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Polymers in long-range-correlated disorder

V. Blavats’kd
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine

C. von Ferber
Institut fur Theoretische Physik I, Heinrich-Heine-Universitausseldorf, 40225 Dsseldorf, Germany

Yu. HolovatcH
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
and lvan Franko National University of Lviv, 79005 Lviv, Ukraine
(Received 30 April 2001; published 20 September 2001

We study the scaling properties of polymers inl-dimensional medium with quenched defects that have
power law correlations-r ~ 2 for large separations This type of disorder is known to be relevant for magnetic
phase transitions. We find strong evidence that this is true also for the polymer case. Applying the field-
theoretical renormalization group approach we perform calculations both in a double expansiod #d
and §=4—a up to the one-loop order and second in a fixed dimensiba3) approach up to the two-loop
approximation for different fixed values of the correlation parametsra& 3. In the latter case the numerical
results need appropriate resummation. We find that the asymptotic behavior of self-avoiding walks in three
dimensions and long-range-correlated disorder is governed by a set of separate exponents. In particular, we
give estimates for ther and y exponents as well as for the correction-to-scaling exporenthe latter
exponent is also calculated for the generavector model withm=1,2,3.
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[. INTRODUCTION The problem of SAWs onrandomly diluted lattices,
which may serve as a model of linear polymers in a porous
The influence of structural disorder on the critical behav-medium, has been the subject of intensive discud&ien 3.
ior of various kinds of condensed matter remains one of thé recent review on SAW statistics on random lattices is
central problems in physics. In this paper, we are interestegiven in Ref.[10]. The numerical results for these systems
in the scaling laws that govern the behavior of polymers inavailable from Monte Carlo simulations, exact enumeration,
disordered media when the defects are correlated or belor&]d ana|ytica| treatment a|so cover the nonuniversa| proper-
to some porous or spongelike structure. Our main question Gfes. Nonetheless, even apart from the numerical values of
interest will be: does a small amount of correlated quenchedcaling exponents the question if a given form of disorder
structural defects in the medium induce changes to the uniffects the scaling behavior has not been settled in general.
versal properties of a polymer macromolecule? A frequently studied type of random lattice is the lattice
It is well established that the universal scaling propertieshat is diluted to the percolation threshgttD]. Here, one is
of long flexible polymer chains in a good solvent are per-interested in the behavior of a SAW on the percolation clus-
fectly described within a model of self-avoiding walks ter. Scaling laws(1) hold with exponents that differ from
(SAWS) on aregular lattice [l] The limit of SAWs with an their Counterparts on a regular latticedat 2 andd=3 [8’9]
infinite number of steps may be mapped to a formak0  Apparently, this results from the fact that the percolation
limit of the mrvector model at its critical poinf2]. In par-  cjuster itself is characterized by a fractal dimension that dif-
ticular, for the average square end-to-end distacand the  fers fromd, the Euclidean one. Moreover, the scaling of the
number of configuration&y of a SAW with N steps on a  averaged moments &, (1) on the backbone of a percola-
regular lattice one finds in the asymptotic linNt— o, tion cluster possesses multifractal behavid2]. In our
<R2>~N2V 7 ANNY-L ) study, how_ever, we address another type of disorder, When
e ' N ' the lattice is well above the percolation threshold. In this
where v and y are the universal correlation length and sus-case the dimension of the support does not change and it is
ceptibility exponents for then=0 model that only depend Not cleara priori whether the SAW asymptotic exponefits
on the space dimensionalityandz is a nonuniversal fugac- Will be influenced. - _
ity. For d=3 the exponents red@] »=0.5882+0.0011 and We approach this question for the case of long-range-

y=1.1596+0.0020; whereas fod=2 exact values=3/4 correlated disorder using the connection between the scaling
and y=43/32 are knowri4]. properties of polymers and magnets. So let us first turn our

attention to the magnetic problem. While it is intuitively
clear that strong disorder destroys the magnetic ordering, a

*Email address: viktoria@icmp.lviv.ua much more subtle question is what happens at weak dilution
"Email address: ferber@thphy.uni-duesseldorf.de by a nonmagnetic component, i.e., well above the percola-
*Email address: hol@icmp.lviv.ua tion threshold(weak disorder[14]. It has been argueld.5]
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that the presence of a noncorrelatédr short-range- [21], where the static and dynamic properties of three-
correlated quenched disorder has a nontrivial effect on thedimensional(3D) systems with long-range-correlated disor-
critical behavior of magnetic systems, only if the specificder were studied in a renormalization group approach using a
heat critical exponent of the pure magnet is positive. This two-loop approximation. There is an essential discrepancy
statement is often called the Harris criterion. However, onéetween the latter results and those found frométh# ex-
should be careful in applying this “naively” to the SAW Pansion. Nevertheless, it was qualitatively confirmed by both
problem. Indeed, although the critical exponenof a SAW  @pproaches that long-range-correlated disorder leads to a
on thed=3 dimensional pure lattice is positiVg] [«(d new universality class for these magnetic systems. Note, that

=3)=0.235-0.003, a weak quenched short-range- the variablea is a global parameter: together with the space

correlated disorder does not alter the SAW critical exponentsc.jlmenSIond and the number of componermsof the order

This statement has been proven by Hafflsand confirmed parameter it fixes the universal values of the critical expo-
later by renormalization group resul(i§]. nents.

Note. that in the works mentioned above onlv uncorr While the influence of long-range-correlated disorder on
ote, tha € works mentioneéd above only unco e'trle magnetic phase transition has been the subject of consid-

lated q.uenched defects were mvestlgateq. In 1980s the“ modg able interest, the effect of long-range-correlated disorder
of a dlforderedd-dmensmnal system with so-called “ex- , the scaling properties of polymers remains unclear and is
tended” structural defectsl6,17 was developed. These de- ganerally not considered as settled. Here, we address the
fects are con§|dereq as quenched and cprrglated in a S“gﬁestion of the asymptotic behavior of polymers in long-
space ofey dimensions, and randomly distributed in the anqe correlated disorder with algebraically decaying corre-
remainingd — &4 dimensions. This model may be applied 10 |ations [20]. While the linear approximation of the double
small densities of defects. The integer valuessgthave a 5 expansion indicates qualitatively the existence of the
direct physical |nter.prgtat|oned=0 corresponds to short- long-range(LR) fixed point for polymers, it leads to un-
range-correlated pointlike defects, and the casgs1,2 are  physical quantitative resulfd3]. For this reason we present
rglated, .respectlve-ly, to I|ne§ and planes of impurities. Toere an analysis of the two-loop approximation using the
give an interpretation of noninteger valuesf, one may fixed a,d technique that leads to physically meaningful re-
consider patterns of extended defects like aggregation clussg,ts for the scaling behavior of polymers in the LR regime.
ters, and treaty as the fractal dimension of these clusters ¢ paper is organized as follows: in the following Sec. II
[18]. In this interpretation the defect patterns are fractalyye present the model, in Sec. Il the renormalization proce-
while the support of the system is the complement of thisy,re is discussed and we reproduce the results ofstide
fractal_ gnd will in_general not be frac_tal itself. In R_@%] expansion. In Sec. IV we apply resummation techniques to
the critical behavior of Oft) symmetric magnets with ex- gnalyze the renormalization group functions in the two-loop
tended defects with parallel orientation was investigated,nroximation and find that the asymptotic behavior of self-
evaluating the reno_rmallzatlon group equations b)_/ a dOUb%voiding walks in a three-dimensional medium with long-
e=4—d,eq expansion. It was found that the scaling is af- ;ange-correlated disorder is governed by a new set of expo-
fected by these kinds of defects and the critical exponentgents. For the exponents we present quantitative estimates.
were calculated in this scheme. The static and dynamic critisection v concludes our study. Some additional information
cal properties ofm-component cubic-anisotropic systems gpoyt the properties of magnetic phase transitions in systems

with extended-defects were studied in the RES] using @ ith long-range-correlated quenched disorder is presented in
double s,2’=z+¢4 expansion again finding a change of the gppendix.

critical behavior wherz is increased.

In further work[20] attention concentrated on disordered
systems with “random-temperature” disorder, arising from a
small density of impurities that cause random variations in  Tgo study the universal properties of polymers in porous
the local transition temperaturE,(x). The fluctuations in media with long-range-correlated quenched structural de-
T.(x) are characterized by a correlation function, that fallsfects, we turn our attention to the investigation of the appro-
off according to a power law=x"2 at large distances. It  Priatem-vector model in the polymer limit. We consider the
was shown that in the presence of long-range-correlated dighodel of anm-vector magnet, that is described by the fol-
order the Harris criterion is modified: fa<d the disorder ~'0Wing Hamiltonian:
is relevant, if the correlation length critical exponent of the
pure system obeys<2/a. An mvector model of this type H= | ddx E{[ +5 (X)]quﬂv*(z))z}Jr E((iz)z}
was evaluated using a renormalization group expansion in 2 i Oto 4! '
the parameters=4—d,5=4—a up to the linear approxi- 2
mation. An additional renormalization group fixed point cor-
responding to the long-range-correlated disorder was foundhere ¢ is anm-component fieldp={¢*- - - ¢™, uo andu,

In the following we will denote this as the “LR” fixed point. are the bare mass and the coupling of the undiluted magnetic
The correlation-length exponent was evaluated in this lineamodel, Suq(x) represents the quenched random-temperature
approximation ag’=2/a and it was argued that this scaling disorder, with

relation is exact and also holds in higher order approxima-

tion. However, this result was questioned recently in Refs. ((Smo(x)))=0,

Il. THE MODEL
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1 The critical behavior of the model in E¢4) with m=1
§<<5M0(X)5Mo()’)>>=9(|X—Y|). has been investigatel®0,21,23 using the renormalization
group(RG) approacH 24]. We are interested in the polymer
where ((---)) denotes an average over spatially homoge imit m—0 of this model interpreting it as a model for poly-
neous and isotropic quenched disorder. The form of the paff’€rs in a disordered medium. Note that this limit is not
correlation functiong(r) is chosen to fall off with distance trivial. For the casaly# 0, vo#0, Wo=0 the “naive” RG

according to a power lai20] analysi_s Ieads_to controversial results about the absence of a
stable fixed point and thus to the absence of the second order
g(r)~r—2 (3) phase transitiofi5]. As noticed by Kim[6], once the limit
m,n—0 has been taken, thg andv terms are of the same
for larger, wherea is a constant. symmetry, and an effective Hamiltonian with one coupling

We consider quenched disorder and average the free enf O(m,n=0) symmetry results. This leads to the conclu-
ergy over different configurations of the disorder. To this endsion that weak quenched uncorrelated disorder is irrelevant
we apply the replica method and construct an effectivefor polymers as long asq<<uj.

Hamiltonian for the mrvector model with long-range- Our present analysis takes these symmetry properties into

correlated disord€r20], account. In the case of the Hamiltonian with a term for long-
range-correlated disorder, E¢4), we pass to an effective

1 . .. Uy - Hamiltonian[13] with only two couplingsU,=uy—v, and

E(Mo¢i+(v¢a)2) +m(¢i)z W, (in what follows below we will keep the notatiam, for

this new couplingUy). In discrete momentum space this

effective Hamiltonian reads

n
Heff: Zl J’ ddX

—;:1 dxdyg(|x—y)) P2 d5(y). ()

n
1 - Ug
N . . Her=2 2 5 (oK) ($0*+ 77
Here, the replica interaction verteg(r) is the correlation ki« :

function given in Eq(3), Greek indices denote replicas, and n
the replica limitn—0 is implied. XD D> Skt ko+ka+ky)
For smallk the Fourier-transforng(k) of g(r) reads a  kikoksky
n
~ - w
g(k)~vo+wg|k|2 0. (5) 3% 3V YY) — -2 a-d
o+ Wolk| X(bic, bic) (bicy i)~ 73 < kk1k22k3k4 IN

Note, that in the case of random uncorrelated pointlike de- .
fects the site-occupation correlation function formally reads: X 3(ky+kyt k) d(ka+ky—K) (- i)
g(|x—y|)~8(|x—y|), and its Fourier transform obeys o
X(¢€3'¢E4)v m!nﬂo' (7)
g(k)~vog. (6)

Here, thed(k) represent products of Kronecker symbols and
Comparing Egs.(5) and (6), it is obvious that the case the notation (- ¢) implies a scalar product. Note that the
g(r)~r % corresponds to random uncorrelated pointlike dis-w, term introduces interactions between the replicas and
order. Moreover, different integer values @torrespond to contains the power of an internal momentum. Again, it may
uncorrelated extended impurities of random orientations. Stse shown that foa=d in the limit m,n—0 theu, andw,
the correlation function in Eq(3) with a=d—1 describes terms are of the same symmetry and one is left with an

straight lines of impurities of random orientation whereaso(mn=0)-vector model with only one couplingif—wo).
random planes of impurities correspofid] to a=d—2. In

terms of the fractal interpretation given in the introduction, IIl. THE RENORMALIZATION
the general case corresponds to SAWs orctiraplemenof
a fractal with dimensiorey=d—a. In order to extract the critical behavior of the model, we

Writing Eq. (4) in momentum space and taking E@)  use the field-theoretical RG method. We choose the massive
into account, one obtains an effective Hamiltonian with thredield theory scheme with renormalization at nonzero mass
bare couplingsiy,vo,Wo. Fora>d thew, term is irrelevant  and zero external momentf25] that leads to Callan-
in the renormalization group sense and one obtains the effeSymanzik equations for the renormalized one-particle irre-
tive Hamiltonian of the quenched dilutelincorrelatedl  ducible vertex functionf(RM). In our case the renormaliza-
m-vector mode(22] with two couplingsug,v,. Fora<d we  tion conditions[21] are written both in fixedd anda. The
have, in addition to the momentum-independent couplingsienormalized masg and renormalized couplings,w are

the momentum dependent omgk®~?. Note thatg(k) must ~ defined by
be positive being the Fourier image of the correlation func-

: R : 2_ 1@k 2
tion. This impliesw,=0 for smallk. Also the couplingu, p*=TR(K,p2,u,W) =0,
must be positive, otherwise the pure system would undergo a 4 @) 5

first order phase transition. pt Cu=TRLEKE e, u,w) =0,
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TABLE |. Fixed points and stability matrix eigenvalues in the first order of #hg5) expansion.

Fixed Point u* w* 1 oy

GaussianG) 0 0 —& -0

Pure SAW(P) e 0 € el2— 46

2
Long-range(LR) 29 _ e=29) He—46+ 7= 4e6+85%)
(e—9) (e—9)
4—ap,—1(4) 2
w=T" Kb, %, u,wW)|=o- 2 2

H R {7 U)o Bu== 8| W+ ZWl, | +ez[wuli—w?,], (14
Here,I'Y") andT'{), are the contributions to the four-point
vertex functionl'$" that correspond ta- and w-term sym- u W w
metry, respectively. Asymptotically close to the critical point Y2 = s§l 1~ 5§ PYR T 5§ l4. (15

the M-point renormalized vertex functions obey the homoge-

neous Callan-Symanzik equatig?], Here,l; are one-loop integrals that depend on the space di-

mensiond and the parametex:

'—f dg I_fdaq”
v ) (qrrn?

d Jd
MﬁﬂLZ Bvi({vj})a_vi

M
—Eyqs({vj})]F&M><{k},u2,{v,»}>=0. ®

. dan(afd) 9 daqafd
herev;=u,w. The change of the couplingsw under renor- = f — l=— f o
malization defines a flow in parametric space that is gov- (g2+1)? ak?| ) [a+kP+1],,_,
erned by the corresponding functionsB,(u,w), B,(u,w). (16)

The fixed pointsu*,w* of this flow are given by the solu-
tions of the system of equations:B,(u*,w*)  Note that contrary to the usuai* theory they, function in
=0, By(u*,w*)=0. The stable fixed point is defined as the Eq. (15) is nonzero already in one-loop order. This is due to

fixed point where the stability matrix the k dependence of the integrg) in Eq. (16).
There are two ways to proceed in order to obtain the
_‘?Bvi qualitative characteristics of the critical behavior of the
Bij= I ©  model. One can consider the polynomials in EG<S) and

(14) for fixed a,d and look for the solution of the fixed point
possesses eigenvalueswith positive real parts. The acces- equations. It is easy to check that these one-loop equations
sible stable fixed point corresponds to the critical point of thedo not have any stable accessible fixed pointsdfar4. The
system. The fixed point is accessible if it can be reache@ther scheme to evaluate these equations is a double expan-
along flow lines starting from allowed initial valueg,,wg sion ine=4—d and §=4—a as proposed by Weinrib and
=0. At the fixed point we define the correlation length andHalperin [20]. Formerly [13], we exploited this up to the

pair correlation function critical exponentsand » by linear approximation. For completeness, we here note those
B results. Substituting the loop integrals in E¢§3)—(15) by
v I=2— gy, (u* ,W*) — y2(Uu* ,W¥) (10 : L :
YolUss Yo AR their expansion ine=4—d and 6=4—a, one obtains the
_ - 11 three fixed points given in Table I. We may draw the follow-
7= yp(UT, W), (1D ing conclusions from these first order results: Three distinct

where 2 is the exponent that corresponds to the th)_poimaccessible fixed points are found to be stable in different

: e . : e i f the &,d) plane. The Gaussiai®) fixed point, the
vertex functionM =2 with a ¢? insertion. Other critical ex- regions o X : - :
ponents may be obtained from familiar scaling laws. ForPure (P) SAW fixed point and the LR disorder SAW fixed

L point. The corresponding regions in theed plane are
example, for the susceptibility exponeptone has marked by I, Il, and Il in Fig. 1. In the region IV no stable

y=v(2— 7). (120  fixed point is accessible.
For the correlation length critical exponent of the SAW,
According to the RG prescriptions given above, the RGone finds distinct values,,for the pure fixed point and, g
functions are obtained in the form of a series in the renorfor the long-range fixed point. Taking into account that the
malized couplings. In the one-loop approximation the resultaccessible values of the couplings are 0, w>0, one finds
reads[13] that the long-range stable fixed point is accessible only for
0<e<26, ord<a<2+d/2, aregion where power counting
+(25—s)2w2| in Eq. (7) shows that the disorder is irrelevant. In this sense
3" ¥ the region Il for the stability of the LR fixed point is un-
(13)  physical. Formally, the first order results fdx 4 read

u—§u2I1 —82uw| I+

Bu=—¢

3l
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from the critical behavior of the @f=2) universality class
d I by a region, where no accessible stable fixed points are
presentlV in Fig. 2). It means that also in the case of mag-
4 nets, as well as for polymers the first-order, §) expansion
v leads to a controversial phase diagresompare Figs. 1 and
3 2). So our first order results should be considered as purely
qualitative and in order to obtain a clear picture and more
2 I reliable information, we proceed to higher order calculations.
III
1 IV. THE RESUMMATION AND THE RESULTS
Fortunately, to investigate the two-loop approximation in

r 2 3 4 a a fixedd and a approach we need not recalculate the inter-
mediate expressions of perturbation theory for the vertex
long-range-correlated disorder in different regions of tlkaj functlon_s. Instead, we may_ make_‘ userot-0 limit of the
plane as predicted by the first ordes,§) expansion. Region | f’ipproprlatem-vector model, |nvgstlgated recenf®1]. Start-
corresponds to the Gaussian random walk behavior, in the region |'d from the two-loop expressions of R¢21] for the RG
scaling behavior is the same as in the medium without disorder, ifunctions of them-vector magnet with long-range-correlated
region IIl the “long-range” fixed point LR is stable and the scaling disorder and applying the symmetry argume6td 3] for the
laws for polymers are altered, in region IV no accessible stabld?0lymer limitm=0 as explained in Sec. Il we get the fol-
fixed points appear; this may be interpreted as the collapse of th®wing expressions for thd=3 RG functions of the model
chain. in Eq. (7):

FIG. 1. The critical behavior of a polymer in a medium with

Voure= 12+ €116, 5<el2, Bu(u,w)=—u+u’~[3f,(a)—f(a)Juw— Fsu’

= 1
Y\ np=2r o8, el2<s<e. L) + 1by(@)uw—[by(a) + bg(a)Juw?
o o _ _ +f3(a)w?+bs(a)w?, (18)
Thus, in this linear approximation the asymptotic behavior of
polymers is governed by a distinct exponenk in the re- u
gion Il of the parameter planea(d). Buw(u,w)=—(4—a)w—[f,(a)—f,(a)]w?+ -

Something similar happens if the § expansion is applied
to study models ofm-vector magnets with long-range- 23 1
correlated quenched disorder. For comparison, using the re- +byg(a)ws— 2—16u2w+ Zblz(a)uw2 (19
sults of Weinrib and Halperif20] we get the phase diagram
presented fom=2 in the Fig. 2. Although the critical be- 3 1 1
havior of the long-range-correlated universality class appears Yo(UW) =3 fo(QW 55u° + Cy(3)w — zCx(@)uw, 20
there fora<<d where it is relevant by power countirigegion

[l in the Fig. 2) this region in thed-a plane is separated yd,z(u,w)=}Tu—%fl(a)w—ﬁuz—c3(a)wz+%04(a)uw.

(21)
d I Here, the coefficientd;(a) are expressed in terms of the
one-loop integrals in Eq(16), b;(a) and c;(a) originate
4 from two-loop integrals and are tabulated in ReX1] for d
1t =3 and different values of the parametein the range 2
3 <a=3. The series are normalized by a standard change of
variablesu— (3u/4)l; ,w— (3w/4)l 1, so that the coefficients
2 I of the termsu,u? in B, become 1 in modulus.
The RG functions listed above have the form of a diver-
1 gent series, with zero radius of convergef28], familiar to
the theory of critical phenomen&4]. If the nature of the
divergence is such that the series is asymptotic, then the

situation is, at least in principle, controllable: in this case a
FIG. 2. The critical behavior of then=2-magnet in a medium 900d estimate for the sum of the series is obtained by keep-
with long-range-correlated disorder in different regions of tiiy ~ INg @ certain number of the first tern{Soptimal trunca-
plane as predicted by the first ordes,§) expansion. Region | tion”) or applying an appropriate resummation procedure.
corresponds to the mean field behavior, in the region Il the critical For the case of the pure three-dimensiogditheory it is
exponents are the same as in the medium with uncorrelated disoknown that the perturbation series is asymptotic, and Borel-
der, in Il the fixed point LR is stable, in IV no accessible stable summability in three dimensions has been prol2T. The
fixed points appear. situation of the random-site Ising model is less satisfactory
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than for the pure systeifil4]. For instance, the asymptotic
parameter in the disordered system\is instead ofe, and

the B functions, computed at two loops show no stable fixed 0.1+ 2/ RN \(\\\

points. Bray et al. [28] and McKane[29] studied the //l,";/';}'/’/’/':'f'g‘{:‘;‘}“s\\\\&&\
asymptotic expansion for the free energy of the random-site 0.057 /”//////”' ‘\\\:\\\\\\‘\\\{\\"{
Ising model in the zero-dimensional case, and the model was 0] \\\\\\\\\\\\\\ LR
found to be non-Borel summable. However, recef@] the 0.05 - \\&\\*\\\\‘
Borel summability of the perturbation expansion for the i\\\&‘\\\‘
zero-dimensional disordered Ising model was proven analyti- ~ —0-1] \\\\\\\\\
cally, provided that the summation is carried out in two -0.15 - W\

steps: first, in the coupling of the pure Ising model and sub-
sequently in the variance of the quenched disorder.

In our case, the summability of the series in ELg) is
open. Nevertheless, we apply various kinds of resummation FIG. 3. The Chisholm-Borel resummed 3® functions in the
techniqueq34], in order to obtain reliable gquantitative re- two-loop approximation aa=2.9. The flat surface corresponds to
sults for the problem under consideration and to check théhe By, function. The resummation restores the presence of a pure
stability of these resullts. SAW fixed point (* =1.63w*=0) and leads to a new stable
“long-range-correlated” fixed point. The coordinate box is chosen
to show the stable LR fixed poinut =4.13,w* =1.47) on the
face of the box.

4
4.5

A. Chisholm-Borel resummation

First, we employ a simple two-variable Chisholm-Borel sych that the truncated Taylor expansion of the approximant
resummation techniqugd1]. For our problem this turns out s equal to that of the Borel image of the functibriii) the
to be the most effective one. The resummation procedurgesummed functionf™ is then calculated as the inverse
consists of several steps) starting from the initial RG func-  Borel transform of this approximant:
tion f in the form of a truncated seri¢34] in the variablesi
andw, one constructs its Borel image: w0
. 4 freszf dtexp(—t)[K/L](ut,wt).
(=3 ayuwin S, 20 o SHeRTIIHIE
T AUV S T )
There are a lot of possibilities to choose a Chisholm approx-
imant in two variables. The most natural way is to construct
where I'(x) is the Euler's gamma function(ji) the Borel it such that, if any ofu or w is equal to zero, it leads to the
image is extrapolated by a rational Chishdld2,33 approx-  familiar results for the reduced model. Here, for the Borel-
imant[ K/L](ut,wt) that is defined as the ratio of two poly- images of the3 functions Eqs(18) and(19) we have chosen
nomials both in the variables andw of degreesK andL  the following approximants with linear denominators:

ay Ut+ay u?t?+ay JuwtP+ag W22+ a, uPwtd +ay uw?t’

chis_
Bu(u,w,t) 1+ bj_’out'f' b0,1Wt ,

CoWE+ Co Wt + Cp JuPWEE+ Cp uw?t3
1+d; qut+dg wt '

BuU,w,)cMe= (22)

Note, that the polynomials in the numerators are chosen to b&ummation. In Fig. 5 we visualize the situation depicting the
symmetric in the variables,w. In Fig. 3 we show the re- lines of zeroes of the resummgtfunctions ata=2.9 in the
summed 3Dg functions in the ¢,w) plane fora=2.9. In (u,w) plane in the region of interest. The intersections of
addition to the familiar fixed points describing GaussiantN€S€ curves correspond to the fixed points. The corréspond-
chains and polymers we obtain the stable LR fixed point for 9 valuesf of .the stable fixed point coordinates and the sta-
) _ ~ bility matrix eigenvalues for different values of the correla-
polymers in long-range-correlated disorder. For comparisonyqp, parametea<3 are given in our Table II.
we depict the nonresummed functions in Fig. 4. Only the Substituting Eqs(20) and (21) into Eqs(10—(12) we get
Gaussian fixed pointu(* =0w* =0) is obtained without re-  the following expressions:
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TABLE IlI. Stable fixed point of the 3D two-loopB functions,
resummed by the Chisholm-Borel method, the corresponding criti-
cal exponents, and the stability matrix eigenvalues at various values
of a.

a u* w* v y 7 01

2.9 4.13 1.47 0.64 1.25 0.04 029.62 i
2.8 4.73 1.68 0.64 1.26 0.04 02D.76 i
2.7 5.31 1.81 0.65 1.28 0.03 018.89 i
2.6 5.89 1.87 0.66 1.29 0.03 019.99 i
2.5 6.48 1.89 0.66 131 0.02 0x1.09 i
2.4 7.10 1.87 0.67 1.33 0.01 082.18 i
2.3 7.76 184 0.68 1.36 0.01 083.26 i

FIG. 4. The nonresummed 3B functions ata=2.9. The inter-
section of theg, and B,, surfaces with thei-w plane give the fixed
points. Only the Gaussian fixed poiat =w* =0 is present with-
out resummation.

Co,0F Co W+ Cy Ut+Cq juwt?

1+d; qut+dg wt (24
-1 o 1 T(@—fy(a)  Ca3)Cy(a) The critical exponent; is obtained from the scaling law in
v (u,w)=2 u-+ w+ uw . . .
4 2 4 Eq. (12). The numerical values for, v, and » are listed in
23 Table Il fora=2.3, ...,2.9. Note, that foa= 3, which cor-
+—u?+[ca(a)—cq(a)Jw?, responds to short-range-correlated pointlike defects, the in-
432 teractionsu andw become of the same symmetry, so we pass

to one coupling ¢-w) and reproduce the well-known values
of the critical exponents for the pure SAW model. The nu-
f,(a) fo(a)+4cy(a)—2f4(a) merical values corresponding to those listed in Table Il are in
w+ uw this case:u*=1.63,r=0.59,y=1.17, =0.02, »=0.64.

1
y(uw)=1+ §“_

4 32 As departing from the valua=3 downward to 2 one no-
tices a major increase of the value of the couplingo the
1 £2(a)— f.(a)f-(a)— 8ca(a results are more rehablg far close to 3. At some \{alga
_@u2+ 1(8) 7 fa )12( ) 3 )WZ_ (23 =amarg the LR fixed point becomes unstable. This is ex-

plained by the following physical interpretation: as noted in
the introduction, the case=d—1 (in our 3D approacta
This defines the critical exponents by '=v~1(u*,w*) =2) corresponds to straight lines of impurities of random
and y=vy(u*,w*) at the stable accessible fixed point orientation, and the absence of stable fixed pointsaafoear
(u*,w*). To calculate these exponents in the region wherea=2 suggests the collapse of the polymer chain in such a
the LR fixed point is stable, we again perform a resummatiormedium.

of the series in Eq(23), using the following Chisholm ap- It is difficult to estimate the accuracy of the numerical
proximants: values presented in Table Il. On one hand, it is the first
0 1 2

FIG. 5. The lines of zeros of the 3P func-
tions (18) and (19) resummed by the Chisholm-
Borel method ata=2.9. The dashed line corre-
sponds toB,=0, the solid lines depicB,,=0.

2 L The intersections of the dashed and solid lines
give three fixed points shown by filled circles at
u*=0w*=0 (G), u*=1.63w* =0 (P), andu*
=4.13w*=1.47 (LR). The fixed point LR is
09 o stable.
1 1 1 1 1 1 1
0 1 2 3 4 5 6
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nontrivial result: in the one-loop approximation at fixed The coefficientsA; are some functions af. Finally, the se-
(d,a) one does not encounter the LR fixed point so oneries (25) are resummed in the variable While we do not
cannot estimate deviations caused by different orders of thexpect any high accuracy from this method, as far as the
perturbation theory. On the other hand, as is known from thapplicability has not been proven for our problem, again the
experience with the studies of magnets with long-rangepresence of a stable fixed point LR fap,g<a<d in this
correlated disordef21], the convergence of the resummed case confirms the stability of a new type of critical behavior.
series for the RG functions is worse than in the plaethe We note that in addition to the above procedures we have
short-range-correlat¢dase. The resummed two-loop expan-tried a PadeBorel approximation for the summation of the
sions we exploited here give quite reliable estimates for th&RG functions. To treat the two variable case we used the
exponents of SAWSs on the purd< 3) lattice[compare our representation in terms of a resolvent seli@g,33 in a
two-loop valuesy=0.59 andy=1.17 with the most precise single auxiliary variable. However, no fixed points with

RG estimates cited just after E¢l)]. In the case of the +#0 were found in the region of interest. But note that even
short-range-correlated diluted magnets the comparison of réer the weakly diluted quenched Ising model this procedure
cent six-loop resultg35] with the two-loop one$31] brings  does not lead to stable fixed points in the three-loop approxi-
about the accuracy of latter of the order of several percentsnation[14].

While for our case no higher order calculations are available

to test the numerical accuracy of the data in Table Il the C. Interpretation of the numerical results

results clearly confirm the presence of a new stable fixed
point LR with critical exponents that differ from those of the

“pure” fixed point P. range-correlated disorder is found fib+ 3, a<d, leading to

In ord_er to confirm the quantitative stability of the picture critical exponents that are different from those of the pure
we obtained, we have also used different nonsymmetric ap-

. . ) : model;
proximants fpr,BW instead of the one given in Eq2). As (i) There is a marginal valua,, for the parametea,
expected, this approach was less effective in the sense that : , narg . o
i . : : elow which the stable fixed point is absent, indicating a
the region where a stable fixed point could be establishe

was reduced and the numerical values differed from thosgham collapse of the polymer for disorder that is stronger

given in Table Il. Nonetheless, the qualitative picture is thecorrelated.

same: an LR fixed point exists and is stable in some interval (ii) The_criti_cal exponent increases Wi.th decreasing pa-
a <.a<3 rametera, like in the Weinrib and Halperin case. But note,
marg— .

that the relatiornv=2/a does not hold. Physically this means

that in weak long-range-correlated disorder>(@y.y the

polymer coil swells with increasing correlation of the disor-
Second, we applied the method of subsequent resummaer. The self-avoiding path of the polymer has to take larger

tion, developed in the context of ttle=0 dimensional di- deviations to avoid the defects of the medium.

luted Ising model in Ref[30] and successfully used for the

d=3 case in Ref[35]. Here, the summation was carried out V. CONCLUSIONS

first in the couplingu and subsequently iw. Starting from

the B functions in Eqgs.(18) and (19) we rewrite them as

series in the variablev:

We may summarize and interpret our results as follows:
(i) A new stable fixed pointLR) for polymers in long-

B. Subsequent resummation

In the present work, we have analyzed the scaling behav-
ior of polymers in media with quenched defects that are cor-
related with a correlation that decays likel/x? for large
separationx. This type of disorder is known to be relevant
ulfa(a)—3fy(a)] in magnetic systemg20,21], but the question about its rel-

evance in the polymer problem was so far not answered. To
bﬁ(a)}) this end we applied the field-theoretical RG approach, and

95
- _ A
Bu(u,w)=—u+u STl W

b
+§2u2 +w?| fa(a)—u| by(a)+

4 performed renormalization for fixed mass and zero external
momentd 25]. In our study we take special care of the sym-
+bg(a)w?, metry properties of the effective Hamiltonian of the system
[6]. Formerly[13] we performed calculations up to the linear
a— 4+ u- Euz) approximation, using a double, 5§ expansion, as proposed
2 216 for the magnetic problem in the work of Weinrib and Halp-
erin[20]. While already this study indicated the possibility of
a new type of critical behavior in such a system, it predicted
such behavior for an unphysical range of parameters. A more
. sophisticated investigation at higher order of the perturbation
We first perform a PadBorel resummation of the coeffi- series was needed to confirm the existence of a distinct poly-
cients at different powers of in the variableu, where it is  mer scaling behavior for long-range-correlated disorder.

Bw(u,w)=w

by (a)
4

+w2| fo(a)—fy(a)+ ul+byayws.

possible. This results in a series of the form: We use two-loop expressions for the RG functions that
were recently obtained fan-component systems in the fixed
f(u,W)zz A(U)W'. (25) (d,a) approach[21] and apply appropriate resummation
i

techniques. This way we confirm that in a medium with
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TABLE lll. The correction-to-scaling exponenisfor the phase transition in the 3-vector model with

m=1,2,3.

a 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
o(m=1) 0.80 0.81 0.83 0.87 0.94 1.14 1.07 0.87 0.71 0.69
w(m=2) 1.15 1.08 0.93 0.86 0.81 0.68 0.59 0.57 0.55 0.54
w(m=3) 0.88 0.83 0.76 0.67 0.62 0.61 0.60 0.60 0.59 0.68

long-range-correlated quenched disorder the swelling of theorrelations. The values of the corrections-to-scaling expo-

polymer coil is governed by a distinct exponemnty that

nents are of great interest in the interpretation of such simu-

increases when the correlation of the disorder is increaseldtions. In previous work, dedicated to 3D magnets with

(i.e.,ais decreased When the correlation is too strong, i.e.,
ais below some marginal valugg, > ~2, then a crossover
to the collapse of the polymer is predicted.

APPENDIX

long-range-correlated disordéf6,17,2] these exponents
have not been calculated. Here we carry out these calcula-
tions based on th@ functions of the model Eq4) in the
two-loop approximation, as presented in R&fl].

The correction-to-scaling exponent is defined as the mini-
mal stability matrix eigenvalue in the stable accessible fixed

Here, we turn our attention to the 3D magnetic systempoint. We carry out the investigation in new variables

Recently Ballesteros and Par[§7] presented Monte Carlo

simulations of the site-diluted Ising model in three dimen-

(u,v,wWw)—(u,v,v+w), as proposed by Dorogovtsg\l7]
and perform the PaeBorel resummation of thg functions.

sions in the presence of quenched disorder with long-rang€&he results are presented in Table IlI.
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