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Delayed coupling of logistic maps
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We study the synchronization of logistic maps in a one-way coupling configuration. The master system is
coupled to the slave system with a delayn1, and the slave is a delayed logistic map with a delayn2. We show
that when the slave system has no delay (n250), perfectly synchronized solutions exist for strong enough
coupling. In these solutions the slave variabley is retarded with respect to the master variablex with a
retardation equal to the delay of the coupling@y( i 1n1)5x( i )#. Whenn2Þ0, a regime of generalized syn-
chronization is observed, wherey( i 1n1) is synchronized withx( i ), but not completely, since the master and
the slave systems obey different maps. We introduced a similarity function as an indicator of the degree of
synchronization and, using a noisy master source, distinguished synchronization from noise-induced correla-
tions.
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Synchronization of chaotic systems has been the topi
much investigation in the last decade@1–3#. Particular atten-
tion has been paid to the inclusion of time delay, since
information exchanged among systems is delayed infor
tion @4–11#. In a pioneering work, Voss@9# recently showed
that a dissipative chaotic system with a time-delayed fe
back can drive a nearly identical system in such a way
the slave system anticipates the master by synchroni
with its future state. This counterintuitive behavior w
shown to be robust, and a result of the interplay betw
delayed feedback and dissipation. Thus, it constitutes a ra
universal phenomenon of nonlinear dynamics, and it
been recently found in numerical simulations of unidirectio
ally coupled chaotic lasers@12#. For small anticipation times
Voss has shown that anticipated synchronization also oc
in chaotic systems without a memory term in the mas
Thus, this raises the question whether this behavior can
found in coupled chaotic maps with delay. In this Brief Com
munication we consider logistic maps coupled in a one-w
delayed configuration. To the best of our knowledge, pre
ous investigations of coupled logistic maps have conside
either mutually coupled maps~see, e.g.,@13,14# and refer-
ences therein!, or a different coupling scheme@15–17#.

The equations we consider are such that the master
tem x does not have a memory term, the slave systemy is a
delayed map, and there is also a delay in the coupling of
master to the slave map:

x~ i 11!5a1x~ i !@12x~ i !#, ~1!

y~ i 11!5a2y~ i 2n2!@12y~ i 2n2!#1hx~ i 2n1!@12x~ i

2n1!# ~2!

with n1 , n2>0, i>max(n1,n2)11, andh is a real coefficient
that controls the strength of the coupling.

If a15a21h, Eq. ~2! can be rewritten as

y~ i 11!5a1y~ i 2n2!@12y~ i 2n2!#1h$x~ i 2n1!@12x~ i

2n1!#2y~ i 2n2!@12y~ i 2n2!#%. ~3!
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From Eq.~3! it is clear that whenn250 synchronized solu-
tions of the formy( i 2n2)5x( i 2n1) are, in principle, pos-
sible, since in this case the equation for the slave variaby
becomes Eq.~1!. In order to study the stability of the solu
tion y( i )5x( i 2n1) when n250 anda15a21h we calcu-
late

y~ i 11!2x~ i 2n111!

5a2y~ i !@12y~ i !#1~h2a1!x~ i 2n1!@12x~ i 2n1!#

5a2$y~ i !@12y~ i !#2x~ i 2n1!@12x~ i 2n1!#%. ~4!

After linearization we obtain

y~ i 11!2x~ i 2n111!5a2@122x~ i 2n1!#@y~ i !

2x~ i 2n1!#. ~5!

The synchronized solution would be stable if

a2u122x~ i 2n1!u<1; i . ~6!

Since the master logistic map is dynamically bounded
the sense that its trajectoryx( i 11)5 f „x( i )… is constrained
to the subinterval @min(x)5f„max(x)…5(42a1)a1

2/
16,max(x)5f(1/2)5a1/4#, condition~6! becomes

a1<212/a2 , ~7!

~42a1!a1
2>828/a2 . ~8!

Notice that ifa2<1, synchronization occurs for all value
of a1 such that 0<a1<4. The results of the numerical simu
lations indicate that Eqs.~7! and~8! aresufficientconditions.
Synchronization is found in a wider parameter region. F
ures 1~a! and 1~b! show the plot ofy( i ) againstx( i 2n1), for
low @Fig. 1~a!# and large@Fig. 1~b!# coupling. In the first case
a form of generalized synchronization is observed, since
trajectories of the two systems cover a particular region
©2001 The American Physical Society02-1
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FIG. 1. ~a! Phase plot ofy( i )
vs x( i 2n1) for a153.95 when
a253 (h50.95). n1515, n250.
~b! Same as~a! but for a252 (h
51.95). ~c! and ~d! Similarity
function for the same parameter
as ~a! and ~b!.
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the phase space. In the second case perfect synchroniz
occurs in spite of the fact that the parameters (a1 ,a2) do not
verify conditions~7! and ~8!.

In order to quantify the degree of synchronization we c
culate the similarity function@18#

S2~ j !5
^@x~ i 1 j !2y~ i !#2&

Avar@x~ i !#var@y~ i !#
, ~9!

which for perfectly synchronized solutions,y( i )5x( i 2n1),
exhibits a minimumS50 for j 52n1. Figures. 1~c! and 1~d!
show the results corresponding to Figs. 1~a! and 1~b!. In the
case of low couplingS( j ) exhibits a clear minimum forj
52n1, while in the case of large couplingS(2n1) is zero.

The minimum of the similarity function, as a function o
the parameters (a1 ,h/a1), is shown in Fig. 2. The paramete
a1 is varied in the region where the master system exhi
chaotic behavior, and for each value ofa1 , h is varied from
its maximum value (h5a1) to its minimum value (h50).
Perfect synchronization occurs in a wide range of param
values, and it is gradually lost as the value ofh decreases
Two facts are important to notice. First, for values ofa1 such
that the master system is periodic, perfect synchronizatio
found, even for very low~but nonzero! coupling. In the case
that the slave map exhibits chaotic behavior, the coup
with the master system suppresses the chaos and with s
coupling the slave synchronizes to the periodic master
this sense, the coupling studied here can be consider
generalization of the feedback control technique employe
@19#. Second, within the region where chaos occurs for
master and the slave (3.6<a1 ,a2<4), no synchronization
was found. In this region the couplingh5a12a2 must be
necessarily small~at most,uhu50.4), thus the degree of cor
relation is poor. However, the exceptions of synchronizat
by chaos suppression in the slave~within the periodic win-
03720
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dows of the master! occur even for small coupling. In othe
words, the simulations show that it is easier to synchroniz
a low-period periodic master than to a chaotic one. It
worth mentioning that no sensitivity to the value ofn1 was
observed, indicating that synchronization is robust with
spect to the initial conditions of the slave system. Synch
nization occurs independently of the initial conditions of t
two systems.

Perfectly synchronized solutions have only been fou
when n250. Our numerical results show that whenn2Þ0,
for large enough couplingy( i ) synchronizes tox( i 2n1) in a
generalized way, sincex andy obey different equations, an
this behavior is independent of the value ofn2. As an ex-
ample, Fig. 3 shows the plot ofy( i ) againstx( i 2n1), and

FIG. 2. Minimum of the similarity function forn1515, n2

50. a1 is varied between 3.00 and 3.99 and, for each value ofa1 ,
h/a1 is varied between 1~maximum coupling! and 0~no coupling!.
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FIG. 3. ~a! Phase plot fora1

53.95 when a253 (h50.95).
n1515, n251. ~b! Same as~a!
but for a252 (h51.95). ~c! and
~d! Similarity function for the
same parameters as~a! and ~b!.
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the similarity function for the same parameters as Fig. 1,
with n251. A clear minimum forj 52n1 is observed, but
synchronization is not complete. These results can be un
stood by noticing that Eq.~2! can be also written as

y~ i 11!5a2y~ i 2n2!@12y~ i 2n2!#1hx~ i 2n111!/a1 .
~10!

Therefore, in the dynamics of the slave system there is c
petition among the dynamics of the delayed logistic m
@first term in the right-hand side of Eq.~10!#, and the dynam-
ics of the master system@second term in the right-hand sid
of Eq. ~10!#. For large enough coupling, the dynamics of t
master system dominates, and there is a strong correla
between the valuey( i 11) with the chaotic fluctuations o
x( i 2n111). This part of the correlation would survive eve
with a noisy master@20#.

In order to confirm that the minimum of the similarit
function indicates truly generalized synchronization of a
terministic origin, we have replacedx( i ) in Eq. ~10! by a
white noise, bounded by the minimum and the maximum
the master map. When the coupling is large there is a
dency of the variabley to follow the random fluctuations o
the noise. Figure 4 shows the results for the same param
as Fig. 1. Notice that the minimum observed in the similar
function is much less pronounced than that in the case w
the slave system is coupled the deterministic dynamics, a
ing from the logistic map. Similar qualitative results we
obtained for noise that has the same probability density
the signal arising from the master map, showing that
noise spectrum is not important.

To summarize, we have studied the synchronization
logistic maps in a one-way coupling configuration, where
coupling has a delayn1, and the slave system, an addition
delay n2. We have found that for strong enough coupli
03720
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y( i ) synchronizes withx( i 2n1) independently of the value
of n2, and synchronization is complete whenn250. The
minimum of the similarity function as an indicator of th
degree of synchronization was investigated. Using a no
master source, a residual correlation between the master
the slave persisted. This indicates that partial, or generali
synchronization must be carefully distinguished from noi
induced correlation in coupled complex systems.

The authors gratefully acknowledge support fro
PRONEX-CNPq, Brazil, and PEDECIBA and CSIC, Uru
guay.

FIG. 4. ~a! Phase plot with parameters as Fig. 1, but the sla
system is driven by a bounded white noise as explained in the
~b! Same as~a! but for a252 (h51.95). ~c! and ~d! Similarity
function for the same parameters as~a! and ~b!.
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