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Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps
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Superluminal pulse reflection is shown to occur in a class of one-dimensional asymmetric photonic band
gaps in which a spectral window inside the gap is opened. By means of a coupled-mode equation analysis, we
describe in detail two possible realizations of superluminal pulse reflection that can be achieved using fiber
Bragg gratings. The former method is based on the introduction of a defect into the otherwise periodic
dielectric structure, whereas the latter one exploits the interference of two closely-spaced resonance modes and
simulates the dispersion properties of an inverted medium possessing a doublet line.
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The propagation of electromagnetic wave packets at a syperiod of the grating, and(z), ¢(z) describe the slow varia-
perluminal group velocity1-3] has received in the past few tion, as compared to the grating periad of amplitude and
years a renewed attention and stimulated a controversial dghase of the grating structure, respectively. If we consider
bate about interpretation of experimental res{it,4). In  the propagation of a monochromatic fidkgz,t) at the opti-
the optical context, superluminal phenomena have been olgal frequency o close to the Bragg frequencywg
served in earlier experiments on pulse propagation in absorp= Com/(NgA), wherecy is the speed of light in vacuum, we
tive media[5], and more recently in tunneling experiments may write E(z,t) =u(z, 5)exp(—iwt+ikg2) +v(zd)exp(—iwt
of pulses across one-dimensional photonic band aB&9  —ikg2)+c.c., wherekg= 7/ A is the Bragg wave number and
[6—8] and in pulse propagation in invertéamplifying) me-  u,v are the envelopes of counterpropagating wdses Fig.
dia[9]. In most cases, main attention was paid to the inves1(a)] that, for a weak grating depfih(z)|<1], satisfy the
tigation of superluminal properties in pulse transmissionfollowing coupled-mode equatiord1]
however in configurations involving counterpropagating

waves, such as in tunneling through PBGs or in optical phase du/dz=isu+iq(z)v, (19
conjugation[10], an important issue is whether superluminal _ _
peak advancement may occur in pulse reflection. Superlumi- dv/dz=—idv—ig*(z)u. (1b)

nal peak advancement in pulse reflection has been recently )

predicted in optical phase conjugation, however solely in théN Eds.(1), d(z) =kgh(z)exfli#(2)] represents the complex-
unstable(self-oscillatory regime [10]. Conversely, passive Vvalued scattering potential, whereag=ko—kg=no(w
one-dimensional PBG structures used so far for optical tun=—®s)/Co is the detuning parameter between the wave num-
neling experimentg§6,7], e.g., quarter-wave-stack multidi- Perko=now/cqy of counterpropagating waves and the refer-
electric mirrors, generally show superluminal tunnelingénce Bragg wave numbgg . Equationg1) have the form of
times in transmission but the reflected pulse is in turn subluthe Zakharov-Shabat system encountered in problems of in-

minal. verse scatterinfl2]. The general solution to Egél) can be
In this report we show that superluminal peak advance-
ment for the reflected pulse is commonplace in passive PBC u0.9) uL-d)
structures with broken symmetry in which a narrow trans-(a) %09 ML3) @
mission window is created inside the gap by the introduction T — AL
of a defect. Using a fiber Bragg gratingBG) [11] as a =0 =L Incident
photonic barrier, we present two significant and experimen- 1 Pulse,
tally accessible examples of PBG design for testing superlu-(b) <rT_g)' 110
minal pulse reflection. In particular, by use of inverse scat- T . TR
tering techniques, we design a FBG capable of simuldting R =L < ‘
reflection the gain-doublet dispersion curve of inverted () Reflétied
atomic gases that is known to give rise to superluminal phe{c) <& PR Pulse 220
nomena9]. B
We consider Bragg scattering in an optical fiber with a z=0 z=L

p(_eriodic modu_lation of t_he refractive indgx pro_fﬂél] (see FIG. 1. (a) Schematic of a one-dimensional PBG with counter-
Fig. 1) or, equivalently, in a slab waveguide with a shallow ,ogating wave geometryb) and (c) Boundary conditions and
and almost periodic surface corrugation, where a coupledspectral coefficients of a PBG for forward and backward pulse in-
mode theory is suited to describe interaction of countergigence, respectivelyd) Schematic of superluminal pulse reflection
propagating waves. The refractive index variation along th@or forward pulse incidencer{-<0). The peak of the reflected
PBG axis z is written as n(z)=ng{1+2h(z)co§27Z/A  pulse leaves the grating at the input plane0 when the peak of
+¢(2)]} for 0<z<L, where:L is the grating lengthy, is the  the incident pulse has not yet entered into the grating. The pulse
average refractive index of the structurk,is the nominal peak distance idAL=—7,+cq/n,.
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written as[u(L,d),v(L,8)]"=M(u(0,6),v(0,8))", where flected pulse can be understood from a physical viewpoint as
the elements of the 22 transfer matrixM= M(5) satisfy ~ & reshaping process of the leading part of the incident pulse,
the conditions May=M%, My=M?%,, and detM which has already entered into the grating.

= MyMy— MiaMoy=1. Since we consider a single light The group dglayst, 7,+, andr, - are not mdep.enden'.[ but
pulse incident onto the PBG, two different boundary congi-Satisfy the r+elat|9r’rt=(rr++ 7r-)/2. In @ symmetric grating,
tions may be applied depending on the side of inciddgee  of Whichr™=r"and hencer,= 7, = -, the group delay
Figs 1(b) and 1c)]. For a forward-propagating incident pulse is usually superluminal in transmission, i.e,<L/c, for a

- . . .~ pulse the spectrum of which is tuned inside the band gap of
gi% ;(r?é]z’_thf g?ehihcsmgﬁtffnrg E)huetplﬁitpslflfegf :zngerjttiye%/the PBG; howeverr, is usually positive, both inside and
N -~ ’ ‘outside th ion, which t luminal pul
and the appropriate boundary conditiorvid_,8)=0. For a oursIce the gap region, WhIch prevents superiimina’ puise

- SR ! ) reflection. In order to construct a PBG that shows peak ad-
backward-propagating incident pul$gig. 1(c)], the light  \ancement in reflection, it is worth observing that, owing to

comes from the right side of the grating and the appropriatghe analyticity properties of the spectral transmission and
boundary condition i21(0,6)=0. Notice that in this case reflection functions, the following inequality between the
input and output planes are reversed. The spectral reflectiaroup delay in reflection, (eitherr,+ or 7,-) and the power
coefficientsr = (6) for forward and backward light incidence spectral reflectivityR(5) of the PBG is always satisfidd3]:

are defined byr+(5)=[v(0,6)/u(0,5)]v(,_,5)=0= — Moy,

M22 andri(g):[U(L,5)/1)('.,5)]u(0’5):0:M12/M22, re- Ng Jw L?ln\/R(&,) ds’

spectively, whereas the spectral transmission coefficient () 7Col e go' 5 —&

, 2

is given by t(6)=[u(L,8)/u(0,0)], s=0=[v(0,6)/

v(L,6)]u(o,s-0=1IMp, and is independent of light incident \yhere the equalityfor either 7, + or 7,-) occurs for a PBG
side. Owing to the form of the transfer matti, the spec-  wjth minimal phase shiff13]. From Eq.(2) we realize that,

tral coefficientsr .., r_, andt are not independent but sat- in order to getr, <0 at the center of band gaf=0, the

isfy the relationsr ~(8)t*(8)=—r"*(d)t(5) and R(8)  reflectivity R(5) should show &local) minimum at around
+T(8)=1, whereR(8)=|r=(8)|* and T(8)=[t()|* are  s=0, i.e., a transmission window needs to be created inside
the Spectral reflection and transmission coefficients in POWekhe band gap. There are several ways to open a transmission
In addition, from inverse scattering thedry2] it is known  window inside the band gap; here we present two simple but
that r=(5), f(8)=t(s)exp(-idl) and 1f(5) are causal npoteworthy methods that can be experimentally implemented
functions, i.e., they are analytic functions &fin the upper  ysing FBGs as photonic barriers.

half plane Im@)>0, f(8)—1 asd—c« and|R(5)|<1 on The first method consists of the introduction of a defect
the real axis for a pure index gratirigee alsq13]). Such inside a uniform PBG, which is known to create a localized
properties of analyticity ensure that the front of any disconmode at a frequency inside the gap. In particular, the sim-
tinuous signal may not propagate through the grating at lest defect is the introduction of & phase shift in the
speed higher thany/ng, nor the front of any discontinuity modulation index profile at a location=L, (0<L,<L),

may be reflected before it is incident upon the grating. How5 e, we assume|(z) =0, for 0<z<L, andq(z)=—q, for

ever, if we consider an analytic wave form, such as a Gausg-, <z< |, whereq,=hykg is taken to be constant and real.
ian light pulse, superluminal pulse propagation, either inn case of a sharp phase shift, the transmission and reflection
transmission or reflection, may occwithout appreciable  fynctions of the PBG can be easily determined in an analyti-
pulse distortionprovided that the spectral width of the pulse ca| form by cascading the transfer matrices of two uniform
is narrow enough14]. For such analytic wave forms, the pBGs. Though the general expressions are rather cumber-
group delayr;, defined asr=d¢/dw (¢, is the phase of some to be given here, it turns out that a dip appears in the
t), may be adopted as an estimate for barrier crossing timgpectral reflectivity centered af=0. In case of a near-
[1,8,15, and superluminal pulse tunneling occurs whenevesymmetric grating I(;~L/2), which is of major interest for
<< L/Co. If we consider the reflected pUlse instead of theour purposes, a Simp|e expression for the group de|ays in
transmitted one, we may introduce in a similar way the grougeflection near the center of the dig<0), for either for-

delay ;= as7==d¢,=/dw, whereg,= is the phase of the ward or backward pulse incidence, can be derived and read:
spectral coefficient=. The group delayr,+ accounts for

time delay ¢,+=>0) or time advancement{+<0) suffered 1 ngL | sinh(qgL/2)
by the incident pulse after being reflected at the input plane Tr== i; 2co| (qol/2)
of the grating. Notice that, since for an asymmetric grating

r* andr~ are distinct, different group delays+ andr,- are  where e=1-2L,/L measures the grating imbalance
introduced depending on pulse incidence side. Superluming|e|<1). The minimum of power reflectivity in the deep
pulse reflection occurs whenever- <0 for forward pulse is in turn|r(6=0)|~qoL|e|. From Eq.(3) it follows that,
incidence, andr,-<0 for backward pulse incidence. In this for an asymmetric PBG €#0), superluminal peak pulse
case, the peak of the reflected pulse appbefsrethe peak advancement occurs on one side of pulse incidence
of the incident pulse has arrived at the input plane, i.e., bete.g.,r,+<<0 for L;>L/2), but reflection on the other side of
fore it has entered into the PB[Gee Fig. 1d)]. As for the the structure is always sublumindé.g., 7,->0 for L,
case of superluminal pulse transmission in other photonic>L/2). In addition, the group delay in transmission néar
barriers, the superluminal pulse peak advancement of the re=0, which is the average of group delays in reflections, turns

2
} +0(e%), ()
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FIG. 3. Same as Fig. 2 but for a FBG with a double-Lorentzian

FIG. 2. Spectral reflectivityR) (a); group delays £, and 7, ) spectral reflectivity profile. For the sake of clearness(hin the
(b); and scattering potential(z) (c) for a uniform FBG with amr ~ 9roup delay =, is not shown. Parameter values are:
phase jump(tanh-like profile. Parameter values ar&:=20 cm, =157 m*, y=5236 m', «=48.17 m', and n,=1.5, wg
L,;=10.6 cm,ng=1.5,h,=0.22x 1075, andwg=1256 THz, cor- =1256 THz. For these parameters, a 10-GHz frequency separation
responding to a wavelengttg=1.5 wm in vacuum. The inset in occurs between the two Lorentzian peaks, with a spectral width of
(a) shows the full spectral reflectivity profile of the FBG; the mini- each Lorentzian line equal to one third of the frequency separation.
mum of spectral reflectivitR at v=0 is ~3%. In(d) it is shown A finite grating lengthL=30 cm was used in the simulations for
the normalized intensity of an incident Gaussian puldashed pulse propagation.
curve and corresponding reflected pul@lid curve for forward
incidence. The spectrum of the incident pulse is showfainwith ~ where k, €, and y are positive real-valued parameters that
the dashed curve. The 8-ns peak pulse advancemefub icorre-  determine strength, separation, and width of the two Lorent-
sponds tAAL=1.6 m in Fig. 1d). zian lines. Notice that " () is a causal function since its
polesA; ,= = e—iv lie in the half lower part of the complex
8 plane. In addition, in order to realize” (5) with a pure
show the power spectral reflectiviyand group delays ver- index grating, we assume sufficiently _smaII such that
sus frequency detuning=(w— wg)/(27) for a uniform |IR(8)|<1 on th_e reals axis. From Eq(4) it tgrnszouzt that
PBG with a7 phase shift. The values of parameters chosenR(&) shows & dip ab=0 with R(0)=[2«y/(e"+ y")]" and

; . . 2 (0)=ng(v?— €2 /[ (y*+ €2) yCo], so that superluminal
It?u;[hi ga:frilac:/(;r\llseé%gfﬁpgfndo;?ifa}yggglr:fn?cgggzt'nf%r'npeak advancement in reflection of a spectrally-narrow pulse

which superluminal pulse reflection should be experimen-near&:O is expected whenevet>y. As an example, Figs.

tallv observable using nanosecond pulses. Fhehase shift 3(a) and 3b) show the behavior of power reflectivity and
Y Observ using S pulses. #tphas shi group delays for a superluminal double-Lorentzian FBG de-
was introduced assuming a steep changgwith a tanh-like

rofile [see Fig. 20)]. An example of superluminal pulse signed to work with picosecond pulses in the third transmis-
Eeflection that gu.ses fransform-li?nited nar?osecond Gpaussi »ion window of optical communications. The scattering po-
. : - Rntial g(z) that leads to the double-Lorentzian reflectivity

pulses as probing pulses is shown in Fi¢d)2The spectral

. N profile is real-valued, i.e¢=0, and can be determined ana-
extension of the incident pulse, shown by the dashed curve 'ﬁ/tically in a closed form by use of the Gel'fand-Levitan-
Fig. 2@), was chosen sulfficiently narrow to avoid pulse diS'Marchenko inverse scattering methé@i6]. In particular
tortion. Figure 2d) clearly indicates an 8-ns superluminal ne hasq(z)=2i[£4(2) +£4(2)] where .after settinggy
peak advancement of the reflected pulse, corresponding tog(g £r.60.80)T, £ iss the s‘(lJIution of thé linear svsterm:
~25% of pulse duratiofi33 ns, full width at half maximum 1952:52:54) > y '
(FWHM)], which should be easily detected using standard ¢ ¢
optoelectronic techniques. r(8,)exp — 2i 5n2)( s 4 4 )

The second structure we consider is an asymmetric FBG Sn— AT 6~ A7

out to be always larger thamL/cy, i.e., pulse slowing down
occurs in transmission. As an example, Fig&) &aand 2b)

in which the dispersion curve is tailored, by use of inverse
scattering methods, to simulate the dispersion properties of a _( &1 + &2 ) -1 (5)
gain doublet, which is known to give rise to negative group On—Ay Sy—Ay) 7
velocities[9]. We assume for " (5) the superposition of two
closely-spaced Lorentzian lines of the same amplitude anth=1,2,3,4)  with 8,37 *=[(€*+2x*— y?) = (4k*
width, i.e., +4k%e?— 4€2y?) Y212 The scattering potential(z), corre-

) ) sponding to the reflectivity function of Figs(88 and 3b)

Ik n Ik @ and calculated by Ed5), is shown in Fig.&). The superlu-
Stetiy OS—etiy’ minal behavior of the grating for forward pulse incidence is

rt(o)=
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illustrated in Fig. &d), where reflection of a 210-ps duration dimensional PBGs with an asymmetric profile of refractive
(FWHM) transform-limited Gaussian pulse incident upon theindex modulation that creates a transmission window inside
grating is simulated as an example, with a peak advancemettie band gap. Two possible realizations of superluminal
of the reflected pulse of 42 ps. pulse reflection, which use FBGs as photonic barriers, have

In conclusion, we have shown that superluminal reflectiorbeen proposed and should be experimentally accessible with
of spectrally narrow optical pulses can occur in one-nowadays available FBG devices.
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