dy. (30)
Noting that
Py\2.
LPpy=— —(|—¢) | pp, (31)
r
we obtain
1 B P¢ 2.
PLF®=5| 5| (IF). (32
r
The contribution fromZ ), given by
@) P, d
PEC F(t)z—l—2w<5l F(t)>, (33)
r

is proportional to the small parametét/I, and will be ne-
glected. Under these circumstances, &7) takes the form

fd et~ T>( ) (IF(7)).
(34)

A(t)=e YA+ F(t

If the dynamical variable of intere# is taken to be the

PHYSICAL REVIEW E64 041103

. . t . L.
|(t):|b(t)+§f dr () {lplp(t— 1)), (39
0

where we have used the fact tiy(t)/1,= #(t) to leading
order in the small parametefi/I,. Equation(23) for the
angle can therefore be written in the form

L p(t)=—U"(¢)+n(1), (40)
where y(t) is the torque describing the influence of the in-
trinsic noise; its “stochastic” and regular non-Markovian
constituents are, respectively,

ys(t)=—p(D)Ip(1), (41)

¥, (t)=—4mad (1) Jotdrézsz(f)K(t—r), (42

where the dimensionless memory function satisfies the
fluctuation-dissipation relation

8 ..
K(D= ——(iblu(0). 43

Under the dynamics of the unperturbed bath described by
the Liouville operatorl,, the normal modes evolve as

moment of inertial, the first term on the right hand side of 54 the corresponding correlation functions are

Eq. (34) vanishes sincéi )=0, and the force is of the form
F(t)=elfot Lo, (35

where Ly=Q(L,+ L;). The forceF(t) can be calculated
exactly if one neglects the quadratic term in Eg$.and(15)

QY(t)=Qj cog wjt) + w; *P;sin(wjt), (44)
P)(t)=P; cog w;t) — »;Q; sin(w;t), (45)
(QUOQ)) =68 B tw; ? cogwit), (46)

(PY(t)P]) =8,/ 8L cogwjt). (47)

Consequently, the memory functidf(t) can be expressed

for 4l. This corresponds to the approximation where the cengg

trifugal force f.(x;) acting on a particulaith atom does not

depend on its displacement but is determined by the equilib- B

rium position of the atom in the chairic(xi)mméﬁzxio. It
then follows that

N-1 N-1
5|=2j§0 BiQ;. |=2j§0 B,P;, (36)
and the operatot (M is reduced to
P2t g
W= ¢ N
Le ( |r> 120 BJ&PJI S

SinceLoL]I=0 forn=0,1,2 ..., Eq.(35) implies that

F(t)=efl=],(t). (38)
Substituting this result into Eq34) leads finally to the equa-

tion

N—-1

E B;B; (P{()P,)

2ma? | |

K(t)=

N—-1

Z BZ cog wjt). (48)

2ma

Using the expression in Eq17) for Bj,
tion for largeN is

the memory func-

N-1

1
K= 2

i=

® 4
—) cog wit).
-

J

(49

Examination of Eq(49) reveals that the first term in the sum
(j=0) exceeds the others by a factor of at ledstehd gives

the main contribution t&(t). As a result, the memory func-
tion is a nearly harmonic function oscillating with the fre-
guency of the lowest mode,~ «/N. The implications of
this result are quite transparent, since the lowest mode cor-
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responds to the displacements of all atoms in the chain in thgf Qj, one can get the results obtained above but with
same direction. Collective motion of this kind gives the shifted frequencieg)jwwj—%/ij.

dominant contribution to the variation of the moment of in- To conclude this section, we consider the dynamics of

ertia and therefore is coupled more strongly to the rotational i, na| motion beyond the rigid-rod approximation by tak-
\(arllak?les than modes of h|gher frequen.C|es. In the contlnuur]hg into account the coupling between vibrational and rota-
limit, interpreted as the simultaneous lims-c anda,m tional motions. We have derived a stochastic equation for the

—0 with fixedaN=L, mN=M, and Iia=g, t_hle frequency angular velocity which has essentially non-Markovian char-
wo takes the finite valueyg/(ML)=(L/c) ", where ¢ ,.ter Because of the dominant role of the lowest vibrational

=VgL/M is the velocity of sound in the continuum. ~modes, it may be more convenient in practice to consider the
Equation(40) is nonlinear and difficult to solve analyti- g4ynamics of the slowest vibrational modes explicitly and ne-
cally except in the case of free rotation in whith' (¢)  glect altogether the coupling of the system to the faster
=0 andP, is an integral of the motion. In this cas#(t)  modes. As a compromise to integrating the equations of mo-
=0l 4(t) + ol 5(t), where tion of all degrees of freedom, one can consider the Newton-
ian dynamics of the lowest modes and treat the remaining
0 degrees of freedom stochastically. In this case the system of
ol 1(t):2;0 B;Qj(t) (50 equations to solve includes equations of motion for the
modes withj=0,1, ... Ng—1, and the stochastic equation
is the approximate variation of the moment of inertia for thefor rotary motion
nonrotating chain, and

N—-1

No—1
S N“1g2 Ld()=-U"(#)+2 2 BP()+y(1). (56
3la(t) =25 2, (;’) cog wjt) (51) e

=0 \oj

In this equation the random torquét) has the same form as

is the variation due to rotation. In E¢1) (-i)ozpd)“r isthe before except that it no longer includes contributions from
angular velocity of the rigid chain. Noting that in both sumsthe firstNo—1 modes. The corresponding memory function
the main contribution comes from the element wjta0,  appearing iny(t),
one can check that

1 N—1 w 4
Sl 1 ~(Bmw?a®N)~Y2<1, (52) KO=3 j;% (;J) cog wjt), (57)
Syl ~ (ol wg)?. (53) is an oscillating and decaying function of time for 1/w,,
while on longer time scales it exhibits more complex behav-
It is clear from these considerations that the condiidbA , ior (Fig. 2).
<1 indeed implies that a wide time scale separation for ro-
tary and vibrational motions exists(}b/wj<1. Since qﬁ IIl. TAGGED OSCILLATOR DYNAMICS
~Py/l .~ 1/N® andwy~ 1/N, this condition imposes a lower ] ] o ]
bound for N for a given value of P,, namely, N In light of the important finite length effects observed in
>(P¢/ma2w)1/2_ the elastic rotor system, it is worthwhile to explore the ef-

Note also that for the case of free rotation the dynamic§’30t5 of a finite bath of mesoscopic scale on the dynamics of

can be solved without dropping the quadratic term in thet_h‘? terminal atom in a collinear harmonic chain. The issue of
expression fordl. In fact, using the additional coordinate finite bath effects shpuld be parncularly_ relev_ant.t(_) the study
transformatior®d; = Q; — A2B. with of. transport properties of tagged partlclesiln f|n|te assem-
e blies, such as atomic clusters of mesoscopic size.

3 2 Consider a chain consisting oN-+2 harmonically

2 _| %o ~2 _ 2 42 coupled atoms labeled as=0,1, ... N,N+1 in which the
(P =| = ) + @j(Py)=wj=do, 4 position of the first atom is fixedy,=0. The Hamiltonian
for the system is

wj

and leaving momenta unchanged, the Hamiltoni@n as-

sumes the form L N 2 2N 2
H=om 2 pit—5— > (@i—gi-1)> (598
N-1 < 2
H=3 3, (PT+0i0) +Ho(P,) (55)
2/ T e In the limit N— o, it has been shown that the coordinate of

the terminal atomqy.q1(t)=q(t) satisfies the generalized
whereHy(P,) does not depend on the bath variables. Sincd-angevin equatiofi7]
the above transformation is canonical, the new coordinates

{Qj ,P;} evolve as normal modes of the unperturbed bath E{(t)=—wzfthA(t—T)Q(T)+F(t) (59)
according to Eq944) and(45). Then, expressingl in terms 0 ’
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4 T T

K(t)

FIG. 1. The memory function given by Eq.
(57) for the chain withN=100.

_o | |

-4 L I
0 200 400 600 800

w?

where the forcd=(t) is a function of all initial displacements 2 \¥2 i
and velocities excepfj, and the memory function is ex- ANt SMNT (66)
pressed in terms of Bessel functions
The HamiltonianH ;. in normal coordinates reads
A(t)=J9(2wt)+I,(2wt) = J1(2wt)/ wt. (60)
To examine the effects of finite chain lengths, let us de- He= —Zl I';Qiq, (67)
compose the Hamiltonian a$=H +H.+H,, where =
02 Kg? 1 where the coupling coefficiert; = kANj/\/ﬁ can be written
LI E— as
HS 2m+ 2 ’ HC ququ (61)
k 2 1/2
2 ; Htamian i A j
k=mw? is the spring constant, and the bath Hamiltonian is T \/—( Nr1 O 1)) sin N+1) (68)
mw? & kad , :
- 2 pizJr 5 IZ (a—qi_1)%+ - (62) The equations of motion for the normal modes are
Q(t)=—w?Q;()+T;q(b), (69)

One can recognizE,, as the Hamiltonian of a chain consist-
ing of N+ 2 atoms with fixed positions for the first£0)  for j=1,... N, which have the solution
and last (=N+1) atoms. This Hamiltonian can be diago-

. 1" t
nalized, Qj(t)ZQ?(t)—i—jf drq(rsine(t-7), (70
jJ0
N
Ho=5 2, (Pf+ofQ) (63 Ot) i i
2 5 <) where Q;(t) is the normal coordinate for the unperturbed
bath given by Eq(44). Using integration by parts, this can
- be written as
;=20 sin m), (64) I
Q(1)=QP(t)+ —5{ a(t) — g cosw;t
by means of the transformations @j
N N — ftdfq(T)COSwj(t—T)]. (71)
qi_\/_— Z I]QJ pi:\/ﬁjgl Aij Pj ) (65) 0
Substitution of this expression into the equation of motion
with normalized eigenvectors for the terminal atom
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0.9 ﬁ'&_‘a i
06 | ——= N=15 .
T N=35
\ —— Semi-infinite chain
% FIG. 2. The memory functiorK(t) in Eq.
03 (73) for different numbers of atom&\ in the
chain.
0 [
-0.3 L !
0 5 10
wt
) , 10 Bm
qt)=—w q(t)+5j21 I;Q;(t) (72 K(t)="— (FoFp(1), (79
= w

finally yields an equation in the form of a generalized Lange-where the average is taken over the bath variafs P}
vin equation: Using expressiori68) for the coupling coefficients’; , one
can write the memory function as

q(t)=—Q2q(t)+F(t)— wzfth K(t—7)q(7)7. (73
0
cogwjt). (79

N .

J
KO=R71 Z (2 N+1
Here the “random” forceF(t)=F4(t)+Fy(t) has a part -
F(t) depending on the initial displacement of the terminal

In the limit N—oo, the sum in the above expression can be
atomaq,

converted into the integral

N
q j Ly
Fo(=- m Z ( ) cog wjt), (74 K(t)= %f /Zdecosza coq2wt sing). (80)
0

and a part,(t) that is a function of the displacements and

momenta of the remaining atoms of the chéath, Keeping in mind the integral representation for Bessel func-

tions

1
Fb(t):E JZO FjQ?(t)' (75) Jyi(2)= %fo /zdecos(Zi #)cogzsing), (81

Comparing Eq(73) with Eq. (59), we note the existence

of an additional harmonic force with associated frequency one can see that E(BO) gives the memory functiod (t) for

the semi-infinite chain, Eq60). However, for finite chains
N 2,2 of moderate length, the memory functiéf(t) differs sig-
%2 -

(76)  nificantly from A(t) (see Fig. 2 For times shorter tha,
=N/w, the time scale of the reflection of sound waves from
the anchored part of the chali(t) oscillates around a nega-
tive value that approaches zeroMs$ncreases. Note that the
existence of a region of time for which the memory function
N ) is negative is not uncommon and has been discussed recently
K(t)= L E (5) codwt) 77 in Ref. [11].
mo? (=1 | ] e The exact expressiofr9) for the memory function is not
very convenient to use when the number of atoms is large

Using Egs.(46) and(47), K(t) can be written in the form of but finite. Since the commonly used procedure of converting
the fluctuation-dissipation relation a sum to an integral quite often gives unsatisfactory results,

N+1°

The dimensionless memory functié(t) in Eq. (73) has
the form
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potsi ]
co§ 2wt Slnm

i

2
like (79). We address this problem in the next section. Ci(t)= NT1 E sir? NT1
i=1

(84)

one may wish to have an alternative representation for series N (

IV. CORRELATION FUNCTIONS . . . . . . .
Converting this sum into an integral in the linNt— o yields

In this section we discuss properties of the normalized
velocity autocorrelation functiofVAF) of atomi, defined by Ci(t)= ifﬁzdg Sir?(2i 6)cog 2wt sin ) = Jy(2wt)
Ci(t)=(ai(t)g;)/{g?), where the average is taken over co- ' m™Jo
ordinates and momenta of the whole system. The VAF de- 3 (20t) (85)
termines the transport properties of the chain through its con- 4l e @t

nection with the diffusion constant of thith atom, D;  Thjs expression has the evident drawback of not being in-
=(g?[gdt Ci(t). For a harmonic chain with periodic variant with respect to the transformatips (N+1)—i, that
boundary conditionsC;(t) =Jo(2wt) in the limit of largeN, is, for instanceC,(t) # Cy(t). Note that the same shortcom-
and the diffusion constant takes on the nonzero vdlue ing is also evident in Hamilton’s result for displacements
=(2mwpB) ! [12]. Some author$§13,14 have interpreted [16]

the finite diffusion constant for a tagged oscillator as a con- .

sequence of the zero-frequency mode present in a system 1 t

with periodic boundary conditions. To support this conclu- Qi(t):jgl 9;(0)+m~"p;(0) Jo dt|[Jz¢-j(201)

sion, Florencio and Le¢l3] considered a harmonic chain

with both ends fixed to remove the zero-frequency mode. —Joi+)(2wt)], (86)
The system, governed by the Hamiltonian in E&R), has a )
VAF for atomi given by[15] while the exact formula

N

N
t
Ci(t)=Jp(2wt) — J4i(2wt). (82 qi(t)=;l qj(O)+m1p,—(0)f0dt)k§=)l AjkAik cog wit)

(87

Since the integral odt J,(at) =1/a does not depend of the has the desirable symmetry. The trouble arises, of course,

Bes.sell func_tion. index, t.hi.s expre.ssion i”qeed leads 10 a ¢rom the fact that the conversion from a sum to an integral in
vanishing diffusion coefficient. This result is correct, how- Egs. (84) and (87) can be done only if the labélis finite.

ever, only for atoms near the fixed ends with finite indices pggjq,, we shall obtain an exact representation for the VAF
For atoms in the bulk of the infinite chain, one has to take the,; is particularly convenient in the case of the large but

limit i — < beforecalculation of the diffusion constant. Then gnite N
Ci(t)—Jo(2wt), so the dynamics of atoms located in the
bulk of the chain with fixed ends is the same as that in the
periodic system in the limiN—~. Actually, the nonzero *

diffusion constant for a bulk atom is a general property of cogzsin 0)=J0(z)+22 Joi(z)codq2i 0) (88
infinite one-dimensional harmonic chains. It is a manifesta- =1

tion of the delocalization of atoms in the limN—c and  ¢); ihe Bessel functions E@84) can be written as

does not depend on the type of boundary condition. For ex- ’
ample, for the chain with one fixed end considered in the *

previous section, one can see that the fluctuation® Ci(t)zRiJo(Zwt)+E SijJ2j(2wt), (89
=i/mBw? diverge with increasing while ((gqi—q;_1)?) =1
=1/mBw? is finite for anyi.

The velocity autocorrelation function for the terminal
atom of the semi-infinite chain can be obtained from the 2 N
generalized Langevin equatig9). In fact, since(F(t)q) Ri:m kzl smz(m
=0, the equation of motion for the VAF is

Using the generating function

where

4 X ik mik
Si=—— > sir? —)cos(—). (91)
- t ' N+1 & + +
C(t)=—w2f dr A(t—7)C(7). (83 N+1ezm AN+1777iN+L
° Using the formula
N
Using the Laplace transform, one can verify tit) coin- _ zN  z(N+1) .z
cides with the memory functiom (t)=J;(2wt)/wt and kzl cos{kz)——1+c057 sin———sin 3, (92

yields a nonzero diffusion constant.
The result in Eq.(82) can be derived by expressing the which holds if sirz/2#0, one can show the; is zero for
velocities in terms of normal modes, Eq65), which gives  everyi andj except for three sets ¢f
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{il}=2(N+1)s, (93)
{j2}=2(N+1)s—2i, (99
{jg}=2(N+1)(s—1)+2i, (95
wheres=1,2,3. ... Note that for allj from the set{j,},

Sij=2, while for allj in the sets{j,} and{js}, S;=-1.
Using these results, we finally have

Ci()=Jo(20)+2 X Jp(2wt)— >,

JZJ(ZC!)t) .
jedid Jelizhiish

(96)

It is easy to see that this expression is invariant under th

transformatiori — (N+1)—1, as the set§j,} and{js} trans-
form into each other while the séf;} is invariant under the
transformation. In the limiN—oe, the Bessel functions with

indices proportional toN or higher vanish. Then, for atoms

near the origin of the chaitfinite i), we have Eq(82), while
the equation

Ci(1)=Jo(20t) =Jan+1-i)(201) 97)

holds for atoms near the other end of the chain at index
+1—i. Clearly Eq.(82) and Eq.(97) give the same expres-

sion for the symmetric atoms with labelandN+1—i. For
atoms in the bulk of the chain where batand|i —N| are of
the order ofN, we haveC;(t) =Jy(2wt) in the limit N—oo,

PHYSICAL REVIEW B4 041103

wheres=1,2,3.... For thej from the first, second, and
third sets we obtairs;=2(—1)% (—1)***, and (- 1)%, re-
spectively. These relations yield a correlation functi@t)
of the form

o

ci<t>=Jo(2wt>+2S§l (—1)SJgan+2)(20t)

_SZO (= 1) san+2)+4i(201)

©

_;l (= 1) 5an+2)-4i(20t). (103

gw the limit of largeN this expression leads to E(B2) for
atoms near the fixed er(dinite i), while for atoms near the
free end we have

Ci(t)=Jo(2wt) + Iyn-iy+2(20t). (104
For the terminal atomiE&N), this equation givesC(t)
=J;(2wt)/ wt, the result already obtained from the Langevin
equation. The VAF(104) decays as %2 faster than the
decay for the case of the periodic boundary condition, where
the decay goes as /2, and the corresponding diffusion con-
stantD=1/Bwm is larger by a factor of 2. For the bulk
atoms, only the functiody(2wt) survives in Eq(103), just
as in the case of periodic boundary conditions.

V. CONCLUDING COMMENTS

as in the case of periodic boundary conditions. For these

atoms, we obtain a finite diffusion coefficiebt=1/28wm.

For the case of a chain &f+ 1 atoms with one end fixed,

In this paper we have examined the influence of finite
bath effects on the structure of non-Markovian stochastic

the Hamiltonian takes the fori2) and the transformation to equations. For a tagged oscillator in a finite collinear chain,

the normal modes is given by Eq4.0) and (11). Then the
VAF assumes the form

N—-1 .
. 2] +1
;o S|n2( il m (98)

Ci(t)= coq wjt).

2N+1

the finite-size effects lead not only to strong modification of
the memory function in the GLE, but also to an additional
harmonic force whose spring constant scales a$. 1f
should be noted, however, that if one rewrites the GLE so
that the the memory term involves oscillator positions rather
than velocities, the corresponding equation has the same
form for both the finite andsemijinfinite chains. Moreover,

Following the same procedure used above, one again obtaif)$ this case, for the time intervak N/ w, the corresponding
Eq. (89 for the VAF with R;=1. However, the summation memory function of the finite chain is very close to that of

over index now runs from 0 tdN— 1, and the matri§; has
the form

B ”g of L 2ke1 2k+1
SIToNT1 & S ™ oNT 1) %0 T aNT 1)

(99

One can find again th&; =0 for anyj except elements of

the sets

{i1}=(@2N+1Ds, (100
{j2}=(2N+1)s-2i, (101
{ja}=2(N+1)(s—1)+2i, (102

the infinite chain.

The elastic rotor system provides another model in which
finite bath effects have important consequences. Although it
is a simple matter to write down the GLE for the angular
velocity in formal operator form using the Mori projection
operator, the evaluation of the memory function is difficult
using this approach. On the other hand, the projection opera-
tor defined in EQ.(29) can be used to obtain a stochastic
equation for the variable of interest and an explicit expres-
sion for the memory function in a straightforward fashion.
Although the same results can be obtained by the explicit
integration of the equations of motion for the normal modes,
the projection operator formalism allows one to analyze the
stochastic nature of the system. The essentially non-
Markovian character of the resulting equation for the angle
in the elastic rotor system may be a serious obstacle for
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numerical simulation of the thermal fluctuation effects with however, in the low damping regime when the viscosity of
stochastic dynamics methods. The dominating role of théhe solvent is small and the Brownian forces cause only a
lowest bath modes suggests that explicit integration of theiny perturbation during the period of the external ac field. In
equations of motion for such modes may be a simple anthis case the fluctuation of the intramolecular degrees of free-
effective generalization of the widely used rigid-rod approxi-dom may be quite pronounced, and one may expect a cross-
mation when intrinsic degrees of freedom are replaced byver from purely diffusive motion to more or less regular
rigid constraints. rotation modulated with the frequency of the predominating

Among other phenomena for which the presented findingsnode. This conclusion seems to be quite general and insen-
may be of potential importance, one can mention the dysitive to the simplifying assumptions used in the present
namical properties of rodlike polymers and polymer frag-work. In particular, in the case of a semistiff chain, the domi-
ments smaller than a persistence length. Dielectric relaxationating mode may be related to a bending motion of the chain
and the Kerr effect in dilute solutions of rodlike polymers arerather than longitudinal vibrations. One may also speculate
usually interpreted in the context of a model of overdampedhat for some combinations of parameters the collisions of
Brownian motion of a rigid rotof17]. The only source of the chain with solvent molecules could contribute signifi-
randomness in the model is assumed to arise from collisionsantly to the torque of the entire chain, while the effect of
with surrounding solvent moleculggxternal noisg while  collisions on the longitudinal vibrations may be negligible on
the coupling of rotation with fluctuating internal motiofis-  a characteristic time scale of the external field. Under these
ternal noisgis completely ignored. Under these assumptionsconditions, both intrinsic vibrations and solvent-chain colli-
the frequency dependence of observables is characterized bions would act independently and contribute additively to
a single relaxation time, which is of the order of the in- the total torque. Further work is needed to elucidate the exact
verse rotary diffusion coefficient D} . This approach, origi- conditions under which the intrinsic vibrational motions
nated by Debye, has been successfully applied for decades dominate over solvent interactions and to describe their net
many systems and phenomdna]. It may not be adequate, effect on the dynamics of the system.
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