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Delayed coupling of logistic maps
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We study the synchronization of logistic maps in a one-way coupling configuration. The master system is
coupled to the slave system with a defay and the slave is a delayed logistic map with a delgyWe show
that when the slave system has no delay=0), perfectly synchronized solutions exist for strong enough
coupling. In these solutions the slave variallés retarded with respect to the master variaklevith a
retardation equal to the delay of the couplingi+n;)=x(i)]. Whenn,#0, a regime of generalized syn-
chronization is observed, wheyéi +n;) is synchronized with(i), but not completely, since the master and
the slave systems obey different maps. We introduced a similarity function as an indicator of the degree of
synchronization and, using a noisy master source, distinguished synchronization from noise-induced correla-
tions.
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Synchronization of chaotic systems has been the topic ofrom Eq.(3) it is clear that whem,=0 synchronized solu-
much investigation in the last decade-3]. Particular atten- tions of the formy(i —n,)=x(i—n;) are, in principle, pos-
tion has been paid to the inclusion of time delay, since thesible, since in this case the equation for the slave varigble
information exchanged among systems is delayed informabecomes Eq(l). In order to study the stability of the solu-
tion [4—11]. In a pioneering work, VosE9] recently showed tion y(i)=x(i—n;) whenn,=0 anda;=a,+ » we calcu-
that a dissipative chaotic system with a time-delayed feedkate
back can drive a nearly identical system in such a way that
the slave system anticipates the master by synchronizing(i+1)—x(i—n;+1)
with its future state. This counterintuitive behavior was ) ) ) .
shown to be robust, and a result of the interplay between =azy(D[1=y(i)]+(7—ay)x(i—ny)[1-x(i—ny)]
delayed feedback and dissipation. Thus, it constitutes a rather _ ST ol T
universal phenomenon of nonlinear dynamics, and it has =aly(H[1=y(H)]=x( =n)[1=x({ =ny) ]} @
been recently found in numerical simulations of unidirection-
ally coupled chaotic lasefd 2]. For small anticipation times,
Voss has shown that anticipated synchronization also occurs . . : .
in chaotic systems withoufa mer¥1ory term in the master. y(i+1)=x(i=ny+1)=a[1=2x(i—ny)][y(i)
Thus, this raises the question whether this behavior can be —x(i—ny)]. (5)
found in coupled chaotic maps with delay. In this Brief Com-
munication we consider logistic maps coupled in a one-way The synchronized solution would be stable if
delayed configuration. To the best of our knowledge, previ-
ous investigations of coupled logistic maps have considered a,|1—2x(i —ny)|<1Vi. (6)
either mutually coupled mapsee, e.g.[13,14 and refer- 2 !
ences therein or a different coupling schenfd5-17.

The equations we consider are such that the master SY$;
temx does not have a memory term, the slave sysyama
delayed map, and there is also a delay in the coupling of th
master to the slave map:

After linearization we obtain

Since the master logistic map is dynamically bounded in
e sense that its trajector(i +1)=f(x(i)) is constrained

o the subinterval [min(x)=f(max(x))=(4—a1)a§/
6,maxk)="1(1/2)=a,/4], condition(6) becomes

x(i+1)=ax(i)[1—x(i)], (1) a;<2+2/ay, (7)

y(i+1)=apy(i—ny)[1-y(i—ny) ]+ 7x(i—ny[1-x( (4—ay)a;=8—8/a,. ®
—ny)] 2

with ny, n,=0, i=max(,,n,)+1, andy is a real coefficient

that controls the strength of the coupling.
If a;=a,+ n, Eq.(2) can be rewritten as

Notice that ifa,<1, synchronization occurs for all values
of a; such that B=a;<4. The results of the numerical simu-
lations indicate that Eq$7) and(8) aresufficientconditions.
Synchronization is found in a wider parameter region. Fig-
ures 1a) and Xb) show the plot ofy(i) againsix(i —n;), for

i — - (i — - (i low [Fig. 1(a)] and largg Fig. 1(b)] coupling. In the first case
i+1)=ay(i—ny)[1 I—ny) |+ p{X(i—n[L1—x(
Y )=l 1Y 21+ 7ix( 2l ( a form of generalized synchronization is observed, since the
—ny)]=y(i—ny)[1-y(i—ny)]}. (3) trajectories of the two systems cover a particular region of
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FIG. 1. (a) Phase plot ofy(i)

x(i—nl)

06 0.8 vs x(i—n,) for a;=3.95 when
a2:3 (77:095) n1:15, n2:0.

(b) Same aga) but fora,=2 (7

s

=1.95). (c) and (d) Similarity
function for the same parameters
as(a) and(b).
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the phase space. In the second case perfect synchronizatidows of the mastgroccur even for small coupling. In other

occurs in spite of the fact that the parametexsg, &,) do not
verify conditions(7) and (8).

words, the simulations show that it is easier to synchronize to
a low-period periodic master than to a chaotic one. It is

In order to quantify the degree of synchronization we cal-worth mentioning that no sensitivity to the value rof was

culate the similarity functiof18]
([x(+])—y()1?)
Jvafx(i)Jvafy(i)]’

which for perfectly synchronized solutiong(i) =x(i —ny),

exhibits a minimunS=0 for j = —n,. Figures. {c) and Xd)

show the results corresponding to Fig&)land 1b). In the

case of low couplingS(j) exhibits a clear minimum foj

= —n4, while in the case of large coupling(—n,) is zero.
The minimum of the similarity function, as a function of

the parametersa, n/a;), is shown in Fig. 2. The parameter

S(i)= ©)

a, is varied in the region where the master system exhibits

chaotic behavior, and for each valueayf, » is varied from
its maximum value §=a,) to its minimum value ¢=0).

Perfect synchronization occurs in a wide range of paramete

values, and it is gradually lost as the valuepfdecreases.
Two facts are important to notice. First, for valuesagfsuch

that the master system is periodic, perfect synchronization i€ 7 N

found, even for very lowbut nonzerp coupling. In the case

that the slave map exhibits chaotic behavior, the coupling |
with the master system suppresses the chaos and with sme
coupling the slave synchronizes to the periodic master. In

this sense, the coupling studied here can be considered

generalization of the feedback control technique employed in
[19]. Second, within the region where chaos occurs for the

master and the slave (3&;,a,<4), no synchronization
was found. In this region the coupling=a;—a, must be
necessarily smallat most,| 7| =0.4), thus the degree of cor-

observed, indicating that synchronization is robust with re-
spect to the initial conditions of the slave system. Synchro-
nization occurs independently of the initial conditions of the
two systems.

Perfectly synchronized solutions have only been found
whenn,=0. Our numerical results show that whap+0,
for large enough coupling(i) synchronizes tx(i—n;) in a
generalized way, sinceandy obey different equations, and
this behavior is independent of the valuerof As an ex-
ample, Fig. 3 shows the plot of(i) againstx(i—n;), and
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FIG. 2. Minimum of the similarity function fom;=15, n,

relation is poor. However, the exceptions of synchronization=0. a, is varied between 3.00 and 3.99 and, for each value, of

by chaos suppression in the slafthin the periodic win-

yla, is varied between tmaximum couplingand 0(no coupling.
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0 02 04 06 08 1 FIG. 3. (a) Phase plot fora;
x(-n) =3.95 whena,=3 (=0.95).
! n,=15, n,=1. (b) Same as(a)
18 2 but for a,=2 (=1.95).(c) and
© @ (d) Similarity function for the
16 same parameters &) and (b).
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the similarity function for the same parameters as Fig. 1, buy(i) synchronizes with(i —n;) independently of the value
with n,=1. A clear minimum forj=—n, is observed, but of n,, and synchronization is complete when=0. The
synchronization is not complete. These results can be undeminimum of the similarity function as an indicator of the

stood by noticing that Eq2) can be also written as degree of synchronization was investigated. Using a noisy
) ) ) ) master source, a residual correlation between the master and
y(i+1)=azy(i—ny)[1-y(i—ny)]+ yx(i—ny+1)/a;. the slave persisted. This indicates that partial, or generalized,

(10 synchronization must be carefully distinguished from noise-

Therefore, in the dynamics of the slave system there is com'pducmj correlation in coupled complex systems.

petition among the dynamics of the delayed logistic map The authors gratefully acknowledge support from

[first term in the right-hand side of ELO)], and the dynam- PRONEX-CNPq, Brazil, and PEDECIBA and CSIC, Uru-
ics of the master systepsecond term in the right-hand side guay.

of Eqg. (10)]. For large enough coupling, the dynamics of the
master system dominates, and there is a strong correlation
between the valug(i+1) with the chaotic fluctuations of
X(i—n4+1). This part of the correlation would survive even
with a noisy mastef20].

In order to confirm that the minimum of the similarity
function indicates truly generalized synchronization of a de-
terministic origin, we have replacedi) in Eqg. (10) by a

y@

=
R
ES

white noise, bounded by the minimum and the maximum of 0 02 04 06 08 1 0 02 04 06 08 1
the master map. When the coupling is large there is a ten xon) xGi-n,)

dency of the variablg to follow the random fluctuations of 18 2

the noise. Figure 4 shows the results for the same paramete | © @

as Fig. 1. Notice that the minimum observed in the similarity 18

function is much less pronounced than that in the case whels e =

the slave system is coupled the deterministic dynamics, aris 1%

ing from the logistic map. Similar qualitative results were 1 05

obtained for noise that has the same probability density as 0

the signal arising from the master map, showing that the > 2 ¢ 2% % S0 ® 0 B %

noise spectrum is not important. J J

To summarize, we have studied the synchronization of FiG. 4. (a) Phase plot with parameters as Fig. 1, but the slave
|09|5t|_0 maps in a one-way coupling configuration, Wh?!’e thesystem is driven by a bounded white noise as explained in the text.
coupling has a delag;, and the slave system, an additional () Same as(@) but for a,=2 (»=1.95). (c) and (d) Similarity
delay n,. We have found that for strong enough coupling function for the same parameters (@s and (b).
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